第一篇:《抽屉问题》教学设计及反思
《抽屉原理》公开课教学设计
执教者 西荆镇岭子底小学 陈增善
教学内容:
人教课标版实验教科书六年级《数学》下册第70—71页。设计理念:
在数学问题中,有一类与“存在性”有关的问题,如任意367名学生中,一定至少存在两名学生是在同一天过生日。在这类问题中,只需要确定某个物体(或某个人)的存在就可以了,并不需要指出是哪个物体(或哪个人),也不需要说明通过什么方式把这个存在的物体(或人)找出来。这类问题依据的理论,我们称之为“抽屉原理”。本节课充分利用学生的生活经验,为学生自主探索提供时间和空间,引导学生通过观察、实验、推理和交流等活动,经历探究“抽屉原理”的过程,学会用一般性的数学方法思考问题,发展学生的数学思维,培养学生解决问题的能力。教材分析
抽屉原理是人教版六年级下册第五单元“数学广角”的内容。本节课教材借助把4枝铅笔放进3个文具盒中的操作情境,介绍了一类较简单的“抽屉原理”,即把a个物体任意分放进n个空抽屉里(a>n,n是非0自然数),如果a÷n=b„„c(c≠0)那么一定有一个抽屉中放进了至少(b+1)个物体;关于这类问题,学生在现实生活中已积累了一定的感性经验。教学时可以充分利用学生的生活经验,放手让学生自主思考,先猜想再采用自己的方法进行“证明”,然后再进行交流,在交流中引导学生对“枚举法”、“假设法”等方法进行比较,使学生逐步学会运用一般性的数学方法来思考问题,发展学生的抽象思维能力。教学目标:
⑴知识与技能:经历“抽屉原理”的探究过程,初步了解抽屉原理,会用“抽屉原理”解决简单的实际问题。通过猜测、验证、分析等数学活动,建立数学模型,发现规律。
⑵过程与方法:经历从具体到抽象的探究过程,提高学生有据有理地进行思考与推理。
⑶情感态度与价值观:通过“抽屉问题”的灵活应用,提高学生解决问题的能力与兴趣,感受数学文化及数学魅力。教学重、难点
⑴重点:经历“抽屉原理”的探究过程,初步了解“抽屉原理”。⑵难点:理解“抽屉原理”并能解决一些简单实际问题。教学方法:
情境趣导——操作探究——总结规律——理解体验。教学准备
多媒体课件。教学过程: 一.游戏激趣,初步体验
1.老师组织学生做“抢凳子游戏”。
请4位同学上来,摆开3张凳子。宣布游戏规则:4位同学围着凳子转圈,老师喊“停”时,四个人都必须坐在凳子上。
教师背对游戏的学生宣布游戏开始,然后叫“停”!问:都坐下了吗?老师不用看,知道肯定有一张凳子上至少坐着2位同学。老师说得对吗?
2.老师请7位同学进行游戏。
宣布游戏规则:每位同学在手心写上自然数1—4中任意一个数字。问:都写好了吗?请大家捏紧拳头,老师不用看,也知道肯定有一个数字至少有2位同学都写了。信不信?老师说得对不对?怎么来验证?
3.谈话揭课:刚才的两个游戏为什么我能做出准确的判断呢?道理是什么?这其中蕴含着一个有趣的数学原理,这节课我们就一起来研究这个原理。(板书课题:数学广角----)
二.操作体验,探究规律 1.观察猜想。
出示:3枝铅笔,放到2个文具盒里,猜一猜:不管怎么放,肯定有一个文具盒至少放进()支铅笔。
(1)分一分:引导学生把每种分法中得最多的旁边作个记号,得出每种分法中有一名学生得2枝、3枝(即2枝以上),再让学生用一个词语表示这种意思,那就是“至少”的意思。
(2)“肯定有”是什么意思?(一定有)“至少”什么意思?(“不少于两只,可能是2枝,也可能是多于2枝”,就是不能少于2枝铅笔。)
2.PPT出示例1:把4枝铅笔放进3个文具盒中,不管怎么放,总有一个文具盒至少放进()支铅笔。让学生猜想。
3.验证结论:不管学生猜想的结论是什么,都要求学生借助实物进行操作,来验证结论。(学生在小组操作和交流时,教师深入了解学生操作情况。)
(1)先请学生汇报所有列举的情况。(教师根据学生的回答板书):(4,0,0)(3,1,0)(2,2,0)(2,1,1)
教师再利用枚举法的课件演示,指出每种情况中都有几枝铅笔被放进了同一个文具盒。
(2)提出问题:不用一一列举,还有其它的方法来证明这个结论吗?
学生汇报后,教师围绕假设法,组织学生展开讨论:为什么每个文具盒里都要先放1枝铅笔呢?请相互之间讨论一下。
小结:假如每个文具盒放入一枝铅笔,剩下的一枝还要放进一个文具盒,无论放在哪个文具盒里,一定能找到一个文具盒里至少有2枝铅笔。只有平均分才能将铅笔尽可能地分散,保证“至少”的情况。(3)初步小结规律。教师继续问:6枝铅笔放进5个文具盒里呢?你还一一列举吗?7枝铅笔放进6个文具盒里呢?100枝铅笔放进99个文具盒呢?你发现了什么?
板书:笔的枝数比文具盒数多1,不管怎么放,总有一个文具盒里至少有2枝铅笔。
三.学以致用,体验原理 PPT课件出示:
1.5只鸽子飞回4个鸽舍,至少有2只鸽子要飞进同一个鸽舍里。为什么?
2.在13名同学中,一定至少有2人的生日在同一个月,你们相信吗?
3.四年级班有43名同学,至少有多少人在同一个月出生?某校有1603名学生至少有()人同日出生。
4.从扑克牌中取出两张王牌,在剩下的52张中任意抽出5张,请大家猜测一下,同种花色的至少有几张?为什么?
5.摸球游戏:盒子里有同样大小的红色球和蓝色球各4个,要想摸出的球一定有2个同色,最少要摸几个球?
学生独立思考,交流,说理,订正。四.回顾小结,揭示课题
我们将铅笔、鸽子看做物体,文具盒、鸽舍看做抽屉,观察物体数和抽屉数,你发现了什么规律?(学生用自己的语言描述)
小结:今天,我们学习的“把4枝铅笔放进3个文具盒中,我们可以把4枝铅笔看作物体,3个文具盒看作抽屉。把4个物体放进3个抽屉中,不管怎么放,总有一个抽屉至少放进2个物体„„今天我们发现的规律就是有名的“抽屉原理”。(补充课题,板书:抽屉原理)最先发现这些规律的人是德国数学家“狄里克雷”,人们为了纪念他从这么平凡的事情中发现了规律,就把这个规律用他的名字命名,叫“狄里克雷原理”,又把它叫做“鸽巢原理”或者“抽屉原理”。
五.探索体验,深化拓展(用有余数的除式表示假设过程)。1.出示例2:把5本书放进2个抽屉里,不管怎么放,总有一个抽屉里至少有几本书?
把7本书放进2个抽屉里,不管怎么放,总有一个抽屉里至少有几本书?
把9本书放进2个抽屉里,不管怎么放,总有一个抽屉里至少有几本书?
2.学生汇报:把5本书放进2个抽屉里,如果每个抽屉里先放2本,还剩1本,这本书不管放到哪个抽屉里,总有一个抽屉里至少有3本书。
板书:5÷2=2„„1(商加1)7÷2=3„„1(商加1)
9÷2=4„„1(商加1)观察板书,问:你能发现什么?(总有一个抽屉里里至少有“商+ 1”本。)
3.继续讨论:如果把5本书放进3个抽屉里,不管怎么放,总有一个抽屉里至少有几本书?11本书放进3个抽屉中、20本书放进4个抽屉中呢?(根据学生回答,板书相应的除法算式。)
5÷3=1„„2,商+ 2 问:对吗?
(不对!先把5本书平均分放到3个抽屉里,每个抽屉里先放1本,还剩2本,这2本书任意放进两个抽屉里,总有一个抽屉里至少有2本书,不是3本书。)
再问:到底是“商+1”还是“商+余数”呢?小组讨论。交流、说理:
生1:我们组通过讨论并且实际分了分,结论是总有一个抽屉里至少有2本书,不是3本书。
生2:把5本书平均分放到3个抽屉里,每个抽屉里先放1本,余下的2本可以任意放在2个抽屉里,结论是“总有一个抽屉里至少有2本书”。
生3:我们是把5本书平均分放到3个抽屉里,“总有一个抽屉里至少有2本书”用“商加1”就可以了,不是“商加2”。
4.再次发现规律。问:现在大家都明白了吧?那么怎样才能够确定总有一个抽屉里至少有几个物体呢?观察板书,你有什么发现吗?(让学生通过对除法算式的观察,得出“物体的数量大于抽屉的数量,总有一个抽屉里至少放进商+1个物体”的结论。)
(学情预设①:“商+余数”和“商+1”两种情况;验证一下,看看到底是商+1,还是+余数?)
生4:如果书数大于抽屉数,用书数除以抽屉数,再用所得的商加1,就会发现总有一个抽屉里至少有“商加1”本书了。
板书:把a个物体任意放进n个抽屉里,如果a÷n=b„„c(c≠0),那么一定有一个抽屉里至少放进了(b+1)个物体。
六.灵活应用,形成能力
1、出示第70页“做一做”:7只鸽子飞进5个鸽舍,至少有2只鸽子飞进同一个鸽舍。为什么?
2、出示第71页“做一做”:8只鸽子飞进3个鸽舍,至少有3只鸽子飞进同一个鸽舍。为什么?你能证明这个结论吗?
3、拓展题:任意写出三个自然数,至少有2个数的和一定是偶数。说明理由。
七.全课小结:通过今天学习,你有什么收获?
【教学反思】
对“抽屉原理”第一课时教学流程的思考
教学流程:游戏导入—探究新知—解决问题—游戏深化。设计反思:
第一环节——游戏导入
通过“抢椅子”游戏,体验不管怎么坐,总有一把椅子上至少坐两个同学。激起学生认识兴趣,趁机抓住他们的求知欲,作为新课的切入点,这样导入极大地激发了学生探究新知的热情,使学生积极主动地投入到新课的探究之中。
第二环节——探究新知
此环节是本节课的关键一环,这一环节的教学,我重在让学生经历知识发生、发展的过程,而不是只求结论或囫囵吞枣,生搬硬套,让学生不但知其然,更要知其所以然。课上我让学生通过枚举法及假设法探究出了结论:3枝铅笔,放到2个文具盒里,不管怎么放,总有一个文具盒里至少有2枝。这是本课的重点,接着引导学生把每种分法都列举出来,得出每种分法中有一名学生得2枝、3枝(即2枝以上),再让学生用一个词语表示这种意思,那就是“至少”的意思,再反过来理解 “至少”的意思。这样既突破了本节课的难点,也加深了对抽屉原理的理解。
在此基础上,我让学生把4枝铅笔放进3个文具盒里,怎么放?有几种不同的放法?先摆放、再讨论能不能只摆一次就能直接得出结论。然后得出只要先平均分,再把余下的再分放就能得到“不管怎么放,总有一个盒子里至少有2枝铅笔。”的结论。
第三环节——解决问题
数学来源于生活又服务于生活,此环节我选择了贴近学生生活又喜闻乐见的事物,让学生在满怀激情中解决问题。练习题的设计遵循了“让学生接触这类问题——逐步熟悉这类问题——然后归纳这类问题的基本型——这类问题的变式型”。即给出了抽屉数,引导学生逆向思维去求物体数,这一问题是抽屉原理的逆思考问题,拓宽了学生的思维空间。
第四环节——游戏深化
课的开始是游戏导入,结束时必须让学生没有遗憾地离开课堂,所以我在出示了几道关于出生年时间的练习题,在解决这几个问题时,我把问题逐步深化,比如:四年级班有43名同学,至少有()人在同一个月出生。某校有1603名学生至少有()人同日出生。最后我又给学生做了一个游戏:有一副扑克牌,去掉了两张王牌,还剩52张,我请五位同学每人任意抽1张,听清要求,不要让别人看到你抽的牌。请大家猜测一下,同种花色的至少有几张?为什么? 这一类问题正是下节课要学习的抽屉原理
(二)的知识,学生的思维向纵深发展了,不但解决了问题还受到了科学的情感体验,情感教育目标得到了落实。
第二篇:《抽屉原理》教学设计和反思[定稿]
抽屉原理教学设计
海宁行知小学
凌娟惠
1.教材分析
《抽屉原理》是义务教育课程标准实验教科书数学六年级下册第五单元数学广角的教学内容。这部分教材通过几个直观例子,借助实际操作,向学生介绍“抽屉原理”,使学生在理解“抽屉原理”这一数学方法的基础上,对一些简单的实际问题加以“模型化”,会用“抽屉原理”加以解决。2.学情分析
“抽屉原理”在生活中运用广泛,学生在生活中常常能遇到实例,但并不能有意识地从数学的角度来理解和运用“抽屉原理”。教学中应有意识地让学生理解“抽屉原理”的“一般化模型”。六年级学生的逻辑思维能力、小组合作能力和动手操作能力都有了较大的提高,加上已有的生活经验,很容易感受到用“抽屉原理”解决问题带来的乐趣。3.教学理念
激趣是新课导入的抓手,喜欢和好奇心比什么都重要,以“贴磁扣猜一猜”,让学生置身游戏中开始学习,为理解抽屉原理埋下伏笔。通过小组合作,动手操作的探究性学习把抽屉原理较为抽象难懂的内容变为学生感兴趣又易于理解的内容。特别是对教材中的结论“总有、至少”等字词作了充分的阐释,帮助学生进行较好的“建模”,使复杂问题简单化,简单问题模型化,充分体现了新课标要求。4.教学目标
1.经历“抽屉原理”的探究过程,初步了解“抽屉原理”,会用“抽屉原理”解决简单的实际问题。
2.通过操作发展学生的类推能力,形成比较抽象的数学思维。3.通过“抽屉原理”的灵活应用感受数学的魅力。5.教学重难点
重点:经历“抽屉原理”的探究过程,初步了解“抽屉原理”。
难点:理解“抽屉原理”,并对一些简单实际问题加以“模型化”。6.教学过程
一、课前游戏引入。
1、贴磁扣游戏:将3个磁扣贴到2个圆圈内,你们贴,我来猜,我保证能猜对。请一名同学贴,其他同学记录。
师猜“总有一个圆圈内至少有两个磁扣。对吗?谁不信还想来试一试的。” 反馈2种方法:(1,2)(0,3)
2、“总有”“至少”什么意思?
在这个游戏中蕴含着一个有趣的数学原理叫做抽屉原理,这节课我们就一起来研究抽屉原理。(板书课题)
二、通过操作,探究新知
(一)活动1:探究简单的抽屉原理
1、探讨4个磁扣放进3个圆圈内。
(1)要把4个磁扣放进3个圆圈内,你能得到什么结论?请同学们动手摆一摆,再把你的想法在小组内交流。
(2)你们得到了什么结论?(总有一个圆圈内至少有2个磁扣。)(3)你是怎么发现的?
A、大家通过枚举出四种放法(4,0,0)(3,1,0)(2,2,0)(2,1,1)B、这位同学运用了假设法来说明问题,假设先在每个杯子里放1根小棒,这种放法其实也就是怎样分?(平均分)那剩下的1根怎么处理?(放入任意一个杯子,那么这个杯子就有2根小棒了)
(4)在探究4个磁扣放进3个圆圈的问题,同学们的方法有两种,一是枚举了所有放法,找规律,二是采用了“假设法”来说明理由,你觉得哪种方法更明了更简单?
2、类推:把5个磁扣放进4个圆圈内,是不是总有一个圆圈内至少有2个磁扣?为什么?
把6个磁扣放进5个圆圈内,是不是总有一个圆圈内至少有2个磁扣?为什么?
把7个磁扣放进6个圆圈内,是不是总有一个圆圈内至少有2个磁扣?为什么?
把100个磁扣放进99个圆圈内,是不是总有一个圆圈内至少有2个磁扣?为什么?
3、从刚才我们的探究活动中,你有什么发现?(只要放的小棒比杯子的数量多1,总有一个杯子里至少放进2根小棒。)
过渡:那么抽屉原理仅仅只是研究“多1“的情况吗?
(二)活动2:探讨抽屉原理的一般形式
1、把7个磁扣放进3个圈内。(1)独立思考
(2)在小组内交流自己的想法(3)全班交流、思考: A、假设法(平均分)
B、谁能用算式来表示:7÷3=2…1(商2表示什么,余数1表示什么)2+1=3表示什么?
2、追问:如果把8额磁扣放进3个圈内,至少有一个圈内屉放进3个磁扣。7÷3=2…1(至少放3个)8÷3=2…2(至少放3个)7÷2=3…1(至少放4个)8÷2=4(至少放4个)
3、观察、发现规律。
(1)总有一个圈内至少放的磁扣的数量和商之间有什么关系?(2)讨论:到底是“商+1”还是“商+余数”。
小结:在解决抽屉原理时,我们可以运用假设法,把物体尽可能地“平均分,总有一个抽屉比平均分得的物体数多1。
4、经过刚才的探索研究,我们经历了一个很不简单的思维过程,个个都是了不起的数学家。那最先发现这些规律的人是谁呢?他就是19世纪的德国数学家“狄里克雷”,后来人们为了纪念他从这么平凡的事情中发现的规律,就把这个规律用他的名字命名,叫“狄里克雷原理”,也叫做 “抽屉原理”。
三、生活中的“抽屉原理”
1、我这里有一副扑克牌,去掉了两张王牌,还剩52张,我请五位同学每人任意抽1张,不要让别人看到你抽的是什么牌。请大家猜测一下,同种花色的至少有几张?为什么? 2、13位小朋友,12个月份,至少有2位小朋友出生在同一月份。那我们班36个同学,至少有几个出生在同一月份?
3、做一做
9个小朋友分10块糖,总有一个小朋友至少分到()块糖。15个梨放入6个盘子,总有()个盘子至少有()个梨。
四、总结全课
1、这节课,你有什么收获?
2、那我们课前的游戏你现在能解释了吗?
7、教学反思
本节课是通过几个直观例子,借助实际操作,引导学生探究“抽屉原理”,初步经历“数学证明的过程,并有意识的培养学生的“模型思想”。
1、借助直观操作,经历探究过程。教师注重让学生在操作中,经历探究过程,感知、理解抽屉原理。
2、教师注重培养学生的“模型”思想。通过一系列的操作活动,学生对于枚举法和假设法有一定的认识,加以比较,分析两种方法在解决抽屉原理的优超性和局限性,使学生逐步学会运用一般性的数学方法来思考问题。
3、在活动中引导学生感受数学的魅力。本节课的“抽屉原理”的建立是学生在观察、操作、思考与推理的基础上理解和发现的,学生学的积极主动。以游戏引入,又以游戏结束,以此来调动了学生学习的积极性,又学到了抽屉原理的知识,同时锻炼了学生的思维。在整节课的教学活动中使学生感受了数学的魅力。
但遗憾的是由于公开课,学生表现得有些拘束,一开始的回答有些放不开。思考:可以安排恰当的课前谈话,以此让学生做到放松自如。
第三篇:抽屉原理教学设计及反思
抽屉原理教学设计及反思
一、教学设计 1.教材分析
《抽屉原理》是义务教育课程标准实验教科书数学六年级下册第五单元数学广角的教学内容。这部分教材通过几个直观例子,借助实际操作,向学生介绍“抽屉原理”,使学生在理解“抽屉原理”这一数学方法的基础上,对一些简单的实际问题加以“模型化”,会用“抽屉原理”加以解决。2.学情分析
“抽屉原理”在生活中运用广泛,学生在生活中常常能遇到实例,但并不能有意识地从数学的角度来理解和运用“抽屉原理”。教学中应有意识地让学生理解“抽屉原理”的“一般化模型”。六年级学生的逻辑思维能力、小组合作能力和动手操作能力都有了较大的提高,加上已有的生活经验,很容易感受到用“抽屉原理”解决问题带来的乐趣。3.教学理念
激趣是新课导入的抓手,喜欢和好奇心比什么都重要,以“抢椅子”,让学生置身游戏中开始学习,为理解抽屉原理埋下伏笔。通过小组合作,动手操作的探究性学习把抽屉原理较为抽象难懂的内容变为学生感兴趣又易于理解的内容。特别是对教材中的结论“总有、至少”等字词作了充分的阐释,帮助学生进行较好的“建模”,使复杂问题简单化,简单问题模型化,充分体现了新课标要求。4.教学目标
1.经历“抽屉原理”的探究过程,初步了解“抽屉原理”,会用“抽屉原理”解决简单的实际问题。
2.通过操作发展学生的类推能力,形成比较抽象的数学思维。
3.通过“抽屉原理”的灵活应用感受数学的魅力。5.教学重难点
重点:经历“抽屉原理”的探究过程,初步了解“抽屉原理”。
难点:理解“抽屉原理”,并对一些简单实际问题加以“模型化”。6.教学过程
一、课前游戏引入。
上课前,我们先来热身一下,一起来玩抢椅子的游戏。
请3位同学上来参加游戏,第三位同学是请女生还是男生呢?老师认为,不管是请男生还是女生,都一定至少有两位同学的性别是相同的。同意我的说法吗?
游戏规则是:在老师说开始时,3位同学绕着椅子走,当老师说停的,三位同学都要坐在椅子上。
为什么总有一张椅子至少坐两个同学?
在这个游戏中蕴含着一个有趣的数学原理叫做抽屉理原,这节课我们就一起来研究抽屉理原。(板书课题)
二、通过操作,探究新知
(一)探究例1
1、研究3枝铅笔放进2个文具盒。
(1)要把3枝铅笔放进2个文具盒,有几种放法?请同学们想一想,摆一摆,写一写,再把你的想法在小组内交流。
(2)反馈:两种放法:(3,0)和(2,1)。
(3)从两种放法,同学们会有什么发现呢?(总有一个文具盒至少放进2枝铅笔)你是怎么发现的?(说得真有道理)
(4)“总有”什么意思?(一定有)
(5)“至少”有2枝什么意思?(不少于2枝)
小结:在研究3枝铅笔放进2个文具盒时,同学们表现得很积极,发现了“不管怎么放,总有一个文具盒放进2枝铅笔)
2、研究4枝铅笔放进3个文具盒。
(1)要把4枝铅笔放进3个文具盒里,有几种放法?请同学们动手摆一摆,再把你的想法在小组内交流。
(2)反馈:四种放法:(4,0,0)、(3,1,0)、(2,2,0)、(2,1,1)。(3)从四种放法,同学们会有什么发现呢?(总有一个笔盒至少有2枝铅笔)(4)你是怎么发现的?
(5)大家通过枚举出四种放法,能清楚地发现“总有一个文具盒放进2枝铅笔”。如果要让每个文具盒里放的笔尽可能的少,你觉得应该要怎样放?(每个文具盒都先放进一枝,还剩一枝不管放进哪个文具盒,总会有一个文具盒至少有2枝笔)(你真是一个善于思想的孩子。)(6)这位同学运用了假设法来说明问题,你是假设先在每个文具盒里放1枝铅笔,这种放法其实也就是怎样分?(平均分)那剩下的1枝怎么处理?(放入任意一个文具盒,那么这个文具盒就有2枝铅笔了)
(7)谁能用算式来表示这位同学的想法?(5÷4=1„1)商1表示什么?余数1表示什么?怎么办?
(8)在探究4枝铅笔放进3个文具盒的问题,同学们的方法有两种,一是枚举了所有放法,找规律,二是采用了“假设法”来说明理由,你觉得哪种方法更明了更简单?
3、类推:把5枝铅笔放进4个文具盒,是不是总有一个笔盒至少有2枝铅笔?为什么?
把6枝铅笔放进5个文具盒,是不是总有一个笔盒至少有2枝铅笔?为什么?
把7枝铅笔放进6个文具盒,是不是总有一个笔盒至少有2枝铅笔?为什么?
把100枝铅笔放进99个文具盒,是不是总有一个笔盒至少有2枝铅笔?为什么?
4、从刚才我们的探究活动中,你有什么发现?(只要放的铅笔比文具盒的数量多1,总有一个文具盒里至少放进2枝铅笔。)
5、如果铅笔数比文具盒数多2呢?多3呢?是不是也能得到结论:“总有一个笔盒至少有2枝铅笔。”
6、小结:刚才我们分析了把铅笔放进文具盒的情况,只要铅笔数量多于文具盒数量时,总有一个文具盒至少放进2枝铅笔。
这就是今天我们要学习的抽屉原理。既然叫“抽屉原理”是不是应该和抽屉有联系吧?铅笔相当于我们要准备放进抽屉的物体,那么文具盒就相当于抽屉了。如果物体数多于抽屉数,我们就能得出结论“总有一个抽屉里放进了2个物体。”
7、在我们的生活中,常常会遇到抽屉原理,你能不能举个例子?在课前我们玩的游戏中,有没有抽屉原理?
过渡:同学们非常了不起,善于运用观察、分析、思考、推理、证明的方法研究问题,得出结论。同学们的思维也在不知不觉中提升了许多,那么让我们再来研究这样一组问题。
(二)探究例2
1、研究把5本书放进2个抽屉。
(1)把5本书放进2个抽屉会有几种情况?(5,0)、(4,1)和(3,2)
(2)从三种情况中,我们可以得到怎样的结论呢?(总有一个抽屉至少放进了3本书)(3)还可以怎样理解这个结论?先在每个抽屉里放进2本,剩下的1本放进任何一个抽屉,这个抽屉就有3本书了。(4)可以把我们的想法用算式表示出来:5÷2=2„1(商2表示什么,余数1表示什么)2+1=3表示什么?
2、类推:如果把7本书放进2个抽屉中,至少有一个抽屉放进4本书。
如果把9本书放进2个抽屉中。至少有一个抽屉放进5本书。
如果把11本书放进3个抽屉中。至少有一个抽屉放进4本书。你是怎样想的?(11÷3=3„2)商3表示什么?余数2表示什么?3+1=4表示什么?
3、小结:从以上的学习中,你有什么发现?(在解决抽屉原理时,我们可以运用假设法,把物体尽可量多地“平均分”给各个抽屉,总有一个抽屉比平均分得的物体数多1。)
4、经过刚才的探索研究,我们经历了一个很不简单的思维过程,个个都是了不起的数学家。“ 抽屉原理”最先是由19世纪的德国数学家狄利克雷提出来的,所以又称“狄里克雷原理”,也称为“鸽巢原理”。这一原理在解决实际问题中有着广泛的应用。“抽屉原理”的应用是千变万化的,用它可以解决许多有趣的问题,并且常常能得到一些令人惊异的结果。
5、做一做:
7只鸽子飞回5个鸽舍,至少有2只鸽子要飞进同一个佶舍里。为什么? 8只鸽子飞回3个鸽舍,至少有3只鸽子要飞时同一个鸽舍里。为什么?(先让学生独立思考,在小组里讨论,再全班反馈)
三、迁移与拓展
下面我们一起来放松一下,做个小游戏。
我这里有一副扑克牌,去掉了两张王牌,还剩52张,我请五位同学每人任意抽1张,听清要求,不要让别人看到你抽的是什么牌。请大家猜测一下,同种花色的至少有几张?为什么?
四、总结全课
这节课,你有什么收获?
下宫中心小学:金可辉
2016-05-23
第四篇:抽屉原理教学设计及反思
抽屉原理教学设计及反思
靖安二小 戴燕燕
一、教学设计
1.教材分析
《抽屉原理》是义务教育课程标准实验教科书数学六年级下册第五单元数学广角的教学内容。这部分教材通过几个直观例子,借助实际操作,向学生介绍“抽屉原理”,使学生在理解“抽屉原理”这一数学方法的基础上,对一些简单的实际问题加以“模型化”,会用“抽屉原理”加以解决。
2.学情分析
“抽屉原理”在生活中运用广泛,学生在生活中常常能遇到实例,但并不能有意识地从数学的角度来理解和运用“抽屉原理”。教学中应有意识地让学生理解“抽屉原理”的“一般化模型”。六年级学生的逻辑思维能力、小组合作能力和动手操作能力都有了较大的提高,加上已有的生活经验,很容易感受到用“抽屉原理”解决问题带来的乐趣。
3.教学理念
激趣是新课导入的抓手,喜欢和好奇心比什么都重要,以“抢椅子”,让学生置身游戏中开始学习,为理解抽屉原理埋下伏笔。通过小组合作,动手操作的探究性学习把抽屉原理较为抽象难懂的内容变为学生感兴趣又易于理解的内容。特别是对教材中的结论“总有、至少”等字词作了充分的阐释,帮助学生进行较好的“建模”,使复杂问题简单化,简单问题模型化,充分体现了新课标要求。
4.教学目标 1.经历“抽屉原理”的探究过程,初步了解“抽屉原理”,会用“抽屉原理”解决简单的实际问题。
2.通过操作发展学生的类推能力,形成比较抽象的数学思维。
3.通过“抽屉原理”的灵活应用感受数学的魅力。
5.教学重难点
重点:经历“抽屉原理”的探究过程,初步了解“抽屉原理”。
难点:理解“抽屉原理”,并对一些简单实际问题加以“模型化”。
6.教学过程
一、课前游戏引入。
上课前,我们先来热身一下,一起来玩抢椅子的游戏。
这有4把椅子,请5位同学上来参加游戏,游戏规则是:在老师说开始时,5位同学绕着椅子走,当老师说停的,5位同学都要坐在椅子上。
为什么总有一张椅子至少坐两个同学?
在这个游戏中蕴含着一个有趣的数学原理叫做抽屉理原,这节课我们就一起来研究抽屉理原。(板书课题)
二、通过操作,探究新知
(一)探究物体数比抽屉数多1的情况
1、把3根小棒放进2个杯子中,有几种不同的放法?(1)同桌合作,想一想,摆一摆,并记录下来。
(2)反馈:两种放法:(3,0)和(2,1)。
(3)从两种放法,同学们会有什么发现呢?(总有一个杯子中至少放进2根小棒)你是怎么发现的?
(4)“总有”什么意思?(一定有)
(5)“至少”有2根什么意思?(不少于2根)
小结:把3根小棒放进2个杯子中,不管 怎么放,总有一个杯子中至少放进了2根小棒。
2、要把4根小棒放进3个杯子里,有几种放法?
(1)请同学们动手摆一摆,再把你的想法在小组内交流。
(2)反馈:四种放法:(4,0,0)、(3,1,0)、(2,2,0)、(2,1,1)。
(3)从四种放法,同学们会有什么发现呢?(总有一个杯子里至少有2根小棒)
(4)你是怎么发现的?
(5)大家通过枚举出四种放法,能清楚地发现“总有一个杯子里放进了2根小棒”。
3、类推: 把6根小棒放入5个杯子中,总有一个杯子中至少有几根小棒,为什么?
还用不用把所有的摆法再一一列举出来,有什么方法只摆一次就能证明这个结论。(平均分)
为什么用平均分的方法就能证明这个结论?余下的小棒怎么分?
怎样用算式表示?(6÷5=1„„1,商1表示什么,余1又表示什么?)把7枝铅笔放进6个文具盒,是不是总有一个笔盒至少有2枝铅笔?为什么?
把100枝铅笔放进99个文具盒,是不是总有一个笔盒至少有2枝铅笔?为什么?
4、从刚才我们的探究活动中,你有什么发现?(当物体数比抽屉数多1,就总有一个抽屉中至少放进了2个物体。)
7、在我们的生活中,常常会遇到抽屉原理,你能不能举个例子?在课前我们玩的游戏中,有没有抽屉原理?
过渡:同学们非常了不起,善于运用观察、分析、思考、推理、证明的方法研究问题,得出结论。同学们的思维也在不知不觉中提升了许多,那么让我们再来研究这样一组问题。
(二)探究物体数比抽屉数多几倍还多的情况
1、研究把5根小棒放进3个杯子
(1)把5根小棒放进3个杯子,总有一个杯子中至少有几根小棒?
(2)可以怎样分,用平均分的方法证明一下。先在每个抽屉里放进2本,剩下的1本放进任何一个抽屉,这个抽屉就有3本书了。
(4)可以把我们的想法用算式表示出来:5÷3=1…2(商1表示什么,余数2表示什么)2+1=3表示什么?
2、类推:如果把9根小棒放进4个杯子中,15根小棒也放进4个杯子中,会有什么结论?
3、怎样求至少数?(商+1)
3、小结:当物体数比抽屉数多几倍还多的情况,用物体数除以抽屉数,有余数时,至少数=商+1.4、经过刚才的探索研究,我们经历了一个很不简单的思维过程,个个都是了不起的数学家。“ 抽屉原理”最先是由19世纪的德国数学家狄利克雷提出来的,所以又称“狄里克雷原理”,也称为“鸽巢原理”。这一原理在解决实际问题中有着广泛的应用。“抽屉原理”的应用是千变万化的,用它可以解决许多有趣的问题,并且常常能得到一些令人惊异的结果。
5、做一做:
(1)8只鸽子飞回3个鸽舍,至少有3只鸽子要飞时同一个鸽舍里。为什么?
(先让学生独立思考,在小组里讨论,再全班反馈)
(2)11个小朋友同行,其中至少有几个小朋友性别相同?
(3)从电影院任意找来15个观众,至少有几个人属相相同?
(找到题中什么当抽屉,物体数是多少,运用抽屉原理列出算式,并解释原因)
三、迁移与拓展
1、下面我们一起来放松一下,做个小游戏。
我这里有一副扑克牌,去掉了两张王牌,还剩52张,我请五位同学每人任意抽1张,听清要求,不要让别人看到你抽的是什么牌。请大家猜测一下,同种花色的至少有几张?为什么?
2、用三种颜色给正方体的各面涂色(每面只涂一种颜色),请你证明至少有两个面涂
色相同。
得出结论:当物体数除以抽屉数,整除时,至少数=商
四、总结全课 这节课,你有什么收获?
二、教学反思
新一轮的课程改革,把原本在奥数教材中出现的一些开发智力、开阔视野的数学思维训练内容也加入到数学教材中,以“数学广角”单元的形式出现。“抽屉原理”是六年级下册内容,应用很广泛且灵活多变,可以解决一些看上去很复杂、觉得无从下手,却又是相当有趣的数学问题。但对于小学生来说,理解和掌握“抽屉原理”还存在着一定的难度。这对我们数学教师的教学提出了挑战。通过课堂实践,感受颇深,反思我的教学过程,有几下几点可取之处:
1、创设情境,从学生熟悉的素材开始激发兴趣,兴趣是最好的老师。课前“抢凳子”游戏,简单却能真实的反映“抽屉原理”的本质。通过猜测,一下就抓住学生的注意力,让学生觉得这节课要探究的问题,好玩又有意义。
2、建立模型,本节课充分放手,让学生自主思考,恰当引导
教师是学生的合作者,引导者。在活动设计中,我注重学生经历知识产生、形成的过程。4根小棒放进3个杯子的结果早就可想而知,但让学生通过放一放、想一想、议一议的过程,把抽象的说理用具体的实物演示出来,化抽象为具体,发现并描述、理解了最简单的“抽屉原理”。在此基础上,我又主动提问:还有什么有价值的问题研究吗?让学生自主的想到:小棒数比杯子数多2或其它数会怎么样?来继续开展探究活动,同时,通过活动结合板书引导学生归纳出求至少数的方法。
3、解释应用,深化知识。
学了“抽屉原理”有什么用?能解决生活中的什么问题,这就要求在教学中要注重联系学生的生活实际。在试一试环节里,我设计了一组简单、真实的生活情境,让学生用学过的知识来解释这些现象,有效的将学生的自主探究学习延伸到课外,体现了“数学来源于生活,又还原于生活”的理念。
教学永远是一门遗憾的艺术。回顾整节课我觉得还有许多不足之处,学生对至少数的理解还很模糊,只是按照程式推导出至少数的求法,并没有真正体会出抽屉原理的本质。没有给学生足够思考的空间,只是有部分学生说出就给出结论,面向的应是全体学生,这是在我教学过程中还应加强的部分。
第五篇:抽屉原理教学反思
抽屉原理教学反思
抽屉原理教学反思1
本课是小学六年级数学广角的内容。“抽屉原理”应用很广泛且灵活多变,可以解决一些看上去很复杂、觉得无从下手,却又是相当有趣的数学问题。但对于小学生来说,理解和掌握“抽屉原理”还存在着一定的难度。所以,本节课根据学生的认知特点和规律,在设计时着眼于利用学生已有的认知,激发学生兴趣,提高解决问题的能力,通过动手操作、小组活动等方式组织教学。反思我的教学过程,有几下可取之处:
1、情境中激发兴趣。
兴趣是最好的老师。课前“抽扑克牌”的小游戏,简单却能真实的反映“抽屉原理”的本质。通过小游戏,一下就抓住学生的注意力,让学生觉得这节课要探究的问题,好玩又有意义。
2、在学生操作活动中恰当引导。
教师是学生的'合作者,引导者。在操作活动设计中,我着重学生经历知识产生、形成的过程。4根小棒放进3个纸杯的结果早就可想而知,但让每个小组的学生通过放一放、想一想、议一议的过程,把抽象的说理用具体的实物演示出来,化抽象为具体,发现并描述、理解了最简单的“抽屉原理”。然后再引导学生在操作中继续探究:把5本书放入2个抽屉,部有一个抽屉至少有几本书?那么7本书呢?9本书呢?
3、在生活情境中深化知识。
学了“抽屉原理”有什么用?能解决生活中的什么问题,这就要求在教学中要注重联系学生的生活实际。在试一试环节里,我设计了一组简单、真实的生活情境,让学生用学过的知识来解释这些现象,有效的将学生的自主探究学习延伸到课外,体现了“数学来源于生活,又还原于生活”的理念。比如:任意点13个同学起来,至少有2个同学在同一天过生日。
教学永远是一门遗憾的艺术。回顾整节课我觉得在学生体验数学知识的产生过程中,老师处理得还是有点粗,特别是在学生叙述的过程中,学生用比较凌乱的语言的进行描述,教师指导不够,因为数学语言精简性直接影响着学生对新知识的理解与掌握,也就是没有很好地强化理解“总有”“至少”的含义。
抽屉原理教学反思2
数学课堂是师生互动的过程,学生是学习的主人,教师是组织者和引导者。本堂课注重为学生提供自主探索的`空间,引导学生通过探索,初步了解“抽屉原理”,会用“抽屉原理”解决实际问题。
本节课的教学突出体现以下两个特点:
一、游戏导入,激发兴趣。
从学生熟悉的“抢椅子”游戏开始,让学生体验不管怎么坐,总有一把椅子上至少坐两个同学,使学生明确这是生活中存在着的一种现象,激发学生的学习兴趣。
二、注重“说理”活动,培养学生逻辑能力。
1、在教学例1时(把4枝铅笔放进3个文具盒中。),我大胆放手让学生通过“动手放一放、同桌互相说一说”(在汇报的过程中,提醒学生只需解决存在的问题就可以了。)
2、补充习题,使学生逐步学会运用一般性的数学方法来思考问题。
A、将5枝铅笔放进4个文具盒里。
B、将6枝铅笔放进5个文具盒里。
C、将20枝铅笔放进19个文具盒里。
D、将100枝铅笔放进99个文具盒里。……
总有一个文具盒里至少放进枝铅笔
铅笔数是文具盒数的1倍多1
铅笔数÷文具盒数=1……1
至少数:1+1=2
如果是5枝铅笔放到3个文具盒里,总有一个文具盒至少放进几枝铅笔?
5÷3=1……2
至少数=1+1
抽屉原理教学反思3
数学课程标准指出,数学课堂教学是师生互动与发展的过程,学生是数学学习的主人,教师是课堂的组织者,引导者和合作者。本节课的教学注重为学生提供自主探索的空间,引导学生在观察、猜测、操作、推理和交流等数学活动中初步了解“抽屉原理”,学会用“抽屉原理”解决简单的实际问题,经历“数学化”的过程。
一、“创设情境——从学生熟悉的“放球”游戏开始,让学生初步体验不管怎么放,总有一盒子里至少放两个球,使学生明确这是现实生活中存在着的一种现象,激发了学生的学习兴趣,让学生利用已有的经验初步感知抽象的“抽屉原理”。
二、建立模型——本节课充分放手,让学生自主思考,采用自己的方法“证明”:“把4枝铅笔放入3纸个盒中,不管怎么放,总有一个纸盒里至少放进2枝铅笔”,然后交流展示,为后面开展教与学的活动做了铺垫。此处设计注意了从最简单的数据开始摆放,有利于学生观察、理解,有利于调动所有的学生积极性。在有趣的类推活动中,引导学生得出一般性的结论,让学生体验和理解“抽屉原理”的最基本原理,当物体个数大于抽屉个数时,一定有一个抽屉中放进了至少2个物体。这样的教学过程,从方法层面和知识层面上对学生进行了提升,有助于发展学生的类推能力,形成比较抽象的数学思维。在评价学生各种“证明”方法,针对学生的不同方法教师给予针对性的鼓励和指导,让学生在自主探索中体验成功,获得发展。在学生自主探索的基础上,进一步比较优化,让学生逐步学会运用一般性的数学方法来思考问题。在这一环节的教学中抓住了假设法最核心的思路就是用“有余数除法”形式表示出来,使学生学生借助直观,很好的理解了如果把书尽量多地“平均分”给各个抽屉里,看每个抽屉里能分到多少本书,余下的书不管放到哪个抽屉里,总有一个抽屉里比平均分得的书的本数多1本。特别是对“某个抽屉至少有书的本数”是除法算式中的商加“1”,而不是商加“余数”,教师适时挑出针对性问题进行交流、讨论,使学生从本质上理解了“抽屉原理”。
三、解释应用——是新课程倡导的课堂教学模式,本节课运用这一模式,设计了丰富多彩的数学活动,让学生经历“抽屉原理”的探究过程,从探究具体问题到类推得出一般结论,初步了解“抽屉原理”,再到实际生活中加以应用,找到实际问题和“抽屉原理”之间的联系,灵活地解决实际问题。让学生经历“数学化”的过程,学会思考数学问题的方法,培养学生的数学思维能力。抽屉问题”的变式很多,应用更具灵活性。本节课的练习设计注重层次,有坡度。第1、2题,学生可以利用例题中的方法迁移类推,加以解释。第3、4题学生需要经历将具体问题“数学化”的过程,有利于培养学生的数学思维能力,让学生在运用新知灵活巧妙地解决实际问题的过程中进一步体验数学的价值,感受数学的魅力,提高数学学习的兴趣。第5题是用理论的数学知识解决生活中的游戏实际问题,从而体会数学的价值。
“抽屉原理”应用很广泛且灵活多变,可以解决一些看上去很复杂、觉得无从下手,却又是相当有趣的数学问题。但对于小学生来说,理解和掌握“抽屉原理”还存在着一定的难度。所以,本节课根据学生的认知特点和规律,在设计时着眼于开拓学生视野,激发学生兴趣,提高解决问题的能力,通过动手操作、小组活动等方式组织教学。反思我的教学过程,有几下几点可取之处:
1、情境中激发兴趣。
兴趣是最好的老师。课前“抢椅子”的小游戏,简单却能真实的反映“抽屉原理”的本质。通过小游戏,一下就抓住学生的注意力,让学生觉得这节课要探究的问题,好玩又有意义。
2、活动中恰当引导。
教师是学生的合作者,引导者。在活动设计中,我着重学生经历知识产生、形成的过程。4根吸管放进3个纸杯的结果早就可想而知,但让学生通过放一放、想一想、议一议的过程,把抽象的说理用具体的实物演示出来,化抽象为具体,发现并描述、理解了最简单的“抽屉原理”。在此基础上,我又主动提问:还有什么有价值的问题研究吗?让学生自主的想到:吸管数比纸杯数多2或其它数会怎么样?来继续开展探究活动,同时,通过活动结合板书引导学生归纳出求至少数的方法。
3、游戏中深化知识。
学了“抽屉原理”有什么用?能解决生活中的什么问题,这就要求在教学中要注重联系学生的.生活实际。在试一试环节里,我设计了一组简单、真实的生活情境,让学生用学过的知识来解释这些现象,有效的将学生的自主探究学习延伸到课外,体现了“数学来源于生活,又还原于生活”的理念。
教学永远是一门遗憾的艺术。回顾整节课我觉得在学生体验数学知识的产生过程中,老师处理得还是有点粗,应该让学生加强动手操作,将动手操作与原理紧密结合,只有样才能使学生真正地经历数学知识的产生过程,学生才能真正地学到、理解知识。
学生的数学学习过程是一个以学生已有的知识和经验为基础的主动建构的过程,数学应强调从学生的生活经验出发,将教学活动置于真实的生活背景之中,让学生亲身经历将实际问题抽象成数学模型并进行解释与应用的过程,体会到数学就在身边。这个游戏都是抽屉原理在生活中的运用,使生活问题数学化,数学教学生活化,让学生在数学学习中得到发展!活动化的数学课堂,使学生在生动、活泼的数学活动
中主动参与、主动实践、主动思考、主动探索、主动创造;使学生的数学知识、数学能力、数学思想、数学情感得到充分的发展,从而达到动智与动情的完美结合,全面提高学生的整体素质。
只有学生主动参与到学习活动中,才是有效的教学。在4个苹果放入3个抽屉学习中,充分利用学具操作,为学生提供主动参与的机会,让学生想一想、圈一圈,把抽象的数学知识同具体的实物结合起来,化难为易,化抽象为具体,让学生体验和感悟数学。这节课我能充分为学生营造宽松自由的学习氛围和学习空间,能让学生自己动脑解决一些实际问题,从而更好的理解抽屉原理。在教学过程中能够及时地去发现并认可学生思维中闪亮的火花。
抽屉原理教学反思4
学生的数学学习过程就是利用学生已经学过的只是和现在有的经验基础,然后理解更高更深更复杂的知识。数学强调从学生的生活经验出发,将教学活动置于真实的生活背景之中,让学生亲身经历将实际问题抽象成数学模型并进行解释与应用的过程,体会到数学就在身边。这个游戏都是抽屉原理在生活中的运用,使生活问题数学化,数学教学生活化,让学生在数学学习中得到发展!活动化的数学课堂,使学生在生动、活泼的数学活动中主动参与、主动实践、主动思考、主动探索、主动创造;使学生的数学知识、数学能力、数学思想、数学情感得到充分的'发展,从而达到动智与动情的完美结合,全面提高学生的整体素质。
只有学生主动参与到学习活动中,才是有效的教学。在4个苹果放入3个抽屉学习中充分利用学具操作,为学生提供主动参与的机会,让学生想一想、圈一圈,把抽象的数学知识同具体的实物结合起来,化难为易,化抽象为具体,让学生体验和感悟数学。这节课我能充分为学生营造宽松自由的学习氛围和学习空间,能让学生自己动脑解决一些实际问题,从而更好的理解抽屉原理。在教学过程中能够及时地去发现并认可学生思维中闪亮的火花。
不足之处在于教学过程中应更多的关注学困生的思维活动,及时的给予认可和指导,使教学能够面向全体学生。
抽屉原理教学反思5
初次接受上课任务的时候,对于高效课堂我是一片茫然。翻阅六年级下册教材,我确定了《抽屉原理》这个教学内容。
反思我的教学过程,有以下几方面的体会与大家交流:
1、游戏引入新课。高效课堂同传统课堂一样,需要激发学生的学习兴趣,我以“五人坐四把椅子,总有一把椅子上至少坐两个人”的游戏导入新课,不仅是激发学生的兴趣,而且为新课学习做铺垫,更重要的是让学生体会数学与生活的联系。
2、新课的探究内容。为了有助于学生的操作和观察、理解,更为了调动所有学生的积极性,我在选择例题的时候,专门选择了几组简单的数据,在“导学二”中,我专门安排了一个将4根小棒放进3个杯子中的实际操作题,组内的每个学生都能动手摆一摆,这样学生的学习积极性就已经被充分的调动了起来。
3、新课的探究过程。作为一堂高效课堂的课,我将这个过程全部交给了学生,起初的时候,我也是特别的.担心,学生们能将这个复杂的结论说清楚吗?经过在其他班级的试教,我决定实施由学习组长带组员,我带组长的学习方式,这样既实现了全体学生都参与课堂学习,又能将这个知识真正的落实。
4、本课的教学板书。我将本节课的板书,变成一个学生的交流展示平台,高效课堂不仅需要学生讨论交流,更需要的是学生的展示。本课我觉得留有遗憾的地方在于,学生的展示方式太过于单调。
“行,然后知不足”。通过这堂课,我十分清楚地认识到了自己的不足:
首先,在学生们自主学习之后,有学生提出了“如果待分物体数是抽屉数的整数倍时,结论能否成立?”学生提出的这一问题,紧扣知识点,但是由于我在教学中一味的按照既有的教学设计行进,没有对学生提出的这一问题进行解答,这也许会成为这名学生心中的一个遗憾,当然更是我自己心中的一个遗憾。
其次,我在明确了本课的教学结论之后,没有跟学生强调,在具体的题目中,什么是待分物体数,什么是抽屉。这样一来,学生在解具体的题目时,可能就容易犯错,而且,对于这个本来就很抽象的知识,可能就更加的模糊了。
此外,我有待进一步深入钻研教材,本人心理素质还有待进一步提高。更重要的是,在今后的常规教学中,应该真正地实现高效课堂。
抽屉原理教学反思6
六年级的“数学广角”的“抽屉原理”这一内容是浅显的奥数知识范畴。这部分教材通过几个直观例子,借助实际操作,向学生介绍“抽屉原理”,使学生理解“抽屉原理”这一数学方法的基础上,对一些简单的实际问题加以“模型化”,会用“抽屉原理”加以解决。
学生在进行验证、观察分析等一系列的数学活动,从具体到抽象的探究过程中已建立了数学模型从而不难发现规律,发现规律后及时让学生进行练习找准谁是物体、谁是抽屉。
当出示“5只鸽子飞进3个笼子里”,我仍旧要学生画图表示,但学生在反馈的`时候,我就用列数据表示了,这样给学生一个参考,列数据比画图更简单点。当出示“6只鸽子飞进3个笼子里”的时候,我就要学生用列数据来表示了,又进了一个层次。当要出示“7只鸽子飞进3个笼子里”,这种情况时,我不是直接出示的,而是在6只得基础上又飞来一只,让学生猜测一下,会不会还是“总有一个笼子里至少有2只鸽子”。学生看了6只(2。2。2)这种情况后,马上就可以发现,还有一只不管怎么飞,总有一个笼子至少有3只鸽子了。通过“6只(2。2。2)”这种情况学生还发现了要看至少有几只,只要看最平均的那一组就可以了。接下来我马上提问,那你们还有什么好办法,不画图、不列数据就可以直接得出“总有一个笼子至少有几只鸽子”?学生有了6只鸽子的数据,就发现了最好先平均分。我紧跟着让学生以“7只鸽子飞进3只笼子”为例,让学生列式。7÷3=2……1,让学生分别说说每个数字的意义。当把“5只鸽子飞进3只笼子”进行列式,5÷3=1……2,我又提问,2只是什么意思,这2只应该怎么办?学生通过举例后发现,笼子里至少有几只鸽子和算式里的商有关系,如果没余数就是“商”,如果有余数那是“商+1”而不是以前试教的时候学生出现的“商+余数”。
不过在教学的整个过程中,也难免会出现一些不当的小细节,如学生作业时发现少部分学生没有很好理解“至少有几个会放进同一个盒子里”的意思。没能正在理解“抽屉原理”。只能进行简单的求值计算,不能解释生活中的实际问题。由于此内容属于奥数内容,理解起来较难,在今后的教学中还要多了解学生,多挖掘学生的潜力,用各种不同的方式充分调动学生学习的积极性和主动性。既让学生感受到奥数知识的奥妙,又让学生感受到学习奥数知识的乐趣。
抽屉原理教学反思7
(数学课程标准指出,数学课堂教学是师生互动与发展的过程,学生是数学学习的主人,教师是课堂的组织者,引导者和合作者。本节课的教学注重为学生提供自主探索的空间,引导学生在观察、猜测、操作、推理和交流等数学活动中初步了解“抽屉原理”,学会用“抽屉原理”解决简单的实际问题,经历“数学化”的过程。
一、创设情境
从学生熟悉的“放球”游戏开始,让学生初步体验不管怎么放,总有一盒子里至少放两个球,使学生明确这是现实生活中存在着的一种现象,激发了学生的学习兴趣,让学生利用已有的经验初步感知抽象的“抽屉原理”。
二、建立模型
本节课充分放手,让学生自主思考,采用自己的方法“证明”:“把4枝铅笔放入3纸个盒中,不管怎么放,总有一个纸盒里至少放进2枝铅笔”,然后交流展示,为后面开展教与学的活动做了铺垫。此处设计注意了从最简单的数据开始摆放,有利于学生观察、理解,有利于调动所有的学生积极性。在有趣的类推活动中,引导学生得出一般性的结论,让学生体验和理解“抽屉原理”的最基本原理,当物体个数大于抽屉个数时,一定有一个抽屉中放进了至少2个物体。这样的教学过程,从方法层面和知识层面上对学生进行了提升,有助于发展学生的类推能力,形成比较抽象的'数学思维。在评价学生各种“证明”方法,针对学生的不同方法教师给予针对性的鼓励和指导,让学生在自主探索中体验成功,获得发展。在学生自主探索的基础上,进一步比较优化,让学生逐步学会运用一般性的数学方法来思考问题。在这一环节的教学中抓住了假设法最核心的思路就是用“有余数除法”形式表示出来,使学生学生借助直观,很好的理解了如果把书尽量多地“平均分”给各个抽屉里,看每个抽屉里能分到多少本书,余下的书不管放到哪个抽屉里,总有一个抽屉里比平均分得的书的本数多1本。特别是对“某个抽屉至少有书的本数”是除法算式中的商加“1”,而不是商加“余数”,教师适时挑出针对性问题进行交流、讨论,使学生从本质上理解了“抽屉原理”。
三、解释应用
是新课程倡导的课堂教学模式,本节课运用这一模式,设计了丰富多彩的数学活动,让学生经历“抽屉原理”的探究过程,从探究具体问题到类推得出一般结论,初步了解“抽屉原理”,再到实际生活中加以应用,找到实际问题和“抽屉原理”之间的联系,灵活地解决实际问题。让学生经历“数学化”的过程,学会思考数学问题的方法,培养学生的数学思维能力。抽屉问题”的变式很多,应用更具灵活性。本节课的练习设计注重层次,有坡度。第1、2题,学生可以利用例题中的方法迁移类推,加以解释。第3、4题学生需要经历将具体问题“数学化”的过程,有利于培养学生的数学思维能力,让学生在运用新知灵活巧妙地解决实际问题的过程中进一步体验数学的价值,感受数学的魅力,提高数学学习的兴趣。第5题是用理论的数学知识解决生活中的游戏实际问题,从而体会数学的价值。
抽屉原理教学反思8
《抽屉原理》是义务教育小学数学六年级下册数学广角的内容,《抽屉原理》教学反思。数学课程标准指出,数学教学是师生互动与发展的过程,学生是数学学习的主人,教师是课堂的组织者、引导者和合作者。本节课的教学我依据学校的新课堂理念,注重先学后教,给学生提供自主学习的空间,引导学生在观察、猜测、操作、推理和交流等数学活动中初步了解抽屉原理,学会用抽屉原理解决简单的实际问题,教学反思《抽屉原理》教学反思》。回顾本堂课的教学,有以下几点思考:
1、通过一道世界名题,激发学生的探究兴趣,让学生在思想上产生学习新知识的'愿望,产生一种需要认识和学习的心理。
2、“激趣导入---建立模型---解释应用”是新课程所倡导的教学模式。本节课运用这一模式,让学生经历探究“抽屉原理”的过程,初步了解“抽屉原理”的一般模型,并能够应用于实际,学会思考数学问题的方法,培养学生的数学思维。
3、本节课的教学,有意识的培养学生的“模型思想”,让学生理解抽屉原理的一般化模型。在学生解决了“4枝铅笔放进3个盒子中”的问题后,继续思考类推,得出一般性的结论。这样设计,循序渐进,提升了学生的思维,发展了学生的能力。
当然,本堂课还有许多值得商榷和不足的地方,课后,在听了张校长的点评之后,更是对这堂课的不足之处有了更深的认识:
1、世界名题的设计对于六年级的学生来说相对偏难,应该在设计上下点功夫,深入浅出。
2、课前的先学部分,可以设计一张导学单来代替看书,可以让学生通过动手操作,亲身经历“把4支铅笔放进3个文具盒中”所有情况,进而得出结论“不管怎么放,总有一个文具盒中至少放进2支铅笔”,紧接着再回过头去解释结论,从而重点引出“假设法”。通过“操作——总结——解释”等一系列活动,真正提高学生的自学兴趣和自学能力。
3、在课堂设计中,应更注重突出假设法。这样对后续的学习更有帮助。
抽屉原理教学反思9
本课是小学六年级数学广角的内容,初看教学内容,我甚至没有看懂所学的内容与我们现在学习的知识有多大联系,不知道这部分知识能够解决什么问题,而且这部分知识又有一定的难度。但我是一个喜欢冒险与挑战的人,觉得越是有难度的课,如何能让学生理解并掌握,专研这种课对于我个人来说是非常
有价值的。因此,我毅然决定的选择了这节课。
细细的专研教材,终于有了比较清晰的思路,明确了教学的目标。
本堂课着眼于学生数学思维的发展,通过猜测、验证、观察、分析等活动,建立数学模型,渗透数
学思想。
数学课堂是师生互动的过程,学生是学习的主人,教师是组织者和引导者。本堂课注重为学生提供自主探索的空间,引导学生通过探索,初步了解“抽屉原理”,会用“抽屉原理”解决实际问题。
一堂好的数学课,我认为应该是原生态,充满“数学味”的课;应该立足课堂,立足知识点。“创设情境---建立模型---解释应用”是新课程所倡导的教学模式。本节课运用这一模式,创设了一些活动,让学生通过活动,产生兴趣,让学生经历探究“抽屉原理”的过程,初步了解了“抽屉原理”,并能够应用于实际,学会
思考数学问题的方法,培养学生的数学思维。
课后反思本节课,我觉得,有以下几方面与大家共勉。
一、情境导入“理性化”
情境导入,目的是让学生很快的排除外界及内心因素的干扰而进入教学内容,营造一个教学情境,帮助学生在广泛的文化情境中学习探索,导入新课的目的是要引起学生在思想上产生学习新知识的愿望,产生一种需要认识和学习的心理。我以“五人座四把椅子,总有两人坐一把椅子”的游戏导入新课,激发学
生的兴趣,初步感受至少有两位同学相同的现象,激发学习新知的欲望。
二、教学过程“简单化”
理解“抽屉原理”对于学生来说有着一定的难度,在教学例题:把5个苹果放进2个抽屉中,证明,不管怎么放,总有一个抽屉里至少放进了3个苹果。我是这样教学的:首先从简单的情况入手研究(把3个苹果放进2个抽屉,可以这么放?),通过简单的教学,不仅为学生学习例题铺垫,同时又可以渗透解决
复杂的问题可以将问题简单化或者已经学过的知识的这一种思想。
三、数学语言“精简化”
教学,是一门学问,更是一门艺术。特别是数学这一门学科,课堂中,数学语言精简性直接影响着学生对新知识的理解与掌握。例如,教材中“不管怎么放,总有一只抽屉里至少放进了几个苹果?”对于这句话,学生听起来很拗口,也很难理解;通过思考,我将这句话变成“不管怎么放,至少有几个苹果放进了同一个抽屉中?”这样对学生来说,相对显的通俗易懂。因此,课堂教学中,教师应严谨准确地使用数学语言,善于发现并灵活掌握各种数学语言所描述的条件及其相互转化,以加深对数学概念的理解和应用。
四、练习设计“多样化”
练习,是学生在老师的指导下,巩固和运用知识,形成技能,技巧并提高能力的一种教学方法。要让全体学生计算达到熟练,思维得到发展,就必须加强针对性的练习。但是,如果在教学中,单一的进行练习,不仅学生的解题能力不容易提高,使学生产生乏味、枯燥的感觉,而且会使学生的思维呆板。由此影响学生的听课效率和练习效果。因此,本课我利用多媒体适当设计形式多样化的练习,可以引起并保持
学生的练习兴趣,而且巩固了新知。
本课最大的成功就是给了学生思考的空间。
《抽屉原理》教学反思
抽屉原理是六年级下册数学广角中的内容,这部分教材通过几个直观例子,借助实际操作,向学生介绍“抽屉原理”,使学生理解“抽屉原理”这一数学方法的基础上,对一些简单的实际问题加以“模型化”,会
用“抽屉原理”加以解决。
我觉得这节课还是比较成功的。在上这节课时,我先让学生通过游戏、分组动手实验,猜测验证、观察分析等一系列的数学活动,使学生在从具体到抽象的探究过程中建立了数学模型,当在学生发现规律后及时让他们进行练习。但在证明过程中,总有学生对“总是……、至少……”理解不够,我认为应该让学生找准并理解谁是物体、谁是抽屉,对“总是……、至少……”的描述进行有针对性的训练,这样学生学起来就比较容易了。在学生作业时发现少部分学生没有很好的理解“至少有几个会放进同一个盒子里”的意思,没能真下理解“抽屉原理”,只能进行简单的计算来确定结果,不能解释生活中的实际问题。因此,在
今后的教学中还要多了解学生,多挖掘学生的潜力,充分调动学生学习的积极性和主动性。
通过这节课的教学使我也认识到:在教学时应放手让学生自主思考,先采用自己的方法进行“证明”,然后再进行交流,只要是合理的,都应给予鼓励。只有这样才有助于培养学生具体情况具体分析的数学思
维能力,才能真正构建出高效率的数学课堂。 (执笔:黄银)
《抽屉原理》教学反思
新一轮的课程改革,把原本在奥数教材中出现的一些开发智力、开阔视野的数学思维训练内容也加入到数学教材中,以“数学广角”单元的形式出现。“抽屉原理”是六年级下册内容,应用很广泛且灵活多变,可以解决一些看上去很复杂、觉得无从下手,却又是相当有趣的数学问题。但对于小学生来说,理解和掌握“抽屉原理”还存在着一定的难度。这对我们数学教师的教学提出了挑战。通过课堂实践,
感受颇深,反思我的教学过程,有几下几点可取之处:
1、创设情境,从学生熟悉的素材开始激发兴趣,
兴趣是最好的老师。课前猜测扑克牌的花色,简单却能真实的反映“抽屉原理”的本质。通过猜测,一下就抓住学
生的注意力,让学生觉得这节课要探究的问题,好玩又有意义。
2、建立模型,本节课充分放手,让学生自主思考,恰当引导
教师是学生的合作者,引导者。在活动设计中,我注重学生经历知识产生、形成的过程。4枝铅笔放进3个文具盒的结果早就可想而知,但让学生通过放一放、想一想、议一议的过程,把抽象的说理用具体的实物演示出来,化抽象为具体,发现并描述、理解了最简单的“抽屉原理”。在此基础上,我又主动提问:还有什么有价值的问题研究吗?让学生自主的'想到:铅笔数比文具盒多2或其它数会怎么样?来继续开展探究活动,同时,通过活动结合板书引导学生归纳出求至少数的方法。
3、解释应用,深化知识。
学了“抽屉原理”有什么用?能解决生活中的什么问题,这就要求在教学中要注重联系学生的生活实际。在试一试环节里,我设计了一组简单、真实的生活情境,让学生用学过的知识来解释这些现象,有效的将学生的自主探究学习延伸到课外,体现了“数学来源于生活,又还原于生活”的理念。
教学永远是一门遗憾的艺术。回顾整节课我觉得学生对简单的“抽屉原理”本质理解的很透彻,每个同学都能够用简洁的语言和算式表达自己的想法。但总觉得课堂上,是老
师在牵着学生走,没有老师提示性的语言,学生能用“总有……至少……”这样的关联词语得出那样的结论吗?数学语言要求精简,通俗易懂,但教材中语言饶口,难理解,好多老师在理解的时候都存在歧义。成年人都会出现理解错误,何况学生。教学时,怎样才能更好克服语言歧义呢?能否根据学生的回答,对教材语言做适当的改正呢?我还在寻找好的方法。
抽屉原理》教学反思
吕慧慧
抽屉原理是六年级下册数学广角中的内容,这部分教材通过几个直观例子,借助实际操作,向学生介绍“抽屉原理”,使学生理解“抽屉原理”这一数学方法的基础上,对一些简单的实际问题加以“模型化”,会用“抽屉原理”加以解决。 通过本节课的教学,我觉得这节课还是比较失败的。在这这节课的教学设计中,我意图让学生通过游戏、分组动手实验,猜测验证、观察分析等一系列的数学活动,使学生在从具体到抽象的探究过程中建立数学模型,当在学生发现规律后及时让他们进行练习。但在教学的过程中,总有学生对“总是……、至少……”理解不够,让学生动手操作的过程中,也出现了我没有想到的问题,学生把4支笔放入3个笔筒里,有的学生只有一种摆法,有的还有五六种摆法等,在这个环节中我没有很好的引导学生进行动手操作,导致后面学生吃了“夹生饭”。应该让学生找准并理解谁是物体、谁是抽屉,对“总是……、至少……”的描述进行有针对性的训练,这样学生学起来就比较容易了。在练习中学生出现的问题比较多,发现部分学生没有很好的理解“至少有几个会放进同一个盒子里”的意思,没能真正理解“抽屉原理”,只能进行简单的计算来确定结果,不能解释生活中的实际问题。因此,在后面的教学中还要多了解学生,多挖掘学生的潜力,充分调动学生学习的积极性和主动性。
通过这节课的教学使我也认识到:在教学时应放手让学生自主思考,先采用自己的方法进行“证明”,然后再进行交流,只要是合理的,都应给予鼓励。只有这样才有助于培养学生具体情况具体分析的数学思维能力,才能真正构建出高效率的数学课堂。
抽屉原理教学反思10
《抽屉原理》是人教版六年级下册数学广角中的内容,本堂课注重为学生提供自主探索的空间,引导学生通过探索,初步了解“抽屉原理”,会用“抽屉原理”解决实际问题,初步感受数学的魅力。
一、生活情境导入 激发学习兴趣
兴趣是最好的老师。课前“抢椅子”的小游戏,简单却能真实的反映“抽屉原理”的本质。通过小游戏,一下就抓住学生的注意力,让学生觉得这节课要探究的问题,好玩又有意义。
二、注重自主探究,培养问题意识。
在本节课中,我非常注重学生的自主探索精神,让学生在学习中,经历猜想、验证、推理、应用的过程。
1、采用列举法,让学生把3根小棒放入2个杯子里的所有情况都列举出来,初步感知抽屉原理,再通过把4根小棒放入3个杯子里的操作熟练列举法。运用直观的方式,发现并描述、理解最简单的“抽屉原理”。
2、让学生理解抽屉原理的一般化模型。让学生类推猜测6根小棒放入5个杯子里会有什么结果?然后提出如何验证?让学生借助直观操作发现,把小棒尽量多的“平均分”到各个杯子里,看每个杯子里能分到多少根小棒,剩下的小棒不管放到哪个杯子里,总有一个杯子比平均分得的小棒数多1根,还可以用有余数的除法来表示这一数学规律。
3、大量列举之后,再引导学生总结归纳这一类“抽屉问题”的一般规律,即“小棒数比杯子数多1时,总有一个杯子里至少有2根小棒”。
4、在此基础上,我又主动提问:还有什么有价值的问题研究吗?让学生自主的想到:小棒数比杯子数多2或其它数会怎么样?来继续开展探究活动,同时,通过活动结合板书引导学生归纳出求至少数的方法——“商+1”。
5、游戏中深化知识。课前的游戏简短有效,在结束新课前,用“抽屉原理”来解释,会有一种前后呼应的'的整体性。学了“抽屉原理”有什么用?能解决生活中的什么问题,这就要求在教学中要注重联系学生的生活实际。在试一试环节里,我设计了一组简单、真实的生活情境,让学生用学过的知识来解释这些现象,有效的将学生的自主探究学习延伸到课外,体现了“数学来源于生活,又还原于生活”的理念。
抽屉原理教学反思11
抽屉原理教学反思 《抽屉原理》是人教版六年级下册数学广角中的内容,这部分内容属于奥数知识范畴,首次被编入新课改教材,它的教学就是通过实际案例培养学生有根据、有条理地进行思考和推理的能力,从而解决实际问题,初步感受数学的魅力。当我第一次接触到《抽屉原理》时,我很困惑:什么是抽屉原理?这么难的内容学生能理解吗?我的印象里《抽屉原理》是非常坚深难懂的(好像在上师范的时候学过,当时我都没学懂)。时隔两年,再次教学《抽屉原理》心里还是觉得没底,不知能否讲清楚、讲明白。为了上好这一内容,我搜集学习了很多资料,查阅了多篇教案,在“前辈”们的经验上,与本组成员相互探讨、研究,终于使我对“抽屉原理”有了新的认识,也终于理出了头绪。抽屉原理是教给我们一种思考方法,也就是从“最不利”的情况来思考问题,所以要让学生充分体会什么是“最不利”。 通过本部分内容的教学,我有以下几点体会:
一、重视集体研讨,集体的智慧是无穷的。
以前上这节课时,总是按照自己的理解来给学生讲,有时会拿一些名师的优秀教案生搬硬套,结果却总是讲着讲着不知道该怎么讲了,有时连自己也都被搅迷糊了,教学效果可想而知。而今年上课之前,我们几位老师提前就开始讨论这节课,红晓老师还拿出了以前做的课件,讲了讲自己对这节课的理解,以及难点的突破方法,通过我们集体的研讨,原本觉得很难理解的`内容也变得简单了,上课之前能够做到胸有成竹,就不愁讲不好这节课了。
二、要根(于:抽屉原理教学反思)据学生的实际进行教学设计。
以前上这节课时,我总以“学生的生日”为话题引入新课,学生们兴趣也比较高,这次上课,我依旧以此为话题引入新课,却没有出现以前那种效果。课后反思一下,以前的班级最多42人,当老师猜测“我们班42人中,至少有4个人的生日在同一个月”之后,学生们都不相信,于是就很有兴趣地要进行验证。由于人数少,比较好验证,而且基本上会出现1月生日的只有一、两个人,2月同样如此,这样学生就会面露得意之色,说老师猜的不对,直到3、4月或5、6月才发现真的有4个或4个以上的人在同一个月生日,这时还会有些学生不甘心,说有5个人在某一月生日,你说的是4人。这也正好是我想要的效果,我就让学生自己去辩析,以此让学生理解“至少”“同一个月”的含义,我下面的新课做好铺垫。而现在的班级有80个同学,首先,这个问题一出,验证起来就有点难以掌控,刚说个1月生日的请站起来,其余的学生马上半站式地扭头去数,结果数了好几遍才数清人数。其次,也可能是人多的缘故,也可能是凑巧,正好有8个人在1月生日,2月生日的也正好有7个人,一下子就验证了猜测,感觉没有吊足学生的“胃口”,开场搞到气氛平平的,没有自己预想的那种效果,感觉不是太好。因此,在今后的教学中,不能只停留在以前的经验上原地踏步,要结合新的学生,认真分析学情,从而设计出合适的课堂教学。
三、数学教学,不仅要重结果,更要重视学生获取知识的过程。
抽取游戏是抽屉原理的一个延伸,其实也是它的一个逆思考。这里主要是要让学生理解抽取问题中的一些基本原理,学会从“最不利”的情况来思考问题。教学之前,我们组的段老师从网上下载了一个比较合适的课件,其实课件做得很好的,重难点都比较突出。但我在上课时并没有完全用那个课件,因为课件中总结的公式我其实也并不是完全理解,我总觉得,这部分知识主要是教给学生一种思考方法,以培养学生的思维能力为主,只要学生能正确说出答案,并理解其中的道理就可以了,不必要非得总结一个公式让学生来死搬硬套。于是在教学中,我就通过实践操作先让学生看到:从“红、黄各10个小球中需要至少拿出3个才能保证一定有两个是同色的”,然后鼓励学生去讲其中的道理,当学生讲到“最差的情况就是拿出的两个完全不同,再拿一个不是红色就是黄色,就和其中一个是同色的了”。我简直惊讶极了,这一个个小脑瓜中都是怎么想的呀,我想了好久才想明白的问题,他们竟然这么快就想通了。接下来,我通过变换不同的条件和问题,让学生分别去讲其中的道理,结果是,我的题目刚一出来,学生们就迫不及待地说出了答案。这时,一些爱表现的学生就慌着展示自己的简便算法了,他们不仅说到了课件中将要出现的计算方法,也说出了好几种不同的算法,真是让我刮目相看。看来,当学生真正理解某一知识的时候,他们的创造力也是很惊人的!应该说比我们要强!
静下心来想,在课堂教学中,学生是课堂的主人,是学习的主体,并不意味教师被学生“牵着鼻子走”。教师要充当好课堂的组织者
和引导者,就得站得更高,不是只着眼于教学流程的设计,必须充分解读文本。从《新课标》的角度解读文本,掌握标准;从编者的角度解读文本,了解编排的意图;从学生的角度解读文本,做到充分的预设。这样吃透教材,做到心中有数,不管在教学中碰到什么情况,都能围绕教学内容灵活机动处理,将被动化为主动。
抽屉原理教学反思12
抽屉原理是人教版六年级下册数学广角中的内容,由于初次接触新教材,对这部分内容不太理解.在教学设计中我亦有着一些困惑与问题:
1、如何定位教学目标,抽屉原理原属奥数内容,使学生初步感受一些基本的数学思想方法是“数学广角”的主要教学目标之一,但在具体的课堂中如何适度把握教学要求。我虽然在课前已经钻研了教参,也已经上完了课,但这个还是我值得探究的一个问题。
2、如何设计教学活动使学生在观察、操作中建立起解决“抽屉原理”问题的一般解决问题的.方法的同时发展学生的思维也是值得思考的一个问题。
于是我通过翻阅奥赛书籍和在网上查询,终于弄清了原委。上课有了把握和信心。
一生活情境导入 激发学习兴趣
新课标指出,数学来源于生活,服务于生活。引入新课时我设计了与生活有关的小问题,给学生造成悬念,激发他们积极思维,很快进入学习情境。
二从简单问题着手发现一般规律
在解决复杂问题时,为寻找规律可从简单情况入手分析,直到找到规律,再加以运用。本节课就是从较小的数据变化中探索规律、发现规律的。
三 加强说理帮助学生弄清所以然
本节课从始至终我都要学生说理,叙述自己的思维过程。重在让学生真正理解什么叫“最不利”的情况。我觉得让学生弄清原因,比直接知道结果更重要。
由于此内容属于奥数范畴,某些学生理解起来还是不很轻松。这一现象说明他们还没有真正掌握抽屉原理的内涵,需要在今后的教学中进一步改进。真的希望自己能让学生们感受到学习奥数的快乐。
抽屉原理教学反思13
作为数学广角,目的是拓宽学生的思维方式方法,教给学生一种思考方式。我上完这节课后,感觉这节课中的知识学生理解起来真的很难。所以,课程的建模过程应该以活动为载体,带抽屉原理是人教版数学六年级下册的知识。作为数学广角,目的是拓宽学生的思维方式方法,教给学生一种思考方式。我上完这节课后,感觉这节课中的知识学生理解起来真的很难。所以,课程的建模过程应该以活动为载体,带动学生的思考。在充分活动的.基础上理解总有与至少的含义。如进行坐椅子游戏,5个人坐在4把椅子上,不管怎样坐,总有一把椅子上至少有2个人。
又如,4个桃子放在3个盘子里,不管怎样放总有一个盘子里至少有2个桃子。3支笔放进2个笔筒里,不管怎样放,总有一个笔筒里至少有2支笔。多次操作,分一分,描一描,说一说等活动体会总有与至少的含义,这些知识有只可意会不可言传的感觉。在建模后在分析具体问题时,先让学生说说把什么放在什么地方,体会待分物体与抽屉的关系,这样才能更好的找到至少数。
抽屉原理教学反思14
《抽屉原理》是人教版六年级下册数学广角中的内容,这部分内容属于奥数知识范畴,首次被编入新课改教材,它的教学就是通过实际案例培养学生有根据、有条理地进行思考和推理的能力,从而解决实际问题,初步感受数学的魅力。
数学课堂是师生互动的过程,学生是学习的主人,教师是组织者和引导者。本堂课注重为学生提供自主探索的空间,引导学生通过探索,初步了解“抽屉原理”,会用“抽屉原理”解决实际问题。
一、生活情境导入激发学习兴趣
情境导入,目的是让学生很快的排除外界及内心因素的干扰而进入教学内容。营造一个恰当的教学情境,让学生在思想上产生学习新知识的愿望,产生一种需要认识和学习的心理,具有极其重要的作用。基于以上认识,在引入新课时我设计了对学生来说很感兴趣的猜扑克牌游戏:任意在52张牌中抽出5张牌,不看牌面,老师敢肯定至少会有2张同花色的牌。充分调动他们思维的翅膀,给学生造成了“疑而不解又欲解之”的强烈欲望,激发他们积极思维,快速进入学习情境。
二、注重自主探究,培养问题意识。
在本节课中,我非常注重学生的自主探索精神,让学生在学习中,经历猜想、验证、推理、应用的过程。
1、采用列举法,让学生把4枝笔放入3个笔筒中的所有情况都列举出来,运用直观的方式,发现并描述、理解最简单的“抽屉原理”即“铅笔数比笔筒数多1时,总有一个笔筒里至少有2枝笔”。
2、在例2的教学中让学生借助直观操作发现,把书尽量多的“平均分“个各个抽屉,看每个抽屉能分到多少本书,剩下的书不管放到哪个抽屉里,总有一个抽屉比平均分得的本数多1本,可以用有余数的除法这一数学规律来表示。
3、大量例举之后,再引导学生总结归纳这一类“抽屉问题”的一般规律,让学生借助直观操作、观察、表达等方式,让学生经历从不同的.角度认识抽屉原理。
三、注重“说理“活动,培养学生逻辑能力。
在这节课中,由于我提供的数据比较小,为学生自主探究和自主发现“抽屉原理”提供了很大的空间。特别是通过学生归纳总结的规律:到底是“商+余数”还是“商+1”,引发学生的思维步步深入,并通过讨论和说理活动,使学生经历了一个初步的“数学证明”的过程,培养了学生的推理能力和初步的逻辑能力。
“金无足金,人无完人”,我们的课堂教学永远是一门遗憾的艺术,在这堂课的难点突破处,也就是让学生借助直观操作发现,把书尽量多的“平均分“个各个抽屉,看每个抽屉能分到多少本书,剩下的书不管放到哪个抽屉里,总有一个抽屉比平均分得的本数多1本,我还可以对教学环节进行再安排,让学生体会到多余的物体只要不超过抽屉的个数,总有一个抽屉至少放2个物体,这样学生对“抽屉原理”规律会更清晰更明了。同时,我们要明确,教学知识不光是让学生按照公式来套用公式,这样很容易造成学生的思维定势,所以在让学生充分说理的基础上,明确把什么当作“抽屉数”,把什么当作“物体数”是相当重要的。
如果把教育教学看作一门艺术,那么我就是那个孜孜不倦追求艺术的人,虽然前进的路上会有坎坷,会有荆棘,但是有了我的坚持不懈,有了我们团队的共同努力,我相信我们一定能转变教育教学观念,在教师专业成长的道路上收获硕果。
抽屉原理教学反思15
“抽屉原理”应用很广泛且灵活多变,可以解决一些看上去很复杂、觉得无从下手,却又是相当有趣的数学问题。但对于小学生来说,理解和掌握“抽屉原理”还存在着一定的难度。所以,本节课根据学生的认知特点和规律,在设计时着眼于开拓学生视野,激发学生兴趣,提高解决问题的能力,通过动手操作、小组活动等方式组织教学。反思我的教学过程,有几下几点可取之处:
1、情境中激发兴趣。
兴趣是最好的老师。课前“抢椅子”的小游戏,简单却能真实的反映“抽屉原理”的本质。通过小游戏,一下就抓住学生的注意力,让学生觉得这节课要探究的`问题,好玩又有意义。
2、活动中恰当引导。
教师是学生的合作者,引导者。在活动设计中,我着重学生经历知识产生、形成的过程。4枝铅笔放进3个文具盒的结果早就可想而知,但让学生通过放一放、想一想、议一议的过程,把抽象的说理用具体的实物演示出来,化抽象为具体,发现并描述、理解了最简单的“抽屉原理”。在此基础上,我又主动提问:还有什么有价值的问题研究吗?让学生自主的想到:铅笔数比文具盒数多2或其它数会怎么样?来继续开展探究活动,同时,通过活动结合板书引导学生归纳出求至少数的方法。
3、游戏中深化知识。
学了“抽屉原理”有什么用?能解决生活中的什么问题,这就要求在教学中要注重联系学生的生活实际。在试一试环节里,我设计了一组简单、真实的生活情境,让学生用学过的知识来解释这些现象,有效的将学生的自主探究学习延伸到课外,体现了“数学来源于生活,又还原于生活”的理念。
教学永远是一门遗憾的艺术。练习的梯度考虑不周全。练习题3的难度太大,应在学习例3后再出现。另外,课前的游戏简短有效,在结束新课前,用“抽屉原理”来解释,会有一种前后呼应的整体性,但由于时间的安排,一直到课后,再没提及,有点遗憾。