多台电机并联同步运行[全文5篇]

时间:2019-05-12 23:42:05下载本文作者:会员上传
简介:写写帮文库小编为你整理了多篇相关的《多台电机并联同步运行》,但愿对你工作学习有帮助,当然你在写写帮文库还可以找到更多《多台电机并联同步运行》。

第一篇:多台电机并联同步运行

3、多台电机并联同步运行

接线:

按图三所示的电路,连接空气开关、电磁开关、电源,检查接线无误后,合上空气开关和电磁开关,变频器上电,键盘数码管显示0.0。

关掉电源,电源指示灯熄灭后,再连接电机、温度继电器、启停开关、正/反转开关、电位器、复位按钮、频率表(0~10V电压表头)等,三台电机并联同步运行,变频器和电动机接地端子可靠接地,并仔细检查。

图三 三台电机并联同步运行接线图

每台电机均按电机容量采用温度继电器RT进行过载保护。

变频器功率按三台电机容量之和选取。

参数设定:

变频器上电,数码管显示0.0 F1.01出厂值为0,设定为1 F1.02出厂值为0,设定为1 按电机名牌设定电机参数:F1.21、F5.00~F5.04 查看F1.00的参数,旋转电位器,数码管显示值从0.0~50.0跟随电位器变化。运行:

合上启停开关,变频器运行指示灯亮,输出频率从0.0Hz到达电位器设定频率,调节电位器,同步改变三台电动机转速。合上正/反转开关,三台电动机同步减速后反转。

4、多台变频器比例联动 接线:

按图四所示的电路,连接空气开关、电源,检查接线无误后,合上空气开关,变频器上电,数码管显示0.0。

关掉电源,电源指示灯熄灭后,再连接电机、启停开关、主调电位器、微调电位器、寸动按钮、频率表(0~10V电压表头)等,三台变频器和电机比例联动运行,变频器和电动机接地端子可靠接地,并仔细检查。

图四 三台变频器比例联动运行接线图 参数设定:

假定三台变频器的输出频率比例为1:1.5:2 合上空气开关,变频器上电,数码管显示0.0 1号变频器参数设定:

F1.01出厂值为0,设定为1,端子开关启停

F1.02出厂值为0,设定为4,两路模拟量求和输入 F1.04出厂值为100,设定为10,微调电位器最大±5Hz F1.05出厂值为100,保持不变,输出频率比例为1 按1号电机名牌设定电机参数:F1.21、F5.00~F5.04 2号变频器参数设定:

F1.01出厂值为0,设定为1,端子开关启停

F1.02出厂值为0,设定为4,两路模拟量求和输入

F1.04出厂值为100,设定为15,微调电位器最大±7.5Hz F1.05出厂值为100,设定为150,输出频率比例为1.5 按2号电机名牌设定电机参数:F1.21、F5.00~F5.04 3号变频器参数设定:

F1.01出厂值为0,设定为1 F1.02出厂值为0,设定为4,两路模拟量求和输入

F1.04出厂值为100,设定为20,微调电位器最大±10Hz F1.05出厂值为100,设定为200,输出频率比例为2 按3号电机名牌设定电机参数:F1.21、F5.00~F5.04 旋转主调电位器,分别查看三台变频器F1.00参数,键盘数码管显示的参考输入跟随电位器变化,且比例关系为1:1.5:2。分别旋转三个微调电位器,相应的变频器参考输入有微小的变化。

运行:

合上起停开关,三台变频器运行指示灯亮,输出频率从0.0Hz到达电位器设定频率,输出频率比例关系为1:1.5:2,调节主调电位器,改变三台电动机转速,且转速按比例联动。可以分别用三个微调电位器调整三台变频器的输出频率。

第二篇:电机的运行条件

电机的运行条件 电机在轻负载下运行

电机在额定电压运行时,最佳负载率一般由功率因数和效率决定。

功率因数高低,主要与负载大小有关。一般电机空载时,功率因数很低,通常小于0.2.。电机

带负载后,要输出机械功率,因此,定子电流中的有功分量增大,功率因数逐渐提高。在额定

负载运行时,电机的功率因数最高。

电机运行时,效率高低与负载大小有关。一般电机空载运行时,效率为零。负载增加时,效率也增加。当负载为(0.7~1)倍额定负载时,效率最高。因此,电机在接近额定负载下运行时,效率

最高,最为经济。

综上述,电机最佳的负载率是在:电机在额定负载或接近额定负载下运行时。

电机效率

电动机输出功率 P2 与电动机输入功率 P1 之比的百分数,叫做电动机的效率.用字母“η”表示.即:η =(P2/P1)× 100%

电动机的效率与拖动的负载、电动机的转速、电动机的类型和电源的电压都有关系.一般异步电动机的效率为 75%~92% ,负载小时效率低,负载大时效率高;电动机的转速降低时,多数情况下效率是降低的;电源电压高于或低于电动机额定电压时,其铁损和铜损增加(电动机在满载情况下),因而效率降低;大中容量的绕线式电动机和深槽式电动机效率低.电机功率因数与电机的效率

电机的功率因素是输入视在功率与输入有功功率之比,该值与效率无关,功率因素越大表示无功当量越小.电机的效率是输入有功功率与输出有功功率之比,效率越高表示电机损耗越小.加装变频器的好处

变频器要节能一定要降低频率,下降值越大,节电越多。不降低频率,变频器原则上是不能节电的。变频器要节电是有一定条件的。在不影响使用的条件下,适当改变工况参数后,把不合理运行参数所消耗电能节省下来,就可做到从一般运行转变成经济运行。

1、与电动机负载率有关。负载率在10%~90%时,节电率最多约8%~10%,负载率低相应节电率高些。但无功节电率大约40%~50%,是不计电费的。

2、与原来的运行的工况参数值的合理程度有关。例如,与压力、流量、转速等可调节的量值大小有关,可调整量大,则节电率就高,否则相反。

3、与原来采用的调整方式有关。采用进口或出口阀门方式来调整运行参数的,很不经济,若改为变频器调速,则经济合理。使用变频器调速后,比用人工阀门调整运行方法,能多节电达20%~30%。

4、与原来采用的调速方式有关。例如,原来用滑差电动机调速,因调速效率低,尤其在中、低速时,效率只有50%以下,很不经济,改为变频器调速后,把这部分电能节省下来了。目前轻工、纺织、造纸、印染、塑料、橡胶等行业中,大多还在使用滑差电动机,故使用变频器来实现节能,技术改造工作是当务之急的事。

5、与电动机工作方式有关。例如,连续运转、短时运转、间歇运转的节电量是不同的。

6、与电动机开动时间长短有关。例如,一天开机24h,一年开365天的节电量就大,反之则小。

7、与电动机本身功率大小有关。同样节电率下,功率大的节电量值大,经济效益就大,哪怕节电率相对小功率电动机低些,但实际收益较大。

8、与本单位生产工艺设各重要性有关。首先要选产品电耗大的、产品成本高的、现用的调速方式是不够经济合理的设各加以改造,改用变频器后就能有立竿见影、事半功倍的效果。

第三篇:多台电机同时控制的电控系统设计的论文

摘要:变频器加变频电机这种调速方式,以低廉的价格和稳定的性能,很快的在自动化设备制造和设备改造中应用。PLC的功能强大、使用容易、可靠性高,常用于控制系统中。本文主要介绍一个变频器控制两个变频电机,实现超宽速度调节的一种方法及电控设计。

关键词:调速;变频器;离合器PLC

随着自动控制理论,工业网络技术,计算机技术和通信技术的发展,在实际的工业生产过程中,单台电机的控制已经不能满足实际的需求,越来越多的生产设备需要多台电机同时控制,所以多电机的控制问题已经成为控制行业发展研究的一个重要内容。

1背景介绍

近年来,随着工业发展对各种机械性能,电控要求和产品质量越来越高,单台电机的控制已经不能满足工艺参数的要求。本文遇到的问题为:一个移动平台有快速运动和慢速运动两种模式,两种速度的跨度非常大。慢速工位要求0.1 mm/min至5mm/min,快速工位要求200 mm/min至700 mm/min.经研究一台电机是不能满足该工况需求。同时面临两台电机又怎样控制一个输出,是否能用一台变频器控制两台电机。

2机械系统设计

2.1机械机构组成系统由机械部分和电气部分组成。其中机械系统由两台同型号同功率电机,两个不同型号的摆线针减速器,两个磁粉离合器,两个联轴器、一套丝杠和导向滑轨组成。其结构见图1.2.2机械机构原理

由于两种工位不会同时工作,本系统最终选择一个变频器控制两台电机,实现两种工作状态。

快速工况:快速慢速转换开关切换到快速位,快速位磁粉离合器工作,连接输出轴,按动正转或者反转按钮,快速电机工作,调节调速旋钮,实现快速工况速度调节。按动停止按钮,电机停止工作。

慢速工况:快速慢速转换开关切换到慢速位,慢速位磁粉离合器工作,连接输出轴,按动正转或者反转按钮,慢速电机工作,调节调速旋钮,实现慢速工况速度调节。按动停止按钮,电机停止工作。

3系统电控系统设计

3.1系统电气控制原理

根据机械工作原理,其电控的基本原理见图2.从图2可以看出,如果采用传统的接线,会产生大量的工作量,线路也容易出现问题,不便于后期的系统维护。PLC的出现,以可靠的性能,较强的抗干扰能力,扩充方便,组合灵活等特点慢慢的替代着传统的控制电路。系统电控系统由PLC,按钮,指示灯,接触器,变频器组成。

3.2 PLC系统电控设计

一台变频器控制两台同型号电机。PLC和变频器通过RS485接口进行通信,通过接触器的切换将变频器的输出分配到快慢电机。再通过输入到PLC模拟量接口的电压变化实现两台电机的快慢速调节。其PLC接线见图3.4应用效果与结论

根据现场使用情况,该方法已经解决宽范围调速的问题。通过使用PLC让本来庞大的配电柜变得小巧而整齐,后期的维护和检修也变得更加容易。但是快速和慢速切换的时候需要将电机停止后才能切换到另外一种工况。通过后期对控制系统的改进与提升可以不需停止的实现0.1 mm/min至700 mm/min的宽范围调速。

参考文献:

[1]王晓芳,变频器同步控制解决方案[J],科技创新与应用,2014(30)。

[2]朱秀斌。基于PLC控制的机械电气传动同步控制器研发设计[J].煤炭技术。2012(06)。

[3]黄晓红,金一兵,黎绍发。PLC在电梯变频控制系统中的应用[J].机电工程技术。2004(01)。

[4]魏召刚。工业变频器原理及应用[M].电子工业出版社,2006.

第四篇:并联电容器运行维护规定

并联电容器运行维护规定

1. 总则:

1.1 本标准适用于变电所10kV、35kV并联电容器的运行、维护与管理。

1.2本规定根据《安徽电网高压并联电容器组运行维护管理条例》制定。

1.3 调度、变电值班员,有关生产、技术领导和专职技术人员要熟知本规定。

2.电容器组的运行

2.1是容器的投运与切除,应根据调度命令或有关规定进行。

2.2电容器的自动投功装置的自动投切方式及定值,按调度命令整定。

2.3 电容器最高运行电压不得超过其额定电压的1.1倍。

2.4 电容器最大运行电流不应超过其额定电流1.3倍。

2.5 电容器组的三相电流之差不超过5%,当超过时应查明原因,并采取相应措施。

2.6 高温季节,应注意电容器室的通风,避免电容器在高压(高于额定值)和高气温同时出现时运行。

2.7 电容器的运行电压或电流用油箱表面温度超过其规定值时应及时汇报调度,采取措施或退出运行。

2.8 新安装的电容器组或长期停用又重新启用的电容器组除交接试验或检测必须合格外,在正式投运关,应进行冲击合闸三次,每次间隔时间不少于5分钟。

2.9 电容器组切除后再次合闸,其间隔时间一般不少于5分钟,对于装有并联电阻的开关一般每次操作间隔不得少于15分钟。

2.10 电容器投入运行后要监视电压和电流值,并作好记录。

2.11 当电容器组在运行中个别熔丝熔断,但开关尚未跳闸,仍可继续运行,待停电后一并进行处理。

2.12 接有电容器组母线失压时,其电容器开关应断开,恢复送电时,应先合出线开并,待负荷恢复后再合电容器组开关。

3.电容器组的检查维护。

3.1 对电容器组附属设备必须按照电气预防性试验待规程要求进行试验。

3.2 对电容器组的巡视,每天不得少于三次。巡视中应注意电容器有无鼓肚及渗漏油,贴于电容器上的示温蜡片不应熔化,套管有无闪络痕迹及放电现象,接头部位应无发热迹象,放电、通风装置是否正常工作,并做好巡视记录。

3.3在电容器装置上进行维护工作,除按照《电业安全工作规程》的规定安全措施外,还应对电容器每台进行放电。

3.4 电容器组成应定期停电维修,室内安装的电容器组,每年至少一次,半露天、户外式的电容器组每半年至少一次,配电线路上安装的电容器可与线路停电维修一并进行,其维修内容如下:

3.4.1 清扫套管理外壳及构架(必要时进行涂漆防腐),检查电容器有鼓肚和渗漏油,并进行处理。

3.4.2 对单台熔丝熔断的电容器,应进行外观检查,如外观无故障,再进行试验检测。

3.4.3 逐台检查熔丝的完好性和电气连接部位接触是否良好。

3.4.4 对连接端头部位进行认真的检查,如有松动适当坚固。

3.4.5 按照运行记录中记载的缺陷逐一消缺。

3.5 定期对自动投切装置进行检验,并判别其工作性能是否良好。

3.6 电容器装置的现场通道应畅通,不得堆放任何杂物。

3.7

定期检查电容器室电缆的进口、通风口处,通风处,防止动物侵入的设施是否完整有效。

4.异常运行及事故处理

4.1 电容器组工作电流超1.3倍额定电流时除按2.10条处理外,有关部门应分析原因关及时解决。

4.2 当母线电压超过限额,且本所无其它调压手段时,可切除部分或全部电容器,或要求调度部门进行系统电压的调整。

4.3 当电容器环境温度接近或达到上限时,应采取通风降温措施,但若环境温度仍略超出上限2—3℃,而电容器组的运行电压电流不高于额定值,则允许连续运行。

4.4 当运行电容器组中多根熔丝熔断或“群爆”或单台熔丝重复熔断,应及时查明原因,并用备品更换,确保故障问题已妥善处理后,方可将电容器组成投运。

4.5 在巡视检查电容器组时,如发现下列情况之一,应即将电容器退出运行。

4.5.1 外壳明显鼓肚和漏油。

4.5.2 电容光焕发器套管,支持绝缘子闪络放电或投坏。

4.5.3 箱上的示温蜡片熔化(要分清蜡片熔化和贴片用“胶”不耐温度)。

4.5.4 电容器装置中有不正常的响声或火花。

4.5.5 电容器端头接线处有烧灼过热现象。在未查明原因和进行妥善处理之前不得重新投运。

4.6 当运行中的电容器级开关跳闸,不允许自行试送。如检查未发现异常现象,经调度同意后,可将电容器试送一次。

4.7 如电容器发生爆炸(或起火)应立即断开电源,关按电气消防的有关规定进行灭火工作,同时应即向上级领导汇报,并保护好事故现场。

4.8 因故障退出运行的电容器组,必须在二周内消除故障,恢复投入运行。

5.技术管理

5.1 用电营销部及输变电公司应建立每组电容器装置完整的技术管理档案,其内容应含下列资料:

5.1.1该电容器组的竣工图纸。

5.1.2 交接验收试验报告及附属设备(如开关、PT、CT、放电装置、避雷器、继电保护等)的原始记录及保护整定值。

5.2 变电所应有完整的运行记录,其记载应含下列内容。

5.2.1 电容器组的投切和运行方式变更的日期及时间,投切关后的母线电压,本电压级的力率和电容器组无功电量.5.2.2 电容器组日累计运行小时数。

5.2.3 定期或不定期维修的内容和日期。

5.2.4 电容器的异常运行故障情况及其处理。

5.2.5 装置缺陷情况。

上述内容报用电营销部。

5.3因设备原因造成整组电容器退出运行,除应向本单位主管部门汇报外,应及时进行调查,写出技术分析报告。

5.4因特殊原因需批量报废电容器,应提出书面报告。并附技术鉴定书,经市公司输变电部批准后,方可办理报废手续。

5.5对新安装投入运行的电容器组,要求每季度填报“并联电容器季度运行情况统计汇总表”,连续报四个季度(见附表一)

5.6对每一电容器组,年未应填报“关联电容器运行年损坏率统计表”,报市公司。(见附表二)

5.7每季度应向市公司报送“电容器组季(年)运行报表”(见附表三)。5.9 对电容器组的运行进行分层考核,根据运行情况和效益与经济利益挂钩。5.10 用电营销部应向市公司上报电容器运行台账各一份

电力电容器的维护与运行管理2007年10月02日 星期二 16:48电力电容器的维护与运行管理电力电容器的维护与运行管理 摘要:电力电容器的维护与运行管理.1 电力电容器的保护;2 电力电容器的接通和断开;3 电力电容器的放电;4 运行中的电容器的维护和保养;5 电力电容器组倒闸操作时必须注意的事项;6 电容器在运行中的故障处理;7 处理故障电容器应注意的安全事项;8 电力电容器的修理.电力电容器维护

电力电容器是一种静止的无功补偿设备。它的主要作用是向电力系统提供无功功率,提高功率因数。采用就地无功补偿,可以减少输电线路输送电流,起到减少线路能量损耗和压降,改善电能质量和提高设备利用率的重要作用。现将电力电容器的维护和运行管理中一些问题,作一简介,供参考。1 电力电容器的保护

(1)电容器组应采用适当保护措施,如采用平衡或差动继电保护或采用瞬时作用过电流继电保护,对于3.15kV及以上的电容器,必须在每个电容器上装置单独的熔断器,熔断器的额定电流应按熔丝的特性和接通时的涌流来选定,一般为1.5倍电容器的额定电流为宜,以防止电容器油箱爆炸。

(2)除上述指出的保护形式外,在必要时还可以作下面的几种保护:

①如果电压升高是经常及长时间的,需采取措施使电压升高不超过1.1倍额定电压。

②用合适的电流自动开关进行保护,使电流升高不超过1.3倍额定电流。

③如果电容器同架空线联接时,可用合适的避雷器来进行大气过电压保护。

④在高压网络中,短路电流超过20A时,并且短路电流的保护装置或熔丝不能可靠地保护对地短路时,则应采用单相短路保护装置。

(3)正确选择电容器组的保护方式,是确保电容器安全可靠运行的关键,但无论采用哪种保护方式,均应符合以下几项要求:

①保护装置应有足够的灵敏度,不论电容器组中单台电容器内部发生故障,还是部分元件损坏,保护装置都能可靠地动作。

②能够有选择地切除故障电容器,或在电容器组电源全部断开后,便于检查出已损坏的电容器。

③在电容器停送电过程中及电力系统发生接地或其它故障时,保护装置不能有误动作。

④保护装置应便于进行安装、调整、试验和运行维护。

⑤消耗电量要少,运行费用要低。

(4)电容器不允许装设自动重合闸装置,相反应装设无压释放自动跳闸装置。主要是因电容器放电需要一定时间,当电容器组的开关跳闸后,如果马上重合闸,电容器是来不及放电的,在电容器中就可能残存着与重合闸电压极性相反的电荷,这将使合闸瞬间产生很大的冲击电流,从而造成电容器外壳膨胀、喷油甚至爆炸。电力电容器的接通和断开

(1)电力电容器组在接通前应用兆欧表检查放电网络。

(2)接通和断开电容器组时,必须考虑以下几点:

①当汇流排(母线)上的电压超过1.1倍额定电压最大允许值时,禁止将电容器组接入电网。

②在电容器组自电网断开后1min内不得重新接入,但自动重复接入情况除外。

③在接通和断开电容器组时,要选用不能产生危险过电压的断路器,并且断路器的额定电流不应低于1.3倍电容器组的额定电流。3 电力电容器的放电

(1)电容器每次从电网中断开后,应该自动进行放电。其端电压迅速降低,不论电容器额定电压是多少,在电容器从电网上断开30s后,其端电压应不超过65V。

(2)为了保护电容器组,自动放电装置应装在电容器断路器的负荷侧,并经常与电容器直接并联(中间不准装设断路器、隔离开关和熔断器等)。具有非专用放电装置的电容器组,例如:对于高压电容器用的电压互感器,对于低压电容器用的白炽灯泡,以及与电动机直接联接的电容器组,可以不另装放电装置。使用灯泡时,为了延长灯泡的使用寿命,应适当地增加灯泡串联数。

(3)在接触自电网断开的电容器的导电部分前,即使电容器已经自动放电,还必须用绝缘的接地金属杆,短接电容器的出线端,进行单独放电。4 运行中的电容器的维护和保养

(1)电容器应有值班人员,应做好设备运行情况记录。

(2)对运行的电容器组的外观巡视检查,应按规程规定每天都要进行,如发现箱壳膨胀应停止使用,以免发生故障。

(3)检查电容器组每相负荷可用安培表进行。

(4)电容器组投入时环境温度不能低于-40℃,运行时环境温度1小时,平均不超过+40℃,2小时平均不得超过+30℃,及一年平均不得超过+20℃。如超过时,应采用人工冷却(安装风扇)或将电容器组与电网断开。

(5)安装地点的温度检查和电容器外壳上最热点温度的检查可以通过水银温度计等进行,并且做好温度记录(特别是夏季)。

(6)电容器的工作电压和电流,在使用时不得超过1.1倍额定电压和1.3倍额定电流。

(7)接上电容器后,将引起电网电压升高,特别是负荷较轻时,在此种情况下,应将部分电容器或全部电容器从电网中断开。

(8)电容器套管和支持绝缘子表面应清洁、无破损、无放电痕迹,电容器外壳应清洁、不变形、无渗油,电容器和铁架子上面不应积满灰尘和其他脏东西。

(9)必须仔细地注意接有电容器组的电气线路上所有接触处(通电汇流排、接地线、断路器、熔断器、开关等)的可靠性。因为在线路上一个接触处出了故障,甚至螺母旋得不紧,都可能使电容器早期损坏和使整个设备发生事故。

(10)如果电容器在运行一段时间后,需要进行耐压试验,则应按规定值进行试验。

(11)对电容器电容和熔丝的检查,每个月不得少于一次。在一年内要测电容器的tg 2~3次,目的是检查电容器的可靠情况,每次测量都应在额定电压下或近于额定值的条件下进行。

(12)由于继电器动作而使电容器组的断路器跳开,此时在未找出跳开的原因之前,不得重新合上。

(13)在运行或运输过程中如发现电容器外壳漏油,可以用锡铅焊料钎焊的方法修理。电力电容器组倒闸操作时必须注意的事项

(1)在正常情况下,全所停电操作时,应先断开电容器组断路器后,再拉开各路出线断路器。恢复送电时应与此顺序相反。

(2)事故情况下,全所无电后,必须将电容器组的断路器断开。

(3)电容器组断路器跳闸后不准强送电。保护熔丝熔断后,未经查明原因之前,不准更换熔丝送电。

(4)电容器组禁止带电荷合闸。电容器组再次合闸时,必须在断路器断开3min之后才可进行。电容器在运行中的故障处理

(1)当电容器喷油、爆炸着火时,应立即断开电源,并用砂子或干式灭火器灭火。此类事故多是由于系统内、外过电压,电容器内部严重故障所引起的。为了防止此类事故发生,要求单台熔断器熔丝规格必须匹配,熔断器熔丝熔断后要认真查找原因,电容器组不得使用重合闸,跳闸后不得强送电,以免造成更大损坏的事故。

(2)电容器的断路器跳闸,而分路熔断器熔丝未熔断。应对电容器放电3min后,再检查断路器、电流互感器、电力电缆及电容器外部等情况。若未发现异常,则可能是由于外部故障或母线电压波动所致,并经检查正常后,可以试投,否则应进一步对保护做全面的通电试验。通过以上的检查、试验,若仍找不出原因,则应拆开电容器组,并逐台进行检查试验。但在未查明原因之前,不得试投运。

(3)当电容器的熔断器熔丝熔断时,应向值班调度员汇报,待取得同意后,再断开电容器的断路器。在切断电源并对电容器放电后,先进行外部检查,如套管的外部有无闪络痕迹、外壳是否变形、漏油及接地装置有无短路等,然后用绝缘摇表摇测极间及极对地的绝缘电阻值。如未发现故障迹象,可换好熔断器熔丝后继续投入运行。如经送电后熔断器的熔丝仍熔断,则应退出故障电容器,并恢复对其余部分的送电运行。处理故障电容器应注意的安全事项

处理故障电容器应在断开电容器的断路器,拉开断路器两则的隔离开关,并对电容器组经放电电阻放电后进行。电容器组经放电电阻(放电变压器或放电电压互感器)放电以后,由于部分残存电荷一时放不尽,仍应进行一次人工放电。放电时先将接地线接地端接好,再用接地棒多次对电容器放电,直至无放电火花及放电声为止,然后将接地端固定好。由于故障电容器可能发生引线接触不良、内部断线或熔丝熔断等,因此有部分电荷可能未放尽,所以检修人员在接触故障电容器之前,还应戴上绝缘手套,先用短路线将故障电容器两极短接,然后方动手拆卸和更换。

对于双星形接线的电容器组的中性线上,以及多个电容器的串接线上,还应单独进行放电。

电容器在变电所各种设备中属于可靠性比较薄弱的电器,它比同级电压的其他设备的绝缘较为薄弱,内部元件发热较多,而散热情况又欠佳,内部故障机会较多,制造电力电容器内部材料的可燃物成分又大,所以运行中极易着火。因此,对电力电容器的运行应尽可能地创造良好的低温和通风条件。8 电力电容器的修理

(1)下面几种故障,可以在安装地方自行修理:

①箱壳上面的漏油,可用锡铅焊料修补。

②套管焊缝处漏油,可用锡铅焊料修补,但应注意烙铁不能过热,以免银层脱焊。

(2)电容器发生对地绝缘击穿,电容器的损失角正切值增大,箱壳膨胀及开路等故障,需要在有专用修理电容器设备的工厂中才能进行修理

第五篇:南方交直流并联电网运行问题分析

南方交直流并联电网运行问题分析

南方电网是中国首个长距离大容量送电的交直流并联运行电网。本文介绍了电网概况,分析了电网运行中存在的弱阻尼、动态电压支撑能力不足等主要问题。在分析电网现有相关技术策略的基础上,探讨了解决这些问题的方法和手段,并对将来的工作进行了展望。

关键词:直流输电;交直流并联;电力系统运行

引言

南方电网由广东、广西、贵州、云南四省(区)电网及南方公司直属电网组成,并通过广东电网与港澳电网相连,东西跨度2000km。两广的能源资源仅占该地区的8.9%,而国民生产总值(GDP)却占四省总和的80%。能源分布与经济发展不平衡决定了必须实施西电东送,以实现资源的优化配置和促进东西部经济可持续发展。四省(区)互联的南方电网在这一背景下应运而生。

直流输电的功率调节迅速而灵活,其本身不存在同步运行的稳定性问题且不会增加交流系统的短路容量,因而被认为是较理想的超高压、远距离输电方式[1]。2000年12月26日,天广直流输电工程极I 投运,标志着我国第一个交直流并联运行电网正式形成。2001年6月,天广直流双极投运。2002年6月天广三回交流输变电工程全线投运,南方电网形成了“三交一直”的交直流并联输电格局。至此,西电东送的能力由2000年的1.5GW提高到2002年的4.5 GW,广东入口断面极限达3.7GW。“十五”后期,随着平果串补、贵广交流、河池串补、贵广直流、三广直流等工程的投运,使西电东送能力达到10GW,将大大缓解广东电网电力不足的状况。

南方电网是国内首个交直流并联运行电网,输送潮流重,稳定问题突出,其运行经验对国内同类型电网的规划、运行具有很高的参考价值。

下载多台电机并联同步运行[全文5篇]word格式文档
下载多台电机并联同步运行[全文5篇].doc
将本文档下载到自己电脑,方便修改和收藏,请勿使用迅雷等下载。
点此处下载文档

文档为doc格式


声明:本文内容由互联网用户自发贡献自行上传,本网站不拥有所有权,未作人工编辑处理,也不承担相关法律责任。如果您发现有涉嫌版权的内容,欢迎发送邮件至:645879355@qq.com 进行举报,并提供相关证据,工作人员会在5个工作日内联系你,一经查实,本站将立刻删除涉嫌侵权内容。

相关范文推荐