第一篇:人教版五年级《平行四边形的面积》优质教学设计
《平行四边形的面积》教学设计
信阳市第三小学 王黎明
教学内容:人教版小学五年级数学上册87、88页的内容。教材分析:
《平行四边形面积》教学是在学生已经掌握并能灵活运用长方形面积计算和平行四边形特征的基础上进行教学的,它将为后面学习梯形、三角形、圆的面积及立体图形的表面积奠定基础,因此起到承上启下的作用。
学情分析:学生虽然已经学过了长方形面积计算方法和平行四边形特征,但小学生的空间想象能力不够丰富,推动平行四边形面积计算公式有困难,因此,本节课将让学生充分运用已有的知识,全面参与新知识的发生、发展和形成过程。
教学目标:
1、通过操作、观察、比较等活动,自主探索平行四边形面积计算公式,发展学生的空间观念,渗透转化的数学思想方法。
2、能正确的运用公式计算平行四边形的面积。
3、感受数学源于生活,生活需要数学;带学生体会尝试学习的快感;培养学生的分析、综合、抽象、概括和解决实际问题的能力,增强学生学习数学的积极性;感受学习数学的快乐。
教学重点:探究并掌握平行四边形面积的计算公式,并能正确运用。教学难点:理解平行四边形面积的计算公式的推导过程,体会转化的思想。教学准备:多媒体课件、平行四边形卡纸、剪刀、三角板、一个可变形的长方形框架。教学过程:
一、创设情境,复习引入
1、出示曹冲称象的图片,提问:同学们听过曹冲称象的故事吗? 那曹冲是直接称的大象吗?(不是)那是什么呀?(石子)对,和大象等重量的石子。
聪明的小曹冲呀!在这里其实运用了一种转化的思想。(板书转化)把称大象这种不易操作的事情转化成称等重量的石子,从而解决问题。这节课呀,老师希望你们像小曹冲一样多动脑筋,善于思考,相信你们会比他更棒!你们有信心吗?
2、课件出示书中主题图。
(1)同学们,有没有发现这个暑假过来,我们学校变漂亮了,学校为了方便我们更好的观察植物的成长,趁假期在楼顶建了花坛,老师在上面发现了两种类型的花坛。它们分别是什么形状的?
(1)那你认为哪个花坛的面积大呢?
那老师想准确地知道花坛的面积到底哪个大。该怎么办呢? 你会计算哪个图形的面积呢? 那你说一下长方形的面积怎么计算? 板书:长方形的面积=长×宽
老师是测量了这个长方形的长是6m,宽是4m,你能算出它的面积吗? 我们已经知道了长方形的面积平行四边形的面积,那平行四边形的面积该怎么计算呢?本节课文明就一起来研究平行四边形的面积计算。(板书课题)
二、自主探索学习新知
(一)利用方格,初步探究
大家都知道我们用单位面积密铺的方法,也就是数方格的方法可以得到一个图形的面积。那么为了操作方便,老师把一个平行四边形的花坛按照一定的比例缩放到同学们手中的方格纸上。每一个方格代表1㎡,不足一格的我们按半格来计算。下面就有请同学们用数一数的方法数数这个平行四边形的面积到底是多少平方米,王老师请同学们一边数一边把怎么数的标注在方格纸上,争取让我们一看就能看明白。行吗?
此时老师巡视。(可以直接表示在上面,让我们看清楚你是怎么数的?)好,非常棒!怎么样同学们,你们数出来没有?
数完的,请做好。大部分同学都数好了对吧?
2、汇报想法。
唉,谁上前面来数给大家看一看。指名操作讲解。同意吗?同意!
这位同学数的非常的有序。他先数的满格的,在数的半格的。一共是24㎡,和你的答案一样吗?(一样)
非常好,请回。有哪个同学的数法和他不一样呢?好!你来数给大家看。(学生上台操作。这个学生是把平行四边形右边的三角形移到左边。把右边的与左边的相结合。)你的方法真巧妙,请回。刚才我们通过数方格的方法数出了这个平行四边形的面积,是多少?(24㎡)和刚才我们求的长方形的面积怎么样呀?(相等)
3、小结:(指图)数方格我们发现,平行四边形的底和长方形的长相等,平行四边形的高和长方形的宽相等,平行四边形的面积和长方形的面积也相等。这是一种巧合呢?还是平行四边形和长方形之间真有某种联系呢?通过下面的学习你一定会明白。
现在老师想得到一个很大的平行四边形广场的面积,你认为数方格的方法还合适吗?(不合适,太麻烦)大家看长方形有面积计算公式,那如果平行四边形也有面积计算公式,那是不是方便多了呀?对于我们来说,平行四边形的面积计算公式,我们不知道。那我们能不能像小曹冲学习一下,把平行四边形转化成我们学过的、会计算面积的图形呢?能不能找到一种方法,适用于计算所有平行四边形的面积呢?让我们带着这个问题以小组为单位进行探究。
(二)动手操作,深入探究
1、介绍材料 老师为每组准备了1组平行四边形和一张学习卡,同学们在操作的时候只在其中一张平行四边形卡片上进行操作,然后另一个平行四边形用于比较。
(为了剪拼的规范,建议大家用铅笔和三角板先画一画,再剪拼。思考: 动手操作前建议大家先想一想:能不能把它变成以前学过的图形呢?怎么变?把你的剪拼方法及你对学习卡上问题的思考和小组同学进行交流。)
好,大家一起来看一下活动要求。谁来读一下?
1、活动要求:
(1)画一画、剪一剪、拼一拼,把平行四边形剪拼成我们学过的会计算面积的图形。
(2)观察原来的平行四边形和转化后的图形,你发现了什么?(并将你的发现记录在学习卡上。)
(3)试着概括出平行四边形的面积公式。
明白了吗?比比看,哪个小组进行的又快又好!开始吧!
2、汇报交流
(1)汇报剪拼过程。好了,同学们都完成了吗?下面哪个小组愿意来汇报一下你们的研究成果。上来汇报的时候派两人代表,一个同学摆一个同学汇报学习卡上的问题。
(生1:找顶点剪高的汇报。(老师板书:沿高剪平移))他们小组汇报的非常有条理。好,老师有一个问题,为什么要沿着高剪开呢?不沿着高剪不行吗?谁知道?(如果不沿着高剪,剪斜了,就拼不出长方形了。只有沿着高剪,才能把平行四边形变成长方形)是不是呀?我们只有沿着高剪才能保证出现什么呀?(长方形)嗯只有出现直角,才能满足长方形的特征。他们这个小组表现怎么样?掌声送给他们。刚才这个小组都是从顶点处画了一条高,然后由高剪开,拼了一个长方形。那还有不同的剪拼方法吗?小组汇报。
(生2:我们在平行四边形中间画了一条高。剪开,然后我们把它拼成了一个长方形。)他们的结论和大家的一样吗?第一组同学他们是从顶点处做高,然后剪开。他们是从中间做高,然后剪开。都能拼成一个长方形。把平行四边形的面积转化成了等面积的长方形,从而推导出了平行四边形的面积计算公式是不是?他们这个小组表现怎么样?掌声送给他们。
(2)课件演示剪、拼过程。
好!我们一起再来回顾一下刚才我们的推导过程。(此时出示动态的幻灯片。)我们把平行四边形先画出任意一条高。然后沿着高把它剪开,移到右面,这样就拼成了一个长方形。那这时候,它的面积变了吗?(没有)没有变,就说明什么呀?(长方形的面积等于平行四边形的面积。)此时,老师板书平行四边形的面积,并在长方形的面积和平行四边形的面积中间划等于号。通过观察,我们发现这个长方形的长就相当于原来平行四边形的底,这个长方形的宽就相当于原来平行四边形的高。因为长方形的面积等于长乘宽。所以,平行四边形的面积就等于底乘高。(此时老师在平行四边形的面积等于底乘高之间划等于号。)好!谁能像老师一样把刚才的推导过程再说一遍。
同学们真了不起,自己推导出了平行四边形的面积计算公式。我们现在自豪的把平行四边形的面积大声的读一遍。来,平行四边形的面积,预备起。生齐读:平行四边形的面积=底×高。
(3)如果老师用字母S表示平行四边形的面积,用a来表示平行四边形的底,h表示平行四边形的高,那么,平行四边形的面积用字母表示公式是?(生:S=ah)反问:那要计算平行四边形的面积,必须知道什么?(平行四边形的底和高)好,现在我们知道了平行四边形的面积计算公式,再回到我们之前的花坛,我们要想知道这个平行四边形花坛的面积,我们只需要知道他的什么和什么?(它的底和高)底是6米高是4米,谁来算一下?(4x6等于24㎡)
(三)总结方法:刚才大家在剪拼的时候,都把平行四边形变成了长方形,这是一种很重要的数学思想方法,也就是之前小曹冲运用它称象的方法—转化的数学思想方法,看来我们都是聪明的孩子。给自己鼓鼓掌吧!
通过剪拼,把平行四边形转化成了长方形,还总结出了平行四边形的面积计算公式!那同学们会灵活的运用吗?让我们带着我们的收获来解决问题!下面老师的考考你们了,你们敢接受挑战吗?相信你们一定没问题!请看题。
三、巩固新知
1、小试身手(课件:)求下列平行四边形的面积?
(这个平行四边形的面积你会算吗?来,在练习本上算一算,看谁算得又对又快。谁来起来说说你是怎么算的?为什么不用5x4.3呢?这也是底和高呀?(因为不是相对应的底和高。)所以在计算平行四边形面积的时候要用同一组底和高,记住了吗?)
提示:计算面积时,要先写字母公式,再计算噢!
(生板演:S=ah=3.6×5=18 cm²)
2、解决问题 谁来大声的读一读?
一个平行四边形的停车位,它的面积是15㎡,它的底长5m,高是多少米? 这个题和刚才的题有什么不同呢?(刚才到那道题是求面积,这道题是求高。)刚才是求面积,这道题知道了面积和底,求高,会吗?(会)好,在本子上快速坐出来。做好的同学就抱手坐端正。好,那你来告诉我该怎么求呢?(15÷5等于3米。)同学们同意吗?(同意!)那你告诉大家知道面积和底该怎么求高呢?(用面积除以底等于高)面积除以底等于高,也就是说h等于s除以a。同学们同意吗?(同意!)
3、下列四个平行四边形的面积一样大吗?为什么?
好,还有最后一道题,老师要加大难度了。请看题,比较下列平行四边形的面积,第一个第二个第三个第四个你觉得哪一个平行四边形的面积大呢。哪个大呢?谁有想法?(我觉得他们是一样大他们同一个底也是同一个高。)怎么是同一个高呢?有谁要补充的吗?(老师分别出示几个平行四边形的高,并问他们的高都是怎样的呀?)他们都底都是同一个底,他们的高相等的,都是两条平行线间的距离。所以他们的面积是一样的。也就是同(等)底等高的平行四边形面积相等。
小结:判断平行四边形的面积,只要抓住哪两个关键点就行了?(只要抓住它的底和高就行了。)
四、全课小结,(提问总结)
课马上接近尾声了,那这节课同学们有什么收获呢?谁说说(生1:会求平行四边形的面积。怎么求呀?底乘高。
生2:我学会了转化的思想,把平行四边形转化成长方形。哦,把平行四边形转化成长方形,然后推导出平行四边形的面积公式是不是?你真有心。生3:我知道了平行四边形的面积公式等于底乘高。字母表达式是s等于ah。
看来同学们的收获还真不小。这节课我们运用转化的数学思想方法,把平行四边形的面积转化成了等面积的长方形,从而推导出了它的面积计算公式,通过转化,我们可以找到新旧知识间的联系,从而解决问题。希望同学们在课下继续利用这种转化的思想解决更多的数学问题,行吗?好,咱们这一节课就上到这儿,下课。
五:布置作业:
一个平行四边形的相邻两条边的长分别是10cm和8cm,一条高是9cm,它的面积是多少?(提示:可以把平行四边形画出来想一想,思考用那一条边做底?)
六、板书设计:
平行四边形的面积
转
长方形的面积 =长
× 宽
化
||
|
|平行四边形的面积 =底
× 高
用字母表示面积公式:S = ah
第二篇:五年级《平行四边形面积》教学设计
五年级《平行四边形面积》教学设计15篇
五年级《平行四边形面积》教学设计1
教学内容:
人教版小学《数学》五年级上册,平行四边形的面积。
教学目标:
1、使学生经历探索平行四边形面积计算公式的推导过程,掌握平行四边形的面积计算方法,能应用平行四边形的面积公式解决相应的实际问题。
2、培养学生的观察操作能力,领会割补的实验方法;培养学生灵活运用知识解决实际问题的能力;培养学生空间观念,发展初步的推理能力。
3、培养学生合作意识和严谨的科学态度,渗透转化的数学思想和事物间相互联系的辩证唯物主义观点。
教学重点:探索并掌握平行四边形的面积计算公式。
教学难点:理解平行四边形的面积计算公式的推导过程。
教学过程:
一、巧设情境,铺垫导入
师:(在实物投影仪中出示教具,如下图)这是一个长方形框架,它的长是8厘米,宽是5厘米,它所围成的长方形面积是多少?你是怎样想的?
(根据学生的回答,教师适时板书:长方形的面积=长×宽)
师:如果捏住这个长方形的一组对角,向外这样拉,(教师演示,如下图)同学们看看,现在变成了什么图形?(平行四边形)
师:这样一拉,形状变了,面积变了吗?
师:(对认为面积不变的同学质疑)你认为平行四边形的面积是怎样计算的'?
(平行四边形的面积等于相邻两条边的乘积)
师:究竟这个猜想是否正确,下面我们一齐来验证一下就知道了。
请同学们用数方格的方法来算出这个平行四边形的面积,(教师把拉成的平行四边形框架放在方格纸上,用实物投影仪显示,如下图)数的时候要注意,每个小方格的面积是1cm2,不满一格的当半格计算。(通过学生数一数,得出这个平行四边形的面积是32cm2,使学生明确 .拉成的平行四边形面积变少了,相邻两条边的乘积不能算出平行四边形的面积.
师:看起来,用相邻的两条边相乘不能算出平行四边形的面积,那么,平行四边形的面积应该怎样计算呢?这节课就让我们一起来探讨平行四边的面积计算吧。(板书课题:平行四边形的面积)
二、合作探索,迁移创造
1、图形转换
师:(教师展示一个平行四边形卡片)这是一个平行四边形,我们不知道它的面积如何计算,能不能把它转换成我们已学过的图形呢?(能)可以转换成什么图形?(长方形)
师:四人小组合作,用课前准备好的平行四边形卡片和剪刀,把平行四边形剪拼成长方形。(学生动手操作)
2、探讨联系
师:同学们真能干,很快就把平行四边形转换成了长方形,请大家认真观察,转换前平行四边形的面积、底和高分别与转换后的长方形的面积、长和宽有怎样的联系?(小组讨论交流,引导学生边动手操作边观察,从中得出转换前平行四边形的面积、底和高分别与转换后的长方形的面积、长和宽相等。)
师:(结合黑板上的图形说明)这个长方形的面积与这原来的平行四边形面积相等,长方形的长与原来平行四边形的底相等,长方形的宽与原来平行四边形的高相等。
3、推导公式
师:我们知道长方形的面积等于长乘宽,那么平行四边形的面积可以怎样计算呢?(平行四边形的面积等于底乘高)
(教师根据学生回答板书:平行四边形的面积=底×高)
师:如果用S表示平行四边形的面积,a表示底,h表示高,怎样用字母来表示这个公式?(引导学生说出用字母表示公式)
(教师根据学生回答板书:S=ah)
4、验证公式
师:究竟这个公式是否正确?下面我们来验证一下,(把导入时拉成的平行四边形框架放在方格纸上,用实物投影仪显示)请同学们利用刚才推导出来的平行四边形面积公式来计算这个平行四边形框架的面积。(先让学生明确这个平行四边形的底和高各是多少,再列式计算。)
师:计算出来的结果和我们数方格得出的结果一样吗?(一样)
师:这证明我们所推导出来的平行四边形面积公式是正确的。
5、提问质疑
师:刚才同学们的表现都不错,下面请大家阅读课本80—81页,还有什么疑问,请提出来。(学生阅读课本和质疑)
三、层层递进,拓展深化
1、算一算
师:(课件出示如下图)算一算停车场里两个不同的平行四边形停车位的面积各是多少。(学生动手算一算,再让学生汇报。)
2、选一选
师:(课件出示,如下图)要计算这个平行四边形的面积,下面几个选择,你选哪个?为什么?(引导学生理解计算平行四边形面积的时候,底和高必须是相对应的。)
3、画一画
师:请同学们在方格纸上画出一个面积是24 cm2的平行四边形,看谁画得又对又快。(先向学生说明这个方格纸中的每个小方格的边长都是1cm,要求学生想清楚该怎样画,再动手画一画。)
4、想一想
师:(课件出示如下图)学校里有一块草地,想在草地的一边修一条小路通向另一边,下面的有三种设计方案,你认为哪种设计方案的面积最小?为什么?(先小组讨论,再让学生自由地发言,引导学生从平行四边形的面积计算方法来思考问题。)
师:你发现了什么规律?(引导学生理解等底等高的平行四边形
面积相等。)
四、总结全课,提高认识
回顾刚才我们的学习过程,你有什么收获?
教学反思:
本设计巧妙地利用学生计算长方形面积的经验设置悬念,整个过程引导学生经历了类推(负迁移)→试误→验证→寻求正确的解决问题的方法→推广应用→拓展等过程,充分体现了“学生是数学学习的主人”的全新教学理念。全程层层推进,环环相扣,流畅又不失创新特色。主要体现以下两个特点。
1、前后呼应,浑然一体
利用长方形框架巧设情境,复习长方形的面积计算方法,为平行四边形的面积公式推导作铺垫,然后把长方形拉成平行四边形,向学生提问:面积变了吗?引起学生的好奇与争议,以此为契机,再用数方格的方法来证明平行四边形的面积等于相邻两条边的乘积是错误的,激发学生进一步探讨平行四边形的面积计算的求知欲望。
把平行四边形的面积公式推导公式出来以后,让学生再一次验证公式,这一过程前后呼应,浑然一体,培养了学生严谨的科学态度。
2、合作探索,迁移创造
在推导平行四边形的面积过程中,教师给予学生充分的时间和空间,通过学生动手操作与合作交流,使学生主动地探索和发现平行四边形面积的计算方法。在这过程中,学生议论纷纷,各抒己见,主体地位发挥得淋漓尽致,充分体现了“学生是数学学习的主人”的全新教学理念,同时,点燃了学生。
五年级《平行四边形面积》教学设计2
设计说明
在本节课的教学中主要关注学生空间观念的发展,进一步扎实几何知识的学习。现将本节课的教学设计作以下简要说明:
1.动手实践,多维探究。
数学知识是抽象的,而小学生的思维是以具体形象思维为主的,显然,数学学科的特点与小学生的思维特点是矛盾的。要解决这个矛盾,提高小学数学课堂的教学效率,就要直观演示和动手操作。重视动手操作是发展学生思维,培养学生数学能力最有效的途径之一。教学时先出示一个与长方形面积相等的平行四边形,让学生认真观察,用数方格的方法数出它们的面积,并填写表格,引导学生观察表格,通过讨论发现:长方形的长与平行四边形的底相等,长方形的宽与平行四边形的高相等,并且两个图形的面积相等。这一实践操作实际上是让学生了解长方形的长和宽与平行四边形的底和高之间的内在联系。将平行四边形转化成与它面积相等的图形来计算它的面积,学生积极讨论后再动手操作,用割补法探究平行四边形的面积计算公式。
2.分层运用新知,逐步理解内化。
新知需要及时组织学生巩固运用,才能达到理解内化的效果。本着“重基础、验能力、拓思维”的原则设计练习题。整个习题设计部分,题量不要太大,但要涵盖本节课的所有知识点,题目呈现方式多样,吸引学生的注意力,使学生面对挑战时充满信心,激发学生的学习兴趣,引发思考,发展思维。同时,练习题的设计要遵循由易到难的原则,层层深入,这样可以有效地培养学生的创新意识和解决问题的能力。
课前准备
教师准备 PPT课件 学情检测卡 课堂活动卡平行四边形卡片 剪刀
学生准备 练习卡片平行四边形卡片 剪刀
教学过程
⊙创设情境,导入新课
1.常用的面积单位有哪些?
2.出示教材87页情境图,观察这两个花坛,猜测一下,哪一个花坛的面积大呢?假如这个长方形花坛的长是6 m,宽是4 m,怎样计算它的面积呢?
根据“长方形的面积=长×宽”,得出长方形花坛的面积是24 m2,平行四边形的面积计算公式我们还没有学过,所以不能算出平行四边形花坛的面积,我们能不能把平行四边形转化成我们学过的、会计算面积的图形呢?本节课我们就一起学习习近平行四边形面积的计算。
(板书课题:平行四边形的面积)
设计意图:创设情境,寻找解题思路。用长方形的面积引入新课,使学生感受平面图形之间的联系,为平行四边形的面积计算公式的推导做好铺垫。
⊙操作实践,探究新知
一、数方格法。
1.复习旧知。
师:以前我们用数方格的方法求长方形的面积。今天我们也用同样的方法求平行四边形的面积。
(出示方格纸)
师:这是什么图形?(长方形)如果一个方格代表1 m2,那么这个长方形的面积是多少?(24 m2)
师:这是什么图形?(平行四边形)如果一个方格代表1 m2,自己在方格纸上数一数,这个平行四边形的面积是多少?
师:方格纸上不满一格的都按半格计算。说出数方格的结果,并说一说你是怎样数的。
2.填写并观察表格。
设计意图:由长方形可用数方格的方法求出面积,推导出平行四边形也可以用这种方法求出面积,学生很有兴趣去数,且从中发现平行四边形与长方形之间的联系,为下一步探究提供了思路。 3.小结:如果长方形的长和宽分别等于平行四边形的底和高,那么它们的面积相等。
二、割补法。
1.讨论:你们准备怎样将平行四边形转化成长方形呢?
预设 生:沿着平行四边形的一条高剪开,重新拼一下,可以拼成长方形。
2.组织学生操作,教师巡视指导。
3.教师示范平行四边形转化成长方形的过程。
(1)先沿着平行四边形的高剪下左边的直角三角形。
(2)左手按住剩下的梯形部分,把剪下的直角三角形沿着底边慢慢向右移动,也叫沿着底边平移,直到直角三角形的`斜边与平行四边形右侧的边重合为止。
4.观察思考。(在剪拼成的长方形左面放一个与原来一样的平行四边形,便于比较)
(1)这个由平行四边形转化成的长方形的面积与原来的平行四边形的面积相比,有没有变化?为什么?
(2)这个长方形的长与原来的平行四边形的底有什么关系?
(3)这个长方形的宽与原来的平行四边形的高有什么关系?
(4)思考后填空。
①原来的平行四边形的底与长方形的( )相等。
②原来的平行四边形的( )与长方形的( )相等。
③这两个图形的( )相等。
五年级《平行四边形面积》教学设计3
教学目标:
1、经历动手操作、讨论、归纳等探索平行四边形面积公式的过程。
2、探索并掌握平行四边形的面积公式,会用公式计算平行四边形的面积。
3、在探索平行四边形面积公式的过程中,感受转化的数学思想;感受面积公式推导过程的条理性和数学结论的确定性。
教学重难点:
总结出平行四边形的面积公式。灵活运用平行四边形面积公式。
教具准备:
教师准备长方形一个、平行四边形两个;学生准备三个平行四边形。
教学过程:
一、复习导入
师:同学们,我带来了长方形和平行四边形,说一说你都知道长方形的哪些知识。
(学生说出长方形面积板书出来)
师:你还知道哪些平行四边形的知识?
(如有学生说不出高,师提醒)
师:长方形和平行四边形有哪些相同点,又有哪些不同点?
(平行四边形没有直角)
师:刚有同学说到了面积,那你知道这两个图形哪个面积大吗?
(学生说,比较)
师:那有同学说将这个平行四边形剪拼以后,它们两个的面积就相等了,这个想法非常棒。那我这还有一个平行四边形,这两个比较呢?
(学生说自己的想法)
师:那既然我们不能这样比较出它们的面积,那你们想不想知道还有没有其他的方法可以知道平行四边形的面积?
师:那我们这节课就一起来探索平行四边形的面积。(板书课题)
二、讲授新知
师:我们知道长方形有面积公式,能很快的算出它的面积,那平行四边形有没有呢?
师:有,那我们又如何来探究呢?我们学过长方形的面积,可不可以像刚才那位同学说的,将平行四边形转化成长方形我们再来探究呢?
师:那接下来我们就一起来探究平行四边形的面积公式,先将平行四边形转化成长方形。先不要动,请带着老师的几个要求去做。(课件)
师:(关注学生的剪法。让学生说说自己是怎样剪的,沿着什么剪的.?如有很多同学剪的不标准,叮嘱沿着高剪以后,再让同学们剪一剪。多叫些学生来说想法。)
师:通过同学们的探究你发现了什么,找到平行四边形的面积公式了吗?
(生:说想法)
(课件在演示一下平行四边形的底和高相当于转化后长方形的长和宽)
师:那我有个问题,是不是平行四边形的面积就等于长方形的面积?
(不是,并不是所有的平行四边形面积都等于长方形的面积)
师:如果用S表示面积,那平行四边形的面积公式的字母表达是?
(板书:S=ah)
师:同学们今天很了不起,通过自己探索得到了平行四边形的面积公式,那就下来带着这个知识我们来完成几道题好吗?
三、巩固练习
师:1、计算下面平行四边形的面积,快速列算式不计算。
师:2、同学们答得很快,都正确。那接下来将这两题写在本上。
(集体订正答案)
师:如果要想求平行四边形的面积的必备条件是什么?
师:哦,也就是知道高和底就能求出它的面积,是吗?
师:3、让我们一起来看看这道题。
(让学生说说想法)
师:也就是我们要找到相对应的底和高才能求出平行四边形的面积,那这条底边的高在哪?(课件出示)那能求出这条高的长度吗?
(板书:S=ahh=S/aa=S/h)
四、知识拓展
师:同学们现在请比较一下这两个平行四边形的面积。
(学生说想法)
师:那这个呢?对它们的都是相等的,因为它们等底等高。
五、小结
师:本节课你学会了哪些知识?
五年级《平行四边形面积》教学设计4
长方形的面积=长×宽
平行四边形的面积=底×高
S=a×h
S=ah或S=ah
课后记:
第二课时
教学内容:
平行四边形面积计算的练习(P82~83页练习十五第4~8题。)
教学要求:
1.巩固平行四边形的面积计算公式,能比较熟练地运用平行四边形面积的计算公式解答有关应用题。
2.养成良好的审题习惯。
教学重点:
运用所学知识解答有关平行四边形面积的应用题。
教具准备:
展示台
教学过程:
一、基本练习
1、平行四边形的面积是什么?它是怎样推导出来的?
2、.口算下面各平行四边形的面积。
(1)底12米,高7米;
(2)高13分米,第6分米;
(3)底2.5厘米,高4厘米
二、指导练习
1.补充题:一块平行四边形的麦地底长250米,高是78米,它的面积是多少平方米?
(1)生独立列式解答,集体订正。
(2)如果问题改为:“每公顷可收小麦7000千克,这块地共可收小麦多少千克?
①必须知道哪两个条件?
②生独立列式,集体讲评:
先求这块地的面积:250×780÷10000=1.95公顷,
再求共收小麦多少千克:7000×1.95=13650千克
(3)如果问题改为:“一共可收小麦58500千克,平均每公顷可收小麦多少千克?”又该怎样想?
与⑵比较,从数量关系上看,什么相同?什么不同?
讨论归纳后,生自己列式解答:58500÷(250×78÷1000)
(4)小结:上述几题,我们根据一题多变的练习,尤其是变式后的两道题,都是要先求面积,再变换成地积后才能进入下一环节,否则就会出问题。
2.(1)练习十五第5题:
1.4厘米
2.5厘米
a、你能找出图中的两个平行四边形吗?
b、他们的面积相等吗?为什么?
c、生计算每个平行四边形的面积。
d、你可以得出什么结论呢?(等底等高的平行四边形的面积相等。)
(2)练习十五6题
让学生抓住平行四边形的底和高与正方形有什么关系。(平行四边形的底和高分别等于正方形的边长。)
3.练习十五第3题:已知一个平行四边形的面积和底,(如图),求高。
7m
分析与解:因为平行四边形的面积=底×高,如果已知平行四边形的面积是28平方米,底是7米,求高就用面积除以底就可以了。
三、课堂练习
练习十五第7题。
四、作业
练习十五第4题。
课后记:
第三课三角形面积的计算
教学目标:
1.理解三角形面积公式的推导过程,正确运用三角形面积计算公式进行计算.
2.培养学生观察能力、动手操作能力和类推迁移的能力.
3.培养学生勤于思考,积极探索的学习精神.
教学重点:
理解三角形面积计算公式,正确计算三角形的面积.
教学难点:
理解三角形面积公式的推导过程.
学具准备:
每个学生准备三种类型三角形(每种类型准备2个完全一样的`)和一个平行四边形。
教学过程
一、激发
1.出示平行四边形
1.5厘米
2厘米
提问:
(1)这是什么图形?计算平行四边形的面积。(板书:平行四边形面积=底×高)
(2)底是2厘米,高是1.5厘米,求它的面积。
(3)平行四边形面积的计算公式是怎样推导的?
2.出示三角形。三角形按角可以分为哪几种?
3.既然平行四边形都可以利用公式计算的方法,求它们的面积,三角形面积可以怎样计算呢?(揭示课题:三角形面积的计算)
教师:今天我们一起研究“三角形的面积”(板书)
二、指导探索
(一)推导三角形面积计算公式.
1.拿出手里的平行四边形,想办法剪成两个三角形,并比较它们的大小.
2.启发提问:你能否依照平行四边形面积的方法把三角形转化成已学过的图形,再计算面积呢?
3.用两个完全一样的直角三角形拼.
(1)教师参与学生拼摆,个别加以指导
(2)演示课件:拼摆图形
(3)讨论
①两个完全一样的直角三角形拼成一个大三角形能帮助我们推导出三角形面积公式吗?为什么?
五年级《平行四边形面积》教学设计5
一、教学目标:
1、理解和掌握平行四边形的面积计算公式。
2、会计算平行四边形的面积。
二、教学重点:
理解公式并正确计算平行四边形的面积。
三、教学难点:
理解平行四边形的面积公式的推导过程。
四、学具准备:
平行四边形纸
五、教学过程:
(一)板书课题,揭示目标
同学们请看大屏幕,这两个花坛哪一个大呢?比较它们的大小得知道它们的面积,我们只学过长方形的面积,哪位同学能说一下?(教师板书)
平行四边形的面积我们还不会计算,(出示)小精灵提示我们先用数方格的方法试一试。(切换)
一个方格代表1m2,不满一格的都按半格计算。
谁来数一数两个图形的面积各是多少?(出示)
平行四边形的底和高各是多少?(出示)
长方形的长和宽各是多少?(出示)
(出示)你发现了什么?
同学们今天这节课我们就来学习“平行四边形的面积”(板书课题)
本节课我们的学习目标是:
1、理解和掌握平行四边形的面积计算公式。
2、会计算平行四边形的面积。(课件出示)
要想完成学习目标,还要靠同学们认真自学,请看自学指导。
(二)出示自学指导
1、想一想,如何把平行四边形剪拼成长方形?以小组为单位剪一剪,拼一拼。
2、观察拼成的长方形和原来的平行四边形,拼成的长方形的长与平行四边形的底有什么关系?拼成的长方形的宽与平行四边形高有什么关系?拼成的长方形与原来的平行四边形的面积有什么关系?想一想平行四边形的面积应该怎样计算?
(6分钟后,比一比谁能正确计算出平行四边形的面积。相信你一定行!)
现在开始自学,注意看书的姿势,用剪刀时要注意安全!
(三)学生自学
1、学生看书自学,教师巡视,督促每个学生都能认真自学。
2、检测学生自学效果
师:自学时间到,谁来演示一下你是怎样把平行四边形剪拼成长方形的?(抽生到前面演示)
观察拼成的长方形和原来的平行四边形,拼成的.长方形的长与平行四边形的底有什么关系?拼成的长方形的宽与平行四边形高有什么关系?拼成的长方形与原来的平行四边形的面积有什么关系?
想一想平行四边形的面积应该怎样计算?(师板书面积公式)
教师小结(课件展示动画):
同时教师口述:通过割补的方法,我们可清楚地看到,任何一个平行四边形都可以转化为长方形,而且长方形的长和宽恰好等于平行四边形的底和高。所以,平行四边形的面积=底×高。
(边口述,边板书。)教师讲述:如果用S表示平行四边形的面积,用a表示平行四边形的底,用h表示平行四边形的高,那么平行四边形的面积计算公式可以写成:S=a×h,简写成:S=ah。(板书)
下面就用你所学的知识去解决一下实际问题。
出示检测题
课件出示:平行四边形花坛的底是6m,高是4m,它的面积是多少?
抽2名学生上台板演,其他学生写在练习本上,教师巡视,搜集学生检测中出现的错误。
(四)后教
1、学生自由更正
在学生完成检测后,看黑板上学生的板演,注意做题的步骤,如发现错误和有不同见解的同学,上台更正。
2、讨论归纳
问:做题的步骤是什么?第一步写什么?其中的a表示什么?h表示什么?s呢?
板书:写公式——代入数——计算(单位)——写答话。
(五)当堂训练
xxx
(六)全课总结
这节课,你有什么收获?
六、板书设计
平行四边形的面积
长方形的面积=长×宽
平行四边形的面积=底×高
S=ah
写公式——代入数——计算(单位)——写答话
五年级《平行四边形面积》教学设计6
学习目标
1、利用自己的方法,探索并掌握平行四边形面积的计算公式,会计算平行四边形的面积。
2、重点理解拼成的长方形和原来平行四边形的关系
教学过程:
一:回顾以前的知识、
师:今天我们学习什么知识?
生平行四边形的面积
师:先让我们汇报一下以前学过的相关知识吧?
生:长方形的面积=长乘宽正方形的面积=边长乘边长
平行四边形对边平行且相等平行四边形有无数高(出示课件)
师:小结从平行四边形的任何一边的一点,向对边都可以做一条高
二:我有成果展示
1师:通过预习,你有什么成果要向大家展示的?
生:汇报
2:师:好,大家自己都学会了这么多有关平行四边形面积的知识,现在,谁能简单的猜猜我们本节课的学习目标是什么?
3:师出示学习目标。
4:依据学习目标,你有什么疑问要提出吗?
生:汇报
师:不管有什么疑问,我们通过以下环节,看看是否其他同学能帮助你解决?
三:自主探究
一:拿出导学案:
师:谁能汇报一下,你完成表格的情况。(教材第80页的表格)
生:汇报
师:谁能说一说,平行四边形的面积,你是怎样知道的?
谁能说一说,你是怎样数出来的吗?
生:我先数整个格的是20个,在数八个半格的是整四个格,合起来是24个整个,也就是24平方米
师:我们也可以用平移的`办法来得出平行四边形的面积,(课件演示)
师:那长方形的面积呢?
生可数出来,也可以用长乘宽计算
师:请大家观察表格的数据,你发现了什么?
生:平行四边形的底等于长方形的长,平行四边形的高等于长方形的宽,平行四边形的面积等于长方形的面积。
生:我们可以看出平行四边形面积=底乘高
师:我们如果用数方格的方法来计算平行四边形的面积,你会感觉怎样?
生麻烦
三合作探究
师:那我们可以用什么方法研究呢?
生:把平行四边形转化成长方形。
师:你是怎样把平行四边形转化成长方形的吗,请拿着你的平行四边形学具边演示边说。
生:过平行四边形一个顶点,沿着平行四边形地边上的高剪开。
师还有其他不同的剪法吗?
生:沿着平行四边形这一条边上的高剪开。
师:同时出示课件
师:听了同学们的简拼方法,你还有什们疑问吗?
生:老师为什么要沿着高剪开呢?
师:谁能帮助这位同学回答。
生:这样剪可以使两边变成直角,变成我们学过的长方形。
师刚才有的同学说沿高剪成了正方形,者必须满足什么条件呢?
生:平行四边的高等于平行四边形的底,这是特殊情况。
师:小结我们从平行四边形一组对边任意一点作高,通过平移都可拼成长方形或正方形。(课件出示结论)
师:观察拼成的长方形和原来的平行四边形,你能发现什么?
小组合作交流自己预习的成果。
请生汇报。
生:拼成长方形的面积和平行四边形的面积相等,面积不变。
拼成的长方形的长等于原来平行四边形的底,长方形的宽等于平行四边形的高
师:既然面积没变,什么变了呢?形状变了。
师:还有什么变了?
生沉默
师:周长变了吗?
生:变了
师:变大了还是变小了呢?谁能说说?
生:边指边说长方形的长就是平行四边形的底,长方形的宽比平行四边形高变短了,所以周长变小了。
师:给予积极肯定。
师:既然长方形的面积=长乘宽,那么同学们可以推导出平行四边形的面积吗?
生:平行四边形的面积=底乘高
师:为什么平行四边形的面积等于底乘高?
生:因为拼成的长方形的长等于平行四边形的底,宽等于高,长方形的面积等于长乘宽,所以平行四边形的面积的等于底乘高
师:用字母怎样表示?
生:s=ab
师:小结刚才你们用剪拼的方法,将平行四边形转化成长方形,用旧知解决了新问题,非常好!实际这种解决问题的方法是应用了数学转化方法,今后在数学中,我们会经常用到。
师:出示例1:平行四边形的花坛的底是6m,高是4m,它的面积是多少?
生:自己解决。(集体纠正)
四:达标测评
一:人人轻松来过关
1:选择条件计算平行四边形的面积(单位:米)
二:迈开大步跨过关:
(看大屏幕略)
三:大胆跳起闯过关:
(1)平行四边形的底越长,它的面积就越大。
(2)形状不同的两个平行四边形,面积可能相等。()
(3)把一个长方形木框拉成一个平行四边形木框,周长不变,面积也不变。()
四:一题多解
人民公园有一个平行四边形的草坪,草坪上有一个长30m,宽2。5m的甬道,求草坪的面积
五年级《平行四边形面积》教学设计7
教材分析
义务教育课程标准实验教科书人教版小学数学五年级上册第五单元《平行四边形的面积 》第一课时 (包括教材80-81页例1、例2和“做一做”,练习十五中的第1-4题。)通过实验、操作、观察图形的拼摆、割补理解平行四边形的面积计算公式的来源,从而进行分析、概括出面积计算公式,进一步发展学生的思维能力和发展学生的空间观念。
学情分析
1.学生在以前的学习中,初步认识了各种平面图形的特征,掌握了长方形、正方形的面积计算,加上这些平面图形在生活中随处可见,应用也十分广泛,学生学习时并不陌生。
2、从学生的现实生活与日常经验出发,设置切近生活的情境,把学习过程变成有趣的活动。
教学目标
知识与技能
1.使学生理解和掌握平行四边形的面积计算公式。
2、会正确计算平行四边形的面积。
过程与方法:
1.通过操作、观察、比较活动,初步认识转化的方法,培养学生的观察、分析、概括、推导能力,
2、发展学生的空间观念。
情感态度与价值观:引导学生运用转化的思想探索知识的变化规律,培养学生分析问题和解决问题的能力。通过演示和操作,使学生感悟数学知识内在联系的逻辑之美,加强审美意识。
教学重点和难点
重点、难点:理解和掌握平行四边形的面积计算公式;理解平行四边形的面积计算公式推导过程。
教学过程
一、复习导入
1.什么叫面积?常用的面积计量单位有那些?
2.出示一张长方形纸,他是什么形状?它的面积怎么算?
二、探究新知
1、情景导入:出示长方形、平行四边形。这两个图形哪一个大一些呢?平行四边形的面积怎样算呢?
板书课题:平行四边形的面积
2.用数方格的方法计算面积。
(1)用幻灯出示教材第80页方格图:我们已经知道可以用数方格的方法得到一个图形的面积。现在请同学们用这个方法算出这个平行四边形和这个长方形的面积。
说明要求:一个方格表示1cm2,不满一格的都按半格计算。把数出的数据填在表格中(见教材第80页表格)。
(2)同桌合作完成。
(3)汇报结果,可用投影展示学生填好的表格。
(4)观察表格的数据,你发现了什么?通过学生讨论,可以得到平行四边形与长方形的底与长、高与宽及面积分别相等;这个平行四边形面积等于它的底乘高;这个长方形的面积等于它的长乘宽。
2.推导平行四边形面积计算公式。
(1)引导:我们用数方格的方法得到了一个平行四边形的面积,但是这个方法比较麻烦,也不是处处适用。我们已经知道长方形的'面积可以用长乘宽计算,平行四边形的面积是不是也有其他计算方法呢?
(2)归纳学生意见,提出:通过数方格我们已经发现这个平行四边形的面积等于底乘高,是不是所有的平行四边形都可以用这个方法计算呢?需要验证一下。因为我们已经会计算长方形的面积,所以我们能不能把一个平行四边形变成一个长方形计算呢?请同学们试一试。
a.学生用课前准备的平行四边形和剪刀进行剪和拼,教师巡视。
b.请学生演示剪拼的过程及结果。
c.教师用教具演示剪—平移—拼的过程。
(3)我们已经把一个平行四边形变成了一个长方形,请同学们观察拼出的长方形和原来的平行四边形,你发现了什么?
小组讨论。出示讨论题:
①拼出的长方形和原来的平行四边形比,面积变了没有?
②拼出的长方形的长和宽与原来的平行四边形的底和高有什么关系?
③能根据长方形面积计算公式推导出平行四边形的面积计算公式吗?
小组汇报,教师归纳:
我们把一个平行四边形转化成为一个长方形,它的面积与原来的平行四边形面积相等。
这个长方形的长与平行四边形的底相等,
这个长方形的宽与平行四边形的高相等,
因为长方形的面积=长×宽,
所以平行四边形的面积=底×高。
3.教师指出在数学中一般用S表示图形的面积,a表示图形的底,h表示图形的高,请同学们把平行四边形的面积计算公式用字母表示出来。
S=ah
三、应用反馈。
1.出示教材练习十五第1题。读题并理解题意。
学生试做,交流作法和结果。
2.讨论:下面两个平行四边形的面积相等吗?为什么?
学生讨论汇报。全班订正。(通过不同形式的练习,不仅巩固了知识,同时培养了学生解决问题的能力)
四、课堂小结。通过这节课的学习,你有什么收获?(引导学生回顾学习过程,体验学习方法。)
五年级《平行四边形面积》教学设计8
教学内容:
冀教版五年级数学上56—57页
教学目标:
知识与技能:探索并掌握平行四边形的面积公式,会用公式计算平行四边形的面积。
过程与方法:经历动手操作、讨论、归纳等探索平行四边形面积公式的过程。
情感态度与价值观:在探索平行四边形面积公式的过程中,感受“转化”的数学思想;感受面积公式推导过程的条理性和数学结论的确定性。
教学重点:
探索并掌握平行四边形的面积公式,会用公式计算平行四边形的面积。
教学难点:
引导学生用“转化”的数学思想,探索长方形与平行四边形的关系,自主发现平行四边形的面积计算公式。
教具、学具准备:
多媒体课件、平行四边形卡片。
教学过程:
师:同学们,上课之前,我们热热身,进行一组口算接力赛。
一、课前热身
口算接力赛
二、复习铺垫
你还记得这些图形的名称吗?关于这些图形你还想到了哪些学过的知识点?
学生汇报:说出这些图形的名称,根据自己的知识掌握水平说出相关的知识点。例如:长方形是轴对称图形,有2条对称轴,对边相等,4个角都是直角;长方形的面积=长×宽;正方形4条边都相等,4个角都是直角,正方形的面积=边长×边长;圆形也是轴对称图形,有无数条对称轴……。(重点让学生说出长方形和正方形的面积计算方法。)
师:同学们对这些图形了解的知识还真不少,认识了这些图形,了解了他们的特征,还知道了长方形和正方形的面积计算方法,你们真了不起!接下来老师将和同学们一起探究其他几个图形的面积计算方法。这一节课,我们先来探究“平行四边形的面积”(板书课题)
三、揭示课题、明确学习目标
师:请同学们自主学习本节课的学习目标,明确本节课要掌握哪些知识。(多媒体出示学习目标)
学习目标:掌握平行四边形的面积公式,会用公式计算平行四边形的面积。
师:(多媒体出示平行四边形)下面我们一起探究平行四边形的面积。
四、小组合作、探究新知
1、动手操作、实践探究
(1)、让同学们拿出手中的平行四边形,提出第一个思考的问题,边操作边思考。
思考问题:怎样把手中的平行四边形剪一刀,变成长方形?小组合作动手试一试。
(学生思考并动手操作,小组内交流。教师巡视,参与其中。)
(2)、学生汇报。学生小组派代表用实物投影边展示边交流做法。
教学预设:学生甲:我们小组是这样做的,沿平行四边形的一个顶点做一条高,沿高剪下,得到一个三角形和一个梯形,将三角形向右平移得到一个长方形。
学生乙:我们小组是这样做的,做平行四边形的`任意一条高,得到两个梯形,这两个梯形也可以拼成一个长方形。
……(有困难小组教师要给予引导。)
2、交流讨论、发现关系
(1)、师直观的多媒体演示“画——剪——移——拼”的过程。同时提出第二个思考问题。
思考问题:拼成的长方形和原来的平行四边形有什么关系?
(学生小组内交流讨论,教师参与其中,倾听意见,对于有困难的小组及时给予引导。)
(2)、学生汇报。让学生充分交流自己的看法。
教学预设:拼成长方形的面积和原来平行四边形的面积相等;拼成长方形的长和原来平行四边形的地相等,拼成长方形的宽和原来平行四边形的高相等……。
3、归纳小结
教师用多媒体直观展示:拼成“长方形的长和宽”与原来“平行四边形底和高”的关系;以及它们面积之间的关系。得出:
拼成长方形的长和原来平行四边形的地相等,拼成长方形的宽和原来平行四边形的高相等;拼成长方形的面积和原来平行四边形的面积相等。
因为,长方形的面积=长×宽。所以,平行四边形的面积=底×高。
用字母表示为:S=ah
4、尝试应用
师:学习知识,就是为了更好的应用所学来解决问题,请同学们试着解决下面问题。
完成“试一试”
(课件出示试一试习题)学生用自己喜欢的方式读题,教师提示学生写好公式在计算,指名板演其他学生完成在答题纸上。
五、小结收获、总结得失
1、学生小结
师:同学们表现的都不错。大家来说说通过本节课的学习,你又收获了哪些知识?你还有哪些不明白的地方?你打算怎样解决?和你的同学交流一下!
2、教师小结。
师:真不少!不仅学会了知识,还学会了一些学习方法,在今后的学习中只要大家运用这些方法,一定会学会更多的知识。
五年级《平行四边形面积》教学设计9
教学目标
1、经历动手操作、讨论、归纳等探索平行四边形面积公式的过程。
2、掌握平行四边形的面积公式,并用字母表示;会用公式计算平行四边形的面积。
3、在探索平行四边形面积公式的过程中,感受转化的数学思想,感受面积公式推地过程的条理性和数学结论的确定性。
教学重点
掌握并会用公式计算平形四边形的面积。
教学难点
利用转化的数学思想和方法来探索平形四边形面积公式
教学教程:
一、创设情境,引出问题
同学们,老师给你们带来了老朋友,看还认识它们吗?(课件出示长方形、正方形、平行四边形的平面图形,学生识图)
那长方形和正方形的'面积与什么有关,怎么计算呢?(学生回答)
平行四边形的面积你会计算吗?它可能与什么有关系呢?(学生猜想)
今天我们就来研究平行四边形的面积公式
二、自主探究,动手操作
1、出示要求
把平行四边形的纸片剪一刀,然后拼成一个长方形。
2、学生动手操作,教师深入学生当中观察指导
3、汇报会交流。
生1:做平行四边形的高,沿着高剪下来,把左边的放在右这拼在一起,就拼成了一个长方形。
生2:我是沉着这个顶点向下做的高,剪下来的三角形放在了右边,拼成了一个平行四边形。
师:要拼成一个长方形要怎么做才能办到呢?
生:只要沿着平行四边形的一条高剪开,就可以拼成一个长方形。
师:对,只要沿着平行四边形的一条高剪开,再平移就可以拼成一个长方形。
4、议一议:平行四边形和拼出的长方形有什么关系呢?
生1:拼成的长方形的长是平行四边形的底,长方形的高是平行四边形的高。
生2:拼成的平行四边形的面积和长方形的面积想等。
师:那谁来总结一下平行四边形的面积公式。
生:因为长方形的面积等于长乘宽,拼成的长方形的长是平行四边形的底,长方形的高是平行四边形的高。所以平行四边形的面积等于底乘高(指多名同学叙述,教师并随机板书)
5、教师在平行四边形上标出a、h,说明分别表示底和高,用S表示面积,让学生写出字母公式。
生:S=a×h
过渡:刚才通过同学们探索出了平行四边形的面积公式,你们是否会运用了,下面做一下闯关训练。
三、巩固训练,拓展延伸
1、试一试,计算平行四边形的面积。让学生先说一说图上的数据都表示什么,再试着计算。
2、练一练第1题。指名读题,独立完成。
3、问题讨论。提出问题:下图中的两个平行四边形的面积相等吗?为什么?先小组讨论再汇报。
生:两个图形的面积相等,因为它们的底一样,高也相等。
生:平行四边形的面积等于底乘高,它们的底都是2、6,高都是1、8,所以面积相等。
师:也就是说,等底等高的平行四边形的面积想等。
四、课堂小结
通过本节课的学习,你有哪些收获?
五、布置作业
1、完成57页第2、3题
2、课下自做一个活动的平行四边形木条框。测量它的底和高,求出它的面积。拉一拉,观察平行四边形的底和高是否发生变化,测量并计算它的面积。
五年级《平行四边形面积》教学设计10
教学内容:
小学数学五年级上册第87——88页
教学目标:
知识与技能目标:
理解并掌握平行四边形面积计算公式。
过程与方法目标:
能够运用公式解决实际问题。
情感态度与价值观:
通过公式的推导,向学生渗透事物之间的普遍联系;通过解决实际问题,提高学生对生活中处处有数学的认识。
教学重难点:
(1)教学重点:平行四边形面积计算公式的推导和运用。
(2)教学难点:如何让学生切实理解由平行四边形剪拼成长方形后,长方形的长和宽与平行四边形之间的底和高的关系。
教学用具:
1、课件
2、每位同学准备两个完全一样的平行四边形,并在上面做任意一条高。小剪刀一把,尺子一把。
学情分析:
这节课是学生在掌握了长方形面积的基础上学习的。学生已经有了用数方格的方法来推导长方形的面积的计算公式的经验,那么这节课学生肯定也会想到同样的方法。在此基础上让学生明确怎样数方格最好最快,由此联想到隔补转化成一个面积相等的长方形。进而动手操作,找到转化后的长方形和原来平行四边形的联系,得出平行四边形的面积计算公式。
教学过程:
一、激情导课
(大屏幕出示校园情景图)
同学们,这是育才小学校门口场景图,请同学们看看图上有哪些我们认识的图形?(有长方形、正方形、平行四边形)再请大家把目光聚焦到校门口的这两块草坪,一块是(长方形),一块是(平行四边形)那么这两块草坪哪一块大呢?(猜一猜)需要知道这两块草坪的(面积)。对,谁来说说长方形的面积怎样求?那么平行四边形的面积怎样求呢?这节课我们就来一起学习一下平行四边形的面积。(板书课题:平行四边形的面积)
看了课题,你觉得这节课我们应该达到哪些学习目标呢?(出示学习目标)
1、探究平行四边形面积计算公式。
2、运用公式解决生活中的实际问题。
师随着学生的回答在课题前板书:探究和运用
师:好,老师相信只要同学们善于观察,积极动手,勤于思考,就能获得新知识,达到我们的学习目标,你们有信心吗?(有)
二、民主导学
任务一:自主探究平行四边形的面积计算方法。
同学们,长方形的面积是用什么方法推导出来的?(数方格)那你这节课能不能也用同样的方法推导出平行四边形的面积计算方法?(能)除了数方格的方法,还有别的方法吗?(剪拼的方法)
任务呈现:请同学们动动手动动脑,想办法探求平行四边形的面积,并在小组内交流自己的方法。
提示:如果采用数方格的方法,同学们可以参照课本87页的表格完成。如果采用的是剪拼的方法,可以利用课前准备的学具,并参照课本88页内容进行学习探究。(现在各小组开始自己的探究活动吧!)
自主学习:先独立动手操作,再在小组内交流自己的发现。师巡视指导。
展示交流:
1、先请数方格的小组上台展示。
预设:我们小组是这样数方格的,先数整格的(手指大屏幕),然后数半格的。(不满一格的都按半格算)这样可以数出来平行四边形一共是24格,也就是24平方米。同样长方形的面积也是24平方米。
我们还发现了平行四边形的底是6米,高是4米,把这两个数相乘正好是24平方米。
(对小组进行评价)
师:是不是所有的平行四边形都能用数方格的方法来计算呢?如果是一个很大的平行四边形还能这样吗?(有局限性)他们组发现了底和高相乘的积正好就是平行四边形的面积,这是巧合还是必然呢?这就需要大家进一步的.验证。那么,我们接下来请用不同方法的小组上台展示。
2、请用割补法的小组上台展示自己的研究成果。
预设:(1)、沿着平行四边形的高剪开,分成了一个直角三角形和一个直角梯形,然后把直角三角形平移到右边,就把平行四边形转化成了一个长方形。长方形的长是原来平行四边形的底,长方形的宽是原来平行四边形的高。因为长方形的面积是长×宽,所以平行四边形的面积就是底×高。
(师随着生的表述板书)
长方形的面积=长×宽
平行四边形的面积=底×高
(对小组进行评价)
预设:(2)、沿着平行四边形中间的任意一条高剪开,变成了两个直角梯形,然后把其中一个梯形平移到另一个的一边,也拼成了一个长方形。同样这个长方形的长是原来平行四边形的底,长方形的宽是原来平行四边形的高。因为......所以......
(对小组进行评价)
预设:(3)、师演示。
师:计算公式我们通常都可以用字母来表示。面积用S,底用a,高用h来表示,那么平行四边形的面积可以表示为:S=ah。
师小结:刚才我们用割补平移的方法把一个平行四边形转化成了长方形,找到了它们之间的内在联系,从而得出平行四边形的面积计算公式。接下来老师告诉你刚才平行四边形花坛的底和高,你能列式求出它的面积吗?(能)
任务二:解决问题
出示例题:平行四边形花坛的底是6m,高是4m,它的面积是多少?
自主学习:独立在练习本上解答,完成后与小组内同学交流。
展示交流:注意指导学生的书写格式。
三、检测导结
1、计算下面每个平行四边形的面积。
2、已知下面图形的面积和底,怎样求出它的高?
以上三题,做对一道得一颗星,全部做对得三颗星。
集体订正,组内互批。
反思总结:请同学们谈谈这节课的收获吧!
五年级《平行四边形面积》教学设计11
设计说明
在学习本节课之前,学生已经掌握了一定的求图形面积的方法,积累了一些求图形面积的实际经验,针对学生的学情,本节课是这样设计的:
1.通过具体情境提出计算平行四边形面积的问题。学生已经学习了长方形面积的计算方法,在复习这些知识时,逐步将问题转到平行四边形的面积上,从而使学生感到学习新知识的必要性,也容易引起他们认知上的冲突。
2.动手实践、主动探索、合作交流是学生学习数学的主导方式。由直观到抽象,层层深入,遵循了概念教学的原则和学生的认知规律。学生通过动手操作,把平行四边形转化成长方形,再现已有的知识表象,借助已有的知识经验,进行观察、分析、比较和推理,概括出平行四边形面积的计算公式。
3.满足不同学生的求知欲,体现因材施教的原则。通过灵活多样的练习,巩固平行四边形面积的计算方法,提高学生的思维能力。
课前准备
教师准备PPT课件平行四边形纸片方格纸剪刀
学生准备硬纸板做的平行四边形三角尺剪刀
教学过程
⊙创设情境,提出问题
1.出示公园里的一块长方形空地的示意图:长10米,宽6米。
提出问题:同学们,公园里有一块空地要进行绿化,你能算出这块空地的面积是多少吗?
生:10×6=60(平方米)
师:除了用计算的方法,我们还有其他的方法得到图形的面积吗?
生:数方格。
2.出示空地中间一块平行四边形的区域,底边6米,斜边5米,高3米。
提出问题:这块地是什么形状的?你们能用计算的方法求出它的面积吗?
3.学生回答后引入新课:这节课我们就来学平行四边形的面积。
设计意图:这一环节的设计,教师对主情境加以修改,先来复习长方形的面积计算方法,既复习了旧知识,又为学习新知识做好铺垫,同时又巧妙地引入新内容,激起学生的大胆猜想,体现出数学就在我们身边,从而激发了学生学习数学的兴趣及积极性。
⊙猜想尝试,获取新知
1.出示教材53页问题一。
师:我们会求什么图形的面积?我们可以用哪些方法求图形的面积?
学生讨论,猜想求这块空地面积的方法。
预设
生1:用长方形的面积公式进行计算,因为平行四边形的特点也是对边相等。
生2:把平行四边形的相邻的两边相乘。
过渡:究竟哪种方法可行呢?我们该如何来验证猜想是否正确呢?
2.借助方格纸数一数,比一比。
师:以前我们用数方格的方法得到了长方形和正方形的面积,那么用这种方法能得到平行四边形的面积吗?
(1)请大家仔细观察方格纸上的两个图形,数一数。
(2)得到结论:长是6米,宽是5米的长方形面积时30平方米,而底边是6米,斜边是5米的平行四边形所占的小方格数不够30个,也就是不足30平方米,我们不能用邻边相乘的方法来求平行四边形的面积。
(3)提问:平行四边形的面积是多少呢?你是怎样数出来的?平行四边形的面积与它的底和高有什么关系?
引导学生发现:18=6×3,其中18是平行四边形的面积,6和3分别是平行四边形的底和高。
提问:难道平行四边形的面积可以用底乘高来计算吗?我们会求长方形的面积,你能把平行四边形转化成长方形吗?
设计意图:这个环节用数方格的方法得到了图形的面积,这种方法是学生熟悉的、直观的计算面积的方法。同时呈现两个图形,暗示了它们之间的.联系,为下面的探究做了很好的铺垫。
3.推导平行四边形的面积计算公式。
师:下面我们来剪一剪、拼一拼。看看平行四边形和长方形之间究竟有怎样的联系。(出示课堂活动卡)请大家根据课堂活动卡来完成活动。
(1)质疑:上面的方法有一个相同之处,都是沿高剪开。为什么一定要沿高剪开呢?
释疑:只有沿高剪开,才能出现直角,才能拼成一个长方形。
(2)师生共同总结。
①通过剪一剪、拼一拼,把平行四边形变成了长方形。
②剪拼后的长方形与原来的平行四边形相比,面积不变。
③长方形的长和平行四边形的底相等,长方形的宽和平行四边形的高相等。
(3)推导平行四边形的面积计算公式。
长方形的面积=长×宽,得出:平行四边形的面积=底×高。
字母公式:S=ah。
(4)梳理平行四边形面积计算公式的推导方法。
师:刚才大家在剪拼的时候,都把平行四边形变成了长方形,你们为什么都把平行四边形变成长方形呢?
(学生汇报)
师小结:同学们总结出的方法,其实就是数学上的转化法。通过转化,我们可以找到新旧知识之间的联系,从而解决新问题。在今后的生活、学习中,我们可以应用这种方法去解决问题。
设计意图:此环节留给学生充分的探索、交流空间,使学生在剪、拼等一系列实践活动中理解、掌握平行四边形与转化后的长方形之间的联系,从而推导出平行四边形的面积计算公式。在探索活动中,使学生学会与他人合作,同时也使学生学到了怎样由已知探索未知的思维方式与方法,培养他们主动探索的精神,让学生在活动中学习,在活动中发展。
五年级《平行四边形面积》教学设计12
教学内容:
人教版五年级上册第六单元第一课时P87-88
教学目标:
1.理解和掌握平行四边形的面积计算公式,会计算平行四边形的面积。
2.通过操作、观察、比较等活动,初步认识转化的方法,培养学生的观察、分析、概括、推导能力、发展学生的空间观念。
3.感受数学在生活中的作用,体验学习数学的乐趣。
教学重点和难点
教学重点:探索并掌握平行四边形的面积计算公式,并能正确地计算平行四边形的面积。
教学难点:使学生理解平行四边形面积计算公式的推导过程。
教具学具:课件、一个平行四边形、剪刀
教学过程
一、创设情境,生成问题
1.故事导入
2.从平行四边形的地中引出课题“平行四边形的面积”。
二、探索交流,解决问题
1.用数方格的方法计算面积。
(1)课件出示教材第87页方格图:现在请同学们用这个方法算出这个平行四边形和这个长方形的面积。说明要求:一个方格表示1平方米,不满一格的都按半格计算。把数出的数据填在表格中(见教材第87页表格)
(2)学生完成,汇报结果。
(3)观察表格的数据,你发现了什么?
通过学生讨论,得到:平行四边形的底与长方形的长相等、平行四边形的高与长方形的宽相等;这个平行四边形面积等于长方形的面积。
2.推导平行四边形面积计算公式。
(1)提问:如果不数方格,能不能计算平行四边形的面积呢?
(2)引导解决方法:把平行四边形转化成长方形
(3)学生动手操作:拿出你们准备的平行四边形,以同桌为一小组,用课前准备的平
行四边形和剪刀进行剪拼,教师巡视指导。
(4)学生汇报演示剪拼的过程及结果。
(5)教师用课件演示剪—平移—拼的.过程。
(6)我们已经把一个平行四边形转化成一个长方形,请同学们观察拼出的长方形和原来的平行四边形,你发现了什么?
(7)出示讨论题,小组讨论。
(8)小组汇报交流,教师归纳:
把平行四边形转化成一个长方形,它的面积与原来的平行四边形面积相等。
这个长方形的长与平行四边形的底相等,
这个长方形的宽与平行四边形的高相等,
因为 长方形的面积=长×宽,
所以平行四边形的面积=底×高。
3.教师指出如果用S表示平行四边形的面积,用a表示平行四边形的底,用h表示平行四边形的高,那么平行四边形的面积计算公式用字母怎样表示?
S=ah
三、巩固应用,分层提高
1.教学例1
例1、一块平行四边形花坛的底是6米,高是4米,它的面积是多少?
(1)读题并理解题意。
(2)学生试做,交流做法和结果。
S=ah=6×4=24(m2),
答:它的面积是24平方米。
2.练一练
(1)一个停车位是平行四边形,它的底长5米,高2.5米。它的面积是多少?
(2)判断题
(3)选择题
(4)求平行四边形的面积
(5)扩展题
四、回顾整理,反思提升
1.通过这节课的学习,你有哪些收获?
2.用本课所学的知识证明老财主没有偏心。
五、板书
平行四边形的面积
长方形的面积=长×宽
平行四边形的面积=底×高
S=ah
五年级《平行四边形面积》教学设计13
教学目标:
1、通过操作、观察、比较等活动,自主探索平行四边形面积计算公式,渗透转化思想。
2、能正确地应用公式计算平行四边形的面积。
教学重点:
探索并掌握平行四边形面积计算公式。
教学难点:
理解平行四边形面积计算公式的推导过程,体会转化思想。
教学准备:
课件,一个框架式可以活动的平行四边形教具,剪刀,为学生准备一张底为6cm、高为4cm的平行四边形纸张和方格纸。
教学过程:
一、激趣引入
1、创设情景
师:九一小学学校内有两个花坛,同学们看看它们各是什么形状?(生:长方形和平行四边形)
师:这两个花坛哪个大,我们要知道什么呢?(生:它们的面积)
师:哪个花坛的面积你能解决?为什么?(生:长方形花坛,我们学过长方形的面积)
师:回忆一下,以前我们是用什么方法得出长方形的面积的。
2、稳固复习
师:我这里将两个花坛的图形按照相同的比例缩小成这两个图形纸片(出示长方形和平行四边形纸张),还有一张透明的方格塑料片(每一小格代表1平方米)和一把尺子(每厘米代表1米),你能用这些工具得出这个长方形的面积吗?说说你的想法。
生:用数方格的方法:把长方形纸放到方格纸上,用计算的方法:用尺子量出长和宽计算。
师:用了数方格和计算的方法,那你观察下面这个图形的面积是多少呢?
生:把右边那块割下来不到左边空白处,就变成了一个长方形,面积不变。是6平方米。
师:比较下面这个两个图形的面积?你是怎么想的?(生:也是割补法,面积一样。)
师:那这个平行四边形你准备用什么方法得出它的面积呢?(生:数方格、计算、割补法)
师:下面我们就用这些方法来研究一下平行四边形的面积。(板书课题)
二、新知探究
1、数方格
师:课本上已经把缩略后的图形画到了书上,先读:在方格纸上数一数,然后填写下表。(一个方格代表1m2,不满一格的都按半格计算。),需要注意什么?
生:一格代表1m2,不到一格按半个计算。
师:自己数一数两个面积一样大吗?各是多少?(生展示数格子的方法,得出两个面积都是24m2)
2、推导公式
师:上面我用了数格子得出了平行四边形的面积,如果不数格子,你能直接计算出来吗?猜猜平行四边形的面积计算方法。(由长方形引导)
生:相邻两边相乘,或者底乘高。
师:(展示由长方形变拉伸为平行四边形)你觉得图形变化中面积怎么了?什么没有变?
生:面积变小了,但四条边都没有发生变化。
师:那说明平行四边形面积能用相邻两边相乘来计算吗?(生:不能)
师:好,到底是不是用底乘高来计算呢?刚才我们已经数出了两个图形的面积都是24m2,请你完成这个表格到课本上,让后两个人讨论,你发现了什么?
生:长方形的长和宽分别和平行四边形的底和高相等,长方形的面积是长乘宽,所以平行四边形的面积是底乘高。
师:通过刚才的探究我们初步了解到了平行四边形的面积计算公式,到底是不是呢?是巧合还是必然呢?接下来我们用割补法验证一下。你准备把平行四边形转化什么图形来验证呢?
生:长方形。
师:请同学们根据前面的经验,两人一组,借助你们手中的平行四边形纸,可以画一画,剪一剪,拼一拼,看看能不能找到转化前后图形间的联系,并把你找到的联系在纸上写一写,让别人一眼就能看出你是如何推导出平行四边形面积计算方法的。联系下面几个问题进行探讨。
(1)面积还相等吗?
(2)转化后的长方形与原来的平行四边形有什么关系?
(3)长方形的长、宽与平行四边形的底、高有什么关系?
(4)怎么计算平行四边形的.面积?
生:沿着一条高切下来,不到另一边就变成了长方形。
师:试着说说上面的四个问题。
生:面积不变,长方形的面积等于平行四边形的面积,长方形的长=平行四边形的底,长方形的宽=平行四边形的高,长方形的面积是长乘宽,所以平行四边形的面积是底乘高。
(生边说师边演示,并进行适当的引导)
师:这个在哪呢?是另一个底上的高吗?(生:不是,是这个底上的高,底和高要对应。)
师:还有其他的方法吗?
生:演示方法。(课件演示两种方法)
师:平行四边形的面积=底×高,如果用a表示底,h表示高,你能用字母表示出平行四边形的面积吗?(生:s=ah板书)
师:平行四边形的面积大小是由和()决定的。共同决定的。
3、回顾总结
回顾刚才的学习过程,谁能说说我们是怎样学平行四边形的面积的计算方法的?
三、练习巩固
(一)基础练习
1、平行四边形花坛的底是6m,高是4m,它的面积是多少?
2、下面哪个平行四边形的面积是2×3=6c㎡?(图见课件)
3判断:
①平行四边形的底是7米,高是4米,面积是28米。()
②a=5分米,h=2米,s=100平方分米。()
③平行四边形的底越长,面积就越大。()
④平行四边形的高越长,面积就越大。()
4、把一个用木条钉成的的长方形拉成一个平行四边形,它的()。
a、周长和面积都不变b、周长不变,面积变大c、周长不变,面积变小
5、一个平行四边形的高是5cm,底是高的1。4倍,这个平行四边形的面积是()cm。
(二)拓展提升
1、计算下面每个平行四边形的面积。
2、下面图中两个平行四边形的面积相等吗?它们的面积各是多少?
四、总结提示
师:回忆一下,今天这节课有什么收获?
总结:我们用把平行四边形转化成长方形的方法推导出了平行四边形的面积计算方法,这种转化的思想对于我们的数学学习很重要。
板书设计平行四边形的面积
数方格
长方形的面积=长×宽
计算平行四边形的面积=底×高(底高对应)
s=ah
割补法(转化)
五年级《平行四边形面积》教学设计14
教学内容:
人教版五年级上册第87——88页内容及练习十九相关练习。
教材分析:
本单元学习的内容主要包括:平行四边形、三角形、梯形和组合图形的面积四个部分。它们的面积计算是在学生掌握了这些图形的特征以及长方形、正方形面积计算的基础上,以未知向已知转化为基本方法开展学习的。这是进一步学习圆的面积和立体图形的表面积的基础。学习组合图形的面积安排在平行四边形、三角形和梯形面积计算之后,也是利用转化的数学思想,让学生把不规则的平面图形转化为规则的平面图形来计算,降低了学生的学习难度,并巩固了学生对各种平面图形的特征的认识及面积计算,发展了学生的空间观念。
教学目标:
1.掌握平行四边形的面积公式,能准确计算平行四边形的面积。
2.通过数、剪、拼等动手操作活动,探索平行四边形面积计算公式的推导过程,渗透转化的数学思想,发展学生的空间观念。
3.在解决实际问题的过程中,感受数学与生活的联系,培养学生的数学应用意识。
教学重点:
掌握平行四边形的面积计算公式,能准确解决实际问题。
教学难点:
理解平行四边形面积计算公式的推导方法与过程。
教学准备:
裁剪的平行四边形、学习单等。
教学过程:
上课的前一天,布置预习第87——88页内容,开展以下自学实践:
1.长方形的面积计算公式是什么?
2.长方形和平行四边形之间有什么联系?
3.平行四边形的面积计算公式是什么?
课堂过程:
一、情境导入
1.谈话:为了创建省级文明城市,美化我们的生活环境,高新居尚小区要修建两个大花坛,(课件出示86页情境图)。这两个花坛分别是什么形状?
(一个长方形,一个平行四边形)
2.学生猜测:你觉得哪一个花坛大一些?
通过猜测,引导学生总结出:要想比较那个花坛大,需要计算它们的面积。
3.提问:你会计算它们的面积吗?
学生只会计算长方形的面积,不会计算平行四边形的面积。
揭示课题:今天我们就来学习和研究平行四边形面积的计算。
4.(板书课题:平行四边形的面积)
【设计意图:】数学课应源于生活,由学生熟悉的情境导入,自然激发了学生学习数学知识的兴趣。本环节在学生现有知识水平中无法通过计算来比较两个花坛面积的大小,从而激发学生探究知识的欲望,进一步体现数学与生活的紧密联系。
二、探究新知
1.数格子,比较大小。
师:根据我们已有的经验,我们并反馈答案可以用什么方法得出平行四边形的面积呢?(引出数格子的方法)
(1)提出要求:每个方格表示1平方米,不满一格的都按半格计算。
(2)学生用数方格的`方法得出两个图形的面积,并填写课本89页的表格。
(3)反馈汇报数的结果,得出:用数方格的方法知道了两个图形的面积一样大。
(4)提出问题:如果平行四边形很大,用数方格的方法麻烦吗?
(学生:麻烦,有局限性。)
(5)观察表格,你发现了什么?
出示表格
(6)引导学生交流自己的发现。(同桌讨论)
反馈:平行四边形的底和长方形的长相等,平行四边形的高和长方形的宽相等,平行四边形的面积和长方形的面积相等;平行四边形的面积等于底乘高。
(7)提出猜想:猜想:平行四边形的面积=底×高是否适合所有的平行四边形面积呢?
【设计意图:】数格子的方法是探究图形面积的一种简单方法,学生轻松地理解,重在让学生对这两种图形相对应的量进行分析,在学生的脑海里初步得出:长方形的长等于平行四边形的底,长方形的宽等于平行四边形的高,这个时候他们的面积就相等,平行四边形的面积可能等于底乘高。让学生猜想平行四边形的面积公式,激起学生的探究欲望。
2.动手操作,验证猜想。
(1)提出要求:小组分工合作,利用三角尺、剪刀,动手剪一剪、拼一拼,把平行四边形想办法转变成一个长方形。完成后和小组的同学互相交流自己的方法。
(2)学生汇报、展示:平行四边形变成长方形的方法。(沿着平行四边形的高剪开,把三角形向右平移,拼成一个长方形。或沿着平行四边形的高剪开,把直角梯形向右平移,拼成一个长方形)
3.问题质疑,完成报告单。
提出问题:平行四边形可以剪、拼成长方形,它们之间有什么关系呢?
①平行四边形与拼成的长方形的面积有什么关系?
②平行四边形的底、高分别与拼成的长方形的长、宽有什么关系?
③长方形的面积公式怎样表示?
④平行四边形的面积公式怎样表示?
(1)小组讨论
(2)抽生汇报
(3)师展示,验证。
(4)观察并思考,小组合作完成报告单。
(5)交流反馈,引导学生得出结论
①形状变了,面积没变。
②拼成的长方形,长与原来平行四边形的底相等,宽与原来平行四边形的高相等。
(6)引导学生根据长方形的面积公式得出平行四边形面积公式并用字母表示。
平行四边形的面积=底×高
用字母表示:s=ah
(7)观察面积公式,要求平行四边形的面积必须知道哪两个条件?
(平行四边形的底和高)
(8)小结:我们把平行四边形转化成了同它面积相等的长方形,利用长方形面积计算公式得出了平行四边的面积等于底乘高,验证了前面的猜想。
4.运用公式,解决问题。
(1)出示例1
例1:平行四边形花坛的底是6米,高是4米,它的的面积是多少平方米?
(2)学生独立完成。
(3)抽生汇报,师板书。
【设计意图:】探究的过程是学生掌握数学思想方法的关键环节,通过学生动手操作和合作交流,使学生主动地去探索和发现平行四边形面积的计算方法,最后让学生验证公式,学生在课堂上充分调动自己的数学思维,在动手、动脑、动口的过程中碰撞出了数学思维的火花。
三、巩固运用
1.计算出下面每个平行四边形的面积。
2.选择题。
四、全课小结:今天你有什么收获?
五、作业:选用课时作业设计
六、板书设计:
平行四边形的面积
长方形的面积=长×宽
↓↓↓
平行四边形的面积=底×高
↓↓↓
Sah
S=ah
五年级《平行四边形面积》教学设计15
教学目标:
1、使学生通过探索、理解和掌握平行四边形的面积计算公式,会计算平行四边形的面积。
2、使学生通过观察、操作、比较等活动,初步认识转化的方法,培养学生的观察、分析、概推导能力,发展学生的空间观念。
3、培养学生的合作意识和探究精神。
教学重点:
理解公式并会计算平行四边形的面积。
教学难点:
推导平行四边形的面积计算公式。
教具准备:
每人准备一个平行四边形纸片和一把剪刀,多媒体课件。
教学过程:
一、导入(媒体出示:)
1、认识图形。
2、口算长方形的面积。
3、回顾平行四边形的特征。
4、观察主题情景图:明明和芳芳争论场景:一块长方形花坛,一块平行四边形花坛。哪一块大呢?板书课题:平行四边形的面积
二、自主学习
1、学生用数方格的方法数一数,并把结果记载到80页的表格中。
2、思考:从表格中的数据,你发现了什么?(它们的面积相等)为什么会出现这样的结果?(因为通过数出的数据显示:长方形的长和宽分别和平行四边形的底和高相等。)
3、思考:如果不数方格,能不能计算出平行四边形的面积呢?能不能把平行四边形转化成我们已经学习过的图形来求面积?(学生交流找寻方法:可以用剪、拼、的方法把平行四边形转化成别的'图形)
4、动手操作:学生可以独立操作,也可以同桌相互合作,自主探究平行四边形面积公式的由来,教师巡视。
5、提问:通过刚才的操作,你发现了什么?学生汇报交流:平行四边形的底和拼得的长方形的长相等,底边上对应的高和长方形的宽相等,所以平行四边形的面积也就等于拼得的长方形的面积。(教师根据学生回答媒体演示过程)
板书:
长方形的面积=长×宽
平行四边形的面积=底×高
6、学习用字母表示公式:我们用S表示平行四边形的面积,a表示它的底,h表示它的高,计算公式用字母如何表示?(根据学生回答板书:S=a×h)
7、思考:要求平行四边形的面积,必须要知道哪些条件?(底和高)
教师强调:平行四边形有无数条高,底乘的高一定要是对应边上的高才是它的面积。
三、巩固提高
1、反馈:(媒体展示)口算平行四边形的面积,点学生回答。集体订正时强调:书写格式和单位。重点提醒:不对应底和高平行四边形面积。
2、作业:练习十五第1题,第2题。
3、拓展:(媒体展示)
(1)下面哪个平行四边形的面积大呢?为什么?
(2)一个长方形拉成一个平行四边形后,有哪些变化?
四、课堂小结
本节课你学会了什么?平行四边形的面积公式是怎么推导来的?要求平行四边形的面积,必须知道那些条件?
第三篇:《平行四边形的面积》优质教学设计(精品)
《平行四边形的面积》教学设计
阳山县阳城镇中心小学邓章金
本设计利用故事情境激发学生的学习欲望,再利用学生计算长方形面积的 经验设置悬念,整个过程引导学生经历了类推(负迁移)猜想自主探究方法(转化)验证寻求正确的解决问题的方法推广应用等过程,充分体现了“学生是数学 学习的主人”的全新教学理念。全程层层推进,环环相扣,以微课进行回顾强化。
教学目标:
1、通过学生自主探索、动手实践推导出平行四边形面积计算公式,能正确运用平行四边形的面积计算公式进行相关的计算。
2、让学生经历平行四边形面积公式的推导过程,通过操作、观察、比较等活动,初步认识转化的方法,发展学生的空间观念。
3、培养学生观察、分析、概括、推导和解决实际问题的能力。
4、使学生感受数学与生活的联系,培养学生的数学应用意识,体验数学的实用价值。
教学重点:理解并掌握平行四边形的面积计算公式,会计算平行四边形的面积。
教学难点:通过转化的方法理解平行四边形的面积计算公式。教学方法:
利用知识迁移及剪、移、拼的实际操作来分解教学难点,引导学生理解平行四边形与长方形的等积转化,通过“剪、移、拼”找出平行四边形底和高与长方形长和宽的关系,把握面积始终不变的特点,归纳出平行四边形等积转化成长方形面积。
教具、学具准备:多媒体课件、让每个学生准备一个平行四边形纸片和一把剪刀。教学过程:
一、巧设情境,铺垫导入
同学们,大家喜欢听故事吗?(喜欢)
(课件出示一块长方形菜地和一块平行四边形菜地)现在老师给同学们讲一个故事,小明的家在村的东边,他有一块菜地在村的西边,而小芳家在村的西边,她有一块菜地在村的东边,这样跑来跑去干活很不方便,于是商量换地,这天他们到地里去看的时候,为难了!原来他们的菜地的形状不一样,小明的菜地是长方形的,小芳的菜地是平行四边形的,如果这两块菜的大小不一样,这样换地公平吗?(```),怎么知道它们的大小呢?同学们,你们能帮助他们吗?
师:这里的“大小”指的是什么?(面积)
师:那长方形的面积怎么算?(PPT出示并板书:长方形的面积=长X宽)
师:那我们会计算平行四边形的面积吗?(不会)
师:那好,今天这节课我们就来研究平行四边形的面积。(板书:平行四边形的面积)
二、合理猜想,动手验证,获取新知。
1、探索平行四边形的面积的计算方法。
师:请同学们猜想一下,哪个图形的面积大?
师:猜想是幸福的,但是不一定准确哦,我们可以用以前学过的什么方法去验证呢?
师:不错,肯动脑筋。下面两个格子图中,每个小正方形的面积就是1平方厘米。请快速数一数长方形的面积。数出后请举手
师:对,请坐。接下来请大家数出平行四边形的面积,仔细数一数,数好后同桌交流一下(幻灯片提示)
生:平行四边形的面积是15平方厘米。
生:图中的平行四边形一共有11个整格,左右两边不足整格的一共可以凑成4格,合起来就是15平方厘米。
师:再来观察:长方形的长是()厘米,平行四边形的底是()厘米,长方形的宽是()厘米,平行四边形的高是()厘米(边讲边点击)
通过这个表格,我们能发现什么?
生:底=长,宽=高,面积相等。
师:我们用数格子的办法求出了长方形和平行四边形的面积。可是如果平行四边形不在网格中,我们该怎么求它的面积呢?
我们知道长方形的面积=长乘宽,想一想:能不能把平行四边形通过剪和拼的办法转化成长方形,在进一步得到平行四边形的面积计算方法?(点击)
同时要求同学们剪拼成长方形后在小组内讨论以下2个问题。【(1)拼出的长方形和原来的平行四边形相比较,面积变了没有?(2)拼出的长方形的长和宽与原来的平行四边形的底和高有什么关系? 】(点击)
拿出准备好的平行四边形,在小组内探究吧!开始!
生:学生尝试用剪、移、拼的办法把平行四边形转化成长方形。在实践中,有的把它剪成了一个三角形和一个梯形,有的剪成了2个直角梯形。老师巡视,有时加以指导。
师:能把平行四边形剪拼成长方形的请举手?
请上台来演示一下(转换投影仪)
师:他回答的怎样?(鼓掌)我这里还有用沿两条线剪下的办法把平行四边形转化成长方形,请看(点击)请大家快速把剪刀和纸片放下去。
请一个同学告诉我,你在探究中得到的结论是什么?
生:我们小组得到的结论是:由平行四边形剪拼成长方形,剪拼前后,面积相等,长和底相等,宽和高相等。
师:他的总结很好,观察的很仔细,同学们要向他学习。(板书:
长方形的面积 = 长 × 宽
平行四边形的面积 = 底× 高
如果用S表示平行四边形的面积,用a表示平行四边形的底,用h表示平行四边形的高,那么平行四边形的面积计算公式可以写成S=a×h或S=ah(板书:S=a×h或S=ah)师:请大家快速读一读平行四边形的面积公式 三.解决问题,巩固应用。
师:你们会计算平行四边形的面积了吗?
1、师:现在能不能解决小明和小红的困惑了?(出示情景图)师:量出长方形的长是50米,宽是30米,一起说怎么算面积? 师:要求出平行四边形的面积,需要知道哪些条件?
师:量出平行四边形地的底是50米,高是30米,请一个同学告诉我怎么计算它的面积?
2.师:请口答出下面各图形的面积。
3.判断题。
(注意分析理由)强调一下面积单位和注意单位的统一,注意审题仔细
四、播放小视频(微课)对平行四边形的面积公式的推导进行回顾强化。
五、课堂总结
通过这节课的学习,你有哪些收获?(让学生畅所欲言)
在刚才的活动中,我们运用了转化这种数学思想,把未知的知识变成已经学习过的知识,这就是转化思想。它是我们打开未来世界的金钥匙。大家在今后的学习和生活中,多多运用就一定会学到更多的数学知识,也会越来越聪明!
板书设计:
平行四边形的面积 长方形的面积
= 长×宽
↓
↓ ↓
平行四边形的面积= 底×高
S = ah
第四篇:五年级《平行四边形的面积》教学设计
五年级《平行四边形的面积》教学设计
五年级《平行四边形的面积》教学设计
教学内容:人教版五年级上册第87——88页内容及练习十九相关练习。
教材分析:
本单元学习的内容主要包括:平行四边形、三角形、梯形和组合图形的面积四个部分。它们的面积计算是在学生掌握了这些图形的特征以及长方形、正方形面积计算的基础上,以未知向已知转化为基本方法开展学习的。这是进一步学习圆的面积和立体图形的表面积的基础。学习组合图形的面积安排在平行四边形、三角形和梯形面积计算之后,也是利用转化的数学思想,让学生把不规则的平面图形转化为规则的平面图形来计算,降低了学生的学习难度,并巩固了学生对各种平面图形的特征的认识及面积计算,发展了学生的空间观念。
教学目标:
1.掌握平行四边形的面积公式,能准确计算平行四边形的面积。
2.通过数、剪、拼等动手操作活动,探索平行四边形面积计算公式的推导过程,渗透转化的数学思想,发展学生的空间观念。
3.在解决实际问题的过程中,感受数学与生活的联系,培养学生的数学应用意识。
教学重点:掌握平行四边形的面积计算公式,能准确解决实际问题。
教学难点:理解平行四边形面积计算公式的推导方法与过程。
教学准备:裁剪的平行四边形、学习单等。
教学过程:
上课的前一天,布置预习第87——88页内容,开展以下自学实践:
1.长方形的面积计算公式是什么?
2.长方形和平行四边形之间有什么联系?
3.平行四边形的面积计算公式是什么? 课堂过程:
一、情境导入
1.谈话:为了创建省级文明城市,美化我们的生活环境,高新居尚小区要修建两个大花坛,(课件出示86页情境图)。这两个花坛分别是什么形状?
(一个长方形,一个平行四边形)
2.学生猜测:你觉得哪一个花坛大一些?
通过猜测,引导学生总结出:要想比较那个花坛大,需要计算它们的面积。
3.提问:你会计算它们的面积吗?
学生只会计算长方形的面积,不会计算平行四边形的面积。
揭示课题:今天我们就来学习和研究平行四边形面积的计算。
4.(板书课题:平行四边形的面积)
【设计意图:】数学课应源于生活,由学生熟悉的情境导入,自然激发了学生学习数学知识的兴趣。本环节在学生现有知识水平中无法通过计算来比较两个花坛面积的大小,从而激发学生探究知识的欲望,进一步体现数学与生活的紧密联系。
二、探究新知
1.数格子,比较大小。
师:根据我们已有的经验,我们并反馈答案可以用什么方法得出平行四边形的面积呢?(引出数格子的方法)
(1)提出要求:每个方格表示1平方米,不满一格的都按半格计算。
(2)学生用数方格的方法得出两个图形的面积,并填写课本89页的表格。
(3)反馈汇报数的结果,得出:用数方格的方法知道了两个图形的面积一样大。
(4)提出问题:如果平行四边形很大,用数方格的方法麻烦吗?
(学生:麻烦,有局限性。)
(5)观察表格,你发现了什么? 出示表格
(6)引导学生交流自己的发现。(同桌讨论)
反馈:平行四边形的底和长方形的长相等,平行四边形的高和长方形的宽相等,平行四边形的面积和长方形的面积相等;平行四边形的面积等于底乘高。
(7)提出猜想:猜想:平行四边形的面积=底×高是否适合所有的平行四边形面积呢?
【设计意图:】数格子的方法是探究图形面积的一种简单方法,学生轻松地理解,重在让学生对这两种图形相对应的量进行分析,在学生的脑海里初步得出:长方形的长等于平行四边形的底,长方形的宽等于平行四边形的高,这个时候他们的面积就相等,平行四边形的面积可能等于底乘高。让学生猜想平行四边形的面积公式,激起学生的探究欲望。
2.动手操作,验证猜想。
(1)提出要求:小组分工合作,利用三角尺、剪刀,动手剪一剪、拼一拼,把平行四边形想办法转变成一个长方形。完成后和小组的同学互相交流自己的方法。
(2)学生汇报、展示:平行四边形变成长方形的方法。(沿着平行四边形的高剪开,把三角形向右平移,拼成一个长方形。或沿着平行四边形的高剪开,把直角梯形向右平移,拼成一个长方形)
3.问题质疑,完成报告单。
提出问题:平行四边形可以剪、拼成长方形,它们之间有什么关系呢?
①平行四边形与拼成的长方形的面积有什么关系?
②平行四边形的底、高分别与拼成的长方形的长、宽有什么关系?
③长方形的面积公式怎样表示?
④平行四边形的面积公式怎样表示?
(1)小组讨论
(2)抽生汇报
(3)师展示,验证。
(4)观察并思考,小组合作完成报告单。(5)交流反馈,引导学生得出结论
①形状变了,面积没变。
②拼成的长方形,长与原来平行四边形的底相等,宽与原来平行四边形的高相等。
(6)引导学生根据长方形的面积公式得出平行四边形面积公式并用字母表示。
平行四边形的面积=底×高
用字母表示:s=ah
(7)观察面积公式,要求平行四边形的面积必须知道哪两个条件?
(平行四边形的底和高)
(8)小结:我们把平行四边形转化成了同它面积相等的长方形,利用长方形面积计算公式得出了平行四边的面积等于底乘高,验证了前面的猜想。
4.运用公式,解决问题。
(1)出示例1
例1:平行四边形花坛的底是6米,高是4米,它的的面积是多少平方米?
(2)学生独立完成。
(3)抽生汇报,师板书。
【设计意图:】探究的过程是学生掌握数学思想方法的关键环节,通过学生动手操作和合作交流,使学生主动地去探索和发现平行四边形面积的计算方法,最后让学生验证公式,学生在课堂上充分调动自己的数学思维,在动手、动脑、动口的过程中碰撞出了数学思维的火花。
三、巩固运用
1.计算出下面每个平行四边形的面积。
2.选择题。
四、全课小结:今天你有什么收获?
五、作业:选用课时作业设计
六、板书设计:
平行四边形的面积
长方形的面积 = 长 × 宽
↓ ↓ ↓
平行四边形的面积= 底 × 高
↓ ↓ ↓
S a h
S =ah
第五篇:平行四边形面积教学设计
平行四边形面积教学设计(精选6篇)
作为一位杰出的教职工,就难以避免地要准备教学设计,借助教学设计可以更好地组织教学活动。我们该怎么去写教学设计呢?下面是小编为大家收集的平行四边形面积教学设计(精选6篇),希望对大家有所帮助。
平行四边形面积教学设计1教学内容:
实验教材小学数学五年级上册第76页内容。
教学目标:
1、用转化的方法探索并掌握平行四边形的面积计算公式,并能正确计算平行四边形的面积。
2、经历探索平行四边形面积计算方法的过程,培养初步的观察能力、抽象能力,进一步发展空间观念。
3、在运用平行四边形面积计算公式解决现实问题的过程中,感受数学和现实生活的密切联系,培养初步的数学应用意识和解决简单实际问题的能力。
教学准备:
学生:方格图、平行四边形纸片、直尺、剪刀、三角尺
教师:课件、投影仪
教学过程:
师:同学们,你们喜欢吃水产品吗?比如:鱼、虾、扇贝。去水产品养殖基地参观过吗?下面我们一起去参观小明家承包的两个养殖池吧!(出示课件)仔细观察图中的信息,你能提出什么数学问题?
(1:虾池的面积是多少? 2:虾池是什么形状的?……)
师:虾池是什么形状的?(平行四边形)
师:求虾池的面积就是求什么的面积?(平行四边形)平行四边形的面积怎么计算呢,这节课我们共同来探究。(板书课题:平行四边形的面积)
1、猜想
师:我们学过的长方形、正方形的面积计算都有一个公式,平行四边形的面积计算有没有公式呢?(有,师同时出示课件:虾池的平面示意图)
师:希不希望通过自己的探究找到这个公式?
师:相信你们一定能行!在探究之前,先请同学们猜想一下:平行四边形的面积计算公式可能是什么?并说说你的理由。
(学生独立思考)。
师:谁来说?
(1、我猜平行四边形的面积计算公式是“底×邻边”。我是根据长方形的面积计算公式猜的。)
师:谁有不同想法?
(2、我猜平行四边形的面积计算公式是“底×高”。我发现沿着高把平行四边形剪下来,移过去就拼成了长方形,所以我猜平行四边形的面积计算公式是“底×高”。)
师:现在出现两种猜想,各有各的理由,而真正的计算公式肯定只有1个。我们怎么办?(验证)
师:对!我们要逐个进行验证,看看正确的公式究竟是什么。
为了方便大家探究,老师为每个小组都准备了同样大小的平行四边形纸片来代替虾池,还有一些学具,或许会对你们的验证有所帮助。在动手验证之前,老师有几点小提示,请看屏幕:(课件出示,指名读)
1.小组同学先讨论验证的方法,再动手验证。
2.小组成员要团结合作,合理分工。
3.每组推选1名代表进行汇报,其他组员可以补充
4.使用学具时注意安全,用完后装入信封。
2、验证“底×邻边”
师:先来验证“底×邻边”这个猜想对不对。
比比看,哪个小组合作得好,最先找到答案!小组长拿出第一个信封,开始。
(学生合作,教师巡视)
3、交流
师:经过大家的动手操作,相信都有答案了。哪个小组愿意先来交流?
(我们小组是用数方格的方法来验证的。我们通过数方格的方法数出平行四边形纸片的面积是28平方厘米,而用猜想公式算出的面积是35平方厘米。所以 “底×邻边” 的猜想是错误的。)
师:听明白他们小组的做法了吗?(找两人分享)感谢你们的介绍。还有不一样的小组吗?(没有)
师:我们再一起看看验证的过程:(课件演示)用方格图数出这个平行四边形的面积是28平方厘米。而量一量它的底是7厘米,邻边5厘米,根据“底×邻边”的猜想公式算出面积为35平方厘米。所以通过“数方格”验证,“底×邻边”这个猜想是错误的。虽然这个猜想是错误的,但我们要感谢提出这个猜想的同学,因为你的猜想很有价值,让我们大家对“底×邻边”为什么不对有了更深刻地认识。既然“底×邻边”是错误的,那“底×高”是不是正确呢?现在请收起你的方格图,我们再次小组合作利用第二个信封的帮助再来验证“底×高”这个猜想对不对。一定要交流好验证方法再动手操作,开始。
4、验证“底×高”
(学生活动,教师参与)
5、交流
师:相信大家又有了新的发现和收获。哪组先来分享你们的研究成果?
(1、我们小组是这样做的:量一量平行四边形的底是7厘米,高4厘米,乘积是28平方厘米,所以“底×高”的猜想是正确的。
师评价:他们小组的这种方法怎么样?我发现他们小组很会利用资源。刚才知道这个平行四边形面积是28平方厘米,于是他们想到的验证方法就是用底×高,看是不是等于28。有不一样的验证方法吗?注意听,看看他们采用的究竟是什么方法。)
(2、我们小组是沿着平行四边形的高剪下来,把它拼成长方形,我们发现长方形的长就是平行四边形的底,长方形的宽就是平行四边形的高,所以平行四边形的面积=底×高。可让其利用投影仪向全班展示。)
师评价:他们小组通过剪一剪、拼一拼,说明平行四边形的面积=底×高。你们觉得这种方法怎么样?(很好)谁再来说说?
师:我们再通过大屏幕一起看(播放课件):把平行四边形沿着高剪开,通过平移拼成长方形,面积有没有变化?也就是长方形的面积和平行四边形的面积相等(板书:长方形的面积、平行四边形的面积),而长方形的长就是原来平行四边形的(底)(板书:长、底),宽就是平行四边形的(高)(板书:宽、高)。根据长方形的面积=长×宽,可以推出平行四边形的面积=底×高(板书)。我有一个疑问:为什么要沿着高剪呢?(这样剪能拼成一个长方形,拼成长方形就能够求出平行四边形的面积。)
师:奥,我明白了。原来这一剪的作用很大,把我们不会解决的平行四边形的面积这个难题转化成长方形的面积这一简单问题了。
师:是不是沿着平行四边形的任意一条高裁剪都可以?(是的)
师:我还有第二个问题:平行四边形的面积为什么不是长×宽,而是底×高呢?
(平行四边形没有“长”和“宽”。)
师:说的真好,我们可不能混淆了。
三.应用公式,巩固训练
师:我们已经知道平行四边形的面积计算公式了,你能独立解决虾池的面积这个问题吗?写在你的练习本上。(出示虾池平面图课件,指名板演:90×60=5400(平方米)
师:如果老师再给你提供这样一条信息:每平方米放养虾苗30尾,你能提出什么问题?(这个虾池能放养多少尾虾苗?)
师:谁来解决这个问题?其余同学写在练习本上。(30×5400=162000(尾))
师:听说你们很顺利的获取了平行四边形面积计算的公式,平行四边形家族就派出了几名代表,来挑战大家,有信心迎接挑战吗?
(出示课件:四个挑战)
1、初试锋芒:下面是四个平行四边形,明明认为它们的面积都是12平方厘米。你认为对吗?
为什么?(单位:厘米 图略)
2、乘胜追击:计算下面平行四边形的面积。(课本79页第5题)
3、再接再厉:一个平行四边形的停车位,底是2.5米,高是4米,一个停车位的占地面积是多少?
4、聪明小屋:下图中正方形的周长是24厘米,平行四边形的面积是多少?
师:真不错,挑战成功。
四.收获平台,课外延伸
师:不知不觉中就要下课了。想一想,这节课你有哪些收获?
(我学会了“转化”这种方法;我们学到了平行四边形面积的计算方法。)
师:回忆一下:我们在推导平行四边形的面积公式时是按什么步骤进行的?
(猜想--验证--结论。这是数学上常用的探究方法,相信你们在以后的学习中会经常使用它。这节课,同学们不仅仅学到了知识,而且掌握了一种重要的数学思想方法——转化,把平行四边形的面积转化成长方形的面积这一简单的问题来解决。课后想一想生活中你是否也用过转化法解决问题呢?同学之间互相交流一下。)
平行四边形面积教学设计2教学目标:
1、在理解的基础上掌握平行四边形的面积计算公式,能正确地计算平行四边形的面积;
2、通过操作、观察、比较,发展学生的空间观念,渗透转化的思想方法,培养学生的分析、综合、抽象、概括和解决实际问题的能力。
教学重点:
理解公式并正确计算平行四边形的面积。
教学难点:
理解平行四边形面积公式的推导过程。
教学方法:
动手操作、小组讨论、启发、演示等教学方法。
教学准备:
1、学具:每组两个平行四边形模型,剪刀,透明方格纸,直尺。
2、课外延伸思考题。
3、平行四边形转化为长方形的课件。
教学过程
1、同学们,唐僧师徒去西天取经,唐僧想考考猪八戒和沙和尚谁更聪明些,便分派任务让他们去收割稻谷。唐僧说:“有两块地,一块是长方形,长9米,宽4米;另一块地是平行四边形,底是6米,高是6米。你们随便挑一块吧。”猪八戒心想挑一块面积小一点的地,可以做少一点,所以他急忙说:“我挑长方形那块地,可以做少一点”,孙悟空听了笑着说:“老猪你的如意算盘打错了。”,猪八戒怎么都不明白,同学们想知道为什么吗?
2、师:比较其中的长方形和平行四边形,谁的面积大,谁的面积小,可以用什么方法?
师:这节课我们就带着这些问题一起来研究《平行四边形的面积计算》(板书课题)
1、数方格比较两个图形面积的大小。
(1)提出要求:每个方格表示1平方米,不满一格的都按半格计算。
(2)学生用数方格的方法计算两个图形的面积
(3)反馈汇报数的结果,得出:用数方格的方法知道了两个图形的面积一样大。
2、引导:我们用数方格的方法得到了一个平行四边形的面积,但是方法比较麻烦,也不是处处适用。我们已经知道长方形的面积可以用长乘宽计算,平行四边形的面积是不是也有其他计算方法呢?
学生讨论,鼓励学生大胆发表意见。
3、归纳学生意见,提出:通过数方格我们已经发现这个平行四边形的面积等于它的底乘高;是不是所有的平行四边形都可以用这个方法计算呢?需要验证一下,因为我们已经计算长方形的面积,所以我们能不能把一个平行四边形变成一个长方形计算呢?想不想亲自动手来验证、验证,请同学们试一试,小组商量。
学生用课前准备的平行四边形和剪刀进行剪和拼,教师巡视。
请学生演示剪拼的过程及结果。(师:为什么要转化成长方形呢?
生:因为长方形是特殊的平行四边形,它的面积等于长乘宽)
教师用课件演示剪——平移——拼的过程。(多种方法)
4、我们已经把一个平行四边形变成了一个长方形,请同学们观察拼出的长方形和原来的平行四边形,你发现了什么?
小组讨论。可以出示讨论题。
(1)拼出的长方形和原来的平行四边形比,面积变了没有?
(2)拼出的长方形的长和宽与原来的平行四边形的底和高有什么关系?
(3)能根据长方形的面积计算公式推导出平行四边形的面积计算公式吗?
小组汇报,教师归纳:
我们把一个平行四边形转成为一个长方形,它的面积与原来的平行四边形面积相等。
同学们在验证时真不简单,经过努力你们终于发现并验证了平行四边形面积计算公式,老师为你们感到骄傲。
板书:
平行四边形面积= 底 × 高。
5、根据长方形的面积公式得出平行四边形面积公式并用字母表示。
平行四边形的面积还可以用什么来表示。教师指出在数学中一般用s表示图形的面积,a表示图形的底,h表示高,请同学们把平行四边形的面积计算公式用字母表示出来。
板书:S=a×h=ah=ah6、活动小结:我们把平行四边形转变成了同它面积相等的长方形,利用长方形面积计算公式得出了平行四边的面积等于底乘高,验证了前面的猜想。
1、(出示例1)平行四边形的花坛的底是6 m,高是4 m。它的面积是多少?
2、那同学们知道孙悟空为什么笑猪八戒吗?谁来说说?(让学生讨论)
3、我们一起来听听孙悟空是怎样说的?(因为长方形面积是长9米乘以宽4米得36平方米;另一块地是平行四边形,底是6米乘以高是6米得36平方米,两块都一样大,猪八戒占不了便宜。)
4、求下列平行四边形的面积。
(2)判断对错:
师强调:在求平行四边形的面积时,要注意底和高是互相对应的(课件点击)
(3)观察下面的平行四边形,形状相同吗?再仔细观察两个平行四边形,它们之间有什么关系?(课件出示等底等高的平行四边形)
生读题。
师:等底等高的平行四边形面积一定相等。
3.思考题:你有几种方法求下面图形的面积?
通过今天的学习,你一定都有很多收获,谁愿意让大家来分享你收获的果实?
今天,我们用转化割补法学习了平行四边形面积计算,希望同学们把它运用到今后的学习生活中去,真正做到学习致用。
平行四边形面积教学设计3一、教学目标
(一)知识与技能
让学生经历探索平行四边形面积计算公式的过程,掌握平行四边形的面积计算方法,能解决相应的实际问题。
(二)过程与方法
通过操作、观察和比较,发展学生的空间观念,渗透转化思想,培养学生分析、综合、抽象概括和动手解决实际问题的能力。
(三)情感态度和价值观
通过活动,培养学生的探索精神,感受数学与生活的密切联系。
二、教学重难点
教学重点:探索并掌握平行四边形面积计算公式。
教学难点:理解平行四边形面积计算公式的推导过程,体会转化的思想。
三、教学准备
平行四边形卡纸一张,剪刀一把,三角尺一个,多媒体课件。
四、教学过程
(一)创设情境,激趣导入
1.创设情境。
(1)呈现教材第86页单元主题图。(PPT课件演示)
教师:瞧!校园门口,你在哪些物体上看到了我们学过的平面图形?
(2)学生汇报交流。
(3)回顾:我们生活在一个图形的世界里,这些图形有大有小,平面图形的大小就是它们的面积。我们已经研究过哪些平面图形的面积?怎样计算?
预设学生回答:长方形的面积=长×宽,正方形的面积=边长×边长。
(4)引入新课:这幅图中除了有长方形和正方形,还有平行四边形、三角形和梯形,你们会计算它们的面积吗?今天这节课,就让我们一起进入“多边形的面积”的学习。(板书单元课题:多边形的面积)
2.揭示本节课题。
复习引入。(PPT课件演示)
请大家看校园门口的这两个花坛,哪一个大呢?要比较花坛的大小,其实就是比较它们的什么?你会算哪个花坛的面积?怎样计算?那平行四边形的面积怎样计算呢?今天这节课,我们就一起来研究平行四边形的面积。(板书课题:平行四边形的面积)
设计意图通过简单的情境创设,让学生从实际生活(教材主题图)中发现图形,巩固和加深对已学图形特征的认识,引入多边形及面积的概念,从而揭示单元课题;从比较主题图中的两个花坛的情境引入平行四边形面积计算的教学,以小见大,在渗透思考方法中揭示本节课的课题,让学生快速进入学习情境,同时又为后面探究面积公式指引了转化的方向。
(二)主动探索,推导公式
1.用面积单位测量平行四边形的面积。
(1)提问:要知道这个平行四边形的面积,怎么办?(PPT课件演示)
引导学生回顾用面积单位测量图形面积的方法。
(2)操作:现在把它们放在方格纸上,一个方格代表1 m2,不满一格的都按半格计算。平行四边形的面积是多少,你能数出来吗?长方形的面积呢?(教师适时用PPT课件演示)
(3)学生先独立数平行四边形的面积,再互相交流。
预设平行四边形的面积:
方法一:从左往右数,每行6个,有4行,平行四边形的面积是24平方米;
方法二:先数整格有20个,再数半格有8个,相当于4个整格,合起来一共是24平方米。
长方形的面积:长6米,宽4米,面积是6×4=24(平方米)。
(4)教师小结:虽然大家数的方法不一样,但同学们都是在用面积单位进行测量。
(5)填写表格。
①师生共同完成表格:平行四边形的面积是多少?它的底和高分别是多少?长方形呢?(PPT课件演示)
②引导学生观察:观察这个表格,你发现了什么?
③交流回报,小结:有的同学发现了,这个平行四边形的底与长方形的长相等,平行四边形的高和长方形的宽相等,平行四边形的面积与长方形的面积相等。还有的同学发现,这个平行四边形底乘以高正好等于它的面积,由此猜测平行四边形的面积=底×高。
设计意图面积计算最基本的方法是单位面积测量法,即用统一的面积单位进行测量,这个方法虽然学生在学习长方形和正方形的面积计算时已经使用过,但因为平行四边形中出现了半格,所以本环节教师可引导学生进行测量;对于长方形的面积,学生已会计算,可直接通过计算得出结果;再通过对比它们的底(长)、高(宽)和面积的数据,沟通这两个图形之间的联系,为后面进一步探寻平行四边形面积的计算方法做准备。
2.操作思考,推导公式。
(1)教师:看来,数方格的确能让我们知道平行四边形的面积。但是,如果有很大一块草坪,数方格方便吗?显然是不方便的。如果不数方格,怎样计算平行四边形的面积呢?
这个平行四边形的面积恰好等于底×高,那是不是所有的平行四边形的面积都等于底×高呢?看来,还需进一步研究哦!(PPT课件演示)
(2)引导学生确定探究方向:我们已经学过某些图形的面积计算方法,能否将平行四边形转化成它们来计算面积呢?请大家借助手中的平行四边形卡纸,先独立思考、动手操作,找到答案后在小组内交流。
(3)操作转化,推导公式。
①操作转化。
a.学生独立思考,动手剪拼平行四边形,将它转化成长方形后组内交流。
b.学生展示汇报。(PPT课件演示)
c.大家发现它们有什么相同之处?为什么要沿着平行四边形的高来剪开?有多少种不同的剪法?为什么?
②观察思考。
a.观察:原来的平行四边形和转化后的长方形,你发现它们之间有哪些等量关系?(PPT课件演示)
b.思考:平行四边形的底和长方形的 相等,平行四边形的 和长方形的 相等,这两个图形的面积。(PPT课件演示)
c.学生汇报。(教师板书)
③概括公式。
你能根据长方形的面积计算公式推导出平行四边形的面积计算公式吗?会用字母表示吗?(PPT课件演示,板书公式)
(4)回顾与小结。
①我们已经知道平行四边形的面积等于底乘高,回顾一下,它是怎样推导出来的?
②教师小结:首先把一个平行四边形沿高剪开后平移拼成一个长方形,再观察原来的平行四边形和拼接后得到的长方形,发现等量关系:平行四边形的底和长方形的长相等,平行四边形的高和长方形的宽相等,两个图形的面积也相等。因为长方形的面积等于长乘宽,所以平行四边形的面积等于底乘高。像这样把未知的平行四边形的面积转化成已学的长方形的面积来研究的方法,在我们数学学习中经常用到。如果同学们在后面的学习中碰到类似的问题,也可以用它来解决问题。
设计意图在尝试单位面积测量法之后,本环节首先让学生感受到数方格的局限性,启发他们将平行四边形转化为已学的图形来计算面积,激发他们探究公式的欲望;在推导公式的过程中,设计了三个层次的活动:第一个层次是操作转化,让学生达成共识——沿高剪开后通过平移将平行四边形转化成长方形;第二个层次是观察思考,让学生通过观察对比后发现转化前后图形之间的等量关系,沟通了两个图形之间的内在联系,为有效推导面积公式提供了有力的支撑;第三个层次是概括公式,水到渠成。这样设计层次清楚,目标明确。最后的小结环节,在引导学生回顾推导公式的过程中培养他们回顾反思的能力,同时又渗透转化思想。
(三)巩固运用,解决问题
1.教学教材第88页例1。
(1)出示例题,呈现问题情境。(PPT课件演示)
(2)理解题意,叙述题目内容。
①用自己的话说一说题目的意思是什么?
②学生根据图文叙述:知道平行四边形花坛的底是6米,高是4米,求花坛的面积是多少平方米。
(3)收集信息,明确问题。
①提问:从题目中你获得了哪些数学信息?要求什么?
②思考:要求花坛的面积,其实就是求什么?
③归纳:要求花坛的面积,其实就是求底是6米、高是4米的平行四边形的面积。
(4)学生独立解答。
(5)学生汇报,教师板书,规范书写。
2.课堂练习。
完成教材第89页练习十九第1题。
(1)学生独立完成。
(2)同桌互相说说自己是怎样做的。
(3)全班集体交流:这个问题你是怎样算的?
设计意图例1是直接从情境中选取的实际问题,既可以指导学生如何应用计算公式解决实际问题,又可以具体验证计算公式的正确性(与数方格所得的面积相等);同时还应注意对书写格式的指导,即先用字母表示计算公式,再将数据代入公式求值。
(四)变式练习,内化提高
1.基本练习。
完成教材第89页练习十九第2题。(PPT课件演示)
(1)学生独立完成。
(2)同桌互相说一说自己是怎样算的。
(3)全班集体交流第3题:这个图形的面积你是怎样计算的?(注意选择平行四边形中对应的底和高来计算面积。)
参考答案:12 cm2;18.72 cm2;4.8 cm2。
2.提高练习。
完成教材第89页练习十九第4题。(PPT课件演示)
(1)理解题意:怎样计算出这两个平行四边形的面积?需要知道什么?(先测量出平行四边形中对应的底和高,再利用公式计算。)
(2)学生独立完成。
(3)全班集体交流:两个平行四边形的底和高分别是多少?怎样计算面积?
3.拓展延伸。
等底等高的平行四边形的面积一定相等吗?面积相等的平行四边形一定等底等高吗?(PPT课件演示)
设计意图通过基本练习的计算帮助学生进一步理解和掌握公式,提高练习则让学生在计算与解决实际问题的过程中不断加深对公式的理解与运用,最后的拓展延伸旨在让学生在辨析中发散思维。
(五)全课总结,畅谈收获
1.今天这节课学习了什么?怎样学的?
2.今天我们主要推导出了平行四边形的面积计算公式,还学习了利用公式解决生活中的实际问题。在推导公式时,我们首先选择的是计算面积的基本方法,就是单位面积测量法,通过数方格知道了平行四边形的面积;再观察表格中的数据,猜测平行四边形的面积等于底乘高;为了验证这一猜想是否正确,又通过剪拼的操作,将未知的平行四边形转化成已知的长方形来研究,最后通过观察对比发现转化前后的平行四边形与长方形之间的等量关系,从而推导出了平行四边形的面积计算公式等于底乘高,从而也验证了猜想的正确性。在这个过程中,大家经历了测量——观察——猜测——转化——验证的过程,最后我们还利用公式解决了生活中的实际问题。
(六)作业练习
1.课堂作业:练习十九第5题。
2.课外作业:练习十九第3题。
平行四边形面积教学设计4一、课前引入、渗透转化。
1、课前通过同学们的谈话,轻松引入主题。师:同学们,你们都玩过七巧板吗?
2、播放制作七巧板的视频。
3、出示一组图形,学生观察,数方格算出面积。拉开幕布,学生们看到露出一点点的图案,调动了学生的积极性,都跃跃欲试,学生动手逐个拖拽出想拖里面的美丽图案。在学时汇报平移的方法时,教师利用电子白板中的拖动图片平移的功能,直接在屏幕上操作演示,感知割补、平移,转化等学习方法。导出视频,拖动、平移等功能。
二、创设情境,揭示课题。
1、电子白板导出两个花坛,比一比,哪个大?
2、揭示课题。学生比一比,猜想这两个花坛的面积大小。让学生猜一猜、想一想,导出两个花坛的课件。
三、对手操作,探究方法。
1、利用数方格,初步探究
2、出示“初步探究学习卡”同桌交流一下填法,汇报。用数方格的方法得出图形的面积,是学生熟悉的、直观计量面积的方法。同时呈现这两个图形,暗示了他们之间的联系,为下面的探究作了很好的`铺垫。导出“初步探究学习卡”
四、白板演示,验证猜想。
1、探索把一个平行四边形转化成已学习过的图形。
2、观察拼出的图形,你发现了什么?在班内交流操作,重点演示两种转发方法。
3、平行四边形的面积=底×高
4、引导学生用字母来表示:s表示面积,a表示底,h表示高。那么面积公式就是s=ah利用白板的拖动功能,根据学生反馈的转发方式,随机演示。白板演示、突出拖动、旋转等功能。
五、巩固练习,加深理解。
1、课件出示例12、课件出示十九第1、2题。学生试做,并说说解题方法,指名板书。通过练习加深面积公式的理解应用。导出课件
六、课堂小结,反思回顾。
回想一下我们的学习过程,你有什么收获?计算平行四边形的面积必须知道什么条件,平行四边形的面积公式是怎样推导的?
平行四边形面积教学设计5教学目标:使学生经历探索平行四边形面积计算公式的推导过程,掌握平行四边形面积的计算方法;培养学生的观察操作能力,领会割补的实验方法;培养学生灵活运用知识解决实际问题的能力;培养学生的空间观念,发展其初步推理能力;培养学生的合作意识和严谨的科学态度,渗透转化的数学思想和事物间相互联系的辩证唯物主义观点。
教学重、难点:
探索并掌握平行四边形的面积计算公式及推导过程。
教具学具:
课件、平行四边形卡片、剪刀、三角板、直尺等。
教学模式:
“我能行”四步教学法。(详见文后注)
教学流程:
课前交流:
同学们,你们想了解老师吗?你想知道关于我的什么情况?
预设:老师的年龄是多少?教几年级?
师:我不能直接告诉你,那你们知道你父母的年龄吗?我可以让你们猜猜?为什么这样猜?
生:我的妈妈是(38)岁,年龄差不会有太多的变化,所以许老师的年龄应该是(30)岁。
师:想得真好,许老师就是(30)岁。
师:你们想想,我是怎样把我的年龄告诉你们的,我是把一个不熟悉的许老师,转化成一个熟悉的许老师,看来“转化”是非常有趣的。“转化”不单在生活中应用,在数学课堂上也一样可以应用。这节课我们就用这种数学“转化”思想来学习本节课。
师:1.在数学课堂上哪些地方用到了“转化”?
预设:应用题三步转化成两步,再转化成一步;求未知数X,开始给出的式子比较复杂,然后一步一步转化成简单的方程。
看来,“转化”是一位非常高深的、不见踪影的高人,在背后帮助着我们。
2.请同学们看这样一个图形(不规则图形,)怎样求这个图形的面积呢?
生:演示方法。
3.师:为什么把它拼成一个长方形呢?
预设:学过长方形面积的计算,而且能够拼成长方形。
这个方法真好,开始的那个图形,不能一下子求出它的面积,但是我们通过“转化”,把一个不规则的图形转化成了长方形,可以求出它的面积。
4.刚才的图形“转化”过程,什么变了,什么没变?
5.请同学们看这个平行四边形,它的面积怎样求呢?请看我们本节课的学习目标。
(1)我会用“转化”的数学思想推导平行四边形的面积计算公式。
(2)我会用平行四边形面积公式解决实际问题。
设计意图情境导入就是要创设与教学内容相适应的声景或氛围,激发学生的学习兴趣,吸引学生注意,从而让他们兴趣盎然地进入学习状态。接着出示学习目标,使学生上课伊始就明确学习目标,知道通过本节课学习应该掌握哪些知识,培养什么样的能力等。
师:1.你猜一猜平行四边形的面积会与什么有关?
预设:长方形、正方形、底、高、夹角、相邻的边等。
2.平行四边形的面积与它们都有关系吗?到底有什么样的关系?我们利用手中的平行四边形纸片来试着“转化”求它的面积。
3.请带着问题自学。(课件)
4.四人小组交流一下你是怎样“转化”平行四边形面积的。
设计意图通过学生大胆猜测、动手实践,在互动的过程中生成问题有利睛学生掌握解决问题的方法,形成知识规律,更有利于激发学生的求知欲。
师:1.谁来汇报一下你们小组的发现?你们推导出平行四边形的公式吗?
2.平行四边形的面积怎么算?
3.板书:平行四边形的面积=底×高
4.你是怎样推导的?说一下你的操作过程。
5.剪下来这多余的,这条线是不是随便画的一条线?这是什么?(平行四边形的高)
6.为什么要剪下来,要拼成一个什么图形?(拼成长方形)
7.这个平行四边形与剪拼的长方形之间有什么关系?
预设:平行四边形的面积与长方形的面积相等(板书)
8.剪拼后的长方形的长,是原平行四边形的什么?宽呢?
9.我们学习过用字母来表示数量关系式,请同学们翻开数学书P81自学用字母怎样表示平行四边形的面积。(板书:S=ah)
设计意图在生成问题之后,引导学生围绕探究的问题,自己决定探的方法,用自己的思维方式自由地、开放地探究知识,倡导探究、发现学习的方法,把对知识的理解进行整理汇报交流;较难的问题再引导学生进行合作探究性学习,在师生互动和生生互动中解决问题。
1.练习检测卡一题。
2.课件:判断、选择题、口答列式。
3.练习检测卡二、三题。
4.谈谈你对这节课的收获,好吗?
拓展练习(作业):你能求出这个图形的面积吗?把你的做法和想法画出来,看谁想得方法好,想得方法多。
设计意图归纳整理所学新知之后进行练习检测,先进行新知巩固性练习,再进行有坡度的、形式多样的变式和发展性练习,发现问题及进进行矫正和发展性练习,在练习中检测教学目标达成情况。
板书设计:
(注:“我能行四步教学法”是我校开展的优质课教改实验项目之一,这种教学模式注意教学过程的民主化、多元化和学生个性的和谐发展,充分体现师生之间民主平等、亲密合作的教学观和师生观,具体流程为“情境导入,确定目标――互动展示,生成问题――启发思路,引导归纳――练习检测,拓展链接”。)
平行四边形面积教学设计6教学目标:
1、能用割补的方法,把平行四边形转化成面积不变的长方形,通过长方形面积的计算方法推导出平行四边形面积的计算方法
2、能用平行四边形面积的计算方法解决简单的实际问题。
3、在操作、观察、比较中,渗透转化的思想方法。
4、在探究活动中,体验到成功的快乐。
教学重点:
推导平行四边形面积公式,并能够运用平行四边形面积公式解决简单的实际问题。
教学难点:
推导平行四边形面积公式
教学准备:
课件平行四边形硬纸片剪刀透明方格纸
教学过程:
师:同学们,你们去过宁江区的江滨公园?美不美?公园还要在这里铺草坪,这是其中的两块(电脑出示草坪图),根据图中提供的数学信息你能提出哪些数学问题?
1、铺长方形草坪需要多少钱?(根据长方形的面积公式学生可以解决)2、铺平行四边形的草坪需要多少钱?师:需要先求什么?
生:平行四边形的面积。师:这节课我们就来研究平行四边形的面积。(板书课题)
1、猜想
那么大家猜一猜平行四边形的面积可能与什么有关?(可能与边有关)只与它边的长度有关?大家看老师手中这个平行四边形,(演示)还可能与什么有关?(高)那么平行四边形的面积究竟与它的底和高有怎样的关系?下面就让我们一起来研究。
2、实验
1)独立自主探究:
师:每个小组的桌上都有一些学具,有数格子用的格子纸、印的平行四边形和长方形和表格、剪刀、平行四边形,想一想你打算用什么方法来研究?
生:我用数格子的方法。
师:数格子时,不足一格的按一格算,把得到的数据填在表格里
师:还有什么方法?
生:我用剪一剪、拼一拼的方法。
师:用剪拼方法上的同学请读一下操作提示。(一生读)下面你们就用自己喜欢的方法试一试。
2)小组内交流:
师:通过数格子或者剪拼的方法,哪位同学有收获了?把你的想法在小组内交流,小组长组织好。一会要向全班同学汇报你们小组的方法。
3)学生汇报:
第一个小组:
(1)数格子(把表格带到前面说)
(2)剪拼
师:你们成功的把平行四边形转化成了长方形,这一长方形与原来的平行四边形有什么关系?(生:长方形的长等于平行四边形的底、宽等于平行四边形的高)你们小组转化的清楚,介绍的明白真了不起)
是这样吗?师课件演示解说强调平移
师:还有其他的剪拼方法吗?(你们组的方法与人不同,让同学们又学了一招啊!)生汇报后师演示
(多么巧妙的剪拼,我发现你们的思维很灵活啊。)(我只能说两个字了:“佩服!”)
师:还有其他的方法吗?其他几个小组同学,通过动手操作你们得到了什么结论。一起说(师板书:平行四边形的面积=底*高)
师:如果用s表示平行四边形的面积,用a表示平行四边形的底,用h表示平行四边形的高,那么平行四边形的面积公式又该怎样写呢?s=ah
师:现在我们来算一下铺这块平行四边形草坪要用多少钱?
(生口算)
1、求下列图形的面积是多少?
底15厘米,高11厘米
(不仅准确计算出了结果,速度还很快,真不错。)
2、开放题:这是一张全国地图,有一个省的地形很接近平行四边形,山西省。山西南北大约590千米,东西大约310千米,你能估计一下它的土地面积吗?(东西能否再平些)
(能在实际问题的解决中恰当运用公式,了不起)
3、学校要建一个面积是12平方米的平行四边形花坛,请你帮学校设计一下,(要求底、高均为整米数)1)可以有几种方案?2)哪种方案更合理?(你们能从不同角度考虑,为学校选择更合理的方案,老师非常感谢大家)
师:这节课,你是怎么学习的?你有哪些收获?
(我是用数方格的方法、我用平移这种方法把平行四边形转化成长方形再与平行四边形进行比较得出平行四边形的面积的师演示)你们很了不起,能想办法把平行四边形转化成我们以前学过的长方形来研究它的面积。我们这节课使用的这种方法,以后在学习其它图形面积时还会用到。今天的家庭作业是以《平行四边形的面积》为题写一篇数学日记,写清平行四边形的面积的推导过程,可以画、也可以剪贴。
课后反思
课堂教学是一个动态生成的过程。因此,在教学时,我把关注的焦点放在学生身上,关注学生的情感体验,关注学生的自主建构,更关注学生真实的学习过程。从而适时地激发学生的情感,点燃学生的智慧,发挥学生的创造性。主要体现在以下几个方面:
1、适时渗透、领悟思想方法
数学教学的价值目标取向不仅仅局限于让学生获得基本的数学知识和技能,更重要的是在数学教学活动中,经历问题解决的过程,了解数学学习的价值,增强数学的应用意识,获得数学的基本思想方法。我觉得,这节课学习的转化的数学思想方法将永远铭刻在学生头脑中,将在学生今后的学习中发挥更大的作用。
2、适时引导、主动建构知识
学生学习数学知识的过程是主动建构的过程。因此,在教学中,我让学生象科学家一样经历大胆猜想、动手验证、得出结论的过程。先让学生根据已有的知识经验进行猜想:平行四边形的面积可能与什么有关?然后,给学生足够的探究时间和空间,“数”、“剪拼”都是学生的智慧,“数的过程”、“剪拼的过程”都是学生的思维过程。最后,让学生同伴互助去探究、去发现、去总结,给每个学生参与数学活动的机会,真正的实现了自主学习。
3、适时点拨、有效进行指导
探究学习是把学生的“学”作为实施教学的基本点,而教师的“导”是实现学生“学”的根本保证。因此,在教学中我适时地对学生进行点拨、指导,做到“放得开、收得住”。如在自主探究过程中我发现,有的学生把平行四边形剪开后无法拼成长方形。于是,我进行了个别指导。引导学生思考:为什么只有沿高剪开才能拼成长方形?通过指导,使学生明白沿平行四边形的高剪开,是将平行四边形转化成长方形的关键。