排列 、组合、二项式定理 加法原理和乘法原理 教案(全文5篇)

时间:2019-05-13 00:25:54下载本文作者:会员上传
简介:写写帮文库小编为你整理了多篇相关的《排列 、组合、二项式定理 加法原理和乘法原理 教案》,但愿对你工作学习有帮助,当然你在写写帮文库还可以找到更多《排列 、组合、二项式定理 加法原理和乘法原理 教案》。

第一篇:排列 、组合、二项式定理 加法原理和乘法原理 教案

排列、组合、二项式定理·加法原理和乘法原理·教案

教学目标

正确理解和掌握加法原理和乘法原理,并能准确地应用它们分析和解决一些简单的问题,从而发展学生的思维能力,培养学生分析问题和解决问题的能力.

教学重点和难点

重点:加法原理和乘法原理.

难点:加法原理和乘法原理的准确应用.

教学用具 投影仪. 教学过程设计

(一)引入新课

师:从本节课开始,我们将要学习中学代数内容中一个独特的部分——排列、组合、二项式定理.它们研究对象独特,研究问题的方法不同一般.虽然份量不多,但是与旧知识的联系很少,而且它还是我们今后学习概率论的基础,统计学、运筹学以及生物的选种等都与它直接有关.至于在日常的工作、生活上,只要涉及安排调配的问题,就离不开它.

今天我们先学习两个基本原理.

(这是排列、组合、二项式定理的第一节课,是起始课.讲起始课时,把这一学科的内容作一个大概的介绍,能使学生从一开始就对将要学习的知识有一个初步的了解,并为下面的学习研究打下思想基础)

师:(板书课题)

(二)讲授新课

1.介绍两个基本原理

师:请大家先考虑下面的问题(找出片子——问题1).

问题1:从甲地到乙地,可以乘火车,也可以乘汽车,还可以乘轮船.一天中,火车有4个班次,汽车有2个班次,轮船有3个班次.那么一天中乘坐这些交通工具从甲地到乙地,共有多少种不同的走法?

师:(启发学生回答后,作补充说明)

因为一天中乘火车有4种走法,乘汽车有2种走法,乘轮船有3种走法,每种走法都可以完成由甲地到乙地这件事情.所以,一天中乘坐这些交通工具从甲地到乙地共有

4+2+3=9 种不同的走法.

这个问题可以总结为下面的一个基本原理.(打出片子——加法原理)

加法原理:做一件事,完成它可以有几类办法,在第一类办法中有m1种不同的方法,在第二类办法中有m2种不同的方法,……,在第n类办法中有mn种不同的方法.那么,完成这件事共有N=m1+m2+…+mn种不同的方法.

(教师放慢速度读一遍加法原理)

师:请大家再来考虑下面的问题(打出片子——问题2).

问题2:由A村去B村的道路有3条,由B村去C村的道路有2条(见图9-1),从A村经B村去C村,共有多少种不同的走法?

师:(启发学生回答后加以说明)

这里,从A村到B村,有3种不同的走法,按这3种走法中的每一种走法到达B村后,再从B村到C村又各有2种不同的走法,因此,从A村经B村去C村共有3×2=6种不同的走法.

一般地,有如下基本原理:

(找出片子——乘法原理)

乘法原理:做一件事,完成它需要分成n个步骤,做第一步有m1种不同的方法,做第二步有m2种不同的方法,……,做第n步有mn种不同的方法.那么,完成这件事共有

N=m1×m2×…×mn 种不同的方法.

(教师要读一遍乘法原理)

2.浅释两个基本原理

师:两个基本原理是干什么用的呢?

生:计算做一件事完成它的所有不同的方法种数.(如果学生不能较准确地回答,教师可以加以提示)师:比较两个基本原理,想一想,它们有什么区别呢?

(学生经过思考后可以得出:各类的方法数相加,各步的方法数相乘.)两个基本原理的区别在于:一个与分类有关,一个与分步有关. 师:请看下面的分析是否正确.(打出片子——题1,题2)

题1:找1~10这10个数中的所有合数.第一类办法是找含因数2的合数,共有4个;第二类办法是找含因数3的合数,共有2个;第三类办法是找含因数5的合数,共有1个.

1~10中一共有N=4+2+1=7个合数.

题2:在前面的问题2中,步行从A村到B村的北路需要8时,中路需要4时,南路需要6时,B村到C村的北路需要5时,南路需要3时,要求步行从A村到C村的总时数不超过12时,共有多少种不同的走法?

第一步从A村到B村有3种走法,第二步从B村到C村有2种走法,共有N=3×2=6种不同走法. 生甲:9-2中的合数是4,6,8,9,10这五个,其中6既含有因数2,也含有因数3;10既含有因数2,也含有因数5.题中的分析是错误的.

生乙:从A村到C村总时数不超过12时的走法共有5种.题2中从A村走北路到B村后再到C村,只有南路这一种走法.

(此时给出题1和题2的目的是为了引导学生找出应用两个基本原理的注意事项,这样安排,不但可以使学生对两个基本原理的理解更深刻,而且还可以培养学生的学习能力)

师:为什么会出现错误呢?

生:题1的分类可能有问题吧,题2都走北路不符合要求.

师:(教师归纳)

进行分类时,要求各类办法彼此之间是相互排斥的,不论哪一类办法中的哪一种方法,都能单独完成这件事.只有满足这个条件,才能直接用加法原理,否则不可以.

如果完成一件事需要分成几个步骤,各步骤都不可缺少,需要依次完成所有步骤才能完成这件事,而各步要求相互独立,即相对于前一步的每一种方法,下一步都有m种不同的方法,那么计算完成这件事的方法数时,就可以直接应用乘法原理.

也就是说:类类互斥,步步独立.

(在学生对问题的分析不是很清楚时,教师及时地归纳小结,能使学生在应用两个基本原理时,思路进一步清晰和明确,不再简单地认为什么样的分类都可以直接用加法,只要分步而不管是否相互联系就用乘法.从而深入理解两个基本原理中分类、分步的真正含义和实质)

(三)应用举例

师:现在我们已经有了两个基本原理,我们可以用它们来解决一些简单问题了.请看例题1.(板书)

例1 书架上放有3本不同的数学书,5本不同的语文书,6本不同的英语书.(1)若从这些书中任取一本,有多少种不同的取法?

(2)若从这些书中,取数学书、语文书、英语书各一本,有多少种不同的取法?(3)若从这些书中取不同的科目的书两本,有多少种不同的取法?

(让学生思考,要求依据两个基本原理写出这3个问题的答案及理由,教师巡视指导,并适时口述解法)

师:(1)从书架上任取一本书,可以有3类办法:第一类办法是从3本不同数学书中任取1本,有3种方法;第二类办法是从5本不同的语文书中任取1本,有5种方法;第三类办法是从6本不同的英语书中任取一本,有6种方法.根据加法原理,得到的取法种数是

N=m1+m2+m3=3+5+6=14.

故从书架上任取一本书的不同取法有14种.

师:(2)从书架上任取数学书、语文书、英语书各1本,需要分成三个步骤完成,第一步取1本数学书,有3种方法;第二步取1本语文书,有5种方法;第三步取1本英语书,有6种方法.根据乘法原理,得到不同的取法种数是

N=m1×m2×m3=3×5×6=90.

故,从书架上取数学书、语文书、英语书各1本,有90种不同的方法.

师:(3)从书架上任取不同科目的书两本,可以有3类办法:第一类办法是数学书、语文书各取1本,需要分两个步骤,有3×5种方法;第二类办法是数学书、英语书各取1本,需要分两个步骤,有3×6种方法;第三类办法是语文书、英语书各取1本,有5×6种方法.一共得到不同的取法种数是

N=3×5+3×6+5×6=63.

即,从书架任取不同科目的书两本的不同取法有63种.

师:请大家再来分析和解决例题2.(板书)

例2 由数字0,1,2,3,4可以组成多少个三位整数(各位上的数字允许重复)? 师:每一个三位整数是由什么构成的呢? 生:三个整数字.

师:023是一个三位整数吗?

生:不是,百位上不能是0.

师:对!百位的数字不能是0,也就是说,一个三位整数是由百位、十位、个位三位数字组成的,其中最高位不能是0.那么要组成一个三位数需要怎么做呢?

生:分成三个步骤来完成:第一步确定百位上的数字;第二步确定十位上的数字;第三步确定个位上的数字.

师:很好!怎样表述呢?(教师巡视指导、并归纳)

解:要组成一个三位数,需要分成三个步骤:第一步确定百位上的数字,从1~4这4个数字中任选一个数字,有4种选法;第二步确定十位上的数字,由于数字允许重复,共有5种选法;第三步确定个位上的数字,仍有5种选法.根据乘法原理,得到可以组成的三位整数的个数是 N=4×5×5=100.

答:可以组成100个三位整数.(教师的连续发问、启发、引导,帮助学生找到正确的解题思路和计算方法,使学生的分析问题能力有所提高.

教师在第二个例题中给出板书示范,能帮助学生进一步加深对两个基本原理实质的理解,周密的考虑,准确的表达、规范的书写,对于学生周密思考、准确表达、规范书写良好习惯的形成有着积极的促进作用,也可以为学生后面应用两个基本原理解排列、组合综合题打下基础)

(四)归纳小结

师:什么时候用加法原理、什么时候用乘法原理呢? 生:分类时用加法原理,分步时用乘法原理.

师:应用两个基本原理时需要注意什么呢?

生:分类时要求各类办法彼此之间相互排斥;分步时要求各步是相互独立的.

(五)课堂练习P222:练习1~4.

(对于题4,教师有必要对三个多项式乘积展开后各项的构成给以提示)

(六)布置作业

P222:练习5,6,7.

补充题:

1.在所有的两位数中,个位数字小于十位数字的共有多少个?

(提示:按十位上数字的大小可以分为9类,共有9+8+7+…+2+1=45个个位数字小于十位数字的两位数)

2.某学生填报高考志愿,有m个不同的志愿可供选择,若只能按第一、二、三志愿依次填写3个不同的志愿,求该生填写志愿的方式的种数.

(提示:需要按三个志愿分成三步,共有m(m-1)(m-2)种填写方式)

3.在所有的三位数中,有且只有两个数字相同的三位数共有多少个?(提示:可以用下面方法来求解:(1)△△□,(2)△□△,(3)□△□,(1),(2),(3)类中每类都是9×9种,共有9×9+9×9+9×9=3×9×9=243个只有两个数字相同的三位数)

4.某小组有10人,每人至少会英语和日语中的一门,其中8人会英语,5人会日语,(1)从中任选一个会外语的人,有多少种选法?(2)从中选出会英语与会日语的各1人,有多少种不同的选法?

(提示:由于8+5=13>10,所以10人中必有3人既会英语又会日语.(1)N=5+2+3;(2)N=5×2+5×3+2×3)

课堂教学设计说明

两个基本原理一课是排列、组合、二项式定理的开头课,学习它所需的先行知识跟学生已熟知的数学知识联系很少,通常教师们或者感觉很简单,一带而过;或者感觉难以开头.中学数学课程中引进的关于排列、组合的计算公式都是以乘法原理为基础的,而一些较复杂的排列、组合应用题的求解,更是离不开两个基本原理,因此必须使学生学会正确地使用两个基本原理,学会正确地使用这两个基本原理是这一章教学中必须抓住的一个关键.所以在教学目标中特别提出要使学生学会准备地应用两个基本原理分析和解决一些简单的问题.对于学生陌生的知识,在开头课中首先作一个大概的介绍,使学生有一个大致的了解是十分必要的.基于这一想法,在引入新课时,首先是把这一章将要学习的内容,以及与其它科目的关系做了介绍,同时也引入了课题.

正确使用两个基本原理的前提是要学生清楚两个基本原理使用的条件.而原理中提到的分步和分类,学生不是一下子就能理解深刻的,这就需要教师引导学生,帮助他们分析,找到分类和分步的具体要求——类类互斥,步步独立.教学过程中的题1和题2,就是为了解决这一问题而提出的.

分类用加法原理,分步用乘法原理,单纯这点学生是容易理解的,问题在于怎样合理地进行分类、分步,特别是在分类时必须做到既不重复,又不遗漏,找到分步的方法有时是比较困难的,这就要着重进行训练.教学中给出了例题

1、例题2.这两个题目都是在课本例题的基础上稍加改动过的,目的就是要帮助学生发展思维能力,培养学生周密思考、细心分析的良好习惯.为了帮助学生在今后能正确运用两个基本原理解决其它排列组合问题,特别给出了4个补充习题,为下面将要进行的课打下一个基础. 考虑到这节课无论是两个基本原理,还是例题都是文字较多的,因此特别设计了使用教具——投影仪.要是有实物投影仪那就更方便了.

第二篇:数学 -排列、组合、二项式定理-基本原理 -数学教案

教学目标

(1)正确理解加法原理与乘法原理的意义,分清它们的条件和结论;

(2)能结合树形图来帮助理解加法原理与乘法原理;

(3)正确区分加法原理与乘法原理,哪一个原理与分类有关,哪一个原理与分步有关;

(4)能应用加法原理与乘法原理解决一些简单的应用问题,提高学生理解和运用两个原理的能力;

(5)通过对加法原理与乘法原理的学习,培养学生周密思考、细心分析的良好习惯。

教学建议

一、知识结构

二、重点难点分析

本节的重点是加法原理与乘法原理,难点是准确区分加法原理与乘法原理。

加法原理、乘法原理本身是容易理解的,甚至是不言自明的。这两个原理是学习排列组合内容的基础,贯穿整个内容之中,一方面它是推导排列数与组合数的基础;另一方面它的结论与其思想在方法本身又在解题时有许多直接应用。

两个原理回答的,都是完成一件事的所有不同方法种数是多少的问题,其区别在于:运用加法原理的前提条件是,做一件事有n类方案,选择任何一类方案中的任何一种方法都可以完成此事,就是说,完成这件事的各种方法是相互独立的;运用乘法原理的前提条件是,做一件事有n个骤,只要在每个步骤中任取一种方法,并依次完成每一步骤就能完成此事,就是说,完成这件事的各个步骤是相互依存的。简单的说,如果完成一件事情的所有方法是属于分类的问题,每次得到的是最后结果,要用加法原理;如果完成一件事情的方法是属于分步的问题,每次得到的该步结果,就要用乘法原理。

三、教法建议

关于两个计数原理的教学要分三个层次:

第一是对两个计数原理的认识与理解.这里要求学生理解两个计数原理的意义,并弄清两个计数原理的区别.知道什么情况下使用加法计数原理,什么情况下使用乘法计数原理.(建议利用一课时).

第二是对两个计数原理的使用.可以让学生做一下习题(建议利用两课时):

①用0,1,2,……,9可以组成多少个8位号码;

②用0,1,2,……,9可以组成多少个8位整数;

③用0,1,2,……,9可以组成多少个无重复数字的4位整数; ④用0,1,2,……,9可以组成多少个有重复数字的4位整数; ⑤用0,1,2,……,9可以组成多少个无重复数字的4位奇数;

⑥用0,1,2,……,9可以组成多少个有两个重复数字的4位整数等等.

第三是使学生掌握两个计数原理的综合应用,这个过程应该贯彻整个教学中,每个排列数、组合数公式及性质的推导都要用两个计数原理,每一道排列、组合问题都可以直接利用两个原理求解,另外直接计算法、间接计算法都是两个原理的一种体现.教师要引导学生认真地分析题意,恰当的分类、分步,用好、用活两个基本计数原理. 教学设计示例

加法原理和乘法原理

教学目标

正确理解和掌握加法原理和乘法原理,并能准确地应用它们分析和解决一些简单的问题,从而发展学生的思维能力,培养学生分析问题和解决问题的能力. 教学重点和难点

重点:加法原理和乘法原理.

难点:加法原理和乘法原理的准确应用. 教学用具

投影仪. 教学过程设计

(一)引入新课

从本节课开始,我们将要学习中学代数内容中一个独特的部分——排列、组合、二项式定理.它们研究对象独特,研究问题的方法不同一般.虽然份量不多,但是与旧知识的联系很少,而且它还是我们今后学习概率论的基础,统计学、运筹学以及生物的选种等都与它直接有关.至于在日常的工作、生活上,只要涉及安排调配的问题,就离不开它.

今天我们先学习两个基本原理.

(二)讲授新课

1.介绍两个基本原理

先考虑下面的问题:

问题1:从甲地到乙地,可以乘火车,也可以乘汽车,还可以乘轮船.一天中,火车有4个班次,汽车有2个班次,轮船有3个班次.那么一天中乘坐这些交通工具从甲地到乙地,共有多少种不同的走法?

因为一天中乘火车有4种走法,乘汽车有2种走法,乘轮船有3种走法,每种走法都可以完成由甲地到乙地这件事情.所以,一天中乘坐这些交通工具从甲地到乙地共有4+2+3=9种不同的走法.

这个问题可以http://jiaoan.cnkjz.com/Article/Index.html>总结为下面的一个基本原理(打出片子——加法原理):

加法原理:做一件事,完成它可以有几类办法,在第一类办法中有m1种不同的方法,在第二类办法中有m2种不同的方法,……,在第n类办法中有mn种不同的方法.那么,完成这件事共有N=m1+m2+…+mn种不同的方法.

请大家再来考虑下面的问题(打出片子——问题2):

问题2:由A村去B村的道路有3条,由B村去C村的道路有2条(见下图),从A村经B村去C村,共有多少种不同的走法?

这里,从A村到B村,有3种不同的走法,按这3种走法中的每一种走法到达B村后,再从B村到C村又各有2种不同的走法,因此,从A村经B村去C村共有3×2=6种不同的走法.

一般地,有如下基本原理(找出片子——乘法原理):

乘法原理:做一件事,完成它需要分成n个步骤,做第一步有m1种不同的方法,做第二步有m2种不同的方法,……,做第n步有mn种不同的方法.那么,完成这件事共有N=m1×m2×…×mn种不同的方法. 2.浅释两个基本原理

两个基本原理的用途是计算做一件事完成它的所有不同的方法种数.

比较两个基本原理,想一想,它们有什么区别?

两个基本原理的区别在于:一个与分类有关,一个与分步有关.

看下面的分析是否正确(打出片子——题1,题2):

题1:找1~10这10个数中的所有合数.第一类办法是找含因数2的合数,共有4个;第二类办法是找含因数3的合数,共有2个;第三类办法是找含因数5的合数,共有1个. 1~10中一共有N=4+2+1=7个合数.

题2:在前面的问题2中,步行从A村到B村的北路需要8时,中路需要4时,南路需要6时,B村到C村的北路需要5时,南路需要3时,要求步行从A村到C村的总时数不超过12时,共有多少种不同的走法?

第一步从A村到B村有3种走法,第二步从B村到C村有2种走法,共有N=3×2=6种不同走法.

题2中的合数是4,6,8,9,10这五个,其中6既含有因数2,也含有因数3;10既含有因数2,也含有因数5.题中的分析是错误的.

从A村到C村总时数不超过12时的走法共有5种.题2中从A村走北路到B村后再到C村,只有南路这一种走法.

(此时给出题1和题2的目的是为了引导学生找出应用两个基本原理的注意事项,这样安排,不但可以使学生对两个基本原理的理解更深刻,而且还可以培养学生的学习能力)

进行分类时,要求各类办法彼此之间是相互排斥的,不论哪一类办法中的哪一种方法,都能单独完成这件事.只有满足这个条件,才能直接用加法原理,否则不可以.

如果完成一件事需要分成几个步骤,各步骤都不可缺少,需要依次完成所有步骤才能完成这件事,而各步要求相互独立,即相对于前一步的每一种方法,下一步都有m种不同的方法,那么计算完成这件事的方法数时,就可以直接应用乘法原理.

也就是说:类类互斥,步步独立.

(在学生对问题的分析不是很清楚时,教师及时地归纳小结,能使学生在应用两个基本原理时,思路进一步清晰和明确,不再简单地认为什么样的分类都可以直接用加法,只要分步而不管是否相互联系就用乘法.从而深入理解两个基本原理中分类、分步的真正含义和实质)

(三)应用举例

现在我们已经有了两个基本原理,我们可以用它们来解决一些简单问题了.

例1 书架上放有3本不同的数学书,5本不同的语文书,6本不同的英语书.

(1)若从这些书中任取一本,有多少种不同的取法?

(2)若从这些书中,取数学书、语文书、英语书各一本,有多少种不同的取法?

(3)若从这些书中取不同的科目的书两本,有多少种不同的取法?

(让学生思考,要求依据两个基本原理写出这3个问题的答案及理由,教师巡视指导,并适时口述解法)

(1)从书架上任取一本书,可以有3类办法:第一类办法是从3本不同数学书中任取1本,有3种方法;第二类办法是从5本不同的语文书中任取1本,有5种方法;第三类办法是从6本不同的英语书中任取一本,有6种方法.根据加法原理,得到的取法种数是 N=m1+m2+m3=3+5+6=14.故从书架上任取一本书的不同取法有14种.

(2)从书架上任取数学书、语文书、英语书各1本,需要分成三个步骤完成,第一步取1本数学书,有3种方法;第二步取1本语文书,有5种方法;第三步取1本英语书,有6种方法.根据乘法原

第三篇:加法原理和乘法原理教案设计

加法原理和乘法原理教案设计

【教学目的】

1.使学生理解和掌握加法原理和乘法原理并能准确、熟练地运用两个基本原理。

2.加强对学生思维条理性的训练,培养学生分析问题、解决问题的能力。【教学重点和难点】重点是两个基本原理的应用,难点是对两个基本原理的准确理解。

【教学过程】

一、讲授新课

加法原理和乘法原理是有关排列、组合问题所遵循的两条基本原理,深入理解和准确运用这两个原理是学好排列、组合这一单元的重要一环。

请同学们考虑下面两个问题:

问题

1从甲地到乙地,旱路有3条,水路有2条,间从甲地到乙地共有多少种不同的走法?

从图中很容易找到答案:从甲地到乙地共有5种不同的走法。

问题

2由A村到B村的路有3条,由B村到C村的路有2条,问从A村经过B村到达C村共有多少种不同的走法?

从图中不难看出此题的答案是:共有6种不同的走法。

我们从上面两个问题中可以抽象出一般性的规律,得出以下的结论:

(一)完成一件工作的两种不同的方式。

问题1和问题2的共同之处在于:它们都是在研究做一件事(或工作)完成它共有多少种不同的方法?这两个问题的不同点是完成工作的方式不同。问题1中的每条旱路或水路都可以从甲地直接到达乙地,其中旱路和水路只不过是完成从甲地到乙地这件工作的两类不同的办法。

问题2中的从A村到B村的3条路和从B村到C村的2条路的任意一条路都不能把从A村经过B村到达C村这件工作做完,只能完成这件工作的一部分。问题2中的工作是分两个步骤完成的:第一步从A村到达B村,第二步从B村到达C村。

我们不难总结出:完成一件工作有以下两种不同的方式:

第一种方式:用不同类的办法去完成一件工作,每类办法中的任意一种方法都可以从头至尾把这件工作做完。

第二种方式:分成几个步骤去完成一件工作,每个步骤中的任意一种方法只能完成这件工作的一部分,这几个步骤都完成了,这件工作才能做完。

(二)加法原理和乘法原理。

下面我们来研究:完成一件工作的不同方法的总数怎样计算:

问题1的答案是共有5种不同的走法,已知旱路3条,水路2条,显然5=3+2。问题2的答案是共有6种不同的走法,已知从A村到B村3条路,从B村到C村2条路,显然6=3×2。

总结一般规律如下:

加法原理

做一件事,完成它有n类办法,其中第一类办法中有m种方法,第二类中有m2种方法„„,第n类办法中有mn种方法,那么完成这件事共有N=m1+m2+„+mn种不同的方法。

1如问题1从甲地到乙地的走法可以分为两类: 第一类办法是走旱路有3种不同的走法。第二类办法是走水路有2种不同的走法。由加法原理共有3+2=5种不同的走法。

乘法原理

做一件事,完成它需要分成n个步骤,第一个步骤有m种不同的方法,第二个步骤有m2种不同的方法„„,第n个步骤有mn种不同的方法,那么完成这件事共有N=m1·m2„„mn种不同的方法。

1如问题2从A村经过B村到达C村可分为两个步骤完成: 第一步A村→B村,有3种不同的走法。第二步B村→C村,有2种不同的走法。由乘法原理,共有3×2=6种不同的走法。例1 从甲地到乙地可以乘火车,也可以乘汽车或轮船。一天中火车有4班,汽车有2班,轮船有3班,那么一天中,乘坐这些交通工具从甲地到乙地共有多少种不同的走法?

解:完成由甲地到乙地这件事有三类办法: 第一类办法坐火车,一天中有4种不同走法。第二类办法坐汽车,一天中有2种不同走法。第三类办法坐轮船,一天中有3种不同走法。由加法原理得:4+2+3=9 答:有9种不同的走法。

例2由数字1、2、3、4、5可以组成多少个允许有重复数字的三位数?无重复数字的三位数?

解:(1)组成允许有重复数字的三位数这件事可分三个步骤完成: 第一步确定百位上的数字:有5种不同方法。第二步确定十位上的数字:有5种不同方法。第三步确定个位数字:有5种不同方法。由乘法原理:5×5×5=125。

答:可组成允许有重复数字的三位数125个。

此题第(2)问由同学们自己完成,提醒大家注意:允许有重复数字和无重复数字这两个条件的区别。第(2)问答案是60个。

(三)运用两个基本原理时要注意以下几点:

1.抓住两个基本原理的区别不要用混,不同类的方法(其中每一个方法都能把事情从头至尾做完)数之间做加法,不同步的方法(其中每一个方法都只能完成这件事的一部分)数之间做乘法。

2.在研究完成一件工作的不同方法数时,要遵循“不重不漏”的原则。如:从若干件产品中抽出几件产品来检验,把抽出的产品中至多有2件次品的抽法分为两类:第一类抽出的产品中有2件次品,第二类抽出的产品中有一件次品,这样的分类显然漏掉了抽出的产品中无次品的情况。又如:把能被

2、被3或被6整除的数分为三类:第一类能被2整除的数,第二类能被3整除的数,第三类能被6整除的数,其中第一类、第二类都和第三类有重复,这样分类是不行的。

3.在运用乘法原理时,要注意每个步骤都做完这件事也必须完成,而且前面一个步骤中的每一种方法,在下个步骤中都得有m种不同的方法。

二、巩固练习

1.书架上层放有6本不同的数学书,下层放有5本不同的语文书:(1)从中任取一本书,有多少种不同的取法?

(2)从中任取数学、语文书各一本,有多少种不同的取法?(答案:(1)11种,(2)30种。)

2.有三个袋子,其中一个袋子装有红色小球20个,每个球上标有1至20中的一个号码,一个袋子装有白色小球15个,每个小球上标有1至15中的一个号码。第三个袋子装有8个黄色小球,每个球上标有1至8中的一个号码。(1)从袋子里任取一个小球,有多少种不同的取法?(2)从袋子里任取红、白、黄色小球各一个,有多少种不同的取法?(答案:(1)43种,(2)2400种)

三、布置作业

1.复习本节内容:读书和看笔记。

2.做教科书2.1基本原理后的练习1至7题。(答案:1.有9种选法;2.有7种选法;3.列出200个式子;4.共有60项;5.有14种走法;6.(1)9种,(2)20种;7.(1)有6种,(2)有8种)

第四篇:加法原理与乘法原理

三年级第二学期数学思维训练11

班级:

姓名:

学号:

第十一讲——加法原理与乘法原理

【例题讲解】

1、从上海到北京,可以坐火车,也可以坐汽车,还可以乘飞机,如果一天中有三趟火车,二班汽车,四班飞机,那么这一天从上海到北京,可以有几种不同的走法?(每个班次算一种)

2、从甲地到乙地每天有3个班次的汽车,2个班次的火车,某人从甲地到乙地共有几种不同的走法?(每个班次算一种)

3、明明从家里出发,经过外婆家,然后去奶奶家玩,根据图中所表示,共有多少种不同走法?

明明家

外婆家

奶奶家

4、书架上有5本故事书,7本连环画,3本科技书。小红想拿一本书,可有多少种取法?

5、五(一)班有4个小组。第一组7人,第二组8人,第三组9人,第四组10人.现在在班级中要选一个卫生员,共有几种选法?

6、书架上有5本故事书,7本连环画,3本科技书。小红想拿一本故事书,一本连环画,一本科技书,有多少种取法?

【我来挑战】

1、五(一)班有4个小组。第一组7人,第二组8人,第三组9人,第四组10人.现在要每个小组选一个卫生员,共有几种选法?

2、学校运动会,有跳绳,跑步,踢毽子。某小队有12人,其中6个人会跳绳,4个人擅长跑步,2个人会踢毽子。要选出三个人各去参加一种比赛,共有几种选法?

3、有8个人参加联欢会。每2个人之间握一次手,他们一共要握多少次手?

第五篇:计数原理-10.2 排列与组合(教案)

响水二中高三数学(理)一轮复习

教案 第十编 计数原理 主备人 张灵芝 总第52期

§10.2 排列与组合

基础自测

1.从1,2,3,4,5,6六个数字中,选出一个偶数和两个奇数,组成一个没有重复数字的三位数,这样的三位数共有 个.答案 54 2.(2008·福建理)某班级要从4名男生、2名女生中选派4人参加某次社区服务,如果要求至少有1名女生,那么不同的选派方案共有 种.答案 14 3.停车场每排恰有10个停车位.当有7辆不同型号的车已停放在同一排后,恰有3个空车位连在一起的排法有 种.(用式子表示)答案 A88

4.在100件产品中有6件次品,现从中任取3件产品,至少有1件次品的不同取法种数是(用式子表示).3答案 C100-C394

5.(2007·天津理)如图,用6种不同的颜色给图中的4个格子涂色,每个格子涂一种颜色,要求最多使用3种颜色且相邻的两个格子颜色不同,则不同的涂色方法共有 种(用数字作答).答案 390

例题精讲

例1 六人按下列要求站一横排,分别有多少种不同的站法?(1)甲不站两端;(2)甲、乙必须相邻;(3)甲、乙不相邻;(4)甲、乙之间间隔两人;(5)甲、乙站在两端;(6)甲不站左端,乙不站右端.解(1)方法一 要使甲不站在两端,可先让甲在中间4个位置上任选1个,有A14种站法,然后其余

155人在另外5个位置上作全排列有A55种站法,根据分步计数原理,共有站法:A4·A5=480(种).2方法二 由于甲不站两端,这两个位置只能从其余5个人中选2个人站,有A5种站法,然后中24间人有A44种站法,根据分步计数原理,共有站法:A5·A4=480(种).5方法三 若对甲没有限制条件共有A66种站法,甲在两端共有2A5种站法,从总数中减去这两种 329

5情形的排列数,即共有站法:A66-2A5=480(种).(2)方法一 先把甲、乙作为一个“整体”,看作一个人,和其余4人进行全排列有A55种站法,再把

52甲、乙进行全排列,有A22种站法,根据分步计数原理,共有A5·A2=240(种)站法.方法二 先把甲、乙以外的4个人作全排列,有A44种站法,再在5个空档中选出一个供甲、乙放

2412入,有A15种方法,最后让甲、乙全排列,有A2种方法,共有A4·A5·A2=240(种).(3)因为甲、乙不相邻,中间有隔档,可用“插空法”,第一步先让甲、乙以外的4个人站队,有A442种站法;第二步再将甲、乙排在4人形成的5个空档(含两端)中,有A5种站法,故共有站法为2A44·A5=480(种).52也可用“间接法”,6个人全排列有A66种站法,由(2)知甲、乙相邻有A5·A2=240种站法,所52以不相邻的站法有A66-A5·A2=720-240=480(种).(4)方法一 先将甲、乙以外的4个人作全排列,有A4然后将甲、乙按条件插入站队,有3A24种,2种,故共有A4(3A24·2)=144(种)站法.方法二 先从甲、乙以外的4个人中任选2人排在甲、乙之间的两个位置上,有A2然后把甲、4种,乙及中间2人看作一个“大”元素与余下2人作全排列有A3最后对甲、乙进行排列,有A22种3种方法,32方法,故共有A24·A3·A2=144(种)站法.(5)方法一 首先考虑特殊元素,甲、乙先站两端,有A22种,再让其他4人在中间位置作全排列,24有A44种,根据分步计数原理,共有A2·A4=48(种)站法.方法二 首先考虑两端两个特殊位置,甲、乙去站有A22种站法,然后考虑中间4个位置,由剩下

24的4人去站,有A44种站法,由分步计数原理共有A2·A4=48(种)站法.54(6)方法一 甲在左端的站法有A55种,乙在右端的站法有A5种,且甲在左端而乙在右端的站法有A4 330 54种,共有A66-2A5+A4=504(种)站法.方法二 以元素甲分类可分为两类:①甲站右端有A55种站法,②甲在中间4个位置之一,而乙不145114在右端有A14·A4·A4 种,故共有A5+A4·A4·A4=504(种)站法.例2 男运动员6名,女运动员4名,其中男女队长各1人.选派5人外出比赛.在下列情形中各有多少种选派方法?

(1)男运动员3名,女运动员2名;(2)至少有1名女运动员;(3)队长中至少有1人参加;(4)既要有队长,又要有女运动员.2解(1)第一步:选3名男运动员,有C36种选法.第二步:选2名女运动员,有C4种选法.2共有C36·C4=120种选法.(2)方法一 至少1名女运动员包括以下几种情况: 1女4男,2女3男,3女2男,4女1男.4233241由分类计数原理可得总选法数为C14C6+C4C6+C4C6+C4C6=246种.方法二 “至少1名女运动员”的反面为“全是男运动员”可用间接法求解.5从10人中任选5人有C10种选法,其中全是男运动员的选法有C56种.所以“至少有1名女运动员”的5选法为C10-C56=246种.(3)方法一 可分类求解:

443“只有男队长”的选法为C8; “只有女队长”的选法为C8; “男、女队长都入选”的选法为C8; 43所以共有2C8+C8=196种选法.方法二 间接法:

55从10人中任选5人有C10种选法.其中不选队长的方法有C8种.所以“至少1名队长”的选法为55C10-C8=196种.44(4)当有女队长时,其他人任意选,共有C9种选法.不选女队长时,必选男队长,共有C8种选法.444其中不含女运动员的选法有C5种,所以不选女队长时的选法共有C8-C5种选法.所以既有队长又有女444运动员的选法共有C9+C8-C5=191种.331 例3 4个不同的球,4个不同的盒子,把球全部放入盒内.(1)恰有1个盒不放球,共有几种放法?(2)恰有1个盒内有2个球,共有几种放法?(3)恰有2个盒不放球,共有几种放法?

解(1)为保证“恰有1个盒不放球”,先从4个盒子中任意取出去一个,问题转化为“4个球,3个盒子,每个盒子都要放入球,共有几种放法?”即把4个球分成2,1,1的三组,然后再从3个盒子中选

1212个放2个球,其余2个球放在另 外2个盒子内,由分步计数原理,共有C14C4C3×A2=144种.(2)“恰有1个盒内有2个球”,即另外3个盒子放2个球,每个盒子至多放1个球,也即另外3个 子中恰有一个空盒,因此,“恰有1个盒内有2个球”与“恰有1个盒不放球”是同一件事,所以共有144种放法.(3)确定2个空盒有C2、(2,2)两类,第一类有序不4种方法.4个球放进2个盒子可分成(3,1)均匀分组有CC24(C342C11A234C11A22种方法;第二类有序均匀分组有

2C24C2A22·A

22种方法.故共有+2C24C2A22·A22)=84种.巩固练习

1.用0、1、2、3、4、5这六个数字,可以组成多少个分别符合下列条件的无重复数字的四位数:(1)奇数;(2)偶数;(3)大于3 125的数.12解(1)先排个位,再排首位,共有A13·A4·A4=144(个).1123(2)以0结尾的四位偶数有A35个,以2或4结尾的四位偶数有A2·A4·A4个,则共有A5+ 12A12·A4·A4=156(个).2(3)要比3 125大,4、5作千位时有2A35个,3作千位,2、4、5作百位时有3A4个,3作千位,1作 321百位时有2A13个,所以共有2A5+3A4+2A3=162(个).2.某医院有内科医生12名,外科医生8名,现选派5名参加赈灾医疗队,其中(1)某内科医生甲与某外科医生乙必须参加,共有多少种不同选法?(2)甲、乙均不能参加,有多少种选法?(3)甲、乙两人至少有一人参加,有多少种选法?

(4)队中至少有一名内科医生和一名外科医生,有几种选法?

3解(1)只需从其他18人中选3人即可,共有C18=816(种).5(2)只需从其他18人中选5人即可,共有C18=8 568(种).43(3)分两类:甲、乙中有一人参加,甲、乙都参加,共有C12C18+C18=6 936(种).332(4)方法一(直接法)至少一名内科医生一名外科医生的选法可分四类:一内四外;二内三外;三

4233241内二外;四内一外,所以共有C112C8+C12C8+C12C8+C12C8=14 656(种).方法二(间接法)由总数中减去五名都是内科医生和五名都是外科医生的选法种数,55得C520-(C8+C12)=14 656(种).3.有6本不同的书按下列分配方式分配,问共有多少种不同的分配方式?(1)分成1本、2本、3本三组;

(2)分给甲、乙、丙三人,其中一人1本,一人2本,一人3本;(3)分成每组都是2本的三组;(4)分给甲、乙、丙三人,每人2本.2解(1)分三步:先选一本有C16种选法;再从余下的5本中选2本有C5种选法;对于余下的三本 123全选有C33种选法,由分步计数原理知有C6C5C3=60种选法.233(2)由于甲、乙、丙是不同的三人,在(1)的基础上,还应考虑再分配的问题,因此共有C16C5C3A3=360种选法.222(3)先分三步,则应是C6C4C2种选法,但是这里面出现了重复,不妨记六本书为A、B、C、D、222E、F,若第一步取了AB,第二步取了CD,第三步取了EF,记该种分法为(AB,CD,EF),则C6C4C2种分法中还有(AB、EF、CD),(CD、AB、EF)、(CD、EF、AB)、(EF、CD、AB)、(EF、AB、CD)3共有A33种情况,而且这A3种情况仅是AB、CD、EF的顺序不同,因此,只算作一种情况,故分法有222C6C4C2A33=15种.222C6C4C2(4)在问题(3)的工作基础上再分配,故分配方式有

A33222·A33= C6C4C2=90种.回顾总结

知识 方法 思想

课后作业

一、填空题

1.用数字1,2,3,4,5组成没有重复数字的五位数,其中小于50 000的偶数共有 个.答案 36 2.将编号为1,2,3,4,5的五个球放入编号为1,2,3,4,5的五个盒子里,每个盒子内放一个球,若恰好有三个球的编号与盒子编号相同,则不同投放方法共有 种.333 答案 10 3.记者要为5名志愿者和他们帮助的2位老人拍照,要求排成一排,2位老人相邻但不排在两端,不同的排法共有 种.答案 960 4.(2008·天津理)有8张卡片分别标有数字1,2,3,4,5,6,7,8,从中取出6张卡片排成3行2列,要求3行中仅有中间行的两张卡片上的数字之和为5,则不同的排法共有 种.答案 1 248 5.在图中,“构建和谐社会,创美好未来”,从上往下读(不能跳读),共有 种不同的读法.答案 252 6.(2008·安徽理)12名同学合影,站成了前排4人后排8人,现摄影师要从后排8人中抽2人调整到前排,其他人的相对顺序不变,则不同调整方法的种数是(用式子表示).22答案 C8A6

7.平面内有四个点,平面内有五个点,从这九个点中任取三个,最多可确定 个平面,任取四点,最多可确定 个四面体.(用数字作答)答案 72 120 8.(2008·浙江理,16)用1,2,3,4,5,6组成六位数(没有重复数字),要求任何相邻两个数字的奇偶性不同,且1和2相邻.这样的六位数的个数是.(用数字作答)答案 40

二、解答题

9.某外商计划在4个候选城市投资3个不同的项目,且在同一个城市投资的项目不超过2个,求该外商不同的投资方案有多少种?

解 可先分组再分配,据题意分两类,一类:先将3个项目分成两组,一组有1个项目,另一组有2

22个项目,然后再分配给4个城市中的2个,共有C3A4种方案;另一类1个城市1个项目,即把3个223元素排在4个不同位置中的3个,共有A34种方案.由分类计数原理可知共有C3A4+A4=60种方案.10.课外活动小组共13人,其中男生8人,女生5人,并且男、女各指定一名队长,现从中选5人主持某种活动,依下列条件各有多少种选法?(1)只有一名女生;(2)两队长当选;

334(3)至少有一名队长当选;(4)至多有两名女生当选.4解(1)一名女生,四名男生,故共有C15·C8=350(种).3(2)将两队长作为一类,其他11人作为一类,故共有C22·C11=165(种).423(3)至少有一名队长含有两类:有一名队长和两名队长.故共有:C12·C11+C2·C11=825(种).55或采用间接法:C13-C11=825(种).(4)至多有两名女生含有三类:有两名女生、只有一名女生、没有女生.2345故选法为C5·C8+C15·C8+C8=966(种).11.已知平面∥,在内有4个点,在内有6个点.(1)过这10个点中的3点作一平面,最多可作多少个不同平面?(2)以这些点为顶点,最多可作多少个三棱锥?(3)上述三棱锥中最多可以有多少个不同的体积?

2解(1)所作出的平面有三类:①内1点,内2点确定的平面,有C14·C6个;②内2点,2内1点确定的平面,有C2C1③,本身.∴所作的平面最多有C1C6+C2C1(个).4·4·4·6个;6+2=983(2)所作的三棱锥有三类:①内1点,内3点确定的三棱锥,有C14·C6个;②内2点,内2312点确定的三棱锥,有C24·C6个;内3点,内1点确定的三棱锥,有C4·C6个.32231∴最多可作出的三棱锥有:C14·C6+C4·C6+C4·C6=194(个).(3)∵当等底面积、等高的情况下三棱锥的体积相等,且平面∥,∴体积不相同的三棱锥最多有

322C36+C4+C6·C4=114(个).12.有两排座位,前排11个座位,后排12个座位,现安排2人就座,规定前排中间的3个座位不能坐,并且这2人不左右相邻,共有多少种不同排法?

解 ∵前排中间3个座位不能坐,∴实际可坐的位置前排8个,后排12个.12(1)两人一个前排,一个后排,方法数为C18·C12·A2种; 212(2)两人均在后排左右不相邻,共A12-A22·A11=A11种;

1(3)两人均在前排,又分两类:①两人一左一右,共C1C1A2②两人同左同右,有2(A2A24·4·2种;4-A3·2)122112212种.综上可知,不同排法种数为C18·C12·A2+A11+C4·C4·A2+2(A4-A3·A2)=346种.335

下载排列 、组合、二项式定理 加法原理和乘法原理 教案(全文5篇)word格式文档
下载排列 、组合、二项式定理 加法原理和乘法原理 教案(全文5篇).doc
将本文档下载到自己电脑,方便修改和收藏,请勿使用迅雷等下载。
点此处下载文档

文档为doc格式


声明:本文内容由互联网用户自发贡献自行上传,本网站不拥有所有权,未作人工编辑处理,也不承担相关法律责任。如果您发现有涉嫌版权的内容,欢迎发送邮件至:645879355@qq.com 进行举报,并提供相关证据,工作人员会在5个工作日内联系你,一经查实,本站将立刻删除涉嫌侵权内容。

相关范文推荐

    加法原理教案

    加法原理教案 【教学目的】 1.使学生理解和掌握加法原理和乘法原理并能准确、熟练地运用两个基本原理。 2.加强对学生思维条理性的训练,培养学生分析问题、解决问题的能力。......

    2014年高考文科数学试题分类10:排列、组合及二项式定理

    2014年全国各地高考文科数学试题分类汇编10:排列、组合及二项式定理一、选择题 错误!未指定书签。 .(2013年高考大纲卷(文))x2的展开式中x的系数是 68 A.28 【答案】C二、填空题 B.56......

    分类加法计数原理与分步乘法计数原理教案

    分类加法计数原理与分步乘法计数原理 教学目标 ①理解分类加法计数原理与分步乘法计数原理; ②会利用两个原理分析和解决一些简单的应用问题; 教学重点 理解两个原理,并能运用......

    高二地方新教材期末练习卷(三角函数、解析几何、排列、组合、二项式定理)(范文大全)

    高一地方新教材期末练习卷一一、选择题(每题3分,共36分)1.54,ab10,则a与b的夹角为A. 90B. 120C. 135D. 1502.cos83cos38sin83sin38的值为 A. 123B.C.D. 1 2223.在ABC中,已知a8,B60,A......

    二项式定理二项式定理的应用教案(范文模版)

    排列、组合、二项式定理·二项式定理的应用·教案 教学目标 1.利用二项式定理及二项式系数的性质解决某些关于组合数的恒等式的证明;近似计算;求余数或证明某些整除或余数的问......

    排列与组合教案

    课 题: 数学广角 ——简单的排列和组合 鹤鸣山小学:佘莎 教学内容:九年义务教育课程标准实验教科书 数学二年级上册p99例1 教学目标: 1.通过观察、猜测、比较、实验等活动,找出最......

    高中数学说课稿《分类加法计数原理与分步乘法计数原理》

    高中数学说课稿《分类加法计数原理与分步乘法计数原理》 一、本课教学内容的本质、地位、作用分析 分类加法计数原理与分步乘法计数原理是人类在大量的实践经验的基础上归......

    1.1分类加法计数原理与分步乘法计数原理 教学设计 教案

    教学准备 1. 教学目标 知识与技能:①理解分类加法计数原理与分步乘法计数原理; ②会利用两个原理分析和解决一些简单的应用问题; 过程与方法:培养学生的归纳概括能力; 情感、态......