鸽巢问题教学设计(正式)五篇范文

时间:2019-05-12 23:25:41下载本文作者:会员上传
简介:写写帮文库小编为你整理了多篇相关的《鸽巢问题教学设计(正式)》,但愿对你工作学习有帮助,当然你在写写帮文库还可以找到更多《鸽巢问题教学设计(正式)》。

第一篇:鸽巢问题教学设计(正式)

《鸽巢问题》教学设计

教学目标:

(一)知识与技能

通过数学活动让学生了解鸽巢原理,学会简单的鸽巢原理分析方法。

(二)过程与方法

结合具体的实际问题,通过实验、观察、分析、归纳等数学活动,让学生通过独立思考与合作交流等活动提高解决实际问题的能力。

(三)情感态度和价值观

在主动参与数学活动的过程中,让学生切实体会到探索的乐趣,让学生切实体会到数学与生活的紧密结合。教学重难点:

教学重点:理解鸽巢原理,掌握先“平均分”,再调整的方法。教学难点:理解“总有”“至少”的意义,理解“至少数=商数+1”。教学准备:

多媒体课件、纸杯45个、扑克牌一副 教学过程:

(一)游戏引入 出示一副扑克牌。

教师:今天老师要给大家表演一个“魔术”。取出大王和小王,还剩下52张牌,下面请5位同学上来,每人随意抽一张,不管怎么抽,至少有2张牌是同花色的。同学们相信吗?

5位同学上台,抽牌,亮牌,统计。

教师:这类问题在数学上称为鸽巢问题(板书)。因为52张扑克牌数量较大,为了方便研究,我们先来研究几个数量较小的同类问题。

【设计意图】从学生喜欢的“魔术”入手,设置悬念,激发学生学习的兴趣和求知欲望,从而提出需要研究的数学问题。

(二)探索新知 1.教学例1。

(1)教师:把3支铅笔放到2个铅笔盒里,有哪些放法?请同桌二人为一组动手试一试。

教师:谁来说一说结果?

预设:一个放3支,另一个不放;一个放2支,另一个放1支。(教师根据学生回答在黑板上画图表示两种结果)

教师:“不管怎么放,总有一个铅笔盒里至少有2支铅笔”,这句话说得对吗?

教师:这句话里“总有”是什么意思? 预设:一定有。

教师:这句话里“至少有2支”是什么意思?

预设:最少有2支,不少于2支,包括2支及2支以上。【设计意图】把教材中例1的“笔筒”改为“铅笔盒”,便于学生准备学具。且用画图和数的分解来表示上述问题的结果,更直观。通过对“总有”“至少”的意思的单独说明,让学生更深入地理解“不管怎么放,总有一个铅笔盒里至少有2支铅笔”这句话。

(2)教师:把4支铅笔放到3个铅笔盒里,有哪些放法?请4人为一组动手试一试。

教师:谁来说一说结果?

学生:可以放(4,0,0);(3,1,0);(2,2,0);(2,1,1)。(教师根据学生回答在黑板上画图表示四种结果)

引导学生仿照上例得出“不管怎么放,总有一个铅笔盒里至少有2支铅笔”。

假设法(反证法):

教师:前面我们是通过动手操作得出这一结论的,想一想,能不能找到一种更为直接的方法得到这个结论呢?小组讨论一下。

学生进行组内交流,再汇报,教师进行总结:

如果每个盒子里放1支铅笔,最多放3支,剩下的1支不管放进哪一个盒子里,总有一个盒子里至少有2支铅笔。首先通过平均分,余下1支,不管放在哪个盒子里,一定会出现“总有一个盒子里至少有2支铅笔”。这就是平均分的方法。

【设计意图】从另一方面入手,逐步引入假设法来说理,从实际操作上升为理论水平,进一步加深理解。

教师:把5支铅笔放到4个铅笔盒里呢? 引导学生分析“如果每个盒子里放1支铅笔,最多放4支,剩下的1支不管放进哪一个盒子里,总有一个盒子里至少有2支铅笔。首先通过平均分,余下1支,不管放在哪个盒子里,一定会出现“总有一个盒子里至少有2支铅笔”。

教师:把6支铅笔放到5个铅笔盒里呢?把7支铅笔放到6个铅笔盒里呢?……你发现了什么?

引导学生得出“只要铅笔数比铅笔盒数多1,总有一个盒子里至少有2支铅笔”。

教师:上面各个问题,我们都采用了什么方法? 引导学生通过观察比较得出“平均分”的方法。

【设计意图】让学生自己通过观察比较得出“平均分”的方法,将解题经验上升为理论水平,进一步强化方法、理清思路。

(3)教师:现在我们回过头来揭示本节课开头的魔术的结果,你能来说一说这个魔术的道理吗?

引导学生分析“如果4人选中了4种不同的花色,剩下的1人不管选那种花色,总会和其他4人里的一人相同。总有一种花色,至少有2人选”。

【设计意图】回到课开头提出的问题,揭示悬念,满足学生的好奇心,让学生认识到数学的应用价值。

(4)练习教材第68页“做一做”第1题(进一步练习“平均分”的方法)。

5只鸽子飞进了3个鸽笼,总有一个鸽笼至少飞进了2只鸽子。为什么?

2.教学例2。(1)课件出示例2。

把7本书放进3个抽屉,不管怎么放,总有一个抽屉里至少放进3本书。为什么?

先小组讨论,再汇报。

引导学生得出仿照例1“平均分”的方法得出“如果每个抽屉放2本,剩下1本不管放在哪个抽屉里,都会变成3本,所以总有一个抽屉里至少放进3本书。”

(2)教师:如果把8本书放进3个抽屉,会出现怎样的结论呢?10本呢?11本呢?16本呢?

教师根据学生的回答板书:

7÷3=2……1

不管怎么放,总有一个抽屉里至少放进3本;

8÷3=2……2

不管怎么放,总有一个抽屉里至少放进3本;

10÷3=3……1

不管怎么放,总有一个抽屉里至少放进4本;

11÷3=3……2

不管怎么放,总有一个抽屉里至少放进4本;

16÷3=5……1

不管怎么放,总有一个抽屉里至少放进6本。

教师:观察上述算式和结论,你发现了什么?

引导学生得出“物体数÷抽屉数=商数……余数”“至少数=商数+1”。

【设计意图】一步一步引导学生合作交流、自主探索,让学生亲身经历问题解决的全过程,增强学习的积极性和主动性。

(三)巩固练习

1.11只鸽子飞进了4个鸽笼,总有一个鸽笼至少飞进了3只鸽子。为什么?

2.5个人坐4把椅子,总有一把椅子上至少坐2人。为什么?

(四)课堂小结

教师:通过这节课的学习,你有哪些新的收获呢? 我们学会了简单的鸽巢问题。

可以用画图的方法来帮助我们分析,也可以用除法的意义来解答。

第二篇:鸽巢教学设计正式

《鸽巢问题》教学设计

赵燕玲

【教学内容】(人教版)数学六年级下册68、69页鸽巢问题例

1、例2.【教学目标】

1、经历‚鸽巢原理‛的探究过程,初步了解‚鸽巢原理‛,会用‚鸽巢原理‛解决简单的实际问题。

2、通过操作发展学生的类推能力,形成比较抽象的数学思维。

3、通过‚鸽巢原理‛的灵活应用感受数学的魅力。

【教学重点】:经历‚鸽巢原理‛的探究过程,初步了解‚鸽巢原理‛,会用‚鸽巢原理‛解决简单的实际问题。

【教学难点】:通过操作发展学生的类推能力,形成比较抽象的数学思维。

【教学准备】:多媒体课件、吸管、纸杯等。【教学过程】

一、创设情境,导入新知

老师组织学生做‚抢凳子的游戏‛。请5位同学上来,摆开4张凳子。

老师宣布游戏规则:听到‚开始‛指令后,四位同学都必须坐在凳子上。

教师背对着游戏的学生。

师:都坐下了吗?老师不用看,也知道肯定有一张凳子上至少坐着2位同学。老师说得对吗?(回头看)果然这把椅子上坐了两名同学。如果我请他们重新来一次,我敢说(边说边出示ppt)‘不管他们怎么做,总有一把椅子上至少会坐两位同学。这是真的吗?’【设计意图:一方面,调动学生的积极性,参与性,让学生感受这节课要学习的知识很有趣,另一方面,学生在按要求玩这个游戏时,往往会先选择每人占一个座位,只有最后一位抢不到的同学才考虑跟别人同坐一个位子,也就是为后面教学中平均分的做法做了暗示。】

师:这里面蕴含一个有趣的原理,这节课,咱们就一起来研究它。其实,它在咱们生活中特别常见,比如咱们有时候会把某种物体放在 某种容器中,板书(待放物体,容器),现在我准备把3根吸管放在两个纸杯中,可以怎么放呢?你来试试看。

二、自主操作,探究新知

1、学生分组操作,指生演示,初步得出结论。

①引导学生说出可以这样放,可以这样放,不管怎么放……师板书学生的放法。

②引导学生观察板书:‘可能有的杯子是空的,但是不可能所有的杯子都是空的,总有一个杯子里会多一些’板书‘总有一个’。

③这个杯子里的数量有什么规律呢?引导学生说出‘至少是2’板书‘至少’④师:根据咱们的分析,你能得出什么结论?

把3根吸管放进两个纸杯,不管怎么放总有一个纸杯里至少有2根吸管。指生多说几遍。【这部分设计充分考虑到学生对某些词会存在理解和运用方面的障碍,所以充分演示中逐个出示关键词,引导学生连词成句,初步构建知识模型。】

2、继续操作,强化结论,理解关键词。

师:咱们能放的物体不仅仅是吸管,还可以是铅笔,出示ppt 多媒体出示例1:4枝铅笔,3个文具盒。

①小组合作,用手中的材料分别代替铅笔和文具盒实际摆一摆、放一放,看看一共有几种情况? ②交流讨论。指生上台演示摆法,师记录。根据刚才的分析,你可以得出什么结论? 生:把4支铅笔放进3个文具盒,不管怎么放总有一个文具盒里至少有2支铅笔。

‚总有一个‛是什么意思?‚至少‛呢?【通过前面的学习,学生的知识模型已初步形成,通过对几个关键词的理解强调,进一步巩固建模成果。】

3、大胆猜测,科学验证。

多媒体出示,6个苹果放进5个果盘。

师:根据刚才的研究,你来猜猜看,会有什么结果?生猜测‚把6个苹果放进5个果盘,不管怎么放总有一个果盘里至少有2个苹果。‛老师也觉得是这样,可是咱说的对吗?得验证一下,你能不能只用一种摆法就证明咱们的结论呢?

学生小组操作。学生汇报。

引导学生在交流中明确:可以假设先在每个果盘中放1个苹果,5个果盘里就放了5个苹果。还剩下1个,放入任意一个果盘,那么这个果盘中就有2个苹果了。也就是先平均分,每个文具盒中放1枝,余下1枝,不管放在哪个盒子里,一定会出现总有一个文具盒里至少有2枝铅笔。

你可以用算式表示吗?根据学生的回答板书:6÷5=1……1

4、比较优化。请学生继续思考:

把7个苹果放进6个果盘里呢? 把10个苹果放进9个果盘里呢? 把100个苹果放进99个果盘里呢? 你发现了什么?

引导学生发现:只要放的物体数比容器的数量多1,不论怎么放,总有一个文具盒里至少放进2个物体。

师:你认为这个2跟前面的哪些数字有关呢?(引导学生得出‚商加余数‛的结论。)【挖下知识陷阱,让学生在对比纠错中将知识掌握的更加牢固。】

师:都是这样吗?

5、教学例二

多媒体出示:七只鸽子飞进5间鸽舍,至少有几只鸽子会飞进同一间鸽舍?

小组讨论,得出结论。(预设:学生可能会出现至少数是3和2两种情况。请学生解释为什么是3,学生可能会说是商1加余数2得3,追问,余下的两只鸽子一定会飞进同一间鸽舍吗?学生会说也可能会飞进两间鸽舍。那么这种情况下至少数就是2,两种结论,究竟哪种结论才全面呢?)动画演示后明确,平均分后剩下的两只还要平均分到两间鸽舍,才能保证至少数,所以刚才得出的‚商加余数‛的结论不正确,那么正确的结论是什么呢?通过观察得出:商+1 师:如果物体数刚好是容器数的倍数,没有余数时,至少数又是什么呢?

小结:当物体数比容器数多时: 物体数÷容器数=商„„余数 至少数=商数+1 整除时 至少数=商数 6.知识链接:

你知道这个有趣的原理叫什么名字,又是谁最先提出的吗? 课件出示你知道吗。他就是德国数学家“狄里克雷”,后来人们为了纪念他从这么平凡的事情中发现的规律,就把这个规律用他的名字命名,叫“狄里克雷原理”。这个原理有两个经典案例,一个是把10个苹果放进9个抽屉里,总有一个抽屉里至少放了2个苹果,所以又把它叫做‚抽屉原理‛;另一个是6只鸽子飞进5个鸽巢,总有一个鸽巢至少飞进2只鸽子,所以也称为‚鸽巢原理‛。板书课题‚鸽巢问题‛

三、灵活应用,解决问题

1.13只兔子关进5只笼子里,至少有几只兔子要关进同一个笼子里?为什么?

2.小魔术

师:这节课,大家表现的很出色,玩个魔术奖励大家。拿出扑克 牌,问:一幅扑克54张,去掉两张王牌,还剩几张?,请一位同学任意从中抽出5张。现在就是见证奇迹的时刻,(停顿)根据这节课的探讨,你能接着老师的话语言一下她手中的扑克牌有什么特点吗?你是根据什么来判断的?

3.30名男同学中,至少有几名男同学的生日会在同一个月? 你是利用什么原理来解释这个问题的?这里把什么看作鸽子?又把什么看作巢呢?看来鸽和巢既可以是看得见的,也可以是看不见的。4.判断真假

解释课前所做的抢凳子游戏。

【练习题的设计由浅入深,形式也由物质的看的见物体和容器,过渡到其他,体现鸽巢原理存在的普遍性,最后一题与课前导入前后呼应。】

四、全课总结

师: 同学们,这节课你开心吗?开心的同时有没有收获呢? 生谈收获。

师:开心的时间总是过的特别快,收获的时刻总是令人人难忘,谢谢同学们陪我度过这开心的一节课。

板书设计

鸽 巢 问 题 待放物体 容器 总有一个至少 3 2 2 4 ÷ 3 =1 ……1 2 商+1 6 ÷ 5 =1 ……1 2 7 ÷ 5 =1 ……2 2

第三篇:《鸽巢问题》教学设计

《鸽巢问题》教学设计

【教学内容】(人教版)数学六年级下册第68页例1。

【教学目标】

知识与技能:初步了解抽屉原理,会用抽屉原理解决简单的实际问题。

过程与方法:经历抽屉原理的探究过程,通过摆一摆、分一分等实践

操作,发现、归纳、总结原理。

情感态度价值观:通过“抽屉原理”的灵活应用感受数学的魅力。

【教学重点】

经历“抽屉原理”的探究过程,初步了解“抽屉原理”,会用“抽屉原理”解决简单的实际问题。

【教学难点】

通过操作发展学生的类推能力,形成比较抽象的数学思维。

【教学准备】:多媒体课件、铅笔、笔筒等。

【教学过程】

一、创设情境,导入新知

老师组织学生做“抢凳子的游戏”。请4位同学上来,摆开3张凳子。

老师宣布游戏规则:4位同学站在凳子前一定距离,等老师说完开始后,四位同学每个人都必须坐在凳子上。

教师背对着游戏的学生。

师:都坐下了吗?老师不用看,也知道肯定有一张凳子上至少坐着2位同学。老师说得对吗?

师:老师为什么说得这么肯定呢?其实这里面蕴含一个深奥的道理,今天我们就来探究这个问题——鸽巢问题(板书课题)。

二、自主操作,探究新知

1、观察猜测

多媒体出示例1:把4支笔放进3个笔筒里,不管怎么放,总有一个笔筒里至少放进2支笔。这句话对吗?为什么?

2、“总有”是什么意思?“至少”又是什么意思?

3、自主思考

(1)独立思考:怎样解释这一现象?

(2)小组合作,拿铅笔和笔筒实际摆一摆、放一放,看一共有几种情况?

4、交流讨论

学生汇报是用什么办法来解释这一现象的。

学情预设:

第一种:用实物摆一摆,把所有的摆放结果都罗列出来。学生展示把4支铅笔放进3个笔筒里的几种不同摆放情况。课件再演示四种摆法。

请学生观察不同的放法,能发现什么?

引导学生发现:每一种摆放情况,都一定有一个笔筒里至少有2支铅笔。也就是说不管怎么放,总有一个笔筒里至少有2支铅笔。

第二种:假设法。

教师请只摆了一种或没有摆放就能解释的同学说说自己的想法。师:其他学生是否明白他的想法呢?

引导学生在交流中明确:可以假设先在每个笔筒里放1支铅笔,3个笔筒里就放了3支铅笔。还剩下1支,放入任意一个笔筒里,那么这个笔筒中就有2支铅笔了。也就是先平均分,每个笔筒里放1支,余下1支,不管放在哪个笔筒里,一定会出现总有一个笔筒里至少有2支铅笔。

请学生继续思考:

如果把5支铅笔放进4个笔筒里,不管怎么放,总有一个笔筒里至少放进2支笔。这句话对吗?为什么?

请学生继续思考:

把7支铅笔放进6个笔筒里呢? 把10支铅笔放进9个笔筒里呢? 把100支铅笔放进99个笔筒里呢? 你发现了什么?

引导学生发现:只要放的铅笔数比文具盒的数量多1,不论怎么放,总有一个笔筒里至少放进2支铅笔。

5、其实这一发现早在150多年前有一位数学家就提出来了。课件出示“你知道吗”。

“ 抽屉原理”又称“鸽巢原理”,最先是由19世纪的德国数学家狄利克雷提出来的,所以又称“狄里克雷原理”,这一原理在解决实际问题中有着广泛的应用。“抽屉原理”的应用是千变万化的,用它可以解决许多有趣的问题,并且常常能得到一些令人惊异的结果。下面我们应用这一原理解决问题。

三、灵活应用,解决问题

1.第70页“做一做”。

(1)课件出示:5只鸽子飞回3个鸽舍,至少有2只鸽子要飞进同一个鸽舍里。为什么?

(2)学生独立思考,自主探究。

(3)交流,说理。

2.课件出示:8只鸽子飞回5个鸽舍,至少有2只鸽子要飞进同一个鸽舍里。为什么?

3.解释课前所做的抢凳子游戏。

4.师拿出扑克牌,问:对于扑克牌,你有哪些了解?

生汇报。

从扑克牌中取出两张王牌,找5名学生,在剩下的52张中任意抽出5张,让其他同学猜抽牌的结果,并说明理由。

抽牌后,交流。

四、全课总结

这节课你懂得了什么原理?

五、板书设计

抽屉原理(鸽巢问题)

只要待分物体比抽屉数多__

总有

一个抽屉里

至少

放进2个物体

枚举法

(4,0,0)

(3,1,0)

(2,2,0)

(2,1,1)

假设法

(1,1,1)

(2,1,1)

第四篇:鸽巢问题教学设计

鸽巢问题教学设计

在教学工作者开展教学活动前,很有必要精心设计一份教学设计,教学设计一般包括教学目标、教学重难点、教学方法、教学步骤与时间分配等环节。如何把教学设计做到重点突出呢?以下是小编整理的鸽巢问题教学设计,欢迎阅读,希望大家能够喜欢。

鸽巢问题教学设计1

教学目标:

1、引导学生经历鸽巢原理的探究过程,初步了解鸽巢原理,会运用鸽巢原理解决一些简单的实际问题。

2、通过操作、观察、比较、列举、假设、推理等活动发展学生的类推能力,形成比较抽象的数学思维。

3、使学生经历将具体问题“数学化”的过程,初步形成模型思想。

教学重点:经历鸽巢原理的探究过程,初步了解鸽巢原理。

教学难点:理解鸽巢原理,并对一些简单的实际问题加以模型化。

教学过程:

一、创设情境、导入新课

1、师:同学们,你们玩过扑克牌吗?这里有一副牌,拿掉大小王后还剩52张,5位同学随意抽一张牌,猜一猜:至少有几张牌的花色是一样的?(指名回答)

2、师:大家猜对了吗?其实这里面藏着一个非常有趣的数学问题,叫做“鸽巢问题”。今天我们就一起来研究它。

二、合作探究、发现规律

师:研究一个数学问题,我们通常从简单一点的情况开始入手研究。请看大屏幕。(生齐读题目)

1、教学例1:把4支铅笔放进3个笔筒里,不管怎么放,总有一个笔筒里至少有2支铅笔。

(1)理解“总有”、“至少”的含义。(PPT)总有:一定有 至少:最少

师:这个结论正确吗?我们要动手来验证一下。

(2)同学们的课桌上都有一张作业纸,请同桌两人合作探究:把4支铅笔放进3个笔筒里,有几种不同的摆法?

探究之前,老师有几个要求。(一生读要求)

(3)汇报展示方法,证明结论。(展示两张作品,其中一张是重复摆的。)

第一张作品:谁看懂他是怎么摆的?(一生汇报,发现重复的摆法)

第二张作品:他是怎么摆的?这4种摆法有没有重复的?还有其他的摆法吗?板书:(3,1,0)、(4,0,0)、(2,2,0)、(1,1,2)。

师:我们要证明的是总有一个笔筒里至少有2支铅笔,这4种摆法都满足要求吗?(指名汇报:第一种摆法中哪个笔筒满足要求?只要发现有一个笔筒里至少有2支铅笔就行了。)总结:把4支铅笔放进3个笔筒中一共只有四种情况,在每一种情况中,都一定有一个笔筒中至少有2支铅笔。看来这个结论是正确的。

师:像这样把所有情况一一列举出来的方法,数学上叫做“枚举法”。(板书)

(4)通过比较,引出“假设法”

同桌讨论:刚才我们把4种情况都列举出来进行验证,能不能找到一种更简单直接的方法,只摆一种情况就能证明这个结论是正确的`?

引导学生说出:假设先在每个笔筒里放1支,还剩下1支,这时无论放到哪个笔筒,那个笔筒里就有2支铅笔了。(PPT演示)

(5)初步建模—平均分

师:先在每个笔筒里放1支,这种分法实际上是怎么分的?

生:平均分(师板书)

师:为什么要去平均分呢?平均分有什么好处?

生:平均分可以保证每个笔筒里的笔数量一样,尽可能的少。这样多出来的1支不管放进哪个笔筒里,总有一个笔筒里至少有2支铅笔。(如果不平均分,随便放,比如把4支铅笔都放到一个笔筒里,这样就不能保证一下子找到最少的情况了)

师:这种先平均分的方法叫做“假设法”。怎么用算式表示这种方法呢?

板书:4÷3=1……1 1+1=2

(5)概括鸽巢问题的一般规律

师:现在我们把题目改一改,结果会怎样呢?

PPT出示:把5支笔放进4个笔筒里,不管怎么放,总有一个笔筒里至少有几支笔?……(引导学生说清楚理由)

师:为什么大家都选择用假设法来分析?(假设法更直接、简单)

通过这些问题,你有什么发现?

交流总结:只要笔的数量比笔筒数量多1,总有一个笔筒里至少放进2支笔。

过渡语:师:如果多出来的数量不是1,结果会怎样呢?

2、出示:5只鸽子飞进了3个鸽笼,总有一个鸽笼里至少飞进了几只鸽子呢?

(1)同桌讨论交流、指名汇报。

先让一生说出5÷3=1……2 1+2=3 的结果,再问:有不同的意见吗?

再让一生说出5÷3=1……2 1+1=2

师:你们同意哪种想法?

(2)师:余下的2只怎样飞才更符合“至少”的要求呢?为什么要再次平均分?

(3)明确:再次平均分,才能保证“至少”的情况。

3、教学例2

(1)师:我们刚才研究的把笔放入笔筒、鸽子飞进鸽笼这样的问题就叫做“鸽巢问题”,也叫“抽屉问题”。它最早是由德国数学家狄利克雷发现并提出的,当他发现这个问题之后决定继续深入研究下去。出示例2。

(2)独立思考后指名汇报。

师板书:7÷3=2……1 2+1=3

(3)如果有8本书会怎样?10本书呢?

指名回答,师相机板书:8÷3=2……2 2+1=3

师:剩下的2本怎么放才更符合“至少”的要求?

为什么不能用商+2?

10÷3=3……1 3+1=4

(4)观察发现、总结规律

同桌讨论交流:学到这里,老师想请大家观察这些算式并思考一个问题,把书放进抽屉里,总有一个抽屉里至少放进了几本书?我们是用什么方法去找到这个结果的?(假设法,也就是平均分的方法)用书的数量去除以抽屉的数量,会得到一个商和一个余数,最后的结果都是怎么计算得到的?为什么不能用商加余数?

归纳总结:总有一个抽屉里至少可以放“商+1”本书。(板书: 商+1)

三、巩固应用

师:利用鸽巢问题中这个原理可以解释生活中很多有趣的问题。

1、做一做第1、2题。

2、用抽屉原理解释“扑克表演”。

说清楚把4种花色看作抽屉,5张牌看作要放进的书。

四、全课小结通过这节课的学习,你有什么收获或感想?

鸽巢问题教学设计2

一、教学内容:

教科书第68页例1。

二、教学目标:

(一)知识与技能:通过数学活动让学生了解鸽巢原理,学会简单的鸽巢原理分析方法。

(二)过程与方法:结合具体的实际问题,通过实验、观察、分析、归纳等数学活动,让学生通过独立思考与合作交流等活动提高解决实际问题的能力。

(三)情感态度和价值观:在主动参与数学活动的过程中,让学生切实体会到探索的乐趣,让学生切实体会到数学与生活的紧密结合。

三、教学重难点

教学重点:经历鸽巢问题的探究过程,初步了解鸽巢原理,会用鸽巢原理解决简单的实际问题。

教学难点:通过操作发展学生的类推能力,形成比较抽象的数学思维。

四、教学准备:多媒体课件。

五、教学过程

(一)候课阅读分享:

同学们,大家好,课前老师让大家收集了有关“鸽巢问题”的阅读资料,现在就某某同学的阅读在这候课的几分钟内与大家分享一下。

(二)激情导课

好,咱们班人数已到齐,从今天开始,我们学习第五单元鸽巢问题,这节课通过数学活动我们来了解鸽巢原理,学会简单的鸽巢原理分析方法。你准备好了吗?好,我们现在开始上课。

(三)民主导学

1、请同学们先来看例1。把4支铅笔放进3个笔筒中,不管怎么放,总有1个笔筒里至少有2只铅笔。

请你再把题读一次,这是为什么呢?

要想解决这个问题,我们首先要理解,总有一个笔筒里至少有2支铅笔这句话。我们再思考这一句话中,总有和至少是什么意思?

对总有就是一定的意思。至少就是最少的意思至少有两支铅笔,就是说最少有两支铅笔。或者是说,铅笔的支数要大于或等于两支。

那你能现在说说,总有一个笔筒里至少有两支铅笔这句话的意思了吗?对,这句话就是说,一定有一个笔筒里最少有两支铅笔,或者是说一定有一个笔筒里的铅笔数是大于或等于两支的。你说对了吗?

课前老师已经让大家完成前置性作业,就“4支铅笔放进3个笔筒中有几种摆法呢?”这儿老师收集到了各组组长整理出的大家的各种摆法,我们一起来看一看吧!

方法一:用“枚举法”证明。也可用“分解法”证明把4分解成3个数。我们发现有(4,0,0)(0,1,3)(2,2,0)(2,1,1)四种不同的方法。

刚才的两种方法无论是摆还是写都是把方法枚举出来,在数学中我们叫它“枚举法”。

那大家能不能找到一种更为直接的方法只摆一种情况也能得到这个情况呢?

方法二:用“假设法”证明。

对,我们可以这样想,如果在每个笔筒中放1支,先放3支,剩下的1支就要放进其中的一个笔筒。这时无论放在哪个笔筒,那个笔筒中就有2支,所以总有一个笔筒中至少放进2支铅笔。(平均分)

方法三:列式计算

你能用算式表示这个方法吗?

学生列出式子并说一说算式中商与余数各表示什么意思?

2、把5支铅笔放进4个笔筒,总有一个笔筒里至少有2支铅笔。

这道题大家可以用几种方法解答呢?

3种,枚举法、假设法、列式计算。

3、100支铅笔,放进99个笔筒,总有一个笔筒至少要放进多少支铅笔呢?

还能有枚举法吗?对,不能,枚举法虽然比较直观,但数据大的时候用起来比较麻烦。可以用假设法和列式计算。

4、表格中通过整理,总结规律

你发现了什么规律?

当要分的物体数比鸽巢数(抽屉数)多1时,至少数等于2“商+1”。

5、简单了解鸽巢问题的由来。

经过刚才的探索研究,我们经历了一个很不简单的思维过程,我把我们的这一发现,称为笔筒问题。但其实最早发现这个规律的不是我们,而是德国的一个数学家“狄里克雷”。

(四)检测导结

好,我们做几道题检测一下你们的学习效果。

1、随意找13位老师,他们中至少有2个人的属相相同。为什么?

2、一副牌,取出大小王,还剩52张,你们5人每人随意抽一张,我知道至少有2张牌是同花色的。相信吗?

3、5只鸽子飞进了3个鸽笼,总有一个鸽笼至少飞进了2只鸽子。为什么?

4、育新小学全校共有2192名学生,其中一年级新生有367名同学是20xx年出生的,这个学校一年级学生20xx年出生的同学中,至少有几个人出生在同一天?

(五)全课总结今天你有什么收获呢?

(六)布置作业

作业:两导两练第70页、71页实践应用1、4题。


第五篇:《鸽巢问题》教学设计

《鸽巢问题》教学设计

【教学内容】

人教版课标教材小学数学六年级下册第五单元数学广角第70-71页。【教学目标】

1.通过操作、观察、比较、分析、推理、抽象概括,引导学生经历抽屉原理的探究过程,初步了解抽屉原理,会用抽屉原理解释生活中的简单问题。

2.在探究的过程中,渗透模型思想,培养学生的推理和抽象思维能力。3.使学生感受数学的魅力,培养学习的兴趣。【教学重点】

经历抽屉原理的探究过程,初步了解抽屉原理,会用抽屉原理解释生活中的简单问题。【教学难点】

理解抽屉原理,并对一些简单的实际问题加以模型化。【教学过程】

一、开门见山,引入课题。承接课前谈话内容,直接揭示课题。

二、经历过程,构建模型。

(一)研究“4个小球任意放进3个抽屉”存在的现象。

1.出示结论:4个小球放进3个抽屉里,不管怎么放,总有一个抽屉里面至少放2个小球。

让学生说说对这句话的理解。2.验证结论的正确性。

让学生用长方形代替抽屉,用圆代替小球画一画,看有几种不同的放法。

3.全班交流。

学生汇报后,教师引导观察每种放法,通过横向、纵向比较,找到每种放法中放得最多的抽屉,然后从最多数里找最少数,发现不管哪种放法,都能从里面找到这样的一个抽屉,里面至少有2个小球。从而理解并证明了“不管怎么放,总有一个抽屉里至少放2个小球”这个结论是正确的。

(二)研究“5个小球任意放进4个抽屉”存在的现象,找到求至少数的简便方法。

1.猜测:根据刚才的研究经验猜一猜:把5个小球放进4个抽屉里,不管怎么放,总有一个抽屉至少放几个小球? 2.验证。

学生以小组为单位共同研究:先画出不同的放法。然后观察分析每种放法,1 看看哪种猜测是正确的。3.全班交流。小组汇报研究结果。

教师追问:通过验证,我们发现5个小球放进4个抽屉里,不管怎么放,总 有一个抽屉至少放2个小球。那“总有一个抽屉至少放3个小球”为什么不对?

学生通过观察各种放法来说明原因。教师小结研究过程及研究方法(列举法)。4.寻找求至少数的简便方法。

教师提出:100个小球放进30个抽屉,如果再用列举法,你觉得怎么样? 使学生感受到列举法的局限性。

引导学生观察4个小球放3个抽屉、5个小球放4个抽屉的所有放法。提出问题:有没有更简便的方法,不用把所有的放法都列举出来,就能很快的找到至少数?哪种放法最能说明不管怎么放,总有一个抽屉里至少有2个小球?这种放法同其他放法相比有什么特点?是怎么放的?(平均分)

结合学生回答,课件演示:把4个小球放进3个抽屉里,假设每个抽屉平均放一个,还余下一个,这一个任意放进一个抽屉里,不管怎么放,总有一个抽屉里至少放2个小球。

引导学生尝试用算式表示上面平均分的过程。

师生共同回顾以上研究过程(课件逐步出示以下内容),使学生感受到抽屉原理逐步抽象、简约的过程。

(三)概括规律,构建模型。引导学生完成下面表格:

重点解决7个小球放进5个抽屉里,总有一个抽屉里至少放的小球数,使学生在思辨中明晰:先把小球平均分,然后把余下的小球再平均分,从而找到至少数,这是解决此类问题的关键。

解决完表格中的问题后,继续引导学生进行联想:一直到什么时候至少数都是3?什么时候变成4?

追问:这里面是不是有什么规律?认真观察这些算式,想一想,至少数都是怎么求出来的?

引导学生总结:把小球放进抽屉,如果平均分后有剩余,那么总有一个抽屉里至少放商加1个;如果正好分完,那么至少数就等于商。

学生求出100个小球,放进30个抽屉里,总有一个抽屉里至少放的小球数。出示抽屉原理的一般形式:把物体放进抽屉里,如果平均分后有剩余,那么总有一个抽屉里至少放商+1个物体;如果正好分完,那么至少数就等于商。

同时说明:抽屉原理由19世纪的德国数学家狄里克雷最早提出,因此又叫做狄里克雷原理。

三、运用模型,解释应用。1.鸽笼问题。

出示鸽笼问题,让学生解释,并说说这里的鸽子和鸽笼各相当于什么。教师说明:抽屉原理也被人们形象的称为鸽笼原理。2.找身边的抽屉原理。例如文具盒原理、口袋原理等。

教师指出:抽屉原理在生活中随处可见,它其实就是解决该类问题的一种方法,一个模型。在解决问题时关键是要看清什么是抽屉,什么是待分的物体。

3.解释应用。

让学生用抽屉原理解释课前交流的问题:为什么26位同学中至少有7人在同一个季节里出生;为什么26位同学中至少有3人在同一个月出生。

引导思考:把什么看作抽屉,把什么看作待分的物体? 4.用抽屉原理批驳算命。5.我国古代对抽屉原理的记载。

通过史料,使学生感受到:研究问题时不仅要善于发现,还要善于总结。

四、课堂小结,余味课外。

通过小结,拓宽学生视野,感受到抽屉原理更广泛而深刻的应用。

下载鸽巢问题教学设计(正式)五篇范文word格式文档
下载鸽巢问题教学设计(正式)五篇范文.doc
将本文档下载到自己电脑,方便修改和收藏,请勿使用迅雷等下载。
点此处下载文档

文档为doc格式


声明:本文内容由互联网用户自发贡献自行上传,本网站不拥有所有权,未作人工编辑处理,也不承担相关法律责任。如果您发现有涉嫌版权的内容,欢迎发送邮件至:645879355@qq.com 进行举报,并提供相关证据,工作人员会在5个工作日内联系你,一经查实,本站将立刻删除涉嫌侵权内容。

相关范文推荐

    《鸽巢问题》教学设计(精选)

    教学目标:1、知识与技能:初步了解鸽巢原理,学会简单的鸽巢原理分析方法,运用鸽巢原理的知识解决简单的实际问题或解释相关的现象。2、过程与方法:通过操作、观察、比较、说理等数......

    鸽巢问题教学设计

    《鸽巢问题》教学设计 中卫九小 张永霞 一、教学内容 教材第68、69页例1和例2 二、教学目标 1.经历“鸽巢问题”的探究过程,初步了解“鸽巢问题”,会用“鸽巢问题”解决简单......

    《鸽巢问题》教学设计

    《鸽巢问题》教学设计 教学内容 人教版六年级数学下册数学广角《鸽巢问题》第一课时70、71页例1、例2. 教学目标 知识与技能:了解“鸽巢问题”的特点,理解“鸽巢原理”的含义......

    鸽巢问题教学设计

    鸽巢问题教学设计 教学内容:人教版小学数学六年级下册教材第68~69页。 教材分析: 鸽巢问题又称抽屉原理或鞋盒原理,它是组合数学中最简单也是最基本的原理之一,从这个原理出发,可......

    鸽巢问题教学设计

    《鸽巢问题》教学设计 【教学内容】(人教版)数学六年级下册第68页例1,69页例2。 【教学目标】 1、经历“抽屉原理”的探究过程,初步了解“抽屉原理”,会用“抽屉原理”解决简单的......

    鸽巢问题教学设计

    鸽巢问题 教材分析: 鸽巢问题又称抽屉原理,来源于一个基本的数学事实,它是组合数学中最简单也是最基本的原理之一,从这个原理出发,可以得出许多有趣的结果。通过例1的学习,使学生......

    鸽巢问题 教学设计

    《鸽巢问题》教学设计 教学内容 教科书68页例1,69页例2。 教学目标 1、在了解简单的“鸽巢问题”的基础上,使学生会用此原理解决简单的实际问题。 2、提高学生有根据、有条......

    鸽巢问题教学设计

    集体教研备课原稿数学组 鸽巢问题教学设计(原稿) 教学内容:人教版小学数学六年级下册教材第68~69页。 教材分析: 鸽巢问题又称抽屉原理或鞋盒原理,它是组合数学中最简单也是最基本......