第一篇:《等腰三角形和等边三角形》教学设计
《等腰三角形和等边三角形》教学设计
南京市栖霞区摄山星城小学
葛庆婷
教学目标: 1.使学生在实际操作中认识等腰三角形和等边三角形,知道等腰三角形和等边三角形的特征,并能正确判断,认识等腰三角形的腰,底,顶角及底角。2.使学生通过测量,比较认识等腰三角形和等边三角形,了解等腰三角形和等边三角形的边和角的特征。
3.使学生在学习活动中主动参与观察,比较等活动,产生对数学学习的兴趣,培养创新意识和初步的创新能力。教学重点:
认识等腰三角形和等边三角形的特征。教学难点:
发现等腰三角形和等边三角形的特征。教学准备:
学习单、长方形纸、正方形纸、课件、课堂练习教学过程:
一、复习引入
师:我们根据三角形角的特点,可以将三角形具体分为哪几类? 师:今天,我们根据三角形的边研究三角形的特征。
【设计意图:通过复习回顾,知道上节课三角形的分类是按角来分的,那么三角形除了可以按角来分,更可以按边的特点来分,潜移默化的教授分类思想。】
二、认识新知 1.认识等腰三角形。学习单第1题:
(1)量一量:3个三角形每条边的长度,看看这些三角形有什么共同的特点?(先单独思考发现,再同桌说说,全班汇报)
师:像这样两条边相等的三角形是等腰三角形。(板书)
(2)说明:在等腰三角形中,这两条相等的边都是它的腰(图上板书:腰),第 1 三条边是它的底(板书:底),两条腰所夹的角是它的顶角(板书:顶角),腰和底的两个夹角是它的底角(板书:底角)。
学生看图认一认三条边和三个角各是三角形的什么,互相说一说。
(3)让学生在例6的三个三角形中分别标注腰和底,再同桌互相指一指,说一说每个三角形的顶角和底角。
交流:你是怎样找等腰三角形的腰和底的?顶角和底角呢?(4)操作探究特征。
出示例题中剪等腰三角形的步骤,要求学生用长方形的纸,照样子剪出一个等腰三角形。(同桌合作)
交流:为什么这样剪出的就是等腰三角形? 小组探究:等腰三角形还有哪些特征?(板书)①
②
③
【设计意图:在学习例题时,先让学生观察几个三角形,量一量各边的长度,说说有什么共同点,在此基础上,再让学生按要求量一量每个三角形的边长,并交流概括出这些三角形的共同特点。通过这样的操作活动,使学生认识等腰三角形和等边三角形的基本特征,在探索图形特征活动中发展空间观念,锻炼思维能力。】
2.认识等边三角形。学习单第2题
(1)学生测量边长并比较长度,有什么发现?
师:板书:3条边相等的三角形是等边三角形,也叫正三角形。(2)操作探究特征。
出示例题中剪等边三角形的步骤,要求学生用正方形的纸,照样子剪出一个等边三角形并小组内自主探究等边三角形的特征。
师:等边三角形一定是锐角三角形吗?是等腰三角形吗?(特殊的等腰三角形)师总结。
【设计意图:通过学生相互之间的交流和师生的互动,充分放手,让学生感受等边三角形的特性。】
三、巩固练习
1、下面的物体的面,哪个是等边三角形,哪个是等腰三角形?(课件出示)
流动红旗
三角尺
警示标志语
整体出示,指名先读题,再判断。如果说法错误,再说一说可以怎样修改。【设计意图:通过判断,加深学生对已经学习的等腰、等边三角形的认识,并能够根据题目特点快速判断。】
2、下面每组的3根小棒能围成一个等腰三角形吗?
(1)6cm
6cm 3cm
(2)3cm
3cm
6cm(3)3cm
3cm 4cm
(4)4cm
8cm
8cm 逐题出示,指名口答,说理由。
【设计意图:通过直接口答,提高学生根据题目特点选择解决方法的能力,并结合三角形三边关系的知识,从而为灵活使用打下基础。】
3、填空
(1)一根18厘米长的线,可以围成边长是()厘米的等边三角形?(2)等腰三角形的一条腰长是7厘米,底长5厘米。这个等腰三角形的周长是()厘米。
(3)等腰三角形的顶角是80°,它的一个底角是()°。(4)等腰三角形的底角是35°,它的顶角是()°。
(5)等腰三角形的一个底角和顶角度数相等,它是一个()三角形。【设计意图:反复运强化等腰等边三角形的腰和底的知识,会根据条件快速判断方法及运用的知识,提高运用能力】
五、全课小结
1.本节课我们学习了什么? 2.通过复习,你有哪些收获?
先自己想一想,再同座说一说,最后指名口答,全班交流。
【设计意图:先思考“本节课复习了什么”,引导学生回顾本节课的学习内 3 容,再通过思考“有什么收获”,引导学生整理自己的学习体会。】
第二篇:四年级数学《等腰三角形和等边三角形》教学设计
等腰三角形和等边三角形
教学内容: 教材30 — 32页
教学目标:
1、让学生在实际操作中认识等腰三角形和等边三角形,知道等腰三角形边和角的名称,知道等腰三角形两个底角相等,等边三角形3个内角相等。
2、让学生在探索图形特征以及相关结论的活动中,进一步发展空间观念,锻炼思维能力。
3、让学生在学习活动中,进一步产生对数学的好奇心,增强动手能力和创新意识。
教学重点: 认识等腰三角形和等边三角形以及它们的特征
教学难点: 探索等腰三角形和等边三角形以及它们的特征
教学准备: 长方形、正方形纸,剪刀、尺等
教学流程:
一、复习:关于三角形,你有那些知识?
1、按角分成三种角
2、三个内角和是180度
算第三个角的度数,如果是一般三角形,那就用180去减;如果是直角三角形,那就是90去减„„
二、认识等腰三角形:
1、比较老师手边的两块三角板,他们有什么相同?(都是直角三角形)
有什么不同?(其中有一块三角板的两条边相等,两个角相等;而另一块三角板的角和边都不相同。)
2、折一折、剪一剪:
取一张长方形纸,对折;画出它的对角线,沿对角线剪开;展开
观察:这样剪出来的三角形就是我们今天要认识的等腰三角形。想一想:为什么要对折后再剪呢?(这样剪出来的两条边肯定是相等的。)
除了两条边是相等的,还有什么也是相等的?你是怎么知道的?
(还有两个角也是相等的,因为也是重合的。)
3、画一画:
讨论一下,如果我要把这个等腰三角形画下来,应该怎么画?
师生共画等腰三角形。板书:等腰三角形
4、教学各部分名称:
读“等腰三角形”,想一想,这名字是什么意思?
在图上标出:这两条相等的边,我们就叫它“腰”;这第三条边和它们是不相等的,我们叫它“底”
在底边上的这两个角是相等的,就可以共用一个名字“底角”;剩下的这个角,称之为“顶角”。
三、认识等边三角形:
1、刚才有的同学画的等腰三角形,看上去三条边都是相等的。如果真是那样,那它还有一个名字,叫“等边三角形”
2、为了确保三条边都相等,我们可以这样折:取一正方形形纸,边折边示范,并讲清楚为什么要这样折?
3、画等边三角形:很容易保证两条边相等,但保证三条边都相等有一定的困难,所以等边三角形不好画。你有什么办法?
四、完成想想做做:
第三篇:《等腰三角形和等边三角形》优秀教学反思
今天和学生们继续学习了三角形的知识——《等腰三角形和等边三角形》,因为昨天刚听了华应龙老师的研讨会,今天有点心血来潮,也来摸摸我们学生的底,他们的自学能力到底有多高?
课前我把全班三十五人分为七个组,每个组指派正副组长两名。上课伊始,我让学生先自学课本,我不给任何指导意见,这样做基于不干扰学生探究知识的思路。
十分钟后,小组自学活动结束,每组汇报探究的成果,孩子们零零碎碎地把本节课所要学的知识一个个抖落出来。课前我也将这些知识点作了一个预设,罗列了如下:等腰三角形、腰、底、底角、顶角、等边三角形……接着我引导学生对这些概念结合图形进行深入理解,最终学完了本节课,学生饶有兴趣地学习了一节课。
课后我反思了这节课,颇有收获:
一、每个学生都有自学能力
我以为学生没办法自学,很茫然,其实不然,他们在自学课本时,有自己的认识、收获和想法,尽管有点不够准确或不完善的想法,但相比较往日习惯等待灌输的做法的确有些触动。学生能够揭示本课的知识点,可能基于他们语文学习的课前预习,尽管能力不强,但值得肯定的。
二、每个学生都能发表自己的想法
往日的课堂,我抛出的问题无人问津的情况经常有,而今天围绕学生挖掘的知识点展开提问或让学生相互提问,学生很乐意说自己的想法,没有拘束,真切地感受到学生的课堂学生做主。当然这节课中我也意识到一个好的和一个不好的个人素养,当一个孩子发言胆怯时,同伴的掌声鼓励了他们的勇气,说得不好的地方,请本组同伴帮忙,让学生切实感受小组合作的力量;当一个孩子发言错误时,总会引来其他孩子一些不怀好意的笑声,我及时制止并教育学生要懂得尊重别人、倾听别人的意见,谁没有犯错的时候,讽刺的笑声应该从课堂中消失。
三、每个学生都想发表自己的想法
学生在学习的过程中卡壳时,启发后还有困难,只能由老师揭示答案。一些学生情不自禁地说:“我也是这样想的。”我笑着说:“机不可失,时不再来,给你机会时为什么不讲?下次要大胆发表你的意见,哪怕就是错的,至少你思考了。”孩子们调皮地说:“我怕说错。”他们道出了自己的想法,也是我在以往教学中做得不够的地方。孩子们需要鼓励和赏识,才乐意说出自己的想法。
第四篇:等边三角形教学设计
等边三角形教学设计
一、教材分析
“等边三角形”是初中数学教学的重要内容,共有两课时。其中第一课时的内容是等边三角形的概念、性质、判定和相关知识的应用。该节内容是在等腰三角形的基础上学习。
二、学生分析
1、学生是八年级的学生。
2、学生已经建立了对几何的学习兴趣和基本的几何学习方法。
3、学生已经学习了三角形、等腰三角形和轴对称的内容。
4、学生应用所学知识解决实际问题的能力需要进一步加强。
5、学生使用规范的几何语言书写几何解题过程的能力需要进一步加强。
三、教学目标
1、知识与技能
1)了解等边三角形是特殊的等腰三角形,等边 三角形是轴对称图形; 2)会阐述、推证等边三角形的性质和判定方法。
2、过程与方法
经历“猜想—验证—总结归纳—应用”的探究过程,培养探究数学问题、解决问题的能力。
3、情感、态度与价值观
1)体验数学充满着探索与创造,感受数学的严谨性,对数学产生强烈的好奇心和求知欲。
2)在学习中获得成功的体验,感受数学学习的乐趣, 建立自信心。
四、重点难点
1、重点:等边三角形的性质和判定。
2、难点:等边三角形性质的应用。
五、教学方法
本节课从“引导学生学习的方式、启发学生思考的方法、规范学生表达与书写的思路”的层面讲授新内容,帮助学生“猜想-验证-总结归纳-应用”新知识,从而达到学习新课的目的。
六、教学用具
本节课使用多媒体教学,采用PPT与几何画板相结合的方式。
七、教学过程
(一)导入
用PPT展示一组生活中的图片,让学生观察并发现其中蕴含的几何图形——等边三角形,理解数学源于生活的道理。从知识与技能、过程与方法、情感态度与价值观等三个方面阐述本节课的学习目标。
(二)新知探究
1、探究定义
定义:三边相等的三角形是等边三角形。探究过程:
师:如何定义等边三角形? 生:从“等边”两个字考虑,与等腰三角形的定义类比,和同学讨论,试着给出等边三角形的定义。认真观察等边三角形发生变化时三条边的变与不变,在自己感性认识的基础上达到理性认识的目的,并确定等边三角形的定义。
等边三角形是特殊的等腰三角形。
师:引导学生从“三角形按边分类”的结果考虑等边三角形与等腰三角形的关系,并用几何画板演示由一般三角形到等腰三角形再到等边三角形的变化过程。
生:先回顾三角形按边分类的结果,然后猜想等边三角形与等腰三角形的关系,然后仔细观察几何画板上由一般三角形到等腰三角形再到等边三角形的变化过程中三条边在数量上的变化,验证自己的猜想,确定结果。第二定义:腰和底相等的等腰三角形是等边三角形。
2、探究性质
1)从边和角的角度探究性质
性质1:等边三角形的三条边都相等。
性质2:等边三角形的三个内角都相等,并且每个角都等于60°。
探究过程: 师:引导学生分别从边和角的角度出发,探索等边三角形的性质。生:先利用刻度尺和量角器度量自制的等边三角形的边和角,根据自己的度量数据猜想等边三角形有什么性质,然后仔细观察几何画板上随着等边三角形的位置和大小的变化,它的边长和角的度数各有什么变化,进而验证自己的结论,最后用已学的知识进行严格的几何证明。2)从重要线段的角度探究性质
性质3:等边三角形三边都存在“三线合一”,即等边三角形每个内角的平分线、该角对边的中线、高相互重合。探究过程:
师:引导学生发现等腰三角形中“三线合一”的性质在等边三角形中依然存在,并且更加深刻。
生:在自制的等边三角形中做任何一个角的平分线,与对边有一个交点。然后用刻度尺度量被交点分成的两部分的长度,用量角器度量中线与边相交所形成的两个角的度数。根据自己度量所得到的数据猜想该中线又是等边三角形的什么重要线段。在猜想的基础上观察几何画板上演示的动画,根据几何画板给出的数据进一步验证自己的猜想。最后用所学的知识证明自己的猜想。
3)从对称的角度探究性质
性质4:等边三角形是轴对称图形,有三条对称轴,每条边上的中线(每条边上的高、每个角的平分线)所在的直线是它的对称轴。探究过程:
师:引导学生从等腰三角形的对称性出发,考虑等边三角形是否也具有对称性,如果有对称性,等边三角形有几条对称轴,如何找出来。
生:回顾轴对称图形的定义和等腰三角形的对称性,并根据这些知识将等腰三角形的对称性延伸到等边三角形中,然后思考等边三角形的对称性与等腰三角形的对称性有什么不同。观察几何画板上演示等边三角形对称的动画,根据看到的结果找出对称轴并加以证明。
3、探究判定
1)在“任意三角形”上探究判定 判定1:三条边都相等的三角形是等边三角形。
探究过程:
师:引导学生从边的角度出发思考,当一个三角形三边满足什么条件时这个三角形是等边三角形。
生:根据定义得出当三角形的三角边相等时,这个三角形是等边三角形。判定2:三个角都相等的三角形是等边三角形。
探究过程:
师:引导学生从角的角度出发思考,当一个三角形的三个角满足什么条件时这个三角形是等边三角形。
生:根据等腰三角形判定方法的得出过程,思考一个三角形的三个角满足什么条件时,该三角形是等边三角形。观察几何画板中一个斜三角形变化成等边三角形时,随着三个角的度数由任意的度数变化成60°时,三边的边长有什么变化,最后满足了什么条件。依此归纳判定方法,并进行证明。在所得的判定方法的基础上,根据老师的提示得出该判定方法的一个推论: 两个角相等并且都等于60°的三角形是等边三角形。2)在“等腰三角形”上探究判定
判定3:腰和底相等的等腰三角形是等边三角形。探究过程:
师:引导学生从边的角度出发思考,当等腰三角形的边满足什么条件时这个等腰三角形是等边三角形。
生:根据第二定义得出当等腰三角形的底边和腰边相等时,这个等腰三角形是等边三角形。
判定4:有一个角是60°的等腰三角形是等边三角形。探究过程: 师:引导学生从角的角度出发思考,当等腰三角形的角满足什么条件时这个等腰三角形是等边三角形。
生:考虑等腰三角形在角之间已经满足的关系,在这个基础上考虑,这些角进一步满足什么条件时该三角形是等边三角形。在老师的帮助下得出有一个角等于60°的等腰三角形是等边三角形的结论,然后分别以60°的角为顶角和底角两种情况进行证明。
(三)应用小结
1、新知应用
1)△ABC是等边三角形,以下三种分法分别得到的△ADE是等边三角形吗,为什么?
①过边AB上一点D作DE∥BC,交边AC于E点.②作∠ADE=60°,D、E分别在边AB、AC上.③在边AB、AC上分别截取AD=AE.2)等边三角形三条中线相交于一点。画出图形,找出图中所有的全等三角形,并证明他们全等。
2、课堂小结
让学生从定义、性质和判定三个方面总结本节课所学的内容,并与等腰三角形做比较。
第五篇:《等边三角形》教学设计
《等边三角形》教学设计
教学目标:
1、了解等边三角形是特殊的等腰三角形,等边三角形是轴对称图形。
2、理解等边三角形的性质和判定方法。
3、经历应用等边三角形性质的过程,体会等边三角形与现实生活的联系。教学重难点:
重点:等边三角形的性质和判定方法。难点:等边三角形性质的应用。教学过程:
一、复习提问:什么是等腰三角形?等腰三角形有哪些性质?
二、情境引入:出示用硬纸板制作的等边三角形,并演示说明在等腰三角形中,有一种特殊的等腰三角形——三条边都相等的三角形,我们把这样的三角形叫做等边三角形。
分组观察与讨论:
1、把等腰三角形的性质用于等边三角形,你能得到什么结论?
2、你又能得到哪些等边三角表的判定方法?
如图:
三、解决问题
学生合作交流,归纳结论如下:
性质:等边三角形是轴对称图形,它有三条对称轴;等边三角形每一个角都相等,都等于60°。
判定:三个角都相等的三角形是等边三角形;有一个角是60°的等腰三角形是等边三角形。
四、初步应用
1、△ABC是等边三角形,以下三种方法分别得到的△ADE都是等边三角形吗,为什么?
(1)在边AB、AC上分别截取AD=AE。
(2)作∠ADE=60°,D、E分别在边AB、AC上。(3)过边AB上D点作DE∥BC,交边AC于E点。
2、已知:如下图,P、Q是△ABC的边BC上的两点,并且BP=PQ=AP=AQ。求∠BAC的大小。
分组讨论并研究。
展示:生板演过程,师生共同找错更正。解:∵AP=AQ=PQ,∴△APQ是等边三角形。∴∠PAQ=∠APQ=∠AQP=60°。又∵AP=PB,∴∠PAB=∠PBA。又∵∠APQ=∠PBA+∠PAB,∴∠PAB=30°。同理∠QAC=30°,∴∠BAC=∠PAB+∠PAQ+∠QAC=30°+60°+30°=120°。
五、综合应用(出示教科书第54页例4)
学生自行解决,教师辅导并指正学生解题过程中的失误。
六、课堂小结
1、等边三角形性质判定是什么?
2、等边三角形与等腰三角形有哪些区别和联系?
七、布置作业
八、小试身手
1、三边()的三角形是等边三角形。
2、等边三角形的三个内角都(),每个内角都等于()
3、三个角都()的三有形是等边三角形。
4、有一个角等于60°的()是等边三角形。
5、如果一个三角形是轴对称图形,且有一个角是60°,那么这个三角形是()。
6、等边三角形的边长是2,则它的面积是()
7、已知:如图等边△ABC,D是AC的中点,且CE=CD,DF⊥BE。求证:BF=EF。
8、已知如图△ABC和△DCE都为等边三角形,AE交CD于点N,BD交AC于点M。
1)试找出图中相等的线段、相等的角。2)连结MN,图中还有等边三角形吗?
《等边三角形》教学设计
甘南县巨宝中心学校
赵子洋