指数函数习题课(第一课时)教学设计

时间:2019-05-13 00:40:39下载本文作者:会员上传
简介:写写帮文库小编为你整理了多篇相关的《指数函数习题课(第一课时)教学设计》,但愿对你工作学习有帮助,当然你在写写帮文库还可以找到更多《指数函数习题课(第一课时)教学设计》。

第一篇:指数函数习题课(第一课时)教学设计

《指数函数习题课(第一课时)》教学设计

浙师大2003级数学教育硕士

(绍兴市职教中心

312000)

背景功能

本课题是学生学习了指数函数的概念及其有关性质的基础上提出来的,学生学习了指数函数的概念及其有关性质后,完全有条件、有能力去思考本课题,本课题以趣味性问题作引导,以案例、探究为教学的主线,让学生从中感悟数学的思维与方法。把生活中的数学通过概括与抽象,变成数学问题再加以研究,充分说明数学来源于实践。

教学目标

知识目标:进一步掌握指数函数的定义及其性质,并会初步运用性质解题。

能力目标:培养学生观察、分析与推理、从特殊到一般的探究能力。

情感目标:渗透数学思想和文化,激发学生学习兴趣和热情,获得积极的情感体验。

教学重点 含指数的函数的定义域,值域;指数函数单调性的应用

教学难点 含参数的定义域的求法。

教学方法 启发、引导、探究、讲解、演练相结合。

教学设计

一、趣题引路

(播放动画)

师:同学们!在动画中你看到了什么?听到了什么声音?

生:闪电!

师:闪电!非常正确!现在我们都知道闪电就是电,你能说出世界上第一个发现“闪电就是电”的人是谁吗?

生:富兰克林!

师:对!美国著名的科学家,避雷针的发明人,本杰明·富兰克林(Franklin·B,1706~1790)。一生为科学和民主革命而工作,他死后留下的财产只有一千美元。令人惊讶的是,他竟留下了一份分配上百万美元财产的遗嘱!这份有趣的遗嘱是这样写的:(投影)

“„„一千美元赠给波士顿的居民,如果他们接受了这一千美元,那么这笔钱应该托付给一些挑选出来的公民,他们得把这钱按每年5%的利率借给一些年轻的手工业者去生息。这款子过了100年增加到131000美元。我希望,那时候用100000美元来建立一所公共建筑物,剩下的31000美元拿去继续生息100年„„”

师:作为科学家与政治家的富兰克林,留下区区的1000美元,竟立了富翁般的遗嘱,莫非昏了头脑?!让我们按照富兰克林非凡的设想实际计算一下。请看下表:

时间 第1年始 第1年末 第2年末 „

第100年末 „

第n年末

记号 f(0)f(1)f(2)„ f(100)„ f(n)

遗产数(英镑)a0=1000 a0(1+5%)a0(1+5%)2 „

a0(1+5%)100 „

a0(1+5%)n

从而得到函数 f(n)= a0(1+5%)n

师:上式是什么函数的特例?

生:是函数y=ax当a=1.05时的特例。

师:在数学上形如y=ax的函数称为什么函数?

生:指数函数!

(板书标题)

师:其中a有哪些约定?

生:为大于0且不等于1的常量!

(通过历史上的有趣故事来做复习铺垫,同时进行数学史教育,凸现人文气息。通过复习,培育和预热“指数函数”概念与性质的最近发展区,激发和点燃学生学习的兴趣和热情)

二、知识回顾

师:通过实例进一步说明了学习指数函数的重要性,趁热打铁,回顾一下指数函数的有关知识点。(多媒体显示知识点,并让学生回答)

师:指数函数的定义是什么?

生1:函数y=ax(a>0且a≠1)叫做指数函数。

师:指数函数y=ax(a>0且a≠1)的图象和性质怎样呢?

生2: a>1 0

Y

O

X

Y

O

X

(1)定义域:R

(2)值域:(0,+∞)

(3)过点(0,1),即x=0时,y=1

(4)函数在 R上是增函数(4)函数在 R上是减函数

(通过让学生自己填表完成,做到师生互动,充分保障学生的主体地位)

三、架桥铺路

师:刚才两位同学回答得很好!指数函数是我们高中数学中的重要内容之一,它的用途十分广泛,现在让我们再来看上面的问题,观察故事中y=1.05n值的变化,同学们!你能算出当n=100时,y100=?

生:131.501 257 9(用计算器)

师:这意味着,上面的故事中,在头一个100年末富兰克林的财产应当增加到 f(100)=1000×131.501257 9=131501.2579(美元)

可见富兰克林的遗嘱在科学上是站得住脚的!

师:微薄的资金,合理的利率,在神奇的指数效应下,可以变得令人瞠目结舌。这就是富兰克林出色的遗嘱给人的启示!

师:根据有关资料显示,当时美国政府还有遗产税的政策,政策规定:在当事人死亡后若干年内必须每年缴纳一定数量的遗产税。

并且发现所缴纳的遗产税y与年份n(规定当事人去世那一年n=1)有以下有趣的计算公式:y= a0(1+5%)n·un,(其中a0为遗产,un=,n∈N*)。

请同学们思考一下,按照上述政策,在当事人死后需缴纳遗产税多少年?

生:需要5年!

师:如何得到的?

生:依据题意只需y>0,即64–2n >0,也就是64>2n,26>2n,由y=2x在R上增函数得n<6且n∈N*,故需缴纳遗产税5年。

师:上述问题的解决用到了指数函数的有关知识,其实质是在实际背景下求含指数的函数的定义域,解不等式时又用到指数函数的单调性。如果我们将un抽象出来,将n的取值

范围拓展到全体实数,情况有将怎样呢? 请同学们思考以下案例。

四、案例探究

案例 求函数 的定义域与值域。

(模拟科学研究的程式,从数学的实际问题出发,通过观察、总结和抽象,确立研究的对象,使学生认识到数学源于生活实际)

师:要使函数有意义,必须满足什么条件?

生:必须满足64-2x≥0

师:这个不等式如何解?

生:先化为26≥2x,再利用指数函数的单调性得到x≤6!

师:对!

教师边讲边板书过程如下:

解:要使函数有意义,必须64-2x≥0,即x≤6。所以定义域(-∞,6]

师:值域又该如何考虑呢?

生1:值域为[0,+∞)

师:其他同学有没有不同意见?

生2:值域应该为[0.8)!

师:为什么?

生2:∵2x≥0,∴0≤64-2x<64,故值域为[0.8)

师:完全正确!请坐下!

师:函数的定义域是使函数解析式有意义的自变量x的取值集合;而值域则是在定义域的制约下的函数值的集合。同学们!一定要注意定义域对值域的制约作用!

变式:求函数的定义域与值域。

解析:要使函数有意义,必须2x–64≥0,即x≥6。所以定义域为[6,+∞]。

∵2x-64≥0,∴ 值域为[0,+∞],探究一:求函数(a>0且a≠1)的定义域与值域

(分小组讨论,借此培养学生间的团结合作精神)

师:在解不等式的时候要注意什么?

生:分类讨论!

师:对!当底数是字母的时候,要进行讨论,那么分哪几种情况呢?

生:分a>1与0

解析:要使函数有意义,必须;即ax ≤1。

当a>1时x≤0; 当0

∴当a>1时定义域为(-∞,0);当0

∵ax>0 ∴0≤1-ax<1

∴值域为[0,1]

变式:若改成,其余条件不变,则又该如何?

解析:要使函数式有意义,必须ax-1≥0, 即ax≥a0

当a>1时,由y=ax为增函数得,x≥0,∴定义域为[0,+∞]; 当0

(探究一是对底数作了改变,逐步推进,从特殊到一般,有效地将难点分解突破)

探究二:求函数 的定义域与值域

解析:要使函数式有意义,必须 即

由y=2x为增函数得x2+2x≤0,∴定义域为[-2,0];

师:∵-2≤x≤0, ∴-1≤x2+2x≤0

∴值域为[0,]

师:这里求函数值域的方法是从里到外逐步推进,在求值域时要注意定义域对值域的制约作用。

(从幂指数的角度对案例进行逐步推进,从而进一步培养学生探究问题的能力)

探究三:求函数()的定义域。

解析:要使函数式有意义,必须 即

当a>1时,由y=ax为增函数得x2+2x≤1,∴定义域为 ;

当0

(对底数与幂指数同时进行改变,使得问题更具一般性,学生的思维再次得到发散,能力进一步提高)

点击高考:是否存在这样的实数a,使得函数()的定义域为。若存在,请求出a的取值范围;若不存在,说明理由。

解析:根据题意有不等式x2+2x-1≤0,即x2+2x≤1, 又根据题意有,故a>1.(变式训练与探究的设计以一个函数为背景,从底数与幂指数两个方面加以探究,做到一题多用、一题多变,由浅入深,体现梯度,使不同程度的学生都有发展,重在思维训练,多点想,少点算.通过一组精心设计的问题链来引导和激发学生的参与意识、创新意识,培养学生探究问题的能力,提升思维的层次.在解决问题的过程中,激发学生的研究兴趣,培养学生的科学理性精神,体会交流、合作和竞争等现代意识)

师:本节课通过同学们的积极思考、合作、探索和研究,巩固、掌握了有关指数函数的概念与性质,接下来我们一起来做这节课的小结工作.五、小结(知识、方法、思想)

师:今天主要是研究了一个案例,两个变式,三个探究。所有的这些我们都是在解决一个什么问题?

生1:函数的定义域与值域!

师:在具体求解含指数的不等式中我们用到了指数函数的哪些知识?

生2:指数函数的单调性!

师:还用到了哪些数学思想?

生3:分类讨论的思想!

师:当底数a不确定时,我们需要进行分类讨论,对底数分a>1与0

生:特殊到一般!

师:对!很好!

(小结在教师的点拨下,请学生完成,以此培养学生的归纳、总结的能力)

六、作业

1.阅读作业:仔细通读教材,进一步分析图象特征并思考:当底数a变化时,图象有什么变化规律。

2.书面作业:(1)求函数 的定义域、值域.(2)已知

(),试求x的取值范围.3.研究性作业(课外延伸):请同学们继续探究我们今天的案例,并分析其定义域与值域.(如函数(a>0且a≠1;b>0且b≠1)的定义域与值域)

(作业分为三种形式,体现作业的巩固性和发展性原则,阅读作业中的问题思考是后续课堂的铺垫,而研究性作业不作统一要求,供学有余力的学生课后研究,它也是新课标里研究性学习的一部分)。

第二篇:《指数函数》第一课时说课稿

《指数函数》第一课时说课稿

《指数函数》第一课时说课稿1

一、教材分析

1.《指数函数》在教材中的地位、作用和特点

2.教学目标、重点和难点

(1)知识目标:①掌握指数函数的概念;②掌握指数函数的图象和性质;③能初步利用指数函数的概念解决实际问题;

(2)技能目标:①渗透分类讨论、数形结合的基本数学思想方法②培养学生观察、联想、类比、猜测、归纳的能力;

(3)情感目标:①体验从特殊到一般的学习规律,认识事物之间的普遍联系与相互转化,培养学生用联系的观点看问题②通过教学互动促进师生情感,激发学生的学习兴趣,提高学生抽象、概括、分析、综合的能力③领会数学学科的`应用价值。

(4)教学重点:指数函数的图象和性质。

(5)教学难点:指数函数的图象性质与底数a的关系。

二、教法设计

1.创设问题情景.

2.强化“指数函数”概念.

3.突出图象的作用.

4.注意数学与生活和实践的联系.

三、学法指导

1.再现原有认知结构.

2.领会常见数学思想方法.

3.在互相交流和自主探究中获得发展.

4.注意学习过程的循序渐进.

四、程序设计

1.创设情景、导入新课

2.启发诱导、探求新知

3.巩固新知、反馈回授

4.归纳小结、深化目标

5.板书设计

五、教学评价

通过多种评价方式让更多的学生获得学习的自信,在轻松融洽的课堂评价氛围中完成本节课的教学和学习任务。

《指数函数》第一课时说课稿2

一、教材分析

1.《指数函数》在教材中的地位、作用和特点

《指数函数》是人教版高中数学(必修)第一册第二章“函数”的第六节内容,是在学习了《指数》一节内容之后编排的。通过本节课的学习,既可以对指数和函数的概念等知识进一步巩固和深化,又可以为后面进一步学习对数、对数函数尤其是利用互为反函数的图象间的关系来研究对数函数的性质打下坚实的概念和图象基础,又因为《指数函数》是进入高中以后学生遇到的第一个系统研究的函数,对高中阶段研究对数函数、三角函数等完整的函数知识,初步培养函数的应用意识打下了良好的学习基础,所以《指数函数》不仅是本章《函数》的重点内容,也是高中学段的主要研究内容之一,有着不可替代的重要作用。

此外,《指数函数》的知识与我们的日常生产、生活和科学研究有着紧密的联系,尤其体现在细胞分裂、贷款利率的计算和考古中的年代测算等方面,因此学习这部分知识还有着广泛的现实意义。本节内容的特点之一是概念性强,特点之二是凸显了数学图形在研究函数性质时的重要作用。

2.教学目标、重点和难点

通过初中学段的学习和高中对集合、函数等知识的系统学习,学生对函数和图象的关系已经构建了一定的认知结构,主要体现在三个方面:

知识维度:对正比例函数、反比例函数、一次函数,二次函数等最简单的函数概念和性质已有了初步认识,能够从初中运动变化的角度认识函数初步转化到从集合与对应的观点来认识函数。

技能维度:学生对采用“描点法”描绘函数图象的方法已基本掌握,能够为研究《指数函数》的性质做好准备。

素质维度:由观察到抽象的数学活动过程已有一定的体会,已初步了解了数形结合的思想。

鉴于对学生已有的知识基础和认知能力的分析,根据《教学大纲》的要求,我确定本节课的教学目标、教学重点和难点如下:

(1)知识目标:①掌握指数函数的概念;②掌握指数函数的图象和性质;③能初步利用指数函数的概念解决实际问题;

(2)技能目标:①渗透数形结合的基本数学思想方法②培养学生观察、联想、类比、猜测、归纳的能力;

(3)情感目标:①体验从特殊到一般的学习规律,认识事物之间的普遍联系与相互转化,培养学生用联系的观点看问题②通过教学互动促进师生情感,激发学生的学习兴趣,提高学生抽象、概括、分析、综合的能力③领会数学科学的应用价值。

(4)教学重点:指数函数的图象和性质。

(5)教学难点:指数函数的图象性质与底数a的关系。

突破难点的关键:寻找新知生长点,建立新旧知识的联系,在理解概念的基础上充分结合图象,利用数形结合来扫清障碍。

二、教法设计

由于《指数函数》这节课的特殊地位,在本节课的教法设计中,我力图通过这一节课的教学达到不仅使学生初步理解并能简单应用指数函数的知识,更期望能引领学生掌握研究初等函数图象性质的一般思路和方法,为今后研究其它的函数做好准备,从而达到培养学生学习能力的目的,我根据自己对“诱思探究”教学模式和“情景式”教学模式的认识,将二者结合起来,主要突出了几个方面:

1.创设问题情景.按照指数函数的在生活中的实际背景给出两个实例,充分调动学生的学习兴趣,激发学生的探究心理,顺利引入课题,而这两个例子又恰好为研究指数函数中底数大于1和底数大于0小于1的图象做好了准备。

2.强化“指数函数”概念.引导学生结合指数的有关概念来归纳出指数函数的定义,并向学生指出指数函数的形式特点,请学生思考对于底数a是否需要限制,如不限制会有什么问题出现,这样避免了学生对于底数a范围分类的不清楚,也为研究指数函数的图象做了“分类讨论”的铺垫。

3.突出图象的作用.在数学学习过程中,图形始终使我们需要借助的重要辅助手段。一位数学家曾经说过“数离形时少直观,形离数时难入微”,而在研究指数函数的性质时,更是直接由图象观察得出性质,因此图象发挥了主要的作用。

4.注意数学与生活和实践的联系.数学的本质是来源于生活,服务于实践。在课堂教学的引入、例题的讲解和课外知识的拓展部分,都介绍了与指数函数息息相关的生活问题,力图使学生了解到数学的基础学科作用,培养学生的数学应用意识。

三、学法指导

本节课是在学习完“指数”的概念和运算后编排的,针对学生实际情况,我主要在以下几个方面做了尝试:

1.再现原有认知结构。在引入两个生活实例后,请学生回忆有关指数的概念,帮助学生再现原有认知结构,为理解指数函数的概念做好准备。

2.领会常见数学思想方法。在借助图象研究指数函数的性质时会遇到分类讨论、数形结合等基本数学思想方法,这些方法将会贯穿整个高中的数学学习。

3.在互相交流和自主探究中获得发展。在生活实例的课堂导入、指数函数的性质研究、例题与训练、课内小节等教学环节中都安排了学生的讨论、分组、交流等活动,让学生变被动的接受和记忆知识为在合作学习的乐趣中主动地建构新知识的框架和体系,从而完成知识的内化过程。

4.注意学习过程的循序渐进。在概念、图象、性质、应用、拓展的过程中按照先易后难的顺序层层递进,让学生感到有挑战、有收获,跳一跳,够得着,不同难度的题目设计将尽可能照顾到课堂学生的个体差异。

四、程序设计

在设计本节课的教学过程中,本着遵循学生的认知规律、让学生去经历知识的形成与发展过程的原则,我设计了如下的教学程序,启发学生逐步发现和认识指数函数的图象和性质。

1.创设情景、导入新课

教师活动:①用电脑展示两个实例,第一个是计算机价格下降问题,第二个是生物中细胞分裂的例子,②将学生按奇数列、偶数列分组。

学生活动:①分别写出计算机价格y与经过月份x的关系式和细胞个数y与分裂次数x的关系式,并互相交流;②回忆指数的概念;③归纳指数函数的概念;④分析出对指数函数底数讨论的必要性以及分类的方法。

设计意图:通过生活实例激发学生的学习动机,,扫清由概念不清而造成的知识障碍,培养学生思维的主动性, 为突破难点做好准备;

2.启发诱导、探求新知

教师活动:①给出两个简单的指数函数并要求学生画它们的图象②在准备好的小黑板上规范地画出这两个指数函数的图象③板书指数函数的性质。

学生活动:①画出两个简单的指数函数图象②交流、讨论③归纳出研究函数性质涉及的方面④总结出指数函数的性质。

设计意图:让学生动手作简单的指数函数的图象对深刻理解本节课的内容有着一定的促进作用,在学生完成基本作图之后,教师再利用课前已列表、建立坐标系的小黑板展示准确的作图方法,达到进一步规范学生的作图习惯的目的,然后借助“函数作图器”用多媒体将指数函数的图象推广到一般情况,学生就会很自然的通过观察图象总结出指数函数的性质,同时对于底数的讨论也就变得顺理成章。

3.巩固新知、反馈回授

教师活动:①板书例1②板书例2第一问③介绍有关考古的拓展知识。

学生活动:①学习解题的'规范步骤②完成例2的第二问、第三问③完成分组练习④扩展视野,体会数学的应用价值。

设计意图:本环节的设计目的是实现学生对指数函数知识的初步应用,完成学生学习的“实践认识再实践”过程,力求通过例题的讲授、规范的板书养成学生良好地解题习惯,起到教师的示范作用,通过例2的第二问、第三问巩固学生对指数函数性质的理解、实现会用指数函数的性质解决数学问题,通过三个分组练习实现教师的再指导和学生的渐进式提高。指数函数与贷款利率的计算、化学中半衰期的计算和考古技术的现代运用有紧密的联系,本环节介绍的“化学中的14C在考古中的应用”既开拓了学生的视野,又为下一步学习“计算分期付款的利率”等问题埋下伏笔。

4.归纳小结、深化目标

教师活动:

①引导学生对课堂知识进行归纳,完成对分类讨论、数形结合等数学方法的归纳;

②布置课后及拓展作业

学生活动:完成对指数函数的概念和性质的课内小结并通过课后作业进一步深化学习目标,有能力的同学完成网上调研并在下节课与同学交流我国在利用14C进行考古所取得的成果。

设计意图:教师在本环节引导学生对指数函数的知识进行梳理,深化知识与技能目标,并通过作业实现目标的巩固。

5.板书设计

考虑到板书在教学过程中发挥的功能,本节课我设计了由三个板块构成的板书,板面分配比例为2:1:1,第一大板块包含了两部分,一是指数函数的定义,二是课前准备的画有坐标系和表格的小黑板;第二板块书写了例1和例2的第一问;第三板块由学生完成例2的后两问、练习和课堂小结组成。

五、教学评价

教学评价的及时有效能调动课堂的气氛、感染学生的情绪,对课堂教学发挥着积极的推动作用,因此,我将教学评价将贯穿于本节课的每个教学环节中。例如情景导入的表达式评价、回忆指数知识的记忆评价、得出指数函数概念的归纳评价、作图时的准确性评价、解题时的规范性评价、小结时的表述性评价等。在学生交流、讨论、探究等环节注意启发学生完成知识互评、能力互评,通过多种评价方式让更多的学生获得学习的自信,在轻松融洽的课堂评价氛围中完成本节课的教学和学习任务。

当然教师会通过对学生作业的批改获得更全面的对学生知识掌握的评价和课堂效果的反思,并在后续的时间里修订课堂设计方案,达到预期的教学效果,实现学生的能力发展。以上是我对指数函数这节课的设计和思考,敬请批评指正!

《指数函数》第一课时说课稿3

一、教材分析

1. 《指数函数》在教材中的地位和作用

《指数函数》是苏教版中专数学国家审定教材第一册第三章《几个基本初等函数》第三节的内容,是在学习了《幂函数》一节内容之后编排的。通过本节课的学习,既可以对指数的概念和幂函数的概念等知识进一步巩固和深化,又可以为后面进一步学习对数、对数函数打下坚实的基础,对中专阶段研究对数函数、三角函数等完整的函数知识,初步培养函数的应用意识打下了良好的基础,所以《指数函数》不仅是本章的重点内容,也是中专学段的主要研究内容之一,有着不可替代的重要作用。

此外,《指数函数》的知识与我们的日常生活、生产和科学研究有着紧密的联系,尤其体现在细胞分裂、贷款利率的计算等方面,因此学习这部分知识还有着广泛的现实意义。本节内容的特点之一是概念性强,特点之二是凸显了图象在研究函数性质时的重要作用。

2.课时安排:两课时

二、学情及目标

通过初中学段的学习和中专对集合、函数等知识的系统学习,学生对函数和图象的关系已经构建了一定的认知结构,主要体现在三个方面:

知识方面:学生对正比例函数、反比例函数、一次函数,二次函数等函数概念和性质已有了初步认识,从幂函数的学习中了解了学习函数的基本步骤。

技能方面:学生对采用“描点法”作函数图象的方法已大致掌握,能够为研究《指数函数》做好准备。

素质方面:由观察到抽象的数学活动过程有初步了解,在数形结合、分类讨论等思想方面还有待提高

鉴于对学生已有的知识基础和认知能力的分析,根据《教学大纲》的要求,我确定本节课的教学目标、教学重点和难点如下:

(1)知识目标:①掌握指数函数的概念;②掌握指数函数的图象

(2)技能目标:①渗透数形结合和分类讨论的思想方法②培养学生观察、类比、猜测、归纳的能力

(3)情感目标:①体验从特殊到一般的学习规律,认识事物之间的普遍联系与相互转化,培养学生用联系的观点看问题②通过教学互动促进师生情感,激发学生的学习兴趣,提高学生抽象、概括、分析、综合的能力③让学生感受数学的对称美、和谐美。

(4)教学重点:指数函数的概念和图象

(5)教学难点:取适当的点作图

确定依据:幂函数和指数函数的一般形式学生容易混淆,并且学生作图的精确度还有待提高

突破难点的.关键:结合二次函数、幂函数等取点的方法,再次强调间隔适当、数值大小合适、对称

三、教法分析

由于《指数函数》这节课的特殊地位,在本节课的教法设计中,我力图通过这一节课的教学达到不仅使学生初步理解指数函数的知识,更期望能引领学生掌握研究初等函数的一般思路和方法,为今后研究其它的函数做好准备,从而达到培养学生学习能力的目的,主要突出了以下几个方面:

1.创设情景.由指数函数在生活中的实际应用给出两个实例,充分调动学生的学习兴趣,激发学生的探究心理,顺利引入课题,而这两个例子又恰好为研究指数函数中底数大于1和底数大于0小于1的图象做好了准备。

2.类比及分类讨论的应用.引导学生结合幂函数的一般形式来归纳出指数函数的概念,并向学生指出指数函数的形式特点,请学生思考对于底数a是否需要限制,如不限制会有什么问题出现,这样避免了学生对于底数a范围分类的不清楚,也为研究指数函数的图象做了“分类讨论”的铺垫。

3.突出图象的作用.在数学学习过程中,图形始终使我们需要借助的重要辅助手段。华罗庚曾经说过“数离形时少直观,形离数时难入微”,在研究指数函数的性质时,更是直接由图象观察得出性质,因此图象发挥了主要的作用。

4.注意数学与生活和实践的联系.数学的本质是来源于生活,服务于实践。在课堂教学的引入、课外知识的拓展等部分,都介绍了与指数函数息息相关的生活问题,力图使学生了解到数学的基础学科作用,培养学生的数学应用意识。

四、学法分析

本节课是在学习完幂函数的概念和性质之后编排的,针对学生实际情况,我主要在以下几个方面做了尝试:

1.再现原有认知结构。在引入两个生活实例后,请学生回忆有关幂函数的概念,帮助学生再现原有认知结构,为理解指数函数的概念做好准备。

2.领会常见数学思想方法。在研究底数的限制时会遇到分类讨论等基本数学思想方法,这些方法将会贯穿整个中专的数学学习。

3.在互相交流和自主探究中获得发展。在生活实例的课堂导入、例题与训练、课内小节等教学环节中都安排了学生的讨论、分组、交流等活动,让学生变被动的接受和记忆知识为在合作学习的乐趣中主动地建构新知识的框架和体系,从而完成知识的内化过程。

4.注意学习过程的循序渐进。在概念、图象、性质、应用、拓展的过程中按照先易后难的顺序层层递进,让学生感到有挑战、有收获,跳一跳,够得着,不同难度的题目设计将尽可能照顾到课堂学生的个体差异。

五、程序设计

在设计本节课的教学过程中,本着遵循学生的认知规律、让学生去经历知识的形成与发展过程的原则,我设计了如下的教学程序

1.知识的回顾及新课的导入

教师活动:①回顾研究幂函数的一般步骤,并请学生回答幂函数的相关知识②用电脑展示两个实例,第一个是生物中细胞分裂的例子,第二个是机器价值的折旧率问题③引导学生进行类比④分析出对指数函数底数讨论的必要性以及分类的方法。

学生活动:①回忆幂函数的概念及图象和性质②分别写出细胞个数y与分裂次数x的关系式和机器价值y与经过年数x的关系式,并互相交流③比较幂函数的一般形式和上述两个式子,归纳指数函数的一般形式④根据底数分类讨论的结果,试着写出指数函数的定义域和值域

设计意图:通过回顾幂函数的知识,再现研究函数的基本步骤;通过生活实例激发学生的学习兴趣,通过类比扫清由概念不清而造成的知识障碍,培养学生思维的主动性,为突破难点做好准备。

2.启发诱导、探求新知

教师活动:①作图步骤回顾②给出两个简单指数函数,多媒体演示取点和作图,强调虚线、点、函数图象的先后顺序

学生活动:①回忆画函数图象的步骤②注意取点的间隔及大小③观察作图过程以及图象的形状和底数的关系

设计意图:使学生对作图步骤加深印象,对取点的合适度有更深刻的理解,使用多媒体画图以增加学生练习的时间,强调作图过程的规范性,培养学生良好的作图习惯

3.巩固新知、反馈回授

教师活动:①多媒体演示练习1②给出两个指数函数,要求学生对照例题作图并指导取点③请一名学生板演作图,对其作图步骤和图象精确度进行点评④引导学生对底数和图象形状的关系进行归纳

学生活动:①口答练习1②在草稿纸上画出两个指数函数的图象③观察图象形状和底数并互相交流,最后得出两者的关系

设计意图:加深学生对指数函数一般形式的印象以及和幂函数一般形式的区别;让学生动手作简单的指数函数的图象,能够进一步规范学生的作图习惯,也能让学生通过作图发现底数和图象形状的关系,对深刻理解本小节的内容有着一定的促进作用。

4.归纳小结、深化目标

教师活动:①引导学生对课堂知识进行归纳,完成对分类讨论、数形结合等数学方法的归纳;②布置课后及拓展作业

学生活动:完成对指数函数的概念和图象基本形状的课内小结并通过课后作业进一步深化学习目标,有能力的同学完成网上调研并在下节课与同学交流我国在利用14C进行考古所取得的成果。

设计意图:教师在本环节引导学生对指数函数的知识进行梳理,深化知识与技能目标,并通过作业实现目标的巩固。

5.板书设计

本节课以多媒体为主,同时考虑到板书在教学过程中发挥的作用,我设计了由两个板块构成的板书,板面分配比例为1:2,第一板块包含三个部分,一是指数函数的一般形式,二是定义域和值域,三是作图的基本步骤;第二板块留给学生板演练习2

六、教学评价

教学评价的及时有效能调动课堂的气氛、感染学生的情绪,对课堂教学发挥着积极的推动作用,因此,我将教学评价将贯穿于本节课的每个教学环节中。例如回忆幂函数知识的记忆评价、情景导入的表达式评价、得出指数函数一般形式的归纳评价、作图时取点准确性和图象精确度的评价、小结时的表述性评价等。在学生交流、讨论、探究等环节注意启发学生完成知识互评、能力互评,通过多种评价方式让更多的学生获得学习的自信,在轻松融洽的课堂评价氛围中完成本节课的教学和学习任务。

当然教师会通过对学生作业的批改获得更全面的对学生知识掌握的评价和课堂效果的反思,并在后续的时间里修订课堂设计方案,达到预期的教学效果,实现学生的能力发展。以上是我对指数函数这节课的设计和思考,敬请批评指正!

第三篇:指数函数及其性质(第一课时)

2.1.2指数函数及其性质(第一课时)

学习目标

①通过实际问题了解指数函数的实际背景,理解指数函数的概念和意义,能准确作出指数函数的图象,并能根据图象理解和掌握指数函数的性质.②在学习的过程中体会研究体会指数函数及其性质的方法,了解具体到一般的讨论方法及数形结合的思想;培养学生观察问题,分析问题的能力.学习过程

一、课前准备

自学教材P54-56,完成学案

二、问题导学

探究一:在下列的关系式中,哪些不是指数函数,为什么?(1)

(2)

(3)

(5)

(6)

(7)

(8)

(>1,且)1.指数函数的定义

一般地,函数

叫做指数函数(其中),是自变量,函数的定义域为

准确理解指数函数的概念要注意以下几点: ⑴指数函数解析式(>0且≠1)的结构特征:

①底数:大于零且不等于1的常数

②指数:变量x ③系数:1 ⑵为什么规定底数大于零且不等于1 ①

②若<0,如在实数范围内的函数值不存在.③若=1, 是一个常量,没有研究的意义,只有满足的形式才能称为指数函数,而象,不符合的的形式,所以不是指数函数。

探究二:指数函数的图象和性质

研究方法:

画出函数图象,结合图象研究函数性质.

研究内容:定义域、值域、特殊点、单调性、最大(小)值、奇偶性.

1、观察下图在同一坐标系画出的y=2x和y=的图象,体会指数函数图象的特征.-1

讨论:

(1)函数?y=2x和y=的图象有何关系?如何由y=2x的图象画出y=?的图象?

(2)根据两个函数的图象的特征,归纳出这两个指数函数的性质.? 变底数为?3和 后呢?(研究内容:定义域、值域、特殊点、单调性、最大(小)值、奇偶性)

(3)y=2x和y=的图象关于轴对称,所以这两个函数是偶函数,对吗?

试试:必过定点

满足,则的取值范围是

探究三:根据图象归纳指数函数的性质.观察用电脑软件画出的函数图象.说明:1 y=

y=

y= 5

y=3

问题:1:从画出的图象中,你能发现函数的图象与底数间有什么样的规律.从图上看(>1)与(0<<1)两函数图象的特征.问题2:完成下表 图象特征 函数性质

>1 0<<1 >1 0<<1

向轴正负方向无限延伸

图象关于原点和轴不对称

函数图象都在轴上方

函数图象都过定点(0,1)=1

自左向右,图象逐渐上升 自左向右,图象逐渐下降 增函数 减函数

在第一象限内的图 象纵坐标都大于1 在第一象限内的图 象纵坐标都小于1 >0,1 >0,1

在第二象限内的图 象纵坐标都小于1 在第二象限内的图 象纵坐标都大于1 <0,1 <0,问题3:利用函数的单调性,结合图象还可以看出:(1)在(>0且≠1)值域是(2)若

(3)对于指数函数(>0且≠1),总有(4)当>1时,若<,则<; 根据上例归纳指数函数的性质.? >1 0<<1 图象

性质

定义域

值域

过定点,即x=

时,y=

函数值的变化

当>0时,当<0时,当>0时,当<0时,单调性

在R上是

函数 在R上是

函数

三、典型例题:

例1:函数是指数函数,求的值

例2:已知指数函数(>0且≠1)的图象过点(3,π),求

体会:要求出指数函数,需要几个条件? 例3:求下列函数的定义域与值域:(1)

(2)

例4: 当

四、归纳小结

1、理解指数函数

2、解题利用指数函数的图象,可有利于清晰地分析题目,培养数型结合与分类讨论的数学思想.学习评价

※ 自我评价 你完成本节导学案的情况为().A.很好

B.较好

C.一般

D.较差

五、课堂检测

1.判断下列函数是否是指数函数

2.函数的定义域和值域依次分别是

()A.{}和{}

B.{}和{} C.{}和{}

D.{}和{} 3.函数的图像必经过点

()A.(0,1)

B.(1,1)

C.(2,3)

D.(2,4)4.下列函数中,值域为R+的是()

A、y=5

B、y=()1-x

C、y=

D、y= 5.在某种细菌培养过程中,每30分钟分裂一次(一个分裂为两个),经过4个小时,这种细菌由一个可繁殖成()

A、8

B、16

C、256

D、32 6.若函数是奇函数,则为__________.7..已知当其值域为时,求的取值范围。

8.? 求函数?y=的定义域和值域,并讨论函数的单调性、奇偶性.

第四篇:《指数函数》(第一课时)说课稿

一、教材分析

1.《指数函数》在教材中的地位、作用和特点

《指数函数》是人教版高中数学(必修)第一册第二章“函数”的第六节内容,是在学习了《指数》一节内容之后编排的。通过本节课的学习,既可以对指数和函数的概念等知识进一步巩固和深化,又可以为后面进一步学习对数、对数函数尤其是利用互为反函数的图象间的关系来研究对数函数的性质打下坚实的概念和图象基础,又因为《指数函数》是进入高中以后学生遇到的第一个系统研究的函数,对高中阶段研究对数函数、三角函数等完整的函数知识,初步培养函数的应用意识打下了良好的学习基础,所以《指数函数》不仅是本章《函数》的重点内容,也是高中学段的主要研究内容之一,有着不可替代的重要作用。

此外,《指数函数》的知识与我们的日常生产、生活和科学研究有着紧密的联系,尤其体现在细胞分裂、贷款利率的计算和考古中的年代测算等方面,因此学习这部分知识还有着广泛的现实意义。本节内容的特点之一是概念性强,特点之二是凸显了数学图形在研究函数性质时的重要作用。

2.教学目标、重点和难点

通过初中学段的学习和高中对集合、函数等知识的系统学习,学生对函数和图象的关系已经构建了一定的认知结构,主要体现在三个方面:

知识维度:对正比例函数、反比例函数、一次函数,二次函数等最简单的函数概念和性质已有了初步认识,能够从初中运动变化的角度认识函数初步转化到从集合与对应的观点来认识函数。

技能维度:学生对采用“描点法”描绘函数图象的方法已基本掌握,能够为研究《指数函数》的性质做好准备。

素质维度:由观察到抽象的数学活动过程已有一定的体会,已初步了解了数形结合的思想。

鉴于对学生已有的知识基础和认知能力的分析,根据《教学大纲》的要求,我确定本节课的教学目标、教学重点和难点如下:

(1)知识目标:①掌握指数函数的概念;②掌握指数函数的图象和性质;③能初步利用指数函数的概念解决实际问题;

(2)技能目标:①渗透数形结合的基本数学思想方法②培养学生观察、联想、类比、猜测、归纳的能力;

(3)情感目标:①体验从特殊到一般的学习规律,认识事物之间的普遍联系与相互转化,培养学生用联系的观点看问题②通过教学互动促进师生情感,激发学生的学习兴趣,提高学生抽象、概括、分析、综合的能力③领会数学科学的应用价值。

(4)教学重点:指数函数的图象和性质。

(5)教学难点:指数函数的图象性质与底数a的关系。

突破难点的关键:寻找新知生长点,建立新旧知识的联系,在理解概念的基础上充分结合图象,利用数形结合来扫清障碍。

二、教法设计

由于《指数函数》这节课的特殊地位,在本节课的教法设计中,我力图通过这一节课的教学达到不仅使学生初步理解并能简单应用指数函数的知识,更期望能引领学生掌握研究初等函数图象性质的一般思路和方法,为今后研究其它的函数做好准备,从而达到培养学生学习能力的目的,我根据自己对“诱思探究”教学模式和“情景式”教学模式的认识,将二者结合起来,主要突出了几个方面:

1.创设问题情景.按照指数函数的在生活中的实际背景给出两个实例,充分调动学生的学习兴趣,激发学生的探究心理,顺利引入课题,而这两个例子又恰好为研究指数函数中底数大于1和底数大于0小于1的图象做好了准备。

2.强化“指数函数”概念.引导学生结合指数的有关概念来归纳出指数函数的定义,并向学生指出指数函数的形式特点,请学生思考对于底数a是否需要限制,如不限制会有什么问题出现,这样避免了学生对于底数a范围分类的不清楚,也为研究指数函数的图象做了“分类讨论”的铺垫。

3.突出图象的作用.在数学学习过程中,图形始终使我们需要借助的重要辅助手段。一位数学家曾经说过“数离形时少直观,形离数时难入微”,而在研究指数函数的性质时,更是直接由图象观察得出性质,因此图象发挥了主要的作用。

4.注意数学与生活和实践的联系.数学的本质是来源于生活,服务于实践。在课堂教学的引入、例题的讲解和课外知识的拓展部分,都介绍了与指数函数息息相关的生活问题,力图使学生了解到数学的基础学科作用,培养学生的数学应用意识。

三、学法指导

本节课是在学习完“指数”的概念和运算后编排的,针对学生实际情况,我主要在以下几个方面做了尝试:

1.再现原有认知结构。在引入两个生活实例后,请学生回忆有关指数的概念,帮助学生再现原有认知结构,为理解指数函数的概念做好准备。

2.领会常见数学思想方法。在借助图象研究指数函数的性质时会遇到分类讨论、数形结合等基本数学思想方法,这些方法将会贯穿整个高中的数学学习。

3.在互相交流和自主探究中获得发展。在生活实例的课堂导入、指数函数的性质研究、例题与训练、课内小节等教学环节中都安排了学生的讨论、分组、交流等活动,让学生变被动的接受和记忆知识为在合作学习的乐趣中主动地建构新知识的框架和体系,从而完成知识的内化过程。

4.注意学习过程的循序渐进。在概念、图象、性质、应用、拓展的过程中按照先易后难的顺序层层递进,让学生感到有挑战、有收获,跳一跳,够得着,不同难度的题目设计将尽可能照顾到课堂学生的个体差异。

四、程序设计

在设计本节课的教学过程中,本着遵循学生的认知规律、让学生去经历知识的形成与发展过程的原则,我设计了如下的教学程序,启发学生逐步发现和认识指数函数的图象和性质。

1.创设情景、导入新课

教师活动:①用电脑展示两个实例,第一个是计算机价格下降问题,第二个是生物中细胞分裂的例子,②将学生按奇数列、偶数列分组。

学生活动:①分别写出计算机价格y与经过月份x的关系式和细胞个数y与分裂次数x的关系式,并互相交流;②回忆指数的概念;③归纳指数函数的概念;④分析出对指数函数底数讨论的必要性以及分类的方法。

设计意图:通过生活实例激发学生的学习动机,扫清由概念不清而造成的知识障碍,培养学生思维的主动性,为突破难点做好准备;

2.启发诱导、探求新知

教师活动:①给出两个简单的指数函数并要求学生画它们的图象②在准备好的小黑板上规范地画出这两个指数函数的图象③板书指数函数的性质。

学生活动:①画出两个简单的指数函数图象②交流、讨论③归纳出研究函数性质涉及的方面④总结出指数函数的性质。

设计意图:让学生动手作简单的指数函数的图象对深刻理解本节课的内容有着一定的促进作用,在学生完成基本作图之后,教师再利用课前已列表、建立坐标系的小黑板展示准确的作图方法,达到进一步规范学生的作图习惯的目的,然后借助“函数作图器”用多媒体将指数函数的图象推广到一般情况,学生就会很自然的通过观察图象总结出指数函数的性质,同时对于底数的讨论也就变得顺理成章。

3.巩固新知、反馈回授

教师活动:①板书例1②板书例2第一问③介绍有关考古的拓展知识。

学生活动:①学习解题的规范步骤②完成例2的第二问、第三问③完成分组练习④扩展视野,体会数学的应用价值。

设计意图:本环节的设计目的是实现学生对指数函数知识的初步应用,完成学生学习的“实践―――认识―――再实践”过程,力求通过例题的讲授、规范的板书养成学生良好地解题习惯,起到教师的示范作用,通过例2的第二问、第三问巩固学生对指数函数性质的理解、实现会用指数函数的性质解决数学问题,通过三个分组练习实现教师的再指导和学生的渐进式提高。指数函数与贷款利率的计算、化学中半衰期的计算和考古技术的现代运用有紧密的联系,本环节介绍的“化学中的14C在考古中的应用”既开拓了学生的视野,又为下一步学习“计算分期付款的利率”等问题埋下伏笔。

4.归纳小结、深化目标

教师活动:①引导学生对课堂知识进行归纳,完成对分类讨论、数形结合等数学方法的归纳;②布置课后及拓展作业

学生活动:完成对指数函数的概念和性质的课内小结并通过课后作业进一步深化学习目标,有能力的同学完成网上调研并在下节课与同学交流我国在利用14C进行考古所取得的成果。

设计意图:教师在本环节引导学生对指数函数的知识进行梳理,深化知识与技能目标,并通过作业实现目标的巩固。

5.板书设计

考虑到板书在教学过程中发挥的功能,本节课我设计了由三个板块构成的板书,板面分配比例为2:1:1,第一大板块包含了两部分,一是指数函数的定义,二是课前准备的画有坐标系和表格的小黑板;第二板块书写了例1和例2的第一问;第三板块由学生完成例2的后两问、练习和课堂小结组成。

五、教学评价

教学评价的及时有效能调动课堂的气氛、感染学生的情绪,对课堂教学发挥着积极的推动作用,因此,我将教学评价将贯穿于本节课的每个教学环节中。例如情景导入的表达式评价、回忆指数知识的记忆评价、得出指数函数概念的归纳评价、作图时的准确性评价、解题时的规范性评价、小结时的表述性评价等。在学生交流、讨论、探究等环节注意启发学生完成知识互评、能力互评,通过多种评价方式让更多的学生获得学习的自信,在轻松融洽的课堂评价氛围中完成本节课的教学和学习任务。

当然教师会通过对学生作业的批改获得更全面的对学生知识掌握的评价和课堂效果的反思,并在后续的时间里修订课堂设计方案,达到预期的教学效果,实现学生的能力发展。以上是我对指数函数这节课的设计和思考,敬请批评指正!

第五篇:指数函数教学设计范文

指数函数的图象及其性质

一、教学内容分析

本节课是 《普通高中课程标准实验教科书·数学(1)》(人教A版)第二章第一节第二课(2.1.2)《指数函数及其性质》。根据我所任教的学生的实际情况,我将《指数函数及其性质》划分为两节课(探究图象及其性质,指数函数及其性质的应用),这是第一节课“探究图象及其性质”。指数函数是重要的基本初等函数之一,作为常见函数,它不仅是今后学习对数函数和幂函数的基础,同时在生活及生产实际中有着广泛的应用,所以指数函数应重点研究。

二、学生学习况情分析

指数函数是在学生系统学习了函数概念,基本掌握了函数的性质的基础上进行研究的,是学生对函数概念及性质的第一次应用。教材在之前的学习中给出了两个实际例子(GDP的增长问题和炭14的衰减问题),已经让学生感受到指数函数的实际背景,但这两个例子背景对于学生来说有些陌生。本节课先设计一个看似简单的问题,通过超出想象的结果来激发学生学习新知的兴趣和欲望。

三、设计思想

1.函数及其图象在高中数学中占有很重要的位置。如何突破这个即重要又抽象的内容,其实质就是将抽象的符号语言与直观的图象语言有机的结合起来,通过具有一定思考价值的问题,激发学生的求知欲望――持久的好奇心。我们知道,函数的表示法有三种:列表法、图象法、解析法,以往的函数的学习大多只关注到图象的作用,这其实只是借助了图象的直观性,只是从一个角度看函数,是片面的。本节课,力图让学生从不同的角度去研究函数,对函数进行一个全方位的研究,并通过对比总结得到研究的方法,让学生去体会这种的研究方法,以便能将其迁移到其他函数的研究中去。

2.结合参加我校组织的两个课题《对话——反思——选择》和《新课程实施中同伴合作和师生互动研究》的研究,在本课的教学中我努力实践以下两点:

⑴.在课堂活动中通过同伴合作、自主探究培养学生积极主动、勇于探索的学习方式。

⑵.在教学过程中努力做到生生对话、师生对话,并且在对话之后重视体会、总结、反思,力图在培养和发展学生数学素养的同时让学生掌握一些学习、研究数学的方法。

通过课堂教学活动向学生渗透数学思想方法。

四、教学目标

根据任教班级学生的实际情况,本节课我确定的教学目标是:理解指数函数的概念,能画出具体指数函数的图象;在理解指数函数概念、性质的基础上,能应用所学知识解决简单的数学问题;在教学过程中通过类比,回顾归纳从图象和解析式这两种不同角度研究函数性质的数学方法,加深对指数函数的认识,让学生在数学活动中感受数学思想方法之美、体会数学思想方法之重要;同时通过本节课的学习,使学生获得研究函数的规律和方法;培养学生主动学习、合作交流的意识。

五、教学重点与难点

教学重点:指数函数的概念、图象和性质。

教学难点:对底数的分类,如何由图象、解析式归纳指数函数的性质。

六、教学过程:

(一)创设情景、提出问题(约3分钟)师:如果让1号同学准备2粒米,2号同学准备4粒米,3号同学准备6粒米,4号同学准备8粒米,5号同学准备10粒米,„„按这样的规律,51号同学该准备多少米?

学生回答后教师公布事先估算的数据:51号同学该准备102粒米,大约5克重。师:如果改成让1号同学准备2粒米,2号同学准备4粒米,3号同学准备8粒米,4号同学准备16粒米,5号同学准备32粒米,„„按这样的规律,51号同学该准备多少米?

【学情预设】学生可能说很多或能算出具体数目

师:大家能否估计一下,51号同学该准备的米有多重?

教师公布事先估算的数据:51号同学所需准备的大米约重1.2亿吨。

师:1.2亿吨是一个什么概念?根据2007年9月13日美国农业部发布的最新数据显示,2007~2008我国大米产量预计为1.27亿吨。这就是说51号同学所需准备的大米相当于2007~2008我国全年的大米产量!【设计意图】用一个看似简单的实例,为引出指数函数的概念做准备;同时通过与一次函数的对比让学生感受指数函数的爆炸增长,激发学生学习新知的兴趣和欲望。

在以上两个问题中,每位同学所需准备的米粒数用y表示,每位同学的座号数用

x表示,y与x之间的关系分别是什么?

学生很容易得出y2x(xN*)和y2x(xN*)

【学情预设】学生可能会漏掉x的取值范围,教师要引导学生思考具体问题中x的范围。

(二)师生互动、探究新知

1.指数函数的定义

老师:其实,在本章开头的问题2中,也有一个与y2类似的关系x*y1.073(xN,x20)式

x⑴让学生思考讨论以下问题(问题逐个给出):(约3分钟)

x*x*y2(xN)y1.073(xN,x20)这两个解析式有什么共同特征?

①和②它们能否构成函数?

③是我们学过的哪个函数?如果不是,你能否根据该函数的特征给它起个恰当的名字?

【设计意图】 引导学生从具体问题、实际问题中抽象出数学模型。学生对比已经学过一次函数、反比例函数、二次函数,发现xy2,xy073.1是一个新的函数模型,再让学生给这个新的函数命名,由此激发学生的学习兴趣。

引导学生观察,两个函数中,底数是常数,指数是自变量。

老师:如果可以用字母a代替其中的底数,那么上述两式就可以表示成xay的形式。自变量在指数位置,所以我们把它称作指数函数。

⑵让学生讨论并给出指数函数的定义。(约6分钟)

对于底数的分类,可将问题分解为:

a2,x2则在实数范围内相应的函数值不存 ①若a0会有什么问题?(如

1在)

②若a0 会有什么问题?(对于x0,a都无意义)

③若a1又会怎么样?(1无论x取何值,它总是1,对它没有研究的必要.)

老师:为了避免上述各种情况的发生,所以规定a0且a1。在这里要注意生生之间、师生之间的对话。

xx【学情预设】

①若学生从教科书中已经看到指数函数的定义,教师可以问,为什么要求a0且a1。a1为什么不行?

xya②若学生只给出,教师可以引导学生通过类比一次函数ykxb(k0)、反比例函数

yk(k0)2yaxbxc(a0)中x,二次函数的限制条件,思

考指数函数中底数的限制条件。【设计意图 】

①对指数函数中底数限制条件的讨论可以引导学生研究一个函数应注意它的实际意义和研究价值;

②讨论出10aa,且,也为下面研究性质时对底数的分类做准备。

接下来教师可以问学生是否明确了指数函数的定义,能否写出一两个指数函数?教师也在黑板上写出一些解析式让学生判断,如y23x,y32x,y2x。

【学情预设】学生可能只是关注指数是否是变量,而不考虑其它的。【设计意图 】加深学生对指数函数定义和呈现形式的理解。

2.指数函数性质

⑴提出两个问题(约3分钟)

①目前研究函数一般可以包括哪些方面;

【设计意图】让学生在研究指数函数时有明确的目标:函数三个要素(对应法则、定义域、值域、)和函数的基本性质(单调性、奇偶性)。

②研究函数(比如今天的指数函数)可以怎么研究?用什么方法、从什么角度研究?

可以从图象和解析式这两个不同的角度进行研究;可以从具体的函数入手(即底数取一些数值);当然也可以用列表法研究函数,只是今天我们所学的函数用列表法不易得出此函数的性质,可见具体问题要选择适当的方法来研究才能事半功倍!还可以借助一些数学思想方法来思考。

【设计意图】

①让学生知道图象法不是研究函数的唯一方法,由此引导学生可以从图象和解析式(包括列表)不同的角度对函数进行研究;

②对学生进行数学思想方法(从一般到特殊再到一般、数形结合、分类讨论)的有机渗透。

⑵分组活动,合作学习(约8分钟)

老师:好,下面我们就从图象和解析式这两个不同的角度对指数函数进行研究。

①让学生分为两大组,一组从解析式的角度入手(不画图)研究指数函数,一组借助电脑通过几何画板的操作从图象的角度入手研究指数函数;

②每一大组再分为若干合作小组(建议4人一小组);

③每组都将研究所得到的结论或成果写出来以便交流。

【学情预设】考虑到各组的水平可能有所不同,教师应巡视,对个别组可做适当的指导。

【设计意图】通过自主探索、合作学习不仅让学生充当学习的主人更可加深对所得到结论的理解。

⑶交流、总结(约10~12分钟)师:下面我们开一个成果展示会!

教师在巡视过程中应关注各组的研究情况,此时可选一些有代表性的小组上台展示研究成果,并对比从两个角度入手研究的结果。

教师可根据上课的实际情况对学生发现、得出的结论进行适当的点评或要求学生分析。这里除了研究定义域、值域、单调性、奇偶性外,再引导学生注意是否还有其它性质?

师:各组在研究过程中除了定义域、值域、单调性、奇偶性外是否还得到一些有价值

1yax与y()xa的图象关于y轴对称)的副产品呢?(如过定点(0,1),【学情预设】

①首先选一从解析式的角度研究的小组上台汇报;

②对于从图象的角度研究的,可先选没对底数进行分类的小组上台汇报;

③问其它小组有没不同的看法,上台补充,让学生对底数进行分类,引导学生思考哪个量决定着指数函数的单调性,以什么为分界,教师可以马上通过电脑操作看函数图象的变化。

【设计意图】

①函数的表示法有三种:列表法、图象法、解析法,通过这个活动,让学生知道研究一个具体的函数可以也应该从多个角度入手,从图象角度研究只是能直观的看出函数的一些性质,而具体的性质还是要通过对解析式的论证;特别是定义域、值域更是可以直接从解析式中得到的。

②让学生上台汇报研究成果,让学生有种成就感,同时还可训练其对数学问题的分析和表达能力,培养其数学素养;

③对指数函数的底数进行分类是本课的一个难点,让学生在讨论中自己解决分类问题使该难点的突破显得自然。

师:从图象入手我们很容易看出函数的单调性、奇偶性、以及过定点(0,1),但定义域、值域却不可确定;从解析式(结合列表)可以很容易得出函数的定义域、值域,但对底数的分类却很难想到。

xya教师通过几何画板中改变参数a的值,追踪的图象,在变化过程中,让全体学生进一步观察指数函数的变化规律。

师生共同总结指数函数的图象和性质,教师可以边总结边板书。

(三)巩固训练、提升总结(约8分钟)

1.例:已知指数函数的值。

解:因为f(x)的图象经过点(3,)所以f(3)

3a,解得a3 即f(x)ax(a0且a1)的图象经过点(3,),求f(0),f(1),f(3)于是 f(x)x3

13 所以f(0)1,f(1),f(3)1.【设计意图】通过本题加深学生对指数函数的理解。

师:根据本题,你能说出确定一个指数函数需要什么条件吗?

师:从方程思想来看,求指数函数就是确定底数,因此只要一个条件,即布列一个方程就可以了。

【设计意图】让学生明确底数是确定指数函数的要素,同时向学生渗透方程的思想。

1y3和y3 的大致图2.练习:⑴在同一平面直角坐标系中画出

xx象,并说出这两个函数的性质;

⑵求下列函数的定义域: 

y2x21y2 

1x

3.老师:通过本节课的学习,你对指数函数有什么认识?你有什么收获?

【学情预设】学生可能只是把指数函数的性质总结一下,教师要引导学生谈谈对函数研究的学习,即怎么研究一个函数。【设计意图】

①让学生再一次复习对函数的研究方法(可以从也应该从多个角度进行),让学生体会本课的研究方法,以便能将其迁移到其他函数的研究中去。

②总结本节课中所用到的数学思想方法。

③强调各种研究数学的方法之间有区别又有联系,相互作用,才能融会贯通。

4.作业:课本59页习题2.1A组第5题。

七、教学反思

1.本节课改变了以往常见的函数研究方法,让学生从不同的角度去研究函数,对函数进行一个全方位的研究,不仅仅是通过对比总结得到指数函数的性质,更重要的是让学生体会到对函数的研究方法,以便能将其迁移到其他函数的研究中去,教师可以真正做到“授之以渔”而非“授之以鱼”。

2.教学中借助信息技术可以弥补传统教学在直观感、立体感和动态感方面的不足,可以很容易的化解教学难点、突破教学重点、提高课堂效率,本课使用几何画板可以动态地演示出指数函数的底数的动态过程,让学生直观观察底数对指数函数单调性的影响。

3.在教学过程中不断向学生渗透数学思想方法,让学生在活动中感受数学思想方法之美、体会数学思想方法之重要,部分学生还能自觉得运用这些数学思想方法去分析、思考问题。

下载指数函数习题课(第一课时)教学设计word格式文档
下载指数函数习题课(第一课时)教学设计.doc
将本文档下载到自己电脑,方便修改和收藏,请勿使用迅雷等下载。
点此处下载文档

文档为doc格式


声明:本文内容由互联网用户自发贡献自行上传,本网站不拥有所有权,未作人工编辑处理,也不承担相关法律责任。如果您发现有涉嫌版权的内容,欢迎发送邮件至:645879355@qq.com 进行举报,并提供相关证据,工作人员会在5个工作日内联系你,一经查实,本站将立刻删除涉嫌侵权内容。

相关范文推荐

    第一课时教学设计

    课题:第一单元例1、2加减混合运算和乘除混合运算 设计人:岳志芳 学校:东营区一中使用人: 教学内容: 第一单元例1、2加减混合运算和乘除混合运算 教学目标: 1、使学生理解并掌握加......

    第一课时教学设计

    《给予树》第一课时教学设计 教学目标: 1.识字写字:会认10个生字,正确认读给予、宽裕、立即、仁爱、糖果、圣诞、逛街、分享、援助、沉默不语、 兴高采、烈如愿以偿等词语。能......

    《假如》第一课时教学设计

    《假如》第一课时教学设计 北团电力希望小学 罗蔚萍 【教学背景】 每一个儿童都是一名诗人。儿童充满了想象力、创造力,虽然他们往往只能“假如”,但是这些“假如”都是他们对......

    《假如》第一课时教学设计

    23《假如》第一课时教学设计城厢中心小学 林金环 教学目标: 1、认识9个生字,会写3个生字。 2、正确流利、有感情地朗读课文,背诵课文第一小节。 3、通过学习使学生有关爱他人的......

    第一课时教学设计.DOC范文

    第一课时教学设计 课题:Recycle 2 教学重点: 听懂、会说Let’s act 部分的故事。 复习4—6 单元所学的会话。 教学难点:Let’s act 部分的故事情节的理解。 教具准备: 1 教师......

    第一课时教学设计

    17、麋鹿 教学目标: 1、能正确、流利、有感情地朗读课文。 2、学会本课的六个生字,重点掌握“沛”的写法。 3、引导学生通过入情入境地朗读,真真实实地感知麋鹿的特点习性和传......

    第一课时教学设计

    第一课时教学设计 教学目标 1.能运用以下句型进行口头交际: How do you study for a test? I study by working with a group. 2.对目标语言的听力训练,提高听力技能。 教学......

    第一课时教学设计

    第一课时 教学内容:参观果园前的准备 教学目标 1、 丰富知识,开拓视野。 2、 了解关于水果的知识,学会做好参观前的准备工作。 重点难点 了解关于水果的知识,学会做好参观前的......