第一篇:人教版小学数学五年级下册分数的基本性质教学设计
《分数的基本性质》教学设计 小教092 孙伟
教材分析
对于本节内容,学生已经学过分数的概念、商不变性质以及分数与除法的关系等内容,本节教材内容是通过用分数表示图形的涂色部分,结合分数的概念,学生明确这三个分数是相等的,然后,学生通过模仿写出几个连等的分数,通过观察所写分数,寻找分子分母的变化规律,进而使学生掌握分数的基本性质。之后,启发引导学生说出分数的基本性质与商不变性质和分数与除法的关系等内容的联系。最后,做相关练习来强化对分数的基本性质的理解与应用。
学情分析
学生前面所学过的分数的概念、商不变性质以及分数与除法的关系等内容对本节课的学习将起到奠基作用,因此新课引入环节将使学生通过练习来回忆起这些知识,从而为本节内容的学习做好准备。通过前后知识的联系,学生将会在教师启发引导之下来发现并掌握分数的基本性质,通过一系列的练习,学生将熟练掌握并运用分数的基本性质。
教学目标
1、学生通过观察连等分数的分子分母变化规律,自己来发现、理解并掌握分数的基本性质;通过回忆商不变性质以及分数与除法的关系等内容,学生能够明确分数的基本性质与它们之间的内在联系;能够熟练解决分数的基本性质的相关练习。
2、通过自己来发现、理解并掌握分数的基本性质,培养学生自主探究与独立分析问题总结规律的能力。
3、使学生体会到数学学科前后知识存在必然的联系。
教学重点、难点
教学重点:学生通过观察连等分数的分子分母变化规律,自己来发现、总结并掌握分数的基本性质。教学难点:明确分数的基本性质与商不变性质以及分数与除法的关系等内容的联系,能够熟练解决分数的基本性质的相关练习。
教法、学法
通过教材分析,本节课我将采用讲解法、启发式谈话法,媒体演示法等教学方法,启发引导学生通过自主探究法与发现法来掌握分数的基本性质。
教学过程
一、复习巩固、奠定基础
(多媒体课件展示:逐个显示)24÷6= 72÷18= 12÷3= 师:口答结果,观察以下算式与第一个算式的联系?说明理由 预测1:商是4,不知道。(提示:观察第二个算式中的被除数、除数相对于第一个算式有何变化?)
预测2:第二个算式商是4,因为第二个算式的被除数、除数相比于第一个算式同时乘3,或者说成同时扩大3倍,依据以前学过的“商不变性质”,它的商与第一个算式相同。
师:你的回答非常准确,但你是否能回想起“商不变性质”的具体内容? 预测:被除数和除数同时扩大或缩小相同的倍数,商不变。师:他的回答不够完整,少了一个条件,谁来补充?
预测:被除数和除数同时扩大或缩小相同的倍数(0除外),商不变。师:这样说就完美了,为什么0除外?师生:0不可以做除数。请看屏幕(多媒体显示“商不变性质”具体内容),一起来读一遍。用字母表示:(板书)a÷b=(a×c)÷(b×c)=(a÷c)÷(b÷c)(c≠0)(多媒体课件展示)3/4=()÷()7/13=()÷()板书:a/b=a÷b 我们可以将分数看成分子除以分母
设计意图:通过多媒体课件展示,使学生回忆起“商不变性质”、分数与除法的联系,从而为加深理解分数的基本性质的实质做准备。
(多媒体展示课本P75页例1图)用分数表示涂色部分(学生可以轻松表示)师:三个分数有何数量关系? 预测:它们大小相等。师:请说出具体理由。
预测1:因为三个分数所表示的图形面积大小相等。
预测2:三个正方形都相同,我们可以将它们每个都当做单位1,第一个正方形平均分成2份,表示其中的一份是1/2;第二个正方形平均分成4份,表示其中的2份是2/4;第三个正方形平均分成8份,表示其中的4份是4/8,它们表示的面积数都是相同的,因此三个分数大小相等。
师:你的回答非常准确,思维十分严谨,数学语言非常规范、合理。请大家一起来看一下,三个分数的分子、分母各是按照什么规律变化的?
二、内容展开、突破难点
请3个同学到黑板写自己的发现规律。
预测:学生能够发现分子分母同乘或同除以相同的数的规律。师:你还能举出几个这样的例子吗?
学生能够使用分子、分母同时乘或者除以某个数来写连等分数。学生作答,说明理由。
师:根据自己写出的连等分数,你发现了什么规律?
预测:分数的分子和分母同时乘或者除以相同的数(0除外),分数的大小不变。师:我们把它叫做:分数的基本性质。(板书课题)
师:根据分数与除法的关系以及商的不变性质,你能来解释一下分数的基本性质吗?
预测:因为分数可以看成分子除以分母,再根据“商不变性质”,分数的分子和分母同时乘或者除以相同的数(0除外),所得算式的结果不变,因此分数的大小不变。
师:用字母表示:(板书)a/b=a÷c/b÷c=a×c/b×c(c≠0)
设计意图:通过启发式谈话法引导学生自己发现规律,总结分数的基本性质,并通过逐步独立深入思考,理解分数与除法的关系和商的不变性质与分数的基本性质的内在联系,从而加深对分数的基本性质的理解。
三、练习巩固、加强应用
通过多媒体来出示相关题目,从手写作答过渡到口算作答,不断提高熟练程度与准确度,继而加深对分数的基本性质的理解与运用,在此过程中及时纠正学生数学语言的选择与使用。
四、及时总结、构建网络
通过板书来回忆这节课的内容。
板书设计
分数的基本性质
a÷b=(a×c)÷(b×c)=(a÷c)÷(b÷c)
a/b=a÷b
a/b=a÷c/b÷c=a×c/b×c(c≠0)c≠0)(
第二篇:五年级下册数学《分数的基本性质》教学设计
五年级下册数学《分数的基本性质》教学设计
《分数的基本性质》教学设计
教学内容:
教学目标:
知识与技能
1.理解并掌握分数的基本性质。
2.能利用分数的基本性质,把一个分数化成与它相等的指定分母的分数。
过程与方法
经历探究分数基本性质的过程,感受“变与不变”、“极限”等数学思想方法,培养学生观察、比较、抽象、概括及动手实践的能力,进一步发展学生的思维。
教学重、难点:理解和掌握分数的基本性质,会运用分数的基本性质。
教学过程:
一、快乐起航
1.生活中的变与不变。(课件2)
出示变形金刚玩具:孩子们今天老师给大家带来了一个大家熟悉而又好玩的玩具,认识吗?可能男孩子比较喜欢。变形金刚好玩在哪里?什么会变?对,变(板书:变);无论他的样子怎样变,它的什么又是不变的?
(板书:不变)这种变与不变的现象在数学中也是普遍存在的,让我们在今天的学习中体会这种变与不变的数学思想。
2.商不变规律中的变与不变
快速抢答:
15÷3=
150÷30=
1500÷300=(课件3)
师:你是根据什么算得又对又快?在这里,什么变了?什么没有变?,被除数和除数是怎样变化的呢?看来变化的数学现象中蕴藏着不变的问题实质。课件出示:(15÷3=150÷30=
1500÷300商不变的规律)
3.猜想分数中的变与不变。(课件5)
分数和除法有着密切的联系,再来变一变,(把除法算式变成分数的形式),大胆地猜想一下,分数中又会有什么样的规律?分数能否也像除法
这样进行变“形”呢?这节课我们一起进行分数基本性质的探究。(板书课题)
二、学海探秘
1.活动一:(折一折)(课件6)
(1)折一折:探究从动手开始。
(2)分享交流
:(3人汇报)。
层次1:谁来分享一下你的结果?请到前面边展示边汇报
层次2:你呢?还有不同的吗?
层次3:不对折,你能继续说吗?请你,这么多人还有答案!有多少个,对,无数个。(建立分数库,直接板书学生汇报分数)
(3)这些分数的大小相等吗?为什么?结合图形看一看?从分数库来看,分数是能够变形的,分数的什么在变(板书:分数的分子和分母),什么是不变的(板书:分数的大小)?问:分子和分母怎样变,分数的大小才不变呢?请先独立思考、自主探究。
2.活动二:找一找
(1)自主探究:动动手,找一找。(课件7)
(2)合作交流:
学生在小组里交流,强调讲清思路、完善规律。
谁来展示一下你们组的发现呢?
(3)汇报展示:(课件8)
生1:(指导讲)能结合例子讲,真好,如果能把你所说的×2,借助这样的箭头符号表示出来会更清晰。
生2:谁能像这样再选两个分数语言更流利地讲一讲。请你,有进步!
生3:你能把他俩发现,用一句话概括出来吗?
生4:换个角度从右往左观察会怎样呢?
(4)再次验证:(板书:任意选两个分数)
师:是不是所有的分数都有这样的规律呢?从分数库中再任选两个分数动手试一试。谁来交流一下?你选的是哪两个分数?发现了什么规律?(板
书:选取特殊的例子)很有价值的一个例子,给了我们什么启示?(乘或除以的数还可以是小数)。
(5)规律总结:(课件9)
A、现在你能用一句话、完整的、概括我们发现吗?(完成板书)
B、追问:为什么要把0除外?
0不能做除数,0也不能做分母,因此就得把这个特殊成员0除外了。
师:分数的这种变与不变的规律我们称之为分数的基本性质。这里的“变”指的是什么?
“不变”又指的是什么?看来,分数的基本性质中也是在变中有不变,蕴含着变与不变的数学思想。
D、给你的同桌再次说一说:什么叫分数的基本性质,其中什么变了,什么不变?。
(6)融合规律(课件10)
分数与除法有着密切的关系,你能用商不变的规律再次说明分数的基本性质吗?
生1:因为:分子相当于被除数,分母相当于除数,分数值相当于商?所以在除法中,可以说成.......,在分数中可以说.....生2:你能再流利地说一遍吗?
师:正如他们所说,分数是除法的一种特殊形式,将商不变的规律迁移到分数中,变成分数的基本性质。虽然名称不同,形式不同,但本质是一样的,它源自于商不变的规律,是商不变规律的一种扩展。
(7)难点深析练习(课件11)
出示:重点处理第四个:这个对吗?听到了异样的声音,认为错误地请说出理由。
为什么不能同时加减?他的意思是1/2和7/8不相等,也就是分数的大小变了。结合图形看一下,是这样的吧,所以,不能同时加减一个相同的数。
在这个规律里你有什么地方要提醒大家的吗?
带着你的理解,再读一读。听着分数的基本性质,老师脑海中立刻闪现出另一个规律,你们猜谁?
3.运用规律(课件12)
出示例2:题目的要求是什么?尝试做一做?
谁来板演,你给大家讲一讲。孩子,你能有序思考、真好!也就是先想分母怎么变,再让分子随着变。
三、课堂检测(课件13、14)
分数变形挑战开始了,敢接受挑战吗?
(1)我给分数变变形(我会填):同桌互测,全对的把手高高举起来。掌声送给自己。
(2)同胞兄弟大联欢。(说出相等的分数)
四、盘点提升
师:通过本节课的学习,你有哪些收获呢?还有什么疑问吗?孩子们,今天我们以“变形”为主线,从
“分数能否变形”提出猜想,通过“怎样变形”进行验证和归纳,最后“我给分数变变形”应用感悟,收获了知识,掌握了方法。其中蕴含的“变与不变”的数学思想,不仅将商不变的规律、分数的基本性质紧密联系,还会延伸六年级将要学习的比的基本性质中,最后老师送给大家十个字----寻知识之源,应万变生活。
第三篇:五年级数学下册《分数的基本性质》教学设计
五年级数学下册《分数的基本性质》教学设计
塔洋镇中心小学吴清富
教学内容人教课标实验教材五年级下册 P75 分数的基本性质 教学目标
1.让学生通过经历预测猜想——实验分析——合情推理——探究创造的过程,理解和掌握分数的基本性质,知道它与整数除法中商不变性质之间的联系。
2.根据分数的基本性质,学会把一个分数化成用指定的分母做分母或指定的分子做分子而大小不变的分数,为学习约分和通分打下基础。
3.培养学生观察、分析和抽象概括的能力,渗透事物是互相联系、发展变化的辩证唯物主义观点。体验到数学验证的思想,培养敢于质疑、学会分析的能力。
教学重点使学生理解分数的基本性质。
教学难点让学生自主探索,发现和归纳分数的基本性质,以及应用它解决相关的问题。
教学过程
一、故事情景引入
同学们,你们知道现在热播的动画片叫什么名字吗?对了,就是《熊出没》。今天,熊大、熊二与光头强又为一件事情发生了争执。老鄂为了缓解熊大、熊二与光头强之间的关系,就想把他们三个分开居住,对他们三个说:“我现在有三片一样大的森林,熊大,第一片
森林的1/2归你管了,熊二,第二片森林的2/4就归你了,光头强,你就来管理第三片森林的4/8吧。”老鄂的话刚讲完,熊大就嘟着嘴叫了起来:“老鄂你不公平!分给光头强的多,分给我的少!”熊二也连忙叫着:“老鄂不公平,老鄂偏心!”只有光头强在偷着乐。
同学们,你们觉得老鄂公平吗?现在同桌之间讨论一下。
讨论完了请举手。
生甲:“我觉得不公平,光头强分得多。”
生乙:“我觉得熊大分得多。”
生丙:“我觉得公平,他们三个分得一样多。”
师:“看样子我们班的同学也争论起来了,到底老鄂的分法公不公平,上完这一节课同学们就会明白了。”
二、新授
师:“下面我们来做个实验。同学们请你们拿出老师为你们准备的学具袋,看看袋子里有些什么呢?(正方形纸片)有几张?(三张)” 请你们把这三张正方形纸片叠起来,比一比大小,看看怎么样?生:“三张正方形纸片一样大。”
1.师: “ 下面我们就用三张一样大的正方形纸片代替森林,象老鄂一样来分森林了。”
首先,请在第一张正方形纸片上表示出它的1/2;
再在第二张正方形纸片上表示出它的2/4;
然后在第三张正方形纸片上表示出它的4/8。
好了,大家动手分一分。(教师巡视指导)
2.师:“分完了的请举手?
老师跟你们一样,也准备了三张同样大小的正方形纸片。(边说边操作,同样大)
下面请哪位同学说一说,你是怎么分的?”
生:“把第一个正方形纸片平均分成2份,取其中的一份,就是它的二分之一。”
生:“把第二个正方形纸片平均分成4份,取其中的两份,就是它的四分之二。”
师:“那八分之四又是怎么得到的呢?大家一起说。”
生:“把这块正方形纸片平均分成8份,取其中的四份,就是它的八分之四。”
(学生说的同时,教师操作,分完后把正方形纸片贴在黑板上。)
3.师:“同学们,观察这些正方形纸片的阴影部分,你有什么发现?”
小结:原来三个正方形纸片的阴影部分是同样大的。
师:“ 现在再来评判一下,老鄂分森林公平吗?为什么?”(请几名学生回答)
生:“老鄂分森林是公平的,因为他们三个分得的面积一样多。” 师:“现在我们的意见都统一了,老鄂是非常公平的,他们三个人分的森林一样多。那你觉得1/
2、2/
4、4/8这三个分数的大小怎么样呢?”
生甲:“通过图上看起来,这三个分数应该是一样大的。”
生乙:“这三个分数是相等的。”
师:“刚才的试验证明,它们的大小是相等的。”(板书,打上等号)
4.研究分数的基本规律。
师:“我们仔细观察这一组分数,它的什么变了,什么没变?” 生甲:“三个分数的分子分母都变了,大小没变。”
师:“那它的分子分母发生了怎样的变化呢?让我们从左往右看。
第一个分数从左往右看,跟第二个分数比,发生了什么变化?” 生乙:“它的分子分母都同时扩大了两倍。”
师:“跟第三个分数比,它又发生了什么变化?”(生回答)对了,它的分子分母都同时扩大了二倍。
再引导学生反过来看,让学生自己说出其中的规律。(边讲边板书)
教师小结:“刚才大家都观察得很仔细,这组分数的分子分母都不同,它们的大小却一样,那么,分子分母发生怎样变化的时候,它的大小不变呢?同桌之间互相说一说,总结一下,好吗?”
学生发言
小结:像分数的分子分母发生的这种有规律的变化,就是我们这节课学习的新知识。(板题)
分数的基本性质。
5.深入理解分数的基本性质。
师:“什么叫做分数的基本性质呢?就你的理解,用自己的语言说一说。”(学生讨论后发言)
师:刚才同学们都用自己的语言说了分数的基本性质,我们的书上也总结了分数的基本性质,现在请打开书看到75页。看看书上是怎么说的,是你说得好,还是书上说得好,为什么?
齐读分数的基本性质,并用波浪线表出关键的词。
生甲:我觉得“零除外”这个词很重要。
生乙:我觉得“同时”“相同”这两个词很重要。
师:想一想为什么要加上“零除外”?不加行不行?
让学生结合以前学过的商不变的性质讨论,为什么加“零除
外”。
教师小结:“以三分之一这个分数为例,它的分子分母同时除以零,行吗?不行,除数为零没意义。所以零要除外。同时乘以零呢?我们就会发现,分子分母都为零了,而分数与除法的关系里,分母又相当于除数,这样的话,除数又为零了,无意义。所以一定要加上零除外。”(边讲边板书。)
三、应用
1.学了分数的基本性质到底又什么用呢?老师告诉你们,根据分数的基本性质,我们就能变魔术一样,把一个分数变成多个跟它大小一样,分子分母却不同的新分数。下面就让我们来变个魔术。
2.学生练习课本例题2,两名学生在黑板上做。
3.学生自己小结方法。
4.按规律写出一组相等的分数。
四.总结
这节课大家有什么收获?
第四篇:五年级数学分数的基本性质教学设计
五年级数学《分数的基本性质》教学设计
教学内容:五年级下册《分数的基本性质》。教学目标:
1、知识与技能:理解并掌握分数的基本性质,能用分数的基本性质解决一些简单的问题。
2、过程与方法:培养学生观察、比较、抽象、概括等初步的逻辑思维能力,并且能够正确认识和理解变与不变的辨证关系。
3、情感态度价值观:渗透事物是相互联系的观点。通过学生的成功体验,培养学生热爱数学的情感。
教学重点: 理解分数基本性质的含义,掌握分数基本性质的推导过程。
教学难点:理解分数基本性质“零除外”的道理,归纳分数的基本性质。
教具准备:多媒体课件。
学具准备:准备三张同样大小的正方形的纸片
教学过程:
一、激趣导入
1、故事引入:
师:妈妈买了一个西瓜回来给全家人消暑,妈妈打算这样分配。小明分给2/4师:也许你们的猜想是对的,科学家们的发现往往也是从猜想开始的,但只有经过验证得出的结论才是科学的,这节课就让我们来做个小数学家,一起来验证这三个分数是不是相等? 师:请看活动要求,哪位同学来读一读。
师:听明白了吗?在操作的过程中如果遇到困难可以看看信封背面老师给你的提示。
2、验证猜想:
师:实验做完了吗?结果怎样?哪个同学先来汇报验证的情况?
二、探索规律:
1、出示思考题。
师:请同学们带着以下问题来思考。
比较分数的分子和分母:
(1)从左往右看,分子和分母是按照什么规律变化的?(2)从右往左看,分子和分母又是按照什么规律变化的?请同桌交流自己的发现,看看这组分数有什么规律?
2、集体讨论,归纳性质。
师:从左往右看,你发现了什么?
(1)从左往右看,由1/2到2/4,分子、分母是怎么变化的?
(2)2/4是怎样变化成4/8的呢?
(3)师:在这里它们的分子、分母各是按照什么规律变化的?
(4)从右往左看,由4/8到2/4,分子、分母是怎么变化的?
(5)2/4是怎样变化成1/2的呢?
(6)分数的分子和分母又是按照什么规律变化的?
(7)引导思考:同时乘、同时除以,两个同时,去掉一个同时,我们应该怎么把它们连起来呢?(8)师:分数的分子和分母同时乘或者除以相同的数,分数的大小不变。在这里相同的数可以指哪些数?
(9)齐读分数的基本性质。你觉得这个规律中哪些词语关键?
(10)师:你能举出几个这样的例子吗?
3、梳理知识,沟通联系。
师:同学们有没有发现,分数的基本性质和我们以前学习的哪个性质非常相似?请回忆“商不变的性质”是怎样说的?
师:前几天,我们学习了分数与除法的关系,那怎么来表示分数与除法的关系呢?
师:同学们真善于观察。数学知识中有许多地方是像商不变的性质和分数的基本性质一样相互沟通的,同学们要学会灵活运用才能取得效果。
三、深入理解:
师:应用今天所学的知识来解决实际的题型。
1、出示例题
2、完成“做一做”
3、判断:
⑴分数的分子和分母同时乘或者除以一个数,分数的大小不变。
⑵把15/20的分子缩小5倍,分母也同时缩小5倍,分数的大小不变。
⑶2/9的分子乘3,分母除以3,分数的大小不变。
⑷5/9和10/18大小相等,分数单位也相同。
四、课堂总结:
师:时间过得真快,这节课就要结束了,说说你这节课有什么收获?
第五篇:小学五年级分数的基本性质教学设计
小学五年级《分数的基本性质》教案
[教学目标]
1、认知:让学生经历探究分数基本性质的过程,初步理解分数的基本性质;并能应用分数的基本性质,把一个分数化成指定分母或分子而大小不变的分数。
2、能力:让学生在观察、操作、思考和交流等活动中,培养学生分析、综合和抽象、概括的能力,进一步发展学生的思维。
3、情感:激发学生积极主动的情感状态,养成注意倾听的习惯,体验数学学习的乐趣。
[教学重点]
理解和掌握分数的基本性质,会运用分数的基本性质。
[教学难点]
自主探究出分数的基本性质.[教学准备]
多媒体课件、每小组准备四张同样大小的正方形纸片、直尺、彩笔等。
【教学过程】
一、创设情境,激趣导入
1、师讲故事(课件显示相关画面)
孙悟空请猪八戒吃西瓜,猪八戒贪吃,孙悟空分给他1/3,他嫌少;分给他2/6,他还想多要;后来孙悟空分给他3/9,这下他满意地笑了,觉得自己赚了一个大便宜。你觉得猪八戒真的赚了便宜吗?
让学生发表看法。(没赚到,猪八戒虽然拿的份数多,但是分的份数也多了,每份变小了,所以他实际上没赚到便宜)
谈话:那猪八戒到底是不是赚了呢?学习了“分数的基本性质”我们就清楚了。(板书课题)
二、自主探究,发现规律
1、实验研究,初步体验性质。
谈话:老师给你们三张同样大小的圆纸片,我们可以把纸片看做西瓜,纸片已分别进行三等分、六等分、九等分,请你们把孙悟空第一次要分给猪八戒的1/3,第二次要分给的2/6和第三次分给他的3/9分别涂色表示,再比一比三个分数的大小。
组织学生交流:通过比较,发现1/
3、2/
6、3/9其实是一样大的。(板书:1/3=2/6=3/9)问:这三个分数什么变了,什么没有变?
谈话:我们经过研究可以证明猪八戒其实没赚到便宜,他被戏弄了还沾沾自喜呢!
2、创造分数,再次体验性质。
提问:这三个分数平均分的份数和取的份数都不同,但是大小却相等,你能用折纸的办法创造出一组与1/2相等的分数来吗?
学生动手操作:学生拿出一张正方形纸,进行对折,涂色表示它的1/2.继续对折,每次找出一个和1/2相等的分数,并用等式表示出来。
提问:你折出了哪些相等的分数?你是怎么折的?
展示折出的图并板书等式:1/2=2/
4、1/2=4/
8、1/2=8/16。(注意折法多样化的交流。)
提问:黑板上几组相等的分数有什么共同的特点?学生回答后板书:
分数的分子和分母变化了,分数的大小不变。
谈话:它们各是按照什么规律变化的呢?下面我们就来共同研究这个变化规律。
3、自主探究,发现规律。
提问:观察例2中每个等式中两个分数,看一看他们的分子、分母是怎样变化的?我们先从左往右看,1/2是怎样变化成2/4的?再从右往左看,2/4是怎样变化成1/2的?你能把课本61页例2中的括号都填写出来吗?
学生观察思考,并把变化情况写下来。
组织班内交流,并板书变化等式。
谈话:观察1/3=2/6=3/9,你也能观察分子、分母的变化,写出像例2中一样的等式吗?板书(略)
提问:先观察左边的这组等式,从上面的变化中,你发现了什么?
学生试着归纳变化规律:分数的分子和分母都乘以相同的数,分数的大小不变。(板书:都乘以相同的数)
再观察右边的这组等式,从上面的变化中,你又发现了什么?
通过分析比较每组分数的分子和分母,得出:分数的分子和分母都除以相同的数,分数的大小不变。
(板书:都除以)
引导思考:都乘以、都除以两个“都”字,去掉一个怎么改?(去掉第二“都”字,换成“或者”)再对照教科书中的分数基本性质,让学生说出少了什么?(少了“零除外”)讨论:为什么性质中要规定“零除外”?
(板书:零除外)
齐读分数的基本性质。先让学生找出性质中关键的字、词,如“都”、“相同的数”、“零除外”等。然后要求关键的字词要重读。师生共同读出黑板上板书的分数基本性质。
讨论:孙悟空运用什么规律来分饼的?如果猪八戒要四块,孙悟空怎么分才公平呢?如果要五块呢?
质疑:让学生看看课本和板书,回顾刚才学习的过程,提出疑问和见解,师生答疑。
4、沟通联系,加深理解
通过举例,沟通分数的基本性质与商不变性质之间的联系。引导学生运用分数与除数的关系,以及整数除法中商不变的性质,说明分数的基本性质。
如: 3÷4=(3×3)÷(4×3)=9÷12
三、理解应用,深化新知
1、采取师生对出数的游戏形式进行,如先由教师出分子,再让学生对出分母,也可以先由学生出分母,再让教师对出分子。
2、连续写出多个分别与1/2、3/4、2/3相等的分数。比一比,在1分钟内看谁写得多。
让写出相等分数最多的学生报出来,师生予以表扬鼓励。
(四)、课堂小结。
你有什么收获?还有什么不明白的?