第一篇:3的倍数教学设计及反思--朱冬梅
《3的倍数的特征》教学设计及反思 头桥小学
朱冬梅
教学目标:
1、经历探索3的倍数的特征的过程,理解3的倍数的特征。
2、能判断一个数是不是3的倍数。
3、提高分析、比较、猜想、验证的能力。教学重点:探索3的倍数的特征的过程。教学难点:归纳验证3 的倍数的特征。教学准备:
师:多媒体课件。生:计算器,计数器
设计理念:
《数学课程标准》告诉我们,数学学习过程应该是充满探索与挑战性的活动。因此,教师要引导学生投入到自主探索与合作交流的学习中去。本节课“3的倍数的特征”有规律可循,但容易上成机械刻板、枯燥无味的课,学社死套规律判断,智力得不到开发,能力得不到培养。本课设计旨在点拨学生大胆思考,引导探索发现、归纳验证。提升小学生数学综合能力。
具体来说,一是师生竞赛,巧妙导入,自然过渡,激发兴趣。二是尊重学生,相信学生,让学生通过观察、猜测、验证、自主探索、合作交流,使学生真正成为学习的主人,使课堂变为学堂。三是梯度练习,分层优化,给学生搭建广阔的思维空间,在练习中探索,在练习中发现,在练习中发展。
教学过程:
一、以旧引新,竞赛导入
1、判断下面各数哪些是2的倍数,哪些是5的倍数,哪些既是2的倍数又是5的倍数,并说出你是如何进行判断的? 35 158 200 87 65 162 4122
2、你能说出几个3的倍数吗?上面这些数中,哪些是3的倍数。你能迅速判断出来吗?
3、好,现在我们来个竞赛怎么样?请学生任意报数,你们用计算器算,老师用口算,判断它是不是3的倍数。看谁的数度快!(师生竞赛)
4、评价:你们想知道其中的奥秘吗?我相信:通过这节课的探索大家也一定能准确迅速地判断出一个数是不是3的倍数。(揭示课题)
(设计意图:先复习2、5的倍数的特征,再通过师生竞赛来判断一个数是不是3的倍数创设情境,巧妙引入,自然过渡,可谓一举多得。)
二、猜想探索,归纳验证
(一)大胆猜想:猜一猜3的倍数有什么特征?
(有的说个位上是3、6、9的数是3的倍数,有的同学举出反例加以否定)
师:看来只观察个位上的数不能确定它是不是3的倍数,那么3的倍数到底有什么特征呢?我们共同来研究。(设计意图:任何结论都是从猜想开始的,有了猜想,就有了探索,就有了分析,就有了否定,就有了归纳,就有了验证。这里猜想,学生很快进入了问题情境,为下面观察探索做了很好的铺垫。)
(二)观察探索
1、看P6的表,找出3的倍数,并将这些数圈起来做上记号。
2、观察这表,你有什么发现?把你的发现与同桌交流一下。(学生交流)
3、全班交流。个位上的数字没有什么规律,十位上的数字有规律吗?大家还有什么发现?
4、教师引领:
①大家再仔细看一看,3的倍数在表中排列有什么规律? ②从上往下看,每条斜线上的数有什么规律?(个位数字依次减1,十位数字依次加1)③个位数字减1,十位数字加1组成的数与原来的数有什么相同的地方?(和相等)
④每条斜线的数,各位上数字之和分别是多少,它们有什么共同特征?(各位上数字之和都是3的倍数。)
5、归纳概括:现在你能自己的话概括3的倍数有什么特征吗?(生回答、归纳、同桌小组互相说一说。)
6、验证结论
师:大家真了不起!自主探索发现了3的倍数的特征。但如果是三位数或更大的数,你们的发现还成立吗?请大家写几个更大的数试试看。(生写数,然后判断、交流、得出结论。)
①教师说一个数。如342,学生先用特征判断,再用计算器检验。
②一个更大的数。教师家的电话号码4870599,学生先用特征判断,再用计算器检验。
(设计意图:探索、归纳、验证是本节课的重点,也是难点。因此教师要注意突出学生的主体地位,组织师生之间、生生之间的交流、讨论。逐步发现,归纳规律,验证结论,从而培养学生探索意识和分析、概括、验证、判断等能力。)
三、梯度练习,内化新知 师:我们已经理解了3的倍数的特征,下面请运用特征来检验我们的实践能力吧!
1、在下面的数中圈出3的倍数 28
2、在下面各数的□里填上一个数字,使这个数是3的倍数,各有几种填法? □7、4□
2、□44、56□
3、用数字1、3、5、能组成几个三位数?哪些三位数是3的倍数?你有什么发现?
4、将下面这些数进行分类。548、15、2707、820、118、452、507、210、462、450 2的倍数:
3的倍数:
5的倍数:
同时是2和5的倍数:
同时是2和3的倍数:
同时是2、3、5的倍数:
(设计意图:练习设计依照循序渐进,由浅入深的原则,在巩固新知的同时,给学生一个广阔的思维空间,让学生从中寻求规律性。第3题注重“说”的训练,有助于培养学生思维的灵活性。)5.拓展提高。
探索9的倍数的特征。学生阅读课本,按照课本上几个问题分层次展开研究。(设计意图:设计这道题目的出发点是满足那些“吃不饱”的学生,启发他们活学活用知识,用学到的方法“猜想、探索、归纳、验证”研究9的倍数的特征。这个环节可能在课内完成不了,可以延伸到课外。)
四、全课总结
同学们,四十分钟的探索活动已经结束了,但我们的研究不能因此而终止。这节课我们运用了数学上很重要的研究方法“猜想、探索、归纳、验证”研究3的倍数的特征。课下大家可以运用这种方法,继续研究9的倍数、11的倍数什么特征?老师坚信:只要这样长期坚持下去,大家的头脑会越来越聪明,思维会越来越灵活,未来的科学家一定会在我们班诞生。
“3的倍数的特征”教学反思:
在教学“3的倍数的特征”时,我首先以学生原有认知为基础,激发学生的探究欲望。利用学生刚学完“
2、5的倍数的特征”产生的负迁移,直接抛出问题,激活了学生的原有认知,学生自然而然地会将“
2、5的倍数的特征”迁移到“3的倍数的特征”的问题中,由此产生认知冲突,萌发疑问,激发强烈的探究欲望。因此学生很快进入问题情境,猜测、否定、反思、观察、讨论,使得大部分学生渐渐进入了探究者的角色。接着我以问题为中心组织学生展开探究活动。为了突出学生的主体地位,我依据学生的年龄特征和认知水平设计具有探索性的问题,引导学生紧紧围绕“3的倍数有什么特征”这个问题来开展学习活动,指导学生围绕问题展开探究活动,组织师生之间、生生之间的交流和讨论,逐步发现、归纳规律,得出结论,培养了学生的探索意识和分析、概括、验证、判断等能力。
第二篇:《倍数和因数》教学设计及反思
《倍数和因数》教学设计及反思
◆您现在正在阅读的《倍数和因数》教学设计及反思文章内容由收集!本站将为您提供更多的精品教学资源!《倍数和因数》教学设计及反思教学内容:
苏教版四年级(下册)第70~72页的例题及相应的试一试,第72页想想做做
第1~3题
教学目标:
1、使学生结合整数乘、除法运算初步认识倍数和因数的含义,探索求一个数的倍数和因数的方法,能在1~100的自然数中找出10以内某个数的所有倍数,能找出100以内某个数的所有因数。
2、使学生在认识倍数和因数以及探索一个数的倍数或因数的过程中,进一步体会数学知识之间的内在联系,提高数学思考的水平。
教学过程:
一、谈话导入。
智力题:有三个人,他们中有2个爸爸,2个儿子,这是怎么回事?
教师说明:人和人之间是有联系的,数和数之间也是有联系的。(板书:数和数)
二、初步认识倍数和因数。
1、创设情境。
用12个同样大的正方形拼成一个长方形,可以怎么拼?请同学们先想象一下,然后说出你的摆法,并用乘法算式表示出来。
学生汇报拼法,教师依次展示长方形的拼图,并板书:
43=12 62=12 121=12
教师根据43=12 揭示:43=12 12是4的倍数,12也是3的倍数,4和3都是12的因数。
揭示课题:倍 因
提出要求:你能用倍数和因数说一说 62=12 121=12吗?
指名学生回答,其他学生补充。
2、深化感知。
(1)完成想想做做第1题。同桌互说以后再指名学生叙说。
(2)你能举出一些算式,说说谁是谁的倍数,谁是谁的因数吗?
教师说明:为了方便,我们在研究倍数和因数时,所说的数一般指不是0的自然数。
三、探求一个数的倍数。
1、设疑。
在刚才的学习中,我们知道了3的倍数有12,3的倍数除了12还有别的吗?请在纸上写出3的倍数。你能完成得又对又好吗?。学生在书写过程中引发冲突:为什么停下来不写了?有什么困难吗?引导学生讨论后达成共识:加省略号表示写不完。
2、交流。
投影展示学生作业。
讨论对不对?。
讨论好不好?。
揭示有序,为什么要有序地写倍数呢?
全班讨论:你是怎么写3的倍数的?。
3+3 6+3
一三得三 二三得六 三三得九
引导学生讨论得出:用依次1、2、3写出3的倍数。
3、深化。
请写出2的倍数,5的倍数。
学生练习后组织评讲。
4、引导观察,发现规律。
小组讨论:观察这三道例子,你有什么发现?
全班交流,概括规律,5、小结:发现这些规律可以更好地帮助我们寻找一个数的倍数。
四、探求一个数的因数。
1、设疑。
刚刚我们学会了找一个数的倍数,接下来我们来找一个数的因数。
请写出36的因数,你可以独立思考,可以和同桌讨论,看谁写得又对又多。
学生试写36的因数。
2、组织讨论。
你是怎么找36的因数的?
()()=36 从一道乘法算式中可以找到2个36的因数,66=36呢?
36()=()从一道除法算式中也可以找到2个36的因数。
讨论多。
问:写得完吗?你可以按照什么顺序写?
师板书36的因数(从两端往中间写),同时指出因数越来越接近时,也就快要写完了。最后写上句号。
3、巩固深化。
:当两个请写出15的因数,16的因数。
学生练习后组织评讲。
4、引导观察,发现规律。
问:通过观察这三道例子,你能发现什么规律?
5、小结:写一个数的因数时可以从1和它本身来写,从小到大依次寻找。
五、巩固拓展。
1、完成想想做做第2、3题。
学生填表后,组织讨论,你是怎么填写的?指名回答相应的问题。
2、猜数游戏。
同学们下飞行棋时,掷筛子,在1、2、猜数
(1)它是4的倍数。
(2)它是9的因数,又是3的倍数。
(3)2和3都是它的倍数。
(4)它是9的因数,又是3的倍数。3、4、5、6中进行
(5)它是这六个数的因数。
(6)它是因数。
(7)它既是本身的倍数,又是本身的因数。
教后反思:
这是一节概念课,关于倍数和因数教材中没有写出具体的数学意义,只是借助乘法算式加以说明,进而让学生探究寻找一个数的倍数和因数。通过备课,我梳理出这样一个教学脉络:乘法算式倍数和因数乘法算式找一个数的倍数和因数。从教材本身来看,这部分知识对于四年级学生而言,没有什么生活经验,也谈不上有什么新兴趣,是一节数学味很浓的概念课。如何借助教材这一载体,让学生在互动、探究中掌握相应的知识,让乏味变成有味呢?我从以下三个方面谈一点教学体会。
一、设疑迁移,点燃学习的火花。
良好的开头是成功的一半。我采用脑筋急转弯中的一道题作为谈话进入正题,不仅可以调动学生的学习兴趣,看似不相关的两件事例中隐藏着共同点:一一对应、相互依存。对感知倍数和因数进行有效的渗透和拓展。
教学找一个数的倍数时,我依据学情,设计让学生独立探究寻找3的倍数。学生发现3的倍数写不完时面面相觑,左顾右盼。学生通过讨论,认为用省略号表示比较恰当。用语文中的一个标点符号解决了数学问题,自己发现问题自己解决,学生从中体验到解决问题的愉快感和掌握新知的成就感。教师一声亲切的问候:怎么停下来了呢?、一声惊讶:哦!写不完呀?、一句激励:能想出办法吗?。看似教师怠工的预设,是为了学生越位的生成。
二、渗透学法,形成学习的技能。
由于一个数倍数的个数是无限的,那么如何让学生体会无限、又如何有序写出来呢?我设计了尝试练习引出冲突讨论探究这么一个学习环节。学生带着又对又好的要求开始自主练习,学生找倍数的方法有:依次加
3、依次乘1、2、3、用乘法口诀等等。在学生充分讨论的基础上,我组织学生围绕好展开评价,有的学生认为:从小到大依次写,因为有序,所以觉得好;有的学生认为:用乘法算式写倍数,既快而且不受前面倍数的影响,可以很快地找到第几个倍数是多少,因为简捷正确率高所以觉得好。如此的交流虽然花费了宝贵的学习时间,但是学生从中能体会
◆您现在正在阅读的《倍数和因数》教学设计及反思文章内容由收集!本站将为您提供更多的精品教学资源!《倍数和因数》教学设计及反思到学习的方法,发展了思维,这才是最宝贵的。正所谓没有一路上的山花烂漫,哪有山顶上的风光无限。
三、活用教材,拓展学习的深度。
教材中安排36()=()这一道除法算式来找一个数的因数。我觉得这样的设计可能会带来几点不足,其一:学生感知倍数和因数的概念、寻找一个数的倍数都是借助乘法算式,同样,找一个数的因数也可以利用乘法,让所学的知识形成系统岂不更有利于学生进行有效学习吗?其二:从学情来分析,相对于除法,学生更熟练、更喜欢运用乘法。以学定教,真正做到以人为本。我在教学时引导学生讨论得出:借助()()=36来寻找一个数的因数。
课尾,我设计了一道掷筛子猜数练习,通过7道题,将整堂课的内容进行整理和概括,对易混淆的概念加以比较,对后续的学习进行适当的铺垫。融知识性、趣味性为一体,收到了课虽止意未尽的良好效果。
纵观整节课,学生在学习过程中自始至终处于主体地位,尝试练习、自主探索、解决问题,教师只是加以引导,以合作者的身份参与其中。整节课似行云流水、波澜不惊,但我想学生在思维上得到了训练,探究问题、寻求解决问题策略的能力也会逐步得到提高的。
第三篇:《因数和倍数》教学设计及反思
《因数和倍数》教学设计及反思
五年级三班 王敏
教学内容:青岛版教材小学数学五年级上册88—91页。
教学目标:
1、使学生初步认识因数和倍数的含义,探索求一个数的因数或倍数的方法,发现一个数的因数、倍数中最大的数、最小的数及其个数方面的特征。
2、使学生在认识因数和倍数以及探索一个数的因数或倍数的过程中,进一步体会数学知识之间的内在联系,提高数学思考的水平,对数学产生好奇心,培养学习兴趣。
教学重点:理解因数和倍数的意义,探索求一个数因数或倍数的方法。
教学难点:探索求一个数因数或倍数的方法。
教具准备:多媒体课件、学生练习题
教学过程:
一、谈话导入。
师:同学们看这是什么? 生:小正方形。
师:想不想知道王老师给大家带来了多少个这样的小正方形?
生:想。
师:多少个? 生:12个。
师:想一想你能不能把这12个完全一样的小正方形拼成一个长方形呢?
生:能。
【设计意图】:以学生熟悉情景引入,激发学生的好奇心。
二、教学因数和倍数的意义
师:增加一点难度,用一道算式说明你的想法,让其他同学猜一猜你是怎么摆的,好吗?
生:好!学生汇报:
生1:1×12=1
2师:他是怎么摆的? 生:一行摆1个,摆了12行;也可以一行摆12个,摆1行。
课件出示摆法。
师:把第一种摆法竖起来就和第二种摆法一样了,我们把这两种摆法算作一种摆法。(用课件舍去一种)
生2:2×6=12
师:猜一猜他是在怎么摆的?
生:一行摆2个,摆了6行;也可以一行摆6个,摆2行。
师:这两种情况,我们也算一种。生3: 3×4=12
师:他又是怎么摆的?
生:一行摆3个,摆了4行;也可以一行摆4个,摆3行。
师:还有其他摆法吗? 生:没有了。
师:对,如果把12个同样大小的正方形拼成一个长方形,就只有这三种摆法,大家千万不要小看了这三种摆法,更不要小看了这三种摆法下面的三道乘法算式,今天我们的新课就藏在这三道乘法算式里面。因数和倍数(板书课题)
2.教学“因数和倍数”的意义。
师:我们以3×4=12为例,在数学上可以说3是12的因数,4也是12的因数,12是3的倍数,12也是4 的倍数。这里还有两道算式,同桌两个同学先互相说一说谁是谁的因数,谁是谁的倍数。
学生汇报:任选一道回答。
生1:12是12的因数,1是12的因数,12是2的倍数,12是1的倍数。
师:说的多好啊!虽然有点像绕口令,但数学上确实是这样的。我们再一起说一遍。
师:还有一道算式,谁来说一说?
生:2是12的因数,6是12的因数,12是2的倍数,12也是6的倍数。
师明确:为了研究方便,我们所说的因数和倍数都是指自然数,(0除外)。师:通过刚才的练习,你有没有发现12的因数一共有哪些?(生边说老师边有序的用课件出示12的所有的因数。)师:好了,刚才我们已经初步研究了因数和倍数,屏幕显示:试一试:你能从中选两个数,说一说谁是谁的因数?谁是谁因数和倍数?行不行?先自己试一试。3、5、18、20、36
【设计意图】让学生经历知识的形成过程。通过实际例子,让学生进一步理解,因数和倍数之间存在着相互依存的关系。
三、教学寻找因数的方法。
1、找一个数的因数。
师:看来同学们对于因数和倍数已经掌握的不错了。不过刚才老师在听的时候发现一个奥秘,好几个数都是36的因数,你发现了吗?谁能在五个数中把哪些数是36的因数一口气说完?
师:说出几个36的因数并不难,关键是怎样找的既有序又全面,有没有信心挑战一下?
生:有。
师:老师提个要求:
1)、可以独立完成,也可以同桌交流。
2)、把这个数的因数找全以后,把你的方法记录在下面。并总结你是怎样找的。
2、探索交流找一个数的因数的方法。找一名有代表性的作业板书在黑板上。师:他找对了吗?
生:没有,漏下了一对。
师:为什么会漏掉?仅仅是因为粗心吗? 生:不是,他没有按照一定的顺序找!
师:那么要找到36所有的因数关键是什么? 生:有序。
师生共同边说边有序的把36的所有的因数板书出来。师:还有问题吗? 生:没有了。
生:你们没有,老师有一个问题,你们为什么找到6就不再接着往下找了? 生:再接着找就重复了。
师:那么找到什么时候就不找了? 生:找到重复了,就不在往下找了。
师、生共同总结找因数的方法。(一对一对有序的找,一直找到重复为止)。
师:有失误的学生对自己的错误进行调整。
3、巩固练习。
找出下面各数的因数。
4、寻找一个数的因数的特点。
【设计意图】放手让学生自主找一个数的因数,并总结找一个数因数的方法。学生非常喜欢,而且也能够让学生在活动中提升。
四、教学寻找倍数的方法。
1、找一个数的倍数。
师:刚才我们学习了找一个数的因数,那么你能像刚才一样有序的找出一个数的所有倍数吗?
生:能!
师:试试看,找个小的可以吗? 生:行!
师:找一下3的倍数。30秒时间,把答案写在练习纸上。„„
师:有什么问题吗? 生:老师,写不完。师:为什么写不完? 生:有很多个!
师:那怎么才能全都表示出来呢? 生:可以加省略号。
师:你太厉害了!你把语文上的知识都用上了,太真聪明了!难道不该再来点掌声吗?
师:谁能总结一下你是怎样找到的? 生:从小到大依次乘自然数。师:你真会思考!课件出示3的倍数。
2、找5、7的倍数。
师:我们再来练习找一下5的倍数。生:5的倍数有:5、10、15、20、25„„ 生:7的倍数有:7、14、21、28、35„„
师:你能像总结一个数因数的特点一样,来总结一下一个数的倍数有什么特征吗?
生:能!
学生总结:一个数倍数的个数是无限的,最小的倍数是它本身,没有最大的倍数。
【设计意图】在探索求一个数的倍数和因数的方法时,创设具体的情境让学生去合作交流,并结合具体事例,让学生自己观察并发现一个数的倍数、因数中最大的数、最小的数及其个数方面的特征,丰富了教学方式,让学生在观察中发现,在合作中体验成功的喜悦,在主动参与、乐于探究中发展自我。
四、知识拓展 认识“完美数”。
师:(课件出示6的因数)在6的因数中还藏着另外一个秘密,(这是孩子们都瞪大眼睛在看,在听!)我们把6的因数中最大的一个去掉,剩下1、2、3,然后把它们再加起来又回到6本身,数学家给这样的数起了一个名字,叫“完美数”。依次出示第二个、第三个一直到第六个完美数。
小结:其实有关因数和倍数的秘密还有很多,它们在等待着同学们在以后的学习中去研究、去探索。
【设计意图】丰富学生的知识,陶冶学生的情操。教学反思;找一个数因数的方法是本节课的难点,如何做到既不重复又不遗漏地找36的因数,对于刚刚对倍数因数有个感性认识的学生来说有一定困难,这里充分发挥小组学习的优势。先让学生自己独立找36的因数,我巡视了一下三分之一的学生能有序的思考,多数学生写的算式不按一定的次序进行。接着让学生在小组里讨论两个问题:用什么方法找36的因数,如何找不重复也不遗漏。在小组交流的过程中,学生对自己刚才的方法进行反思,吸收同伴中好的方法,这时如果再给予有效的指导和总结就更好了。由于这节是概念课,因此有不少东西是由老师告知的,但并不意味着学生完全被动地接受。教学之前我知道这节课时间会很紧,所以在备课的时候,我认真钻研了教材,仔细分析了教案,看哪些地方时间安排的可以少一些,所以我在第一部分认识因数和倍数这一环节里缩短出示时间,直接出示,实际效果我认为是比较理想的。课上还应该及时运用多媒体将学生找的因数呈现出来,引导学生归纳总结自己的发现:最小的因数是1,最大的因数是它本身。教师应该及时跟上个性化的语言评价,激活学生的情感,将学生的思维不断活跃起来。
第四篇:朱 《观沧海》教学反思 设计
《观沧海》教学反思
福田河中心学校
朱成武
诵读教学是语文教学中一个至关重要的环节,也是传统语文教学中常使用的一种教学手段。但是,在长期的语文教学中,由于赶教学进度,诵读教学的作用一直没有得到充分发挥,大多数学生习惯了默读等阅读方式。为激起学生的阅读的热情,在《观沧海》这篇诗歌的教学中,我用诵读贯穿了整节课堂。在课前的导入过程中,我重点向学生介绍了曹操的赫赫战功和显赫的军事、文学地位以及本诗创作的背景。接下来就进行诵读教学环节。
首先教师范读,读出感情,读出气势,先入为主。然后让学生结合课下注释,自由诵读本诗,体会作者在诗作中表达的感情。第三步是赏析诗歌。让学生通过诵读,想象诗歌中描绘的场景,体会诗歌所表达的思想感情,然后再让学生有感情地诵读诗歌,教师根据学生诵读的效果作出适当的指导,使学生在提高朗读水平的基础上体会作品的内涵。
除了整段的诵读外,我特意挑选了某些句子来让学生体味诵读,比如:“东临碣石,以观沧海”,“秋风萧瑟,洪波涌起”,“日月之行,若出其中;星汉灿烂,若出其里”,在诵读过程中,有几位学生能够饱含感情地诵读。对于学生读得不够味的地方,我及时加以指点,使学生很快得到了提高。但在这个环节中,也出现了一些问题,比如在我要求学生个别诵读的过程中,学生的重视程度不够。出现这样问题的原因,我认为:(1)长期教师讲学生听的教学方式,使学生觉得诵读是一种累赘与负担。
可能因为有听课老师的存在,原本活泼的课堂显得比平时要呆板些。在这样的课堂氛围中,不利于激活学生的思维,展开想象的翅膀。
对诗歌语言的品味不够细致,使学生无法准确地把握诗作中所蕴含的感情。最后我原本安排的是五分钟左右的学生自由诵读时间,力争当堂成诵,体会作品的内涵。但由于前面环节安排的不尽合理,使得本环节只能一带而过,错失了我的本意。总的来说,通过对这次汇报课的反思,我认为在以后的课堂教学中自己有以下几个方面需要注意:
1、作品的情感是以语言为依托的,离开语言去分析情感如同隔靴搔痒。
2、师生之间的交流不够,课堂语言过于书面化,与学生的交流有隔膜。
3、虽然本节课是以诵读为纲,但我仍感觉教学设计上,安排学生读的时间太少。
如果我再上《观沧海》这节课,我想做这样的改进:
一、教学上仍以指导学生诵读为主,但要以理解、投入感情为基础。
二、加强指导学生对重点词语的理解,让学生主动思考发言
第五篇:倍数教学设计
倍数教学设计
教学目标:
1、通过实践活动,使学生理解“一个数是另一个数的几倍”的含义,体会数量之间的关系。
2、让学生经历将“求一个数是另一个数的几倍是多少”的实际问题转化为“求一个数里含有几个另一个数”的数学问题的过程,初步学会用转化的方法来解决简单的实际问题。
3、让学生会用自己的语言表达解决问题的大致过程和结果。
4、让学生在活动中获得积极的体验,感受数学与生活的联系。
教学重点:经历转化过程,初步学会用转化的方法来解决简单的实际问题。
教学难点:让学生学会用转化的方法来解决简单的实际问题,会用自己的语言表达解决问题的大致过程和结果。
教学准备:
教具:课件、小棒若干根
学具:每人小棒若干根,同桌两人一张练习纸、一支水彩笔。
设计理念:遵循《数学课程标准》的要求,从学生的认知水平和已有的知识经验出发,给学生提供愉快的学习环境,让学生通过学生动手操作、自主探索、思考交流,积极参与数学活动,在生动的教学情境中自主收集信息,提出问题,解决问题。教学中注重学生的情感体验,关注学生的学习过程,让学生在活动中获得积极的体验,感受数学与生活的联系。
教学设想:
(一)初步感知
1、引入:小朋友们平时喜欢用小棒摆东西吗?会用小棒摆什么呢? 然后教师展示自己摆的小花伞,得出摆一把小花伞用4根小棒。
2、动手:学生动手摆小花伞,指名一位学生在黑板上摆。
3、交流:(1)说说你摆了几把小花伞,用了几根小棒?你是怎么知道的?
(2)观察黑板上:×××用的小棒根数和老师用的小棒根数有什么关系呢?学生说出的关系可能有求和、比多少、还有倍数关系。如果没有倍数关系,可以引导学生:除了小朋友们说的求和、比多少,如果换一种说法,说说我们用的小棒根数的倍数关系,你会吗?得出:×××用的小棒根数是老师的3倍。
(3)你又是怎么知道×××用的小棒根数是老师的3倍的呢?有些学生可能是直接通过观察,有些学生还可能会将求12是4的几倍转化为12里面有几个4,并用除法计算。
(4)12÷4=3表示什么意思?单位怎么写?得出:12是4的3倍,说明倍表示的是两个数之间关系,不是单位名称,所以3后面什么也不用写。
(5)让学生说说自己用的小棒根数是老师的几倍。
4、引出课题:用倍的知识去解决问题
(二)进一步感知
1、引入:森林里正在举行动物运动会,一起去看看。
2、出示: 跳远比
松鼠:
袋鼠:
猜一猜:袋鼠跳的长度是松鼠的()倍。
3、出示数据,电脑验证
(三)自主解决问题
1、引导学生收集信息并自主提出问题
出示:爬行比赛
蜗牛24只 毛毛虫6只; 乌龟4只。
学生提的问题能口答的直接口答。(如求和的或者比多少的)
从学生的回答中摘录:“蜗牛的只数是毛毛虫的几倍?”或“蜗牛的只数是乌龟的几倍?”
2、引导学生自己解决问题
3、比较两个问题,说说你有什么发现?
(四)灵活应用 解决问题
引入:闯关比赛
1、第一关:估一估
估一估,左边公鸡的只数是右边的几倍?
图片出示:左边20只公鸡
右边5只
2、第二关:“阳光伙伴”体育运动
出示图(略)
要求列式表示参加各项活动的人数之间有倍数关系。
3、第三关:开启智慧大门
出示智慧大门图
1、提示学生:智慧大门上方有12盏灯,小朋友必须开启一些灯,而且开启的盏数与关着的有倍数关系。如开启——10盏,关着——2盏。10是2的5倍。
要求同桌合作用彩色笔涂色,探究不同的涂色方法。
(五)、课堂总结 深化主题
说说这节课你有什么收获?