第一篇:简易方程复习教案
《简易方程复习课》说课
【教材分析】
简易方程是本册学生学习的重点也是难点,尤其是用字母表示数,非常抽象、难懂。教材安排在具体的情境中让学生懂得用字母表示数的意义,更简洁地代表一般的情况,方程的解法也是为了和初中代数接轨,引用了等式的性质进行设计,教材中安排的列方程解应用题也是由简单到稍复杂四个例题。在新知识的教学中本着把书教厚的原则,遵循循序渐进的原则,教学简易方程及用方程解决实际问题。此复习课分两节课教学,第一节课梳理概念,形成系统知识。第二节课在练习过程中加深对概念的理解。【学情分析】
鉴于学生年龄特点,还缺乏自我梳理的能力,重在引导学生积极探索学过的已有知识,培养学生学习习惯。【教学理念】
通过复习课,本着把厚书教薄的原则,与学生一起理清知识点,明确学习任务。同时培养学生独立思考、与他人合作交流的习惯。会做几道数学题不是学习目的,而是要懂得概念背后的道理,从而培养学生喜爱数学,乐于思索,积极创新的能力。【教学目标】
一、基础性目标
1.理解用字母表示数的含义,明确用字母表示数的意义,学会用字母表示数的方法。能理解方程、方程的解、解方程的含义,掌握解方程的方法。
2.会分析数量关系,解答稍复杂的方程,能用所学知识解决生活中的问题。
二、发展性目标:
1.培养学生自主整理,合作交流以及分析解决实际问题的能力,培养学生独立思考、解决实际问题的能力。
2.培养学生良好的学习习惯,数学应用意识,体会数学的价值。【重、难点】
重点:掌握用字母表示数和解方程的方法并能熟练计算,能用所学知识解决生活中的问题。难点:理解方程的含义,能正确分析数量关系列方程。
【教学过程】
一、谈话导入、激发兴趣
同学们,这节课我们复习刚刚学过的简易方程。(板书:简易方程的复习)你认为自己对本单元的什么知识掌握的比较好? 生:解方程(大部分学生回答)师:是吗?我要出一道题考考大家。(师板书:3x+7=22)【设计意图:这是一道既包含运用等式性质一又包含运用等式性质二解方程的题目,为下面复习方程的意义,等式的性质,用字母表示数,方程的解,解方程,检验等数学概念进行铺垫,这样既给学生设置复习坡度,又复习了已经学过的概念,与此同时让学生理解了概念背后的知识,老师在这一环节的设置上是颇费用心的。】
二、回顾整理、升华认识
1、梳理概念,形成智慧
(1)师:同学们刚才的表现都很不错,看来解方程难不倒你们了,(手指方程式子)谁能说一说什么叫方程?生:含有未知数的等式叫做方程。师:方程必须具备两个条件:一是等式,二是含有未知数。二者缺一不可。我说一句话请同学们判断:含有未知数的式子叫做方程,这句话对吗?师随机在黑板上出几道式子让学生判断。(2)复习等式的性质
利用先前的方程,让学生进一步明确等式的性质的应用及解方程的原理。(3)复习方程的解 利用先前的方程,让学生进一步明确方程的解的意义及特性,并让学生进一步明确利用这一特性检验是不是方程的解。
2、应用提升、化繁为简
(1)少年合唱队有84人,合唱队的人数比舞蹈队的3倍多5人,舞蹈队有多少人? 根据方程的意义,找未知数,找数量间的相等关系,列方程,解方程,检验并解答。【设计意图:找出数量间的相等关系是列方程解应用题的难点,在这里我运用了一个比较的说法(也是史宁中教授的提示),方程就好比同一个故事用了两种描述方式,分别写在了等号的左右两边,因为有味知量的参与就成了方程,再利用等式的性质求出未知量的值,也就解决了应用题。我想这样解释也能解决学生初遇用方程解应用题的困惑:本来算数解法很简单,为什么偏要用方程呢?提高学生学习兴趣很重要。】(2)操刀小试,巩固内化
找出下列问题的数量间的相等关系(1号题签)
①
小芳在文具店买了3盒画笔,每盒12枝,每枝画笔0.65元,小芳共花了多少元? 利用总价/数量=单价 ②
小明说:“我比爷爷小60岁。”爷爷说:“我今年的年龄是小明的8.5倍。”小明和爷爷今年各多少岁?
③
三个数的和是113,甲数是乙数的5倍,丙数比乙数多36,这三个数各是多少? ④
长方形的周长是36厘米,长是12厘米,宽是多少厘米?
⑤
一列火车的速度是180千米/时,是一辆汽车的速度2倍,火车3小时行的路程,汽车几小时行完?
三、课堂小结
今天我们研究的课题是简易方程的复习,同学们都有哪些收获和不足,请说出来和大家共同分享。
四、布置作业
完成2号题签里面的练习题。
《简易方程复习课》教学设计
【教学目标】
一、基础性目标
1.理解用字母表示数的含义,明确用字母表示数的意义,学会用字母表示数的方法。能理解方程、方程的解、解方程的含义,掌握解方程的方法。
2.会分析数量关系,解答稍复杂的方程,能用所学知识解决生活中的问题。
二、发展性目标:
1.培养学生自主整理,合作交流以及分析解决实际问题的能力,培养学生独立思考、解决实际问题的能力。
2.培养学生良好的学习习惯,数学应用意识,体会数学的价值。【重、难点】
重点:掌握用字母表示数和解方程的方法并能熟练计算,能用所学知识解决生活中的问题。难点:理解方程的含义,能正确分析数量关系列方程。
【教学过程】
一、谈话导入、激发兴趣
同学们,这节课我们复习刚刚学过的简易方程。(板书:简易方程的复习)你认为自己对本单元的什么知识掌握的比较好? 生:解方程(大部分学生回答)师:是吗?我要出一道题考考大家。(师板书:3x+7=22)【设计意图:这是一道既包含运用等式性质一又包含运用等式性质二解方程的题目,为下面复习方程的意义,等式的性质,用字母表示数,方程的解,解方程,检验等数学概念进行铺垫,这样既给学生设置复习坡度,又复习了已经学过的概念,与此同时让学生理解了概念背后的知识,老师在这一环节的设置上是颇费用心的。】
二、回顾整理、升华认识
1、梳理概念,形成智慧
(1)师:同学们刚才的表现都很不错,看来解方程难不倒你们了,(手指方程式子)谁能说一说什么叫方程?生:含有未知数的等式叫做方程。师:方程必须具备两个条件:一是等式,二是含有未知数。二者缺一不可。我说一句话请同学们判断:含有未知数的式子叫做方程,这句话对吗?师随机在黑板上出几道式子让学生判断。(2)复习等式的性质
利用先前的方程,让学生进一步明确等式的性质的应用及解方程的原理。(3)复习方程的解 利用先前的方程,让学生进一步明确方程的解的意义及特性,并让学生进一步明确利用这一特性检验是不是方程的解。
2、应用提升、化繁为简
(1)少年合唱队有84人,合唱队的人数比舞蹈队的3倍多5人,舞蹈队有多少人? 根据方程的意义,找未知数,找数量间的相等关系,列方程,解方程,检验并解答。【设计意图:找出数量间的相等关系是列方程解应用题的难点,在这里我运用了一个比较的说法(也是史宁中教授的提示),方程就好比同一个故事用了两种描述方式,分别写在了等号的左右两边,因为有味知量的参与就成了方程,再利用等式的性质求出未知量的值,也就解决了应用题。我想这样解释也能解决学生初遇用方程解应用题的困惑:本来算数解法很简单,为什么偏要用方程呢?提高学生学习兴趣很重要。】(2)操刀小试,巩固内化
找出下列问题的数量间的相等关系(1号题签)
①
小芳在文具店买了3盒画笔,每盒12枝,每枝画笔0.65元,小芳共花了多少元? 利用总价/数量=单价 ②
小明说:“我比爷爷小60岁。”爷爷说:“我今年的年龄是小明的8.5倍。”小明和爷爷今年各多少岁?
③
三个数的和是113,甲数是乙数的5倍,丙数比乙数多36,这三个数各是多少? ④
长方形的周长是36厘米,长是12厘米,宽是多少厘米?
⑤
一列火车的速度是180千米/时,是一辆汽车的速度2倍,火车3小时行的路程,汽车几小时行完?
三、课堂小结
今天我们研究的课题是简易方程的复习,同学们都有哪些收获和不足,请说出来和大家共同分享。
四、布置作业
完成2号题签里面的练习题。
第二篇:简易方程整理和复习
简易方程的复习
教学内容:
教材P83整理与复习及练习十八第3~9题。
教学目标:
知识与技能:使学生熟练掌握列方程解应用题的步骤。提高学生综合运用知识解决实际问题的能力。
过程与方法:让学生自主探究,分析数量之间的等量关系。使学生能正确地列出方程解决问题,培养学生的主体意识、创新意识以及分析、观察能力和表达能力。
情感、态度与价值观:引导学生在利用迁移、类推的方法解决问题的过程中,体会数学与现实生活的密切联系。
教学重点:
抓住关键句,找等量关系。
教学难点:
对关键句所叙述的等量关系的理解。
教学方法:
自主探索,学练结合。
教学准备:
多媒体。
教学过程
一、回忆列方程解应用题的步骤
1.引入:前面我们复习了方程的意义和根据等式关系解方程,现在我们继续来结合实际列方程解决问题。
师:想一想,在列方程解应用题时,应该先做什么?再做什么?
小结:列方程解应用题的步骤。
(1)审题,设未知数x。(2)找出等量关系、列方程。
(3)解方程。(4)检验、写答句。
2.哪一步是列方程解应用题的关键?(划出第2步)根据你的做题经验,你有什么好办法能找到等量关系?
学生汇报:找关键句子。
即时练习,完成教材第83页整理和复习第2题。
二、分类
师:生活中处处有数学,在水果店也能发现我们学过的数学知识。看这些水果多新鲜呀!小玲的妈妈买了三种水果,它们的价钱有什么关系呢?根据妈妈给出的信息,同桌互相说一说它们的等量关系。
1.出示关键句子,说说等量关系。
(1)4千克苹果和2千克的橙子共34元。
(2)2千克的橙子比4千克苹果便宜6元。
(3)买苹果和桃子各1千克共用11元,每千克桃子的价钱是苹果的1.2倍。
(4)1千克的桃子比苹果贵1元,每千克桃子的价钱是苹果的1.2倍。
(5)买橙子的价钱比苹果的3倍多5元。
(6)3千克的桃子比6千克的香蕉贵9元
2.分类。师:根据以前列方程解决问题的方法,把它们分一分类,并把同类的序号分别写在横线上。
3.请学生上台分类,预设分成两种类型:(1)和差关系。(2)和倍、差倍关系。
4.小结。
列方程解决问题时,可以利用以上两种类型很快地找出等量关系,从而列出方程。
三、列方程解答问题,对学生进行查缺补漏
师:现在请大家利用关键句子中的等量关系列方程解答。
1.妈妈买来的2千克橙子比4千克苹果便宜6元,每千克苹果多少元?
2.买苹果和桃子各1千克共用了11元,每千克桃子的价钱是苹果的1.2倍。每千克苹果和桃子各是多少元?
(l)学生试做。
(2)汇报过程。(从哪里找到等量关系的,如何列方程解答。)
(3)查缺补漏。(请同学帮助解决错例问题。)
(4)小结:我们在做题时要根据题意认真审题,根据题目中关键句子所表示的和差、差倍或和倍的关系,找准等量关系,从而准确地列出方程解答。
四、综合练习
师:现在我们进行能力大比拼,看谁能很快地写出数量关系,并列出方程。
1.完成教材第84页的第3题。
提问:列方程解应用题有哪些步骤?验算时要注意什么?
2.完成教材第84页的第4题。
⑴学生读题,理解题意。
⑵小组交流,列出式子。
⑶派出代表,将交流的结果展示给其他同学
3.拓展练习
教材第85页第7、9题。
学生独立解答,然的小组讨论交流。小组订正。
五、课堂小结
师:这节课你有什么收获?
学生说说收获,教师点评。
作业:教材第84~85练习十八第4、5、6题。
板书设计:
整理和复习(2)
列方程解应用题的步骤:
1.审题,设未知数x。
2.找出等量关系,列方程。
3.解方程。
4.检验,写答句。
第三篇:简易方程整理与复习教案
简易方程整理与复习
教学内容:
教材第74页整理和复习学情与教材分析
本单元的学习内容是用字母表示数、解简易方程以及简易方程在解决一些实际问题中的运用。这些内容是在学生学习了一定的算术知识,已逐步接触了一些代数知识的基础上进行学习的。教材着重回顾和整理了本单元的两个重点内容:解方程和用方程解决问题。由于学生已经完成了本单元知识的学习,教学时可以充分利用学生已有的知识和能力,通过交流、归纳、概括、总结等活动,完善学生对本单元知识的掌握。在培养学生抽象概括能力的同时,发展学生思维的灵活性。
教学目标:
1、明确用字母表示数的意义,加深对方程、方程的解以及解方程等概念的理解,能用等式的的性质解简易方程并养成验算的习惯,能够熟练分析题中数量关系并列出方程解答。
2、会对已学过的知识进行概括整理,感受数学知识间的密切联系。
3、能积极主动地参与合作、交流等学习活动,在活动中培养归纳、概括、判断等能力。教学重点:
熟练地解方程,正确分析题中数量关系并列方程解答。教学难点:
能用多种方法解决问题。教学准备: 课件。
课前准备:课前要求学生自己看书回忆本单元的知识,并整理每节所学和内容。
简易方程整理与复习提纲
一、复习数学书第44-52页
1、用字母表示数有什么作用?要注意哪些?
2、你能用字母表示运算定律和计算公式吗?
加法交换律:
加法结合律:
乘法交换律:
乘法结合律:
乘法分配律:
正方形的面积:
正方形的周长:
长方形的面积:
长方形的周长:
平行四边形的面积:
三角形的面积: 梯形的面积:
3、你知道哪些常用的数量关系,你能用字母表示出来吗?
二、复习数学书第53—73页
1、想一想什么叫等式?什么叫方程?等式和方程有什么区别和联系?
2、什么叫方程的解?什么叫解方程?
3、怎样解方程?根据什么?怎样验算?要注意哪些?
4、列方程解决问题的一般步骤
5、列方程解决问题和算术方法解决问题有什么区别和联系?
教学过程:
一、知识回顾
想一想,本单元我们学习了哪些知识?今天我们这节课就对单元的知识进行整理和复习。(板书课题)师生共同对知识进行梳理:
用字母表示数
用字母表示运算定律
用字母表示数 用字母表示计算公式
方程意义 等式的基本性质 用字母表示数量关系
解简易方程 解方程 方程的解
设计意图:以框架的形式将本单元的教学内容板书出来,使知识各部分间的联系一目了然,帮助学生构建本单元的知识体系,明确学习的重、难点,激发学生的学习热情。
二、查漏补缺
我们明确了所学内容,谁来说说这些知识点中有哪些容易出错应该注意的地方?
(一)用字母表示数
1、注意的地方:
(1)乘号的改写和省略:
出示练习:3×9 n+k×j
a×n
c×4
1×b
a×a
(2)a与
2a 的区别:
解方程
稍复杂的方程
(3)引入:b×b×b怎样表示
2、练习巩固
(1)出示练习第1题:填空
①图书角原来有x本书,被同学借走10本后还有()本。②小芳今年y岁,妈妈的年龄是小芳的6倍,妈妈今年()岁。③与整数m相邻的两个整数分别是()、()④X的5倍少1.2的数是()。
⑤老师买了5个篮球和6个足球,每个篮球价x元,每个足球y元,一共花了()元。(2)学生汇报用字母表示运算定律和计算公式及常用的数量关系
(二)简易方程
1、有关概念的理解
(1)什么叫等式?什么叫方程?等式和方程有什么区别和联系?学生说,并出示练习表示左右两边相等的式子叫()含有未知数的等式叫()
下列各式中是等式的打上“√”,是方程的打上“△”。
①3+5X()
②2X一1=0()
③1+2.7=3.7()
④15<1十X()
判断。
①4+X>9是方程。()
②方程一定是等式。()
③x+5=4×5是方程。()
(2)什么叫方程的解?什么叫解方程? 学生说,并出示相应练习
2、解方程
(1)让学生说说怎样解方程?根据什么?怎样验算?要注意哪些?(2)练习巩固
解方程带☆的要验算:
☆ X÷8=0.46 X+18=48
☆ 3(X+2.1)=10.5 12 X-9X=8.7
3、列方程解决问题: 解决问题的思考步骤:
审清题意-----找出数量关系——确定未知数——列出方程(或算式)——解答(检验)出示相应练习
可引导学生利用多种方法解决问题,并适当指出算术方法与方程方法的联系,能灵活选择适当的方法解决问题。
5、列方程解决问题:
(1)妈妈买了8米的窗帘布,付了150元,找回42元。每米窗帘布多少元?、(2)学校有排球30个,比足球的3倍少3个,足球有多少个?
(3)小红和小明二人共有科技书62本,小红的科技书比小明的2倍还多2本,二人各有科技书多少本?
设计意图:让学生说出容易出错的地方或应该注意的问题,使每个人的经验得到共享,同时要求学生在学习上做一个有心人。
三、总结收获。
对今天的学习过程,谈谈你的感受或收获。板书设计:
整理和复习学生板演:
教学反思:
数学的知识体系就象一张网,每个知识都不是孤立存在的,知识之间有着这样或那样的联系。学生往往也能够凭借已有的知识经验进行生成或迁移,但从学生的发展来看,学生在漫长的学习生涯中,掌握整理、归纳知识的方法是非常关键的。在复习过程中,教师只要相信学生,给学生足够的空间和时间,让学生自主梳理,探索知识之间的内在联系,加之教师针对性的点拨和多层练习,就能促使他们创造性地完成知识结构与认知结构的构建。
1.面向全体,开启思维,复习内容具体明确。
复习往往是十分乏味的,怎样将复习中的知识点有效的惯穿起来,这是复习时首要解决的问题。所以我从知识回顾开始,使这些所要复习的基础知识变成学生学习的需要,尤其是学生解决问题时所需要获取的信息。“我们已经学习了简易方程,这一单元的哪些知识给你留下了深刻的印象”一句引导,同学们对用字母表示数、方程的意义、等式的基本性质、解方程和方程的解的区别、解方程的步骤、列方程解应用题的方法等知识进行了回顾。较好地开启了学生的知识宝库,为学生整理复习本单元的知识做好了孕伏。
2.自主整理,合作交流,复习过程生动活泼。
授人以鱼不如授人以渔。教给学生思考方法,培养学生的学习能力往往比教学知识更重要。
在整理复习环节,课前,我放手让学生根据知识间的联系自主整理,完成知识的建构,目的是为了提高学生学习的技能。复习不是简单的把前面所学的知识进行练习的过程,而是让学生学会学习、学会整理、学会归纳。如果学生能力较弱,对所学知识回生遗忘厉害,课堂上老师组织复习就无法产生共鸣,这样既浪费时间,又收不到好的效果。本节课,学生通过课前对“用字母表示数”、“解方程”、“列方程解决问题”的知识从我的例子、我的方法、我的提醒、我的问题等方面进行了自主研究,课中通过小组交流、班级交流和相互补充以及教师的重点点拨等过程,学生对知识间的内在联系有了清晰地印象,从而达到了温故而知新的目的。纵观课堂上学生一只只高举的小手,一张张喜悦的笑脸,一次次思维的火花,一个个激动的场面,学生的学习是积极主动的、生动活泼的、富有成效的。
3.注重辨析,分层练习,复习策略到位有效。
学生自主整理与复习,引起了学生主动探究的愿望,掌握基本的整理知识的方法,最后还是要落实到学生能积极主动地去解决问题。由于学生已经对所学知识进行了回顾和整理,再结合自己平时作业中的错题,根据不同的内容、不同的问题,学生有了新的认识,能采用不同的方法,对错误进行辩析。这样学生思维的严密性得以发展,学生考虑问题会更理性更深入,也较好地激发了学生的学习潜能。课堂练习是一种有目的、有计划、有步骤、有指导的教学训练活动,是学生掌握知识、形成技能、发展智力、培养能力、养成良好学习习惯的重要手段。复习课的练习既要兼顾每一个知识点,又不能平均使用力量,还要防止学生疲乏或懈怠等现
象发生,因此,我以变式练习作为突破口,既覆盖了本单元的所有教学内容,又适合学习层次不同的学生。这样,每位学生都能找到适合自己的练习进行尝试,体验到成功的喜悦,增强了学生学习的信心,学生学习起来负担轻、兴趣浓、效果好。
总之,复习课,教师就是要引导学生把粗略、零散的知识点进行整理,连成线、形成串,建构有联系的知识网络,建立良好的认识结构。这样的课学生喜欢,不会觉得无聊,对于学生是终身有益的。
第四篇:简易方程整理与复习
简易方程整理与复习
教学目标:
1.巩固学生对方程的意义及解方程方法的理解和掌握,能熟练地解方程。2.使学生掌握列方程解应用题的方法,明确列方程和用算术方法解应用题的区别,能够熟练分析应用题中数量关系的特点,恰当地选择解题方法。
3.培养学生灵活运用两种解题方法解应用题的能力。4.养成善于思考总结的习惯,培养学生自觉检验的良好习惯。教学重点:
熟练地解方程,分析应用题中数量关系的特点,恰当地选择解题方法。教学难点: 会灵活运用两种解题方法解应用题。
一、导入:
提问:1.什么叫方程? 什么叫方程的解? 什么叫解方程? 2.正确判断下列各题,哪些适合用算术方法解?哪些适合列方程解?你为什么这样选择?(1)长方形周长34厘米,长12厘米。宽多少厘米?(2)一个工厂去年评奖,得一等奖的职工56人,得二等奖的职工比得一等奖的职工的2倍还多8人。得二等奖的职工有多少人? 解答后,指名说一说两种方法的区别。
3.教师小结:在解答应用题时,除了题目中指定解题方法以外,都可以根据题目中的数量关系的特点,选择解题方法。
二、教学实施:
1.出示教材第84页第1题。(1)学生独立判断,写在教材上。(2)汇报自己的判断结果,集体订正。
(3)请学生说说判断的理由。分析:(1)可以采用举例法判断a2>2a是错误的,例如a=2时,a2=2a,或当a=1时,a2<2a。
(2)依据方程的意义判断。
(3)用计算的方法判断,根据乘法分配律,将5(x+1)改写成5x+5,与左边相等。(4)将x=6代入原方程进行判断。2.提问。
解方程的原理是什么?要注意什么? 学生独立完成教材第83页第1题。指名板演。
针对学生解方程过程中出现的问题,教师进行讲评和指导。再让学生根据练习中出现的问题,互相交流经验与教训。3.在总结经验的基础上,让学生完成教材第84页第2题。
可以采取竞赛的形式,比一比,看谁在指定的时间内完成得最好,争取全对。学生完成后进行评比。
4.提问。
列方程解决问题有哪些步骤?验算时要注意什么? 出示教材第83页第2题。
学生独立完成,复习列方程解决问题的步骤,交流列方程的经验与教训。5.完成教材第84页第3题。
学生先找到数量间的相等关系,然后列方程解答,集体交流并订正。6.完成教材第85页第6题。
学生读题理解题意,提问:做画框用的木条长1.8m相当于什么?设谁为x ?等量关系是什么? 小结:木条的长相当于长方形的周长。根据长是宽的2倍,可以知道宽是一倍数,所以设宽是x m,长是2x m。根据长方形的周长=(长+宽)×2,列方程。
7.完成教材第85页第7、第8题。
学生读题后,找出题中数量间的相等关系,独立列方程解答。8.完成教材第85页第9*题。
提问:等量关系是什么?怎样设未知数x ?注意什么? 提示:“要是你给我3颗,我们俩就一样多了”,可见两人相差(3×2)颗。允许学生列出不同的方程,说出列方程的依据即可。
三、课堂练习1.判断,是方程的在括号里画“√”,不是的画“✕”。
(1)15+x=60()(2)4x=28()(3)48÷4=1.2()(4)6x-4=0()(5)4x-1>15()(6)38÷
2()2.看图,列方程。
3.解方程,并检验。
(1)1.2x=7.2(2)3.54+x=8(3)0.81÷x=0.9(4)2.3x=3.91(5)9.6+4x=24.8(6)12.8-8x=5.6(7)5x-4×9=24(8)x+1.5x=10 4.解下列方程。
5.选择恰当的方法解答下列应用题。
(1)妈妈买4千克梨比买5千克苹果多用0.5元,每千克梨2.5元。每千克苹果多少元?(2)一种VCD原来售价1600元,比现在售价的3倍还多40元。这种VCD现在售价多少元?(3)火车的速度是每小时120千米,飞机的速度比火车速度的7倍还快60千米。飞机的速度是多少? 6.小明、小华、小刚和小玲四个人一共有45本图书。现在小明的书增加了2本,小华的书减少了2本,小刚的书减少了一半,小玲的书增加了一倍,四个人的书一样多了。他们原来各有多少本书? 7.中国古代数学书中有这样一道有趣的题:“远望巍巍塔七层,红红点点倍加增。有灯三百八十一,请问尖层几盏灯?”意思是说:从远处望见七层的灯塔,每一层的灯都是上一层的2倍,塔上一共有381盏灯。求最高层有几盏灯。8.小朋友们种向日葵,如果每人种4棵,就多17粒种子;如果每人种6棵,就少3粒种子。请问有多少个小朋友,多少粒向日葵种子。
第五篇:简易方程教案
第四单元 简 易 方 程
第一课时
教学内容:教材P44-P46例1-例3 做一做,练习十第1-3题
教学目的:
1、使学生理解用字母表示数的意义和作用。
2、能正确运用字母表示运算定律,表示长方形、正方形的周长、面积计算公式。并能初步应用公式求周长、面积。
3、使学生能正确进行乘号的简写,略写。教学重点:理解用字母表示数的意义和作用
教学难点:能正确进行乘号的简写,略写。
教学过程:
一、初步感知用字母表示数的意义
教学例1。
1、投影出示例1(1):
引导学生仔细观察两行图中,数的排列规律。
问:每行图中的数是按什么规律排列的?(指名口答)
2、学生自己看书解答例1的(2)、(3)小题
提问请学生思考回答:这几小题中,要求的未知数表示的方法都有一个什么共同的特点?(都是用一些符号或字母来表示的)
师:在数学中,我们经常用字母来表示数。问:你还见过那些用符号或字母表示数的例子?
如:扑克牌,行程A、B两地,C大调…….二、新授:
1、学习用字母表示运算定律和性质的意义和方法。教学例2:
(1)学生用文字叙述自己印象最深的一个运算定律。
(2)如果用字母a、b或 c表示几个数,请你用字母表示这个运算定律。
(3)当用字母表示数的时候,你有什么感觉?
看书45页“用字母表示………….”这一段。
(4)你还能用字母表示其它的运算定律和性质吗?
请学生在草稿本上能写几个写几个,体会用字母表示数的优越性。根据学生写的情况师逐一板书。(学生在表示时,一定要清楚表示的是哪一个运算定律)
加法交换律:a+b=b+a 加法结合律:(a+b)+c=a+(b+c)乘法交换律:a×b=b×a 乘法结合律:(a×b)×c=a×(b×c)乘法分配律:(a+b)×c=a×c+b×c 减法的性质:a-b-c=a-(b+c)除法的性质:a÷b÷c=a÷(b×c)
2、教学字母与字母书写。引导学生看书P45提问:在这些用字母表示的定律、性质中,哪一个运算符号可以省略不写?是怎样表示的?(请一生板演)
a×b=b×a(a×b)×c=a×(b×c)可以写成:a·b=b·a或ab=ba(a·b)·c=a·(b·c)或(ab)c=a(bc)(a+b)×c=a×c+b×c 可以写成:(a+b)·c=a·c+b·c或(a+b)c=ac+bc 其它运算符号能省略吗?数字与数字之间的乘号能省略吗?为什么?(小组同学之间互相说说)师强调:只有字母与字母、数字与字母之间的乘号才可以省略不写。
3、教学用字母表示计算公式的意义和方法。教学例3(1):
师:字母不但可以表示运算定律还可以表示公式、及数量关系。
用S表示面积,C表示周长,a表示边长你能写出正方形的面积和周长公式吗?
学生先自己试写,然后小组交流,看书讨论。
问:(1)两个相同字母之间的乘号不但可以省略,还可怎样写?怎样读?表示的含义是什么?(2)字母和数字之间的乘号省略后,谁写在前面? 师强调:a 表示两个a相乘,读作a的平方;
省略数字和字母之间的乘号后,数字一定要写在字母的前面。
4、练习:省略乘号写出下面各式。x×x m×m 0.1×0.1 a×6 3×n χ×8 a×c 教学例3(2):
学生自学并完成相关练习。两生板演。师强调书写格式。
三、巩固练习:
1、完成做一做1、2题。
要求:第1题在书上完成。第2题先写出字母公式,再应用公式计算。
2、练习十:第1-3题 先独立解答后,再集体评议。
四、总结:今天你学到什么知识,你体会到什么?(让学生自由畅谈)
第二课时
教学内容:教材P47-P48例4 做一做,练习十第4-6题
教学目的:
1、使学生进一步理解用字母表示数的意义和作用。
2、能正确运用字母表示常用数量关系。
3、能较熟练地利用公式、常用数量关系求值。教学重、难点:能正确运用字母表示常用数量关系。
教学过程:
一、复习。
1、用字母表示数,有哪些好处?但要注意什么?
2、用字母a、b、c表示加法结合律、乘法交换律、乘法分配律等。请学生结合字母表示的运算定律说说其含义。
3、用S表示面积,C表示周长,a表示边长,b表示宽,写出长方形、正方形的面积和周长公式。
4、下面各式中,哪些运算符号可以省略?能省略的就省略写出来。2×3 a×7 14+b a÷7 a×a 5-x 0.6×0.6
二、新授。
1、教学例4(1):
(1)引导学生看书提问:从图、表中你了解到哪些信息?
A、爸爸比小红大30岁。B、当小红1岁时,爸爸()岁,…… 师:这些式子,每个只能表示某一年爸爸的年龄。
(2)启发学生:你能用一个式子表示出任何一年爸爸的年龄吗?(可让同桌的两个同学小声讨论)
结合讨论情况师适时板书:
法1:小红的年龄+30岁=爸爸的年龄
法2:a+30 提问:比一比,你比较喜欢哪一种表示方法,为什么?让学生发表各自意见。
在式子a+30中,a表示什么?30表示什么?a+30表示什么?
(a表示小红的年龄,30表示爸爸比小红大的年龄,a+30即表示爸爸的年龄)
想一想:a可以是哪些数?a能是200吗?为什么?
(3)结合关系式解答:当a=11时,爸爸的年龄是多少?学生把算式和 结果填在书上。
2、小结:用含有字母的式子不仅可以表示运算定律、公式,也可以表示数量。
3、教学例4(2):
引导学生看书讨论:(可分成四人小组进行讨论)
(1)从图、表中你了解到哪些信息?
(2)你能用含有字母的式子表示出人在月球上能举起的质量吗?
(3)式子中的字母可以表示哪些数?
(4)图中小朋友在月球上能举起的质量是多少?
请小组派代表回答以上问题。
4、总结:今天你学会了什么?有哪些收获?
三、巩固练习:
1、独立完成P48做一做 集体评议。
2、请学生结合自己的身高、体重情况,算算自己的标准体重,并讨论:比标准体重轻说明什么?如果比标准体重重,又说明什么?
3、独立解答P49 第4题做完后在投影仪上展示评议。(问问字母、式子表示的含义)
四、作业:
1、独立完成P50 第5题
2、独立完成P50 第6题 第三课时
教学内容:练习课,教材P51-P52 练习十第7-13题 教学目的:
1、能较熟练的掌握用字母表示数的方法。
2、能正确运用字母表示常用数量关系、数量。
3、会利用公式、常用数量关系求值。教学重、难点:能熟炼地运用字母表示数。
教学过程:
一、基本练习:
1、填空:(1)a+a=()a×a=()
(2)当a=5时,2a=(),a的平方=()
2、同学们在操场上做操,五年级站了x列,平均每列20人,六年级有a人。说出下面各式所表示的意义:
(1)30x(2)30x+a(3)a—30x
3、小结;用含有字母的式子不仅可以表示数量关系,也可以表示数量。
二、综合练习:
1、独立解答P51 第7题 师巡视指导个别学困生。
投影展示,集体评议,注意评讲求值的书写格式。
2、讨论口答P51 第8题 注意指导学生理解(3)小题,3x表示投中3分球得的总分数。
3、分小组完成P51 第9题请几个小组派代表说说式子表示的含义。
4、独立完成P52 第10-12题 师注意巡视指导学困生。
三、全课总结:通过练习,你还有什么疑困?你觉得你掌握得比较好的知识是什么?有困难需要帮助的地方是什么?
四、发展练习:
1、讨论P52 第13题 请学生先独立思考,再集体讨论。
2、在下面算式中,a、b、c、s各代表什么数? a b c s × 9 s c b a
2.解简易方程 第一课时
教学内容:数学书P53-54及“做一做”,练习十一1-3题。
教学目标:
1、初步理解方程的意义,会判断一个式子是否是方程。
2、会按要求用方程表示出数量关系。
3、培养学生观察、比较、分析概括的能力。
教学重难点:会用方程的意义去判断一个式子是否是方程。
教具准备:天平、空水杯、水(可根据实际变换为其它实物)
教学过程:
一、导入新课:今天我们上课要用到一种重要的称量工具,它是什么呢?对,它是天平。同学们对天平有哪些了解呢?天平由天平称与砝码组成,当放在两端托盘的物体的质量相等时,天平就会平衡,根据这个原理,从而称出物体的质量。
二、新知学习
1、实物演示,引出方程。
操作天平:第一步,称出一只空杯子重100克,板书:1只空杯子=100克;
第二步,往往空杯子里倒入约150毫升水(可在水中滴几滴红墨水),问:发现了什么?天平出现了倾斜,因为杯子和水的质量加起来比100克重,现在还需要增加砝码的质量。
第三步,增加100克砝码,发现了什么?杯子和水比200克重。现在,水有多重,知道吗?如果将水设为x克,那么用一个式子该怎么表示杯子和水比200克重这个关系呢?100+x>200。
第四步,再增加100克砝码,天平往砝码这边倾斜。问:哪边重些?怎样用式子表示?让学生得出:100+x<300.第五步,把一个100克的砝码换成50克,天平出现平衡。现在两边的质量怎样?用式子怎样表示?让学生得出:100+x=250。
像这样含有求知数的等式,人们给它起了个名字,你们知道叫什么吗?对,叫方程。请大家试着写出一个方程。
1、写方程,加深对方程的认识。
学生试着写出各种各样的方程,再在全班展示,当然也有可能会出现一些不是方程的式子,教师应引导学生说出它不是方程的原因。
看书第54页,看书上列出的一些方程,让学生读一读。然后小结:一个式子要是方程需要具备哪些条件?两个条件,一要是等式,二要含有求知数(即字母),这也是判断一个式子是不是方程的依据。
1、反馈练习。
完成做一做,在是方程的式子后面打上“√”。对于不是方程的几个式子要说明其理由。
2、小结:这节课学习了什么?怎么判断一个式子是不是方程? 提问:方程是不是等式?等式一定是方程吗?
看“课外阅读”,了解有关方程产生的数学史。
四:练习
1、完成练习十一第2题,先让学生说出图意,再根据图意再列出相应的方程。
2、独立完成第3题,评讲时,介绍什么叫数量关系要,然后让学生先说出各幅图中的数量关系,再说出相应的方程,同一幅图由于数量关系有不同的形式,因此方程形式也可能不同。
五、作业:练习十一第1题。
第二课时
教学内容:数学书P55-56及“做一做”。
教学目标:
1、通过天平演示保持平衡的几种变换情况,让学生初步认识等式的基本性质。
2、利用观察天平保持平衡所发现的规律能直接判断天平变化后能否保持平衡。
3、培养学生观察与概括、比较与分析的能力。
教学重难点:理解,并能用自己的话来阐述天平保持平衡的几种变换情况,进而发现等式保持不变的规律。教具准备:天平及相关物品。(也可以将插图制作成课件让学生逐步观察思考)
教学过程:
一、导入新课:同学们用天平做过实验吗?今天我们就要用天平去发现一些重要的规律,有信心吗?
二、新知探究
(一)探寻发现“天平保持平衡的规律1”。
第一步,出示天平,左盘放一茶壶,右盘放两茶杯,天平保持平衡。问:这说明什么?如果设一把茶壶重a克,1个茶杯重b克,则可以用一个等式来表示:即a=2b(板),第二步,问:想一想,怎样变换能使天平仍然保持平衡呢?待学生思考片刻,进而问:往两边各放一个茶杯,天平会发生什么变化?教师演示加以验证,在已平衡的天平两边同时增加一个相同的杯子,天平保持平衡。这个过程可以表示为a+b=2b+b。
第三步,问:如果两边各放上2个茶杯,天平还保持平衡?两边各放上同样的一个茶壶呢?学生回答后,老师一一演示验证。
第四步,想一想,怎样变换能使天平保持平衡?天平两边增加同样的物品,天平保持平衡。如果天平两边减少同样的物品,天平会保持平衡吗?
第五步,在第三步的基础上同时减少一个茶壶,天平保持平衡,用式子表示就是2a-a=2b+a-a。因此天平保持平衡的规律概括起来可以怎么说?天平两边增加或减少同样的物品,天平会保持平衡。(课件)
第六步,应用,进一步验证。展示数学书P55页第2幅图的场景,1个花盆和几个花瓶同样重呢?该怎么办?两边同时减少一个花瓶,天平保持平衡。
(二)探寻发现“天平保持平衡的规律2”。第一步,出示天平,左盘放一瓶墨水,右盘放两个铅笔盒,天平保持平衡。一瓶墨水等于两个铅笔盒的质量,如果设一瓶墨水重c克,1个铅笔盒重d克,则可以用一个等式来表示:即c=2d(板),第二步,问:想一想,如果在左边再放上1瓶墨水,右边再放上2个铅笔盒,天平还保持平衡吗?验证,天平两边加的东西不同,数量也不同,为什么还能保持平衡呢?学生可能会说,因为两边增加的质量相同,肯定;同时引导,天平左边的质量在原来的基础上发生了什么变化?(扩大了2倍),右边呢?(也扩大了两倍)因此,天平两边尽管所增加的东西不同,数量不同,但两边质量所发生的变化是相同的,都扩大了2倍,所以天平仍然保持平衡。用式子表示就是c×2=2d×2。
第三步,刚才的演示反过来,就是天平两边同时缩小相同的倍数,天平保持平衡,用式子表示就是2c÷2=4d÷2。因此,天平除了在两边同时增加或减少同样的物品会保持平衡外,还可怎么变换也可以保持平衡?归纳得出:天平两边物品的质量同时扩大或缩小相同的倍数,天平保持平衡。
第四步,进一步验证,出示P56的情景,问要求1个排球和几个皮球同样重该怎么办?两边质量同时缩小2倍,即把两边的球都平均分成2份,保留其中的一份,按其操作,天平保持平衡,得出结论:1个排球和3个皮球同样重。
(三)小结天平保持平衡的变换规律,引出等式不变的规律。
通过刚才的实验,我们发现了什么,谁来总结一下。
得出天平保持平衡的变换规律:(1)天平两边同时增加或减少同样的物品,天平保持平衡;(2)天平两边的质量同时扩大或缩小相同的倍数,天平保持平衡。
老师引导:我们可以发现,天平保持平衡时可以用一个等式来表示,当天平两边发生变化时,等式的两边也在发生变化,天平保持平衡,等式也保持不变。从天平保持平衡的规律,我们可以发现等式保持不变的规律吗?想一想,四人小组讨论。
交流,发现:等式保持不变的规律:(1)等式两边都加上或减去相同的数,等式保持不变;(2)等式两边都乘或除以相同的数(0除外),等式不变。
三、练习。
实物演示并判断:(准备8袋花生,4袋盐)
天平两端分别放有一袋500克的盐和两袋250克的花生。
1、当两边各增加3袋同样的花生(250克/袋)时,天平是否保持平衡?为什么?
2、在“1”的基础上,现在将把天平两端的东西减少,怎样变化?可使天平依然保持平衡?怎么想的?(可抽学生上台动手操作。)
3、假如天平两端只能加与先前完全一样的东西,要保持平衡可以怎么做?怎么想的?
4、一端放有两袋1千克的白糖,另一端放有4袋500克的盐,问一袋白糖与几袋盐同样重,怎么想的?
四:小结。
有什么收获?还有什么问题?
第三课时
教学内容:数学书P57,及“做一做”,练习十一第4题。
教学目标:
1、结合具体的题目,让学生初步理解方程的解与解方程的含义。
2、会检验一个具体的值是不是方程的解,掌握检验的格式。
3、进一步提高学生比较、分析的能力。
教学重难点:比较方程的解和解方程这两个概念的含义。教学过程:
一、导入新课
上一节课,我们学习了什么?
复习天平保持平衡的规律及等式保持不变的规律。学习这些规律有什么用呢?从这节课开始我们就会逐渐发现到它的重要作用了。
二、新知学习。
1、解决问题。
出示P57的题目,从图上可以获取哪些数学信息?天平保持平衡说明什么?杯子与水的质量加起来共重250克。
能用一个方程来表示这一等量关系吗?得到:100+x=250,x是多少方程左右两边才相等呢?也就是求杯子中水究竟有多重。如何求到x等于多少呢?学生先自己思考,再在小组里讨论交流,并把各种方法记录下来。
全班交流。可能有以下四种思路:
(1)观察,根据数感直接找出一个x的值代入方程看看左边是否等于250。
(2)利用加减法的关系:250-100=150。
(3)把250分成100+50,再利用等式不变的规律从两边减去100,或者利用对应的关系,得到x的值。
(4)直接利用等式不变的规律从两边减去100。
对于这些不同的方法,分别予以肯定。从而得到x的值等于150,将150代入方程,左右两边相等。
2、认识、区别方程的解和解方程。得出方程的解与解方程的含:
像这样,使方程左右两边相等的未知知数的值,叫做方程的解,刚才,x=150就是方程100+x=250的解。
而求方程的解的过程叫做解方程,刚才,我们用这几种方法来求100+x=250的解的过程就是解方程。
这两个概念说起来差不多,但它们的意义却大不相同,它们之间的区别是什么呢?
方程的解是一个具体的数值,而解方程是一个过程,方程的解是解方程的目的。
3、练习。(做一做)齐读题目要求。
怎么判断X=3是不是方程的解?将x=5代入方程之中看左右两边是否相等,写作格式是:方程左边=5x =5×3 =15 =方程右边
所以,x=3是方程的解。
用同样的方法检查x=2是不是方程5x=15的解。
二、作业。
独立完成练习十一第4题,强调书写格式。
三、小结。
通过这节课学到了什么?还有什么问题?
第四课时
教学内容:数学书P58-P59及“做一做”,练习十一第5-7题。
教学目标:
1、结合具体图例,根据等式不变的规律会解方程。
2、掌握解方程的格式和写法。
3、进一步提高学生分析、迁移的能力。教学重难点:掌握解方程的方法。
教学过程:
一、导入新课
前面,我们学习了等式保持不变的规律,等式在哪些情况下变换仍然保持不变呢?等式这些规律在方程中同样适用吗?完全可以,因为方程就是等式,今天我们将学习如何利用等式保持不变的规律来解方程。板书:解方程。
二、新知学习
(一)教学例1 出示例1,从图中可以获取哪些信息?图中表示了什么样的等量关系?盒子中的皮球与外面的3皮个球加起来共有9个,方程怎么列?得到x+3=9 要求盒子中一共有多少个皮球,也就是求x等于什么,我们该怎么利用等式保持不变的规律来求出方程的解呢? 抽答。
方程两边同时减去一个3,左右两边仍然相等。板书:x+3-3=9-3 化简,即得: x=6 这就是方程的解,谁再来回顾一下我们是怎样解方程的?
左右两边同时减去的为什么是3,而不是其它数呢?因为,两边减去3以后,左边刚好剩下一个x,这样,右边就刚好是x的值。因此,解方程说得实际一点就是通过等式的变换,如何使方程的一边只剩下一个x即可。
追问:x=6带不带单位呢?让学生明白x在这里只代表一个数值,因此不带单位。
要检验x=6是不是正确的答案,还需要验算。怎么验算呢?可抽学生回答。
板书:方程左边=x+3 =6+3 =9 =方程右边
所以,x=6是方程的解。
小结:通过刚才解方程的过程,我们知道了在方程的左右两边同时减去一个相同的数,左右两边仍然相等。不过需要注意的是,在书写的过程中写的都是等式,而不是递等式。
(二)教学例2 利用等式不变的规律,我们再来解一个方程。
出示方程:3x=18,怎样才能求到1个x是多少呢?同桌的同学互相讨论,如有问题,可以出示书上的示意图帮助分析。抽答,在方程两边同时除以3即可。为什么两边同时除以的是3,而不是其它数呢?刚好把左边变成1个x。让学生打开书59页,把例2中的解题过程补充完整。
展示、订正。
通过,刚才的学习,我们知道了在方程的两边同时减去一个相同的数或同时除以一个不为0的数,左右两边仍然相等。这是我们解方程常用的两种方法,想不想用它们来试一试呢?
(三)反馈练习
1、完成“做一做”的第1题,先找到等量关系,再列方程,解方程。集体评讲。
2、思考“想一想”:如果方程两边同时加上或乘上一个数,左右两边还相等吗?依据是什么?等式保持不变的规律。
试着解方程:x-2.4=6 x÷9=0.7(强调验算)
(四)课堂作业:“做一做”第2题。
三、课堂小结。
这节课学习了什么?讨论:什么时候应该在方程的两边加,什么时候该减,什么时候该乘,什么时候该除呢?
四、作业:练习十一5—7题。
第五课时
教学内容:数学书P60:例
3、及61页的做一做,练习十一的第8题。
教学目标:
1、初步学会如何利用方程来解应用题
2、能比较熟练地解方程。
3、进一步提高学生分析数量关系的能力。
教学重难点:找题中的等量关系,并根据等量关系列出方程。
教学过程:
一、复习导入
解下列方程:
x+5.7=10 x-3.4=7.6 1.4x=0.56 x÷4=2.7 学习方程的目的是为了利用方程解决生活中的问题,这节课就来学习如何用方程来解决问题。板书:解决问题。
二、新知学习。
1、教学例3.(1)出示题目。(课件)
出示洪泽湖的图片,介绍到:洪泽湖是我国五大淡水湖之一,位于江苏西部淮河下游,风景优美,物产丰富。但每当上游的洪水来临时,湖水猛涨,给湖泊周围的人民的生命财产带来了危险。因此,密切注视水位的变化情况,保证大坝的安全十分重要,如果湖水到了警戒水位的高度,就要引起高度警惕,超出警戒水位越多,大坝的危险就越大。下面,我们来就来看一则有关大坝水位的新闻。谁来当主持人,为大家播报一下。
“今天上午8时,洪泽湖蒋坝水位达14.14m,超过警戒水位0.64m.” 我们结合这幅图片来了解一下,课件演示警戒水位、今日水位,及其关系。
同学们想想,“警戒水位是多少米?”
(2)分析,解题。根据刚才所了解的信息,这个问题中有哪几个关键的数量呢?警戒水位、今日水位、超出部分。
它们之间有哪些数量关系呢?(板)
警戒水位+超出部分=今日水位①
今日水位—警戒水位=超出部分②
今日水位—超出部分=警戒水位③
同学们能解决这个问题吗?
学生独立解决问题。
(3)评讲、交流。(侧重如何用方程来解决本题。)
学生展示,可能会是算术方法,也可能列方程。对于算术方法,给予肯定即可。
学生列出的方程可能有:
① x+0.64=14.14 ②14.14﹣x= 0.64 ③14.14﹣0.64= x 每一种方法,都需要学生说出是根据什么列出的方程。
如第一种,学生根据的是“警戒水位+超出部分=今日水位”这一数量关系(由于左右相等,也称等量关系)所得到的。解出方程,注意书写格式,并记着检验(口头检验)。
对于第二种,可以肯定学生所列的方程是正确的,但方程不容易解,为什么呢?因为x是被减去的,因此,在小学阶段解决问题,列的方程,未知数前最好不是减号。
对于第三种,可让学生让算术解法与之作比较,让其发现,大同小异,因此,在列方程的过程中,通常不会让方程的一边只有一个x。
(4)小结 在解决问题中,我们是怎样来列方程的?
将未知数设为x,再根据题中的等量关系列出方程。
三、练习。
(5)解决“做一做”中的问题。
从题中知道哪些信息?有哪些等量关系?
用方程解决问题,四人小组交流方法,评讲,特别提醒:别忘了检验。
(6)独立完成练习十一中的第8题。
四、课堂小结