第一篇:初中数学教学设计与实践
初中数学教学设计与实践
作者: 陶秀芳(初中数学
贺州钟山初中数学一班)评论数/浏览数: 5 / 53 发表日期:
2011-09-05 23:02:23
一、初中数学课中主要的课型有:
1.概念课: 2.公式课: 3.定理课: 4.数学思想方法课: 5.法则课:
二、现就概念课为例谈一下关于初中数学教学设计与实践
对于数学概念的教学,是要在揭示概念内涵的基础上,说明概念的核心之所在,并要对概念在中学数学中的地位进行分析,其中隐含的思想方法要作出明确表述。在此基础上阐明教学重点。这也就是要求我们首先要理解数学。理解数学就是要了解数学概念的背景,掌握概念的逻辑意义,理解内容所反映的思想方法,把握概念的多元联系表示,挖掘数学知识所蕴含的科学方法、理性精神等价值观资源。那么怎样做好概念教学呢?
1.理解教学内容,弄清“是什么”
在日常教学实践中,不能只关注于研究“怎么教”的问题,认为“教什么”的问题教材已经给出答案,即教材上的内容就是教师所要“教”的内容。“要给学生一杯水,老师需要有一桶水”。为了提高对数学的理解水平,我们应注意开阔视野,要从教科书、教参、教辅等局限中跳出来,扩展到更高层次,在高观点指导下理解中学数学。例如,为了更好地理解概率统计内容,应阅读一些高层次概率统计教材;为了提高自己的教学反思水平,应阅读一些数学教育、教学、心理学方面的理论著作;等等。2.理解教学内容之间的联系,在概念体系中认识核心概念
在对教学内容进行设计时,我们的认识经常是“就事论事”,仅仅考虑到这一“点”知识。这种对于中学数学教学内容的认识有一定局限性,可能会“见木不见林”。对于数学教学,要把知识体系当成核心,围绕知识体系开展教学。核心概念的教学设计应该考虑概念的来源是什么?概念的内涵是什么?与相关概念的相互关系是什么?概念有什么作用?在新的概念引入后,原有的知识可以作出什么新的解释?等。同样,在对教材进行分析时,也要树立“整体观”,不仅要分析教学内容所在节的教材处理,更要看到这部分内容所在章的教材处理,甚至全套教材对于相关内容的处理,要深入理解教材对于这部分内容及其相关内容的编写意图,这对于我们深入理解教学内容也是有好处的。
对于平方差公式在初中数学中的地位和作用:平方差公式是乘法公式的一种,而乘法公式是在进行整式乘法运算时,对一些特殊情况归纳出的简化运算的特殊形式。多项式的乘法法则是一个一般性的法则,乘法公式是整式乘法法则的下位,是一般法则形式下特殊形式的特征。因此。乘法公式能为符合公式特征的整式乘法的运算带来方便,也就以为后续学习“用公式法分解因式”“分式的运算与化简”“解一元二次方程”等带来方便。另外,“平方差公式”是学生系统学习的第一个公式,其研究方法也能为后续相关内容的学习带来借鉴作用。因此“平方差公式”的教学不仅要让学生明晰公式的结构特征,也要让学生理解乘法公式的地位和作用以及研究这类问题的方法。这样,在联系中看“平方差公式”,也就为它找到了其基本定位。
3.理解教学内容所反映的思想方法
数学思想方法也是课题研究的主要内容之一。一般地,数学思想是对数学对象的本质认识,是对具体的数学概念、命题、规律方法等的认识过程中提炼概括的基本观点和根本想法,对数学活动具有普遍的指导意义,是数学活动的指导思想。数学方法是指数学活动中所采用的途径、方式、手段、策略等。数学思想与数学方法有很强的联系性。通常,在强调数学活动的指导思想时称数学思想,在强调具体操作过程时称数学方法。
数学思想方法蕴含于数学知识之中,数学概念和原理的形成过程是进行数学思想方法教学的重要载体。数学思想方法重在“悟”,需要有一个循序渐进、逐步逼近思想本质的过程。数学思想方法的教学一定要注意“过程性”,“没有过程就等于没有思想”,要让学生在过程中去逐步体会和理解。对于平方差公式的教学,其内容本身并不难,但这是学生第一次学习公式,学生不是做不到,而是想不到。要希望学生能想得到,就要特别注意要让学生经历归纳公式的过程,也就是要在教学中潜移默化的教给学生一些基本套路。这个基本套路其实和概念教学是类似的,也是要经过归纳公式(“举三反一”,概括其本质属性)——表示公式(文字、符号语言表示)——辨析公式(明确其结构特征)——应用公式(“举一反三”)等过程,其核心仍是归纳。归纳也是代数教学的核心,归纳地想、归纳地发现规律作得多了,思想也就体现出来了。4.把“理解数学”体现在教学设计、课堂教学之中。
教师“理解数学”的目的是让学生“理解数学”,这也是我们教学的主要任务。让学生也能“理解数学”主要通过课堂教学来完成,而进行课堂教学的基础是我们的教学设计。因为教学设计能较好地解决“理解数学”,以及从数学知识发生发展过程角度构建教学过程、设计问题来引导学习的问题,是提高课堂教学质量的关键。
对于教学设计,应该在分析概念的核心的基础上,提出教学重点;根据教学重点和学生的思维发展需要,提出现阶段要达成的目标;分析达成目标已经具备的条件和需要怎样的新条件,从而做出教学问题诊断;根据上述分析进行教学过程设计;最后是目标检测设计。其中,内容和内容解析、目标和目标解析、教学问题诊断是重中之重。
http://gxhzpx.cersp.com/article/browse/61151.jspx
第二篇:初中数学教学实践与反思
初中数学教学实践与反思
二1简答题(共4小题,合计满分30分)1.简述“校本教研”的基本含义。
答:“校本教研”意味着以校为本,即为了学校、基于学校、在学校中。
亦即,校本教研是基于校级教研活动的制度化规范,强调围绕学校教育教学遇到的真实问题开展研究,学校现有的力量是校本教研的核心力量,而学校是教学研究的基地、校本教研的主阵地,教师是教学研究的主体,促进师生共同发展是教学研究的直接目的。
2.在初中数学课堂的日常教学中,开展课堂教学评价的主要目的是什么?
答:①检验学生对新知的掌握状况,发挥评价的诊断功能;②调控课堂教学进程,进而达成预设的课堂教学目标,发挥评价的检查功能;③获取学生在课堂上的学习信息,发挥评价的改进功能;④促进学生的数学学习,发挥评价的激励功能。
评分标准:满分8分。
3.在初中数学教学中,开展综合与实践(即曾叫“课题学习”、“实践与综合应用”)过程中,其核心的课程教学目的是什么?
答:体现不同领域之间的综合;体现数学与其它学科之间的综合;体现数学与社会的综合;培养综合运用所学内容发现问题、提出问题、分析和解决问题能力;积累综合运用所学(数学)内容的基本活动经验。
评分标准:满分8分。
4.在初中数学日常教学中,如何开展归纳推理?其基本思路如何?
答:无论是概念教学还是定理、法则、规律的教学,首先从分析2、3个特例出发,进行共性的归纳、概括;其次,依据这些特例猜想一般的共性;再次,举例验证共性;最后,采取逻辑或实践等方式确认猜想的正确性。
比如,平方差公式a2-b2=(a+b)·(a-b)的教学: 可以先从b=1的特例开始,分析a2-1=?·?。当a=2时,a2-1=3,3可以拆成1×3; 当a=3时,a2-1=8,8可以拆成2×4或4×2; 当a=4时,a2-1=15,15可以拆成3×5;
由此可以发现,某数的平方减去1,可以拆成这个数加1,乘以
这个数减1。
即a
2-1=(a+1)·(a-1)。
而论证这个猜想,只需要从右边推导左边,即利用乘法公式(a+b)(m+n)=am+an+bm+bn即可。
对于a2
-b2,自然可以猜想a2
-b2
=(a+b)·(a-b),对此,利用乘法公式
(a+b)(m+n)=am+an+bm+bn即可论证其正确性。评分标准:满分10分。
二、2简答题(本大题满分30分)
1.在初中数学教学的实践反思中,反思最主要、最直接的目的是
什么?
答:为改进课堂教学效果提供信息,检测本节课的教学质量达成状况,反思教育教学的成败得失,提升教师的教育教学能力,促进教师专业发展。
评分标准:满分8分。2.在初中数学课堂教学实施中,课前精心预设与课堂随机生成之间的关系是怎样的?
答:随机生成与精心预设相辅相成、相互促进,随机生成是结果,精心预设是条件。
评分标准:满分6分。
3.“以学习为中心”的课堂教学设计有哪些基本特征? 答:
(1)以方便学生数学学习为主线而展开教学;
(2)教师的讲授时间非常有限,教师的施教仅仅起到点拨、引导作用;
(3)课堂教学环节紧紧围绕着学生的自主学习、合作学习和探究学习、独立思考而展开;
(4)课堂上往往给学生留下一定独立思考的时间和空间。评分标准:满分8分。
4.举例说明初中数学概念的引入方式主要包含哪些类别? 答:归纳式进入法,内涵式引入法(即直接给出逻辑定义的方式)。具体的形式可以区分为如下四类: ①由实际问题提出概念; ②直接展示概念;
③以操作活动的方式提出概念;
④以问题探究的方式提出概念。
评分标准:满分8分。
三、论述题(本大题满分30分)
1.在初中数学“数与代数”领域,“数”与 “代数”的逻辑关系是怎样的?简述其理由。
答:相互并列。“数”主要阐述认识数及数系的扩充。而“代数”分析问题、解决问题的能力之外,在四大课程领域之中,涉及数学推理的课程领域是(数与代数、图形与几何、统计与概率、综合与实践)。
评分标准:满分8分。
三、案例分析题(共3小题,合计满分50分)
主要阐述字母表示数及其字母、数及其组合的相应运算。
评分标准:满分10分。
2.结合具体的初中数学教学案例,论述如何帮助学生理解无理数的无限不循环性,即,应该设计怎样的教学过程、教学内容,才能帮助学生理解无理数的无限不循环性?
答:
(1)无理数的核心属性是“无限性”与“不循环性”。(2)在初中数学教学中,首先应该设法让学生确信无理数的存在性。以√2为例,首先必须通过几何直观图(比如,两个单位正方形,分别沿对角线剪开后,形成四个等腰直角三角形,再拼接为一个正方形,其面积是2,而其边长是真实存在的),确认√2的存在性。
其次,利用“任何循环小数都可以化为分数”,从反证的角度印证“√2的不循环性”
最后,利用有效小数都可以化成不可约的分数,如果√2是有限小数,必然可以化成不可约分数,从而,一定是无限的小数。
3.在初中数学教学日常教学中,课后反思主要包括哪些内容? 答:①反思教师自己的数学教学观是否符合课程标准所倡导的“积极参与、交往互动、共同发展”,②反思初中数学教学设计的合理性和适切性,③反思数学课堂教学进程的预设、生成之间的反差,以及预设与实际发生之间的差异,④反思教学的亮点与败笔,⑤反思教学评价,⑥反思学生提出的问题,⑦反思学生给出的新见解,⑧反思自己的教学特色。
一、填空题(共3小题,合计满分20分)
1.《数学课程标准》针对知识技能明确使用了刻画知识技能水平的目标动词,就目前的初中数学而言,你认为,依据《数学课程标准》,刻画“正比例函数”概念的课程教学目标的行为动词,应该是(理解)。
评分标准:满分5分。
2.在初中数学的课程目标“知识与技能、问题解决、数学思考、情感与态度”中,实质上表达能力的课程目标是(问题解决、数学思考)。
评分标准:满分7分。
3.开展初中数学的课堂教学设计时,除了发现问题、提出问题与
1.在初中数学统计与概率的教学中,为了帮助学生更好地理解“掷两枚质地均匀的硬币,同时出现两个正面的可能性接近0.25”,请设计简要的课堂教学思路。
答:(1)采取全班合作的方式,将全班分成若干小组,每两人一组,一人投掷硬币,另一人统计结果,最后全班汇总结果;
(2)将全班各组的数据分别统计在一起,引导学生分析其中的规律,当数据逐渐累加在一起,总数超过200次,频率出现规律,其整体趋势非常接近0.25,但并不是越来越近,而是会有波动,但是,波动的可能性越来越小。
评分标准:满分15分。其中,“全班合作”“以全班的数据汇总作为频率”是采分点。
2.开展初中“圆”的概念的第一节课的教学,往往需要现实生活中的背景素材,时间要评判如下两个素材的优劣:
素材1:围绕问题“自行车的车轮为什么做成圆形的而不做成方形的?(或者,为什么说发明车轮是人类历史的最大进步之一?)”展开教学展示和课堂中的分组合作研究。
素材2:围绕问题“下水道的盖子为什么大多做成圆形的而不是方形的?说明其中的道理”进行教学展示和课堂中的分组合作研究。
答:素材1比较适合“圆”概念的导入环节,有助于学生构建圆的概念;而素材2比较适合“圆”概念的巩固环节,有助于检验学生是否真正理解“圆”的概念,或者深化学生对于“圆”概念的理解程度。
评分标准:满分15分。
3.案例:某日某中学有理数乘法法则的第一次课的课堂教学,出现如下片断:
在导入新课后,教师首先引导学生复习小学乘法的含义,提出“
2×2表达什么意思”等问题。(两个2相加)
随后提出(+2)×(+2)即2×2。
那么,你认为(-2)×(+2)可能表示什么意思?(两个-2相加)问题:
(1)针对学生在课堂教学中的典型错误发表你的看法。(2)如果让你改进这节课,你该如何修补这个意外环节? 要求:观点要明确;修补的教学环节必须相对具体(具有可操作性),字数控制在1000字以内。
如果规定,(+2)×(-2)表示向反方向连续加两次+2,那么,能在数轴上表示(+2)×(-2)吗?
按照这个思路,师生很快得出“负负得正”法则,即,两个负数相乘,将其绝对值相乘所得的积,作为积的绝对值,同号得正。
随后,教师给出计算(—3)×(-4)的问题,一位学生答到: “结果是+9”,任课教师马上恶狠狠地说道,“多少?没想好不要瞎说呦!”这位学生坚定地说“是+9!”任课教师非常恼火,一位“好学生”回答到“+12,(—3)的绝对值是3,(-4)的绝对值是4,3、4得12,负负得正,所以,结果是+12”,教师马上“大大”表扬了这位学生,同时,狠狠批评了前面那位学生“如此不专心,竟然连3、4得12都不会,简直不可理喻”…
下课后,一位听课者单独找“得+9”的学生聊天,问其缘由,他答道“我绝对不是捣乱,老师,你看,按照老师推导法则的思路,我先在数轴上找到-3对应的点,从这个点开始、沿着-3的反方向即数轴的正方向、连续加4次,每次加一个3,不正好是+9吗?”,…
答案:
(1)对于片段中的“捣乱现象”,其实属于学生的典型错误,这个典型错误恰恰反映出这位学生善于思考,能够将教师组织学生发现“负负得正”法则的过程再现出来,表明其真正理解,只不过,其中的一个小环节——“起点”错了——应该从数轴的起点0开始,而不是从-3开始。
(2)修补意外环节——当学生提出“结果是+9”后,执教者马上反问“哪位同学理解他的想法?”“你能将你的做法展示给全体同学分享吗?”,如此,教师及时捕捉有利信息,及时发现这位学生的思维盲点之所在,而后采取充分肯定其思路清晰、思维独特,如果稍加调试,就会殊途同归——得到与大家一样的答案。
一、填空题(本题满分22分)
1.《数学课程标准》明确提出了若干个核心词,下列四个选项所
隶属的课程领域分别是:
(1)应用意识 隶属于(统计与概率领域);
(2)几何直观 隶属于(图形与几何领域);(3)数感 隶属于(数与代数领域);(4)数据分析观念隶属于(统计与概率领域).评分标准:满分8分,每个空2分。2.在初中“图形与几何”(即以往的“空间与图形”)领域的课程教学目标中,最重要、最为基础的四个核心词是(空间观念、几何直观、推理能力、几何活动经验)。
评分标准:满分8分,每个采分点2分。
3.在初中数学中,进行教材的内容分析,其核心目的在于分析教材的(学科内容线索、编写思路、具体的呈现方式)。
评分标准:满分6分,每个采分点2分。
四、案例分析题(本大题共1道小题,合计满分18分)案例:
在“等腰三角形的性质”一节的教学中,教师按照教科书的设计,准备引导采取对折的方法论证业已发现的“等腰三角形的底角相等”,而后利用两个直角三角形全等进行论证,此时,一位平时不太爱学习的学生说“老师,你这个方法笨死了,我有一个方法比你的好——不用作任何辅助线,直接证明三角形全等,…”,没等学生说完,教师答道“不要瞎说,不做任何辅助线怎么可能,不要捣乱!,”学生的“捣乱”被镇压下去。课后,一位听课者找到这位“捣乱者”询问,答到“老师,我真不是倒乱,你看,对于等腰⊿ABC,我把⊿ABC看作两个三角形,即证明⊿ABC≌⊿ACB不就OK了,这只需要说明边、边、边的条件”,“简直妙极了!”听课者惊叹到。
问题:
(1)你是如何看待上述案例中的“捣乱现象”的?
(2)如果你是这位任课教师,当你听到听课者与“捣乱者”的对话后,你有何感想?如果让你改进这节课,你该如何修补这个意外环节?
要求:观点要明确;修补的教学环节必须相对具体(具有可操作性),字数控制在1000字以内。
答:(1)对于片段中的“捣乱现象”,其实属于学生的典型错误,这个典型错误恰恰反映出这位学生善于思考,能够别出心裁。
(2)如果我是这位任课教师,当我听到听课者与“得+9的学生”的对话后,我会反思自己在课堂教学中的处理究竟为什么发生如此不当,深入思考之后,会发现:
一方面,任课教师没有及时地利用“学生的奇思妙想”这种非常有价值的生成性资源,主要是对于教师的职责认识不够。
另一方面,任课教师自身的随机应变机制不够。
三是自己的几何学专业功底不够——学生的新思路恰恰是等腰三角形的轴对称性的另外一种表现形式。
(3)修补意外环节——当学生提出“不做任何辅助线”时,执教者
马上追问“你能让大家分享你的想法?”“你能将你的“金点子”展示给全
体同学吗?”,如此,教师及时捕捉有利信息,而后充分肯定其思路清
晰、思维独特,最终让大家获得作不作辅助线其是都是在应用图形的轴对称性,是殊途同归。
第三篇:初中数学教学设计与反思
初中数学教学设计与反思
实践表明,培养学生把解题后的反思应用到整个数学学习过程中,养成检验、反思的习惯,是提高学习效果、培养能力的行之有效的方法。解题是学生学好数学的必由之路,但不同的解题指导思想就会有不同的解题效果,养成对解题后进行反思的习惯,即可作为学生解题的一种指导思想。
反思对学生思维品质的各方面的培养都有作积极的意义。反思题目结构特征可培养思维的深刻性;反思解题思路可培养思维的广阔性;反思解题途径,可培养思维的批判性;反思题结论,可培养思维的创造性;运用反思过程中形成的知识组块,可提高学思思维的敏捷性;反思还可提高学生思维自我评价水平,从而可以说反思是培养学生思维品质的有效途径。案例:甲同学在解完“梯形ABCD中,点E是腰AB上一点,在腰CD上求作一点F,使CF:FD = BE:EA”之后在作业的反思栏内写道:“老师,如果E点在底边上,如何在另一底上找到F,我有一种方法,不知对否?作法,1.连结AC; 2.作EO // DC交AC于O; 3.作OF // AB交BC于F。AE:ED = BF:FC。” 同时,另一位学生在作业本中提出同样的问题,写道:“如果,在梯形ABCD中,点E是底边上一点,那么在另一底边找一点F,使AE:ED = BF:FC,应怎样找?” 两位学生对同一个题目,提出了相同的问题,前者解决了问题,但不能用准确的数学语言表述问题,后者虽没有找到解决问题的方法,但能准确的描述问题,两位学生都良好的运用了直觉思维,这本身就是一种创新能力,我及时公布了两位的猜想,并鼓励他们的这种主动猜想的创新精神,公布之后,同学们反映强烈,并进行了广泛的讨论,并且在讨论中思维更加深刻,问题得到引伸,方法也出现了多种。第二次作业本交上来了,一位学生对在讨论中提出的新方法给出了证明,他写道:“今天乙说,如下图,已知梯形ABCD,E是底边的一点,延长腰交于F,连结EA交AB与G就是昨天甲要找的点。我觉得它说的是对的;证明如下:……(证明略)” 我也即时公布了这位学生提供的乙的发现和他的证明,并说,乙能想到这种方法,正如他在反思中所说,是他对解过的P244第22题的反思在这里起了作用,因为当时作了深刻的反思,从而对做过的题目有深刻的映象,自然很容易想到这种方法,因此,同学们应向他学习,解题以后不要停止,一定要多作反思。接下来的几天中,都有同学围绕着这个问题继续思考,并且有的同学还将此问题作了进一步引伸,如丙在反思中写道:“任意多边形,知道一边上一点,就可以由甲那种方法,在其它任一边上找到一点,使与分得的线段的比等于这点分得的这边上的两条线段的比,只要先把多边形变成三角形后就行。对吗?”我批语道:“你已推广了甲提出的命题,很好,且你是对的,请试一试能不能给出证明”。鼓励学生结合解题后的反思,提出问题,并将其指定为反思内容之一,既能充分发挥学生的主体性,又能形成师生互动、生生互动的教学情境,还能培养学生的不断探索的精神,从而使学生的创新意识得到保护和培养。这无疑对学生“心态的开放,主体的凸现,个性的张显”是十分有益的。
第四篇:初中数学教学设计与反思
初中数学教学设计与反思模板
教学设计与反思
荐荐小初学二
数数
学学
教教
案案案
[1000(800 [1000
字字
])荐生活中的数学教字] 荐人教版初一上数学教案(全册)[1500字] 荐工程数学教案(500字)
第五篇:初中数学教学设计与反思
初中数学教学设计与反思
《用函数的观点看一元二次方程》
一、教学目标:
1.经历探索二次函数与一元二次方程的关系的过程,体会方程与函数之间的联系. 2.理解抛物线交x轴的点的个数与一元二次方程的根的个数之间的关系,理解何时方程有两个不等的实根、两个相等的实数和没有实根.
3.能够利用二次函数的图象求一元二次方程的近似根。
二、教学重点
利用二次函数的图象求一元二次方程的近似根。教学难点:
理解二次函数与x轴交点的个数与一元二次方程的根的个数之间的关系。
三、教学方法:启发引导 合作交流 四:教具、学具:课件
五、教学媒体:计算机、实物投影。
六、教学过程:
[活动1] 检查预习引出课题 预习作业:
1.解方程:(1)x2+x-2=0;(2)x2-6x+9=0;(3)x2-x+1=0;(4)x2-2x-2=0.2.回顾一次函数与一元一次方程的关系,利用函数的图象求方程3x-4=0的解.师生行为:教师展示预习作业的内容,指名回答,师生共同回顾旧知,教师做出适当总结和评价。
教师重点关注:学生回答问题结论准确性,能否把前后知识联系起来,2题的格式要规范。
设计意图:这两道预习题目是对旧知识的回顾,为本课的教学起到铺垫的作用,1题中的三个方程是课本中观察栏目中的三个函数式的变式,这三个方程把二次方程的根的三种情况体现出来,让学生回顾二次方程的相关知识;2题是一次函数与一元一次方程的关系的问题,这题的设计是让学生用学过的熟悉的知识类比探究本课新知识。
[活动2] 创设情境 探究新知 问题
1.课本P16 问题.2.结合图形指出,为什么有两个时间球的高度是15m或0m?为什么只在一个时间球的高度是20m?(结合预习题1,完成课本P16 观察中的题目。)
师生行为:教师提出问题1,给学生独立思考的时间,教师可适当引导,对学生的解题思路和格式进行梳理和规范;问题2学生独立思考指名回答,注重数形结合思想的渗透;问题3是由学生分组探究的,这个问题的探究稍有难度,活动中教师要深入到各个小组中进行点拨,引导学生总结归纳出正确结论。
二次函数y=ax2+bx+c的图象和x轴交点的坐标与一元二次方程ax2+bx+c=0的根有什么关系? 二次函数y=ax2+bx+c的图象和x轴交点
两个交点
一个交点
没有交点 教师重点关注:
1.学生能否把实际问题准确地转化为数学问题; 2.学生在思考问题时能否注重数形结合思想的应用;
3.学生在探究问题的过程中,能否经历独立思考、认真倾听、获得信息、梳理归纳的过程,使解决问题的方法更准确。
设计意图:由现实中的实际问题入手给学生创设熟悉的问题情境,促使学生能积极地参与到数学活动中去,体会二次函数与实际问题的关系;学生通过小组合作分析、交流,探求二次函数与一元二次方程的关系,培养学生的合作精神,积累学习经验。
[活动3] 例题学习巩固提高
问题: 例 利用函数图象求方程x2-2x-2=0的实数根(精确到0.1).师生行为:教师提出问题,引导学生根据预习题2独立完成,师生互相订正。教师关注:(1)学生在解题过程中格式是否规范;(2)学生所画图象是否准确,估算方法是否得当。
设计意图:通过预习题2的铺垫,同学们已经从旧知识中寻找到新知识的生长点,很容易明确例题的解题思路和方法,这样既降低难点且突出重点。
[活动4] 练习反馈 巩固新知
一元二次方程
一元二次方程ax2+bx+c=0
ax2+bx+c=0的根
两个相异的实数根 两个相等的实数根
没有实数根
根的判别式Δ=b2-4ac
b2-4ac > 0 b2-4ac = 0 b2-4ac < 0 问题:(1)P97.习题 1、2(1)。
师生行为:教师提出问题,学生独立思考后写出答案,师生共同评价;问题(2)学生独立思考后同桌交流,实物投影出学生解题过程,教师强调正确解题思路。
教师关注:学生能否准确应用本节课的知识解决问题;学生解题时候暴露的共性问题作针对性的点评,积累解题经验。
设计意图:这两个题目就是对本节课知识的巩固应用,让新知识内化升华,培养数学思维的严谨性。
[活动5] 自主小结,深化提高:
1.通过这节课的学习,你获得了哪些数学知识和方法?
2.这节课你参与了哪些数学活动?谈谈你获得知识的方法和经验。
师生活动:学生思考后回答,教师对学生的错误予以纠正,不足的予以补充,精彩的适当表扬。
设计意图:
1.题促使学生反思在知识和技能方面的收获;
2.题让学生反思自己的学习活动、认知过程,总结解决问题的策略,积累学习知识的方法,力求不同的学生有不同的发展。
[活动6] 分层作业,发展个性:
1.(必做题)阅读教材并完成P97习题21。2: 3、4. 2.(备选题)P97习题21。2:
5、6 设计意图:分层作业,使不同层次的学生都能有所收获。
七、教学反思:
1.注重知识的发生过程与思想方法的应用
《用函数的观点看一元二次方程》内容比较多,而课时安排只一节,为了在一节课的时间里更有效地突出重点,突破难点,按照学生的认知规律遵循教师为主导、学生为主体的指导思想,本节课给学生布置的预习作业,从学生已有的经验出发引发学生观察、分析、类比、联想、归纳、总结获得新的知识,让学生充分感受知识的产生和发展过程,使学生始终处于积极的思维状态中,对新的知识的获得觉得不意外,让学生“跳一跳就可以摘到桃子”。
探究抛物线交x轴的点的个数与一元二次方程的根的个数之间的关系及其应用的过程中,引导学生观察图形,从图象与x轴交点的个数与方程的根之间进行分析、猜想、归纳、总结,这是重要的数学中数形结合的思想方法,在整个教学过程中始终贯穿的是类比思想方法。这些方法的使用对学生良好思维品质的形成有重要的作用,对学生的终身发展也有一定的作用。
2.关注学生学习的过程
在教学过程中,教师作为引导者,为学生创设问题情境、提供问题串、给学生提供广阔的思考空间、活动空间、为学生搭建自主学习的平台;学生则在老师的指导下经历操作、实践、思考、交流、合作的过程,其知识的形成和能力的培养相伴而行,创造“海阔凭鱼跃,天高任鸟飞”的课堂境界。
3.强化行为反思
“反思是数学的重要活动,是数学活动的核心和动力”,本节课在教学过程中始终融入反思的环节,用问题的设计,课堂小结,课后的数学日记等方式引发学生反思,使学生在掌握知识的同时,领悟解决问题的策略,积累学习方法。说到数学日记,“数学日记”就是学生以日记的形式,记述学生在数学学习和应用过程中的感受与体会。通过日记的方式,学生可以对他所学的数学内容进行总结,写出自己的收获与困惑。“数学日记”该如何写,写什么呢?开始摸索写数学日记的时候,我根据课程标准的内容给学生提出写数学日记的简单模式:日记参考格式:课题;所涉及的重要数学概念或规律;理解得最好的地方;不明白的或还需要进一步理解的地方;所涉及的数学思想方法;所学内容能否应用在日常生活中,举例说明。通过这两年的摸索,我把数学日记大致分为:课堂日记、复习日记、错题日记。
4.优化作业设计
作业的设计分必做题和选做题,必做题巩固本课基础知识,基本要求;选做题属于拓广探索题目,培养学生的创新能力和实践能力。