2013-2014下六年级数学教学设计(小编推荐)

时间:2019-05-13 00:55:09下载本文作者:会员上传
简介:写写帮文库小编为你整理了多篇相关的《2013-2014下六年级数学教学设计(小编推荐)》,但愿对你工作学习有帮助,当然你在写写帮文库还可以找到更多《2013-2014下六年级数学教学设计(小编推荐)》。

第一篇:2013-2014下六年级数学教学设计(小编推荐)

2013-2014学年六年级下学期数学

《解比例》教学设计

学习目的:

1、使学生学会解比例的方法,进一步理解和掌握比例的基本性质。

2、通过合作交流、尝试练习,提高学生运用比例的基本性质解比例的能力。

3、培养学生的知识迁移的能力,增强学生的合作意识。

评价任务:

1、评价学生对比例概念的掌握。

2、评价学生在做题中对比例的应用。

学习重点:使学生掌握解比例的方法,学会解比例。学习难点:引导学生根据比例的基本性质,将比例改写成两个内项的积等于两个外项积的形式,即已学过的含有未知数的等式。

学习过程:

一、回顾旧知,复习铺垫

1、上节课我们学习了一些比例的知识,谁能说一说什么叫做比例?比例的基本性质是什么?应用比例的基本性质可以做什么?

2、判断下面每组中的两个比是否能组成比例?为什么? 6:3和8:4 : 和 :

3、这节课我们继续学习有关比例的知识,学习解比例。(板书课题)

二、引导探索,学习新知

1、什么叫解比例?

我们知道比例共有四项,如果知道其中的任何三项,就可以求出这个比例中的另外一个未知项。求比例中的未知项,叫做解比例。解比例要根据比例的基本性质来解。

2、学习例2。

(1)把未知项设为X。解:设这座模型的高是X米。(2)根据比例的意义列出比例:X:320=1:10(3)让学生指出这个比例的外项、内项,并说明知道哪三项,求哪一项。

根据比例的基本性质可以把它变成什么形式?3x=8×15。这变成了什么?(方程。)

教师说明:这样解比例就变成解方程了,利用以前学过的解方程的方法就可以求出未知数X的值。因为解方程要写“解:”,所以解比例也应写“解:”。

(4)学生说,教师板书解比例的过程。

教师:从刚才解比例的过程,可以看出,解比例可以根据比例的基本性质把比例变成方程,然后用解方程的方法来求未知数x。

3、学习例3。

出示例3:解比例 = 提问:“这个比例与例 2有什么不同?”(这个比例是分数形式。)这种分数形式的比例也能根据比例的基本性质,变成方程来求解吗?

学生回答后,教师说明在写方程时,含有未知数的积通常写在等号的左边,然后板书:1.5X=2.5×6 让学生在课本上填出求解过程。解答后,让他们说一说是怎样解的。

4、总结解比例的过程。

刚才我们学习了解比例,大家回忆一下,解比例首先要做什么?(根据比例的基本性质把比例变成方程。)

变成方程以后,再怎么做?(根据以前学过的解方程的方法求解。)

从上面的过程可以看出,在解比例的过程中哪一步是新知识?(根据比例的基本性质把比例变成方程。)

5、P35“做一做”。学生独立解答,订正时,让学生说说是怎么做的。

三、巩固深化,拓展思维

P37第7题。

四、全课小结,提高认识

什么叫解比例?解比例的根据是什么?解比例的书写格式应注意什么?

五、课堂练习,辅助消化

P37~38第8~11题。

第二篇:2012-2013下六年级数学教学设计

2012-2013学年六年级下学期数学

《圆锥的认识》教学设计

学习目标:

1、认识圆锥,圆锥的高和侧面,掌握圆锥的特征,会看圆锥的平面图,会正确测量圆锥的高,能根据实验材料正确制作圆锥。

通过动手制作圆锥和测量圆锥的高,培养学生的动手操作能力和一定的空间想象能力。

2、培养学生的自主探索意识,激发学生强烈的求知欲望。

评价任务:

1、能分辨什么是圆锥。

2、能够动手制作做圆锥。

学习重点:掌握圆锥的特征。学习难点:正确理解圆锥的组成。学习过程:

一、复习

1、圆柱体积的计算公式是什么?

2、圆柱的特征是什么?

二、新课

1、圆锥的认识

(1)让学生拿着圆锥模型观察和摆弄后,指定几名学生说出自己观察的结果,从而使学生认识到圆锥有一个曲面,一个顶点和一个面是圆的,等等。(2)圆锥有一个顶点,它的底面是一个圆、(在图上标出顶点,底面及其圆心O)

(3)圆锥有一个曲面,圆锥的这个曲面叫做侧面。(在图上标出侧面)

(4)让学生看着教具,指出:从圆锥的顶点到底面圆心的距离叫做高。(沿着曲面上的线都不是圆锥的高,由于圆锥只有一个顶点,所以圆锥只有一条高)

2、小结

圆锥的特征(可以启发学生总结),强调底面和高的特点,使学生弄清圆锥的特征是:底面是圆,侧面是一个曲面,有一个顶点和一条高.

3、测量圆锥的高

由于圆锥的高在它的内部,我们不能直接量出它的长度,这就需要借助一块平板来测量。

(1)先把圆锥的底面放平;

(2)用一块平板水平地放在圆锥的顶点上面;(3)竖直地量出平板和底面之间的距离。

4、学习圆锥侧面的展开图

(1)学生猜想圆锥的侧面展开后会是什么图形呢?(2)实验来得出圆锥的侧面展开后是一个扇形。

5、虚拟的圆锥(1)先让学生猜测:一个长方形通过旋转,可以形成一个圆柱。那么将三角形制片绕着一条直角边旋转,会形成什么形状?

(2)通过操作,使学生发现转动出来的是圆锥,并从旋转的角度认识圆锥。

三、课堂练习

1、做第24页“做一做”的题目。

让学生拿出课前准备好的模型纸样,先做成圆锥,然后让学生试着独立量出它的底面直径.教师行间巡视,对有困难的学生及时辅导。

2、练习四的第1题。

(1)让学生自由地观察,只要是接近于圆柱、圆锥的都可以指出。

(2)让学生说说自己周围还有哪些物体是由圆柱、圆锥组成的。

3.完成练习四的第2题。

四、总结

关于圆锥你知道了些什么?你能向同学介绍你手中的圆锥吗?

布置作业:《学习与巩固》第15页第1题

第三篇:人教版六年级下数学思考教学设计

人教版六年级下《数学思考》教学设计

【教学内容】

《义务教育课程标准实验教科书•数学》六年级下册第91页例4及练习十八第1~3题。

【教学目标】

1.通过学生观察、探索,使学生掌握数线段的方法。

2.渗透“化难为易”的数学思想方法,能运用一定规律解决较复杂的数学问题。

3.培养学生归纳推理探索规律的能力。

【教学重、难点】

引导学生发现规律,找到数线段的方法。

【教具、学具准备】

多媒体课件

【教学过程】

一、游戏设疑,激趣导入。

1.师:同学们,课前我们来做一个游戏吧,请你们拿出纸和笔在纸上任意点上8个点,并将它们每两点连成一条线,再数一数,看看连成了多少条线段。(课件出现下图,之后学生操作)

2.师:同学们,有结果了吗?(学生表示:太乱了,都数昏了)大家别着急,今天,我们就一起来用数学的思考方法去研究这个问题。(板书课题)

【评析】巧设连线游戏,紧扣教材例题,同时又让数学课饶有生趣。任意点8个点,再将每两点连成一条线,看似简单,连线时却很容易出错。这样在课前制造一个悬疑,不仅激发了学生学习欲望,同时又为探究“化难为简”的数学方法埋下伏笔。

二、逐层探究,发现规律。

1.从简到繁,动态演示,经历连线过程。

师:同学们,用8个点来连线,我们觉得很困难,如果把点减少一些,是不是会容易一些呢?下面我们就先从2个点开始,逐步增加点数,找找其中的规律。

师:2个点可以连1条线段。为了方便表述我们把这两个点设为点A和点B。(同步演示课件,动态连出AB,之后缩小放至表格内,并出现相应数据,如下图)

师:如果增加1个点,我们用点C表示,现在有几个点呢?(生:3个点)

如果每2个点连1条线段,这样会增加几条线段?(生:2条线段,课件动态连线AC和BC)那么3个点就连了几条线段?(生:3条线段)

师:你说得很好!为了便于观察,我们把这次连线情况也记录在表格里。(课件动态演示,如下图)

师:如果再增加1个点,用点D表示(课件出现点D)现在有几个点?又会增加几条线段呢?根据学生回答课件动态演示连线过程)那么4个点可以连出几条线段?(生:4个点可以连出6条线段。课件动态演示,如下图)

师:大家接着想想5个点可以连出多少条线段?为什么?(引导学生明白:4个点连了6条线段,再增加1个点后,又会增加4条线段,所以5个点时可以连出10条线段。课件根据学生回答同步演示,如下图)

师:现在大家再想想,6个点可以连多少条线段呢?就请同学们翻到书第91页,请看到表格的第6列,自己动手连一连,再把相应的数据填写好。(学生动手操作,之后指名一生展示作品并介绍连线情况,课件演示:完整表格中6个点的图与数据)

【评析】让学生从2个点开始连线,逐步经历连线过程,随着点数的增多,得出每次增加的线段数和总线段数,初步感知点数、增加的线段数和总线段数之间的联系。

2.观察对比,发现增加线段与点数的关系。

师:仔细观察这张表格,在这张表格里有哪些信息呢?

(引导学生明确:2个点时总条数是1,3个点时就增加2条线段,总条数是3;4个点时增加了3条线段,总条数是6;5个点时增加了4条线段,总条数是10;到6个点时增加了5条线段,总条数是15。)

师:那么,看着这些信息你有什么发现吗?

(学生尝试回答出:2个点时连1条线段,增加到3个点时就增加了2条线段,到4个点时就会再增加3条线段,5个点就增加4条线段,6个点就增加5条线段。每次增加的线段数和点数相差1。)

师也可以提问引导:当3个点时,增加条数是几?(生:2条)那点数是4时,增加条数是多少?(生:3条)点数是5时呢?(4条)6时呢?(5条)那么,你们有什么新发现?

师小结:我们可以发现,每次增加的线段数就是(点数-1)。

【评析】在经历了丰富的连线过程之后,整体观察和对比表格中的数据,从而进一步发现每次增加条数就是点数-1,为后面推导总线段数的算法做好铺垫)

3.进一步探究,推导总线段数的算法。

(1)分步指导,逐个列出求总线段数的算式。

师:同学们,我们知道了6个点可以连15条线段,现在你们有什么办法知道8个点可以连多少条线段吗?

(尝试让学生回答,学生可能会从7个点连线的情况去推理8个点的连线情况。)

师追问:如果当点数再大一些时,我们这样去计算是不是很麻烦呢?

师:我们先来看看,3个点时,可以连多少条线段?你是怎么知道的?

生:2个点连1条线段,增加一个点,就增加了2条线段,1+2=3(条),所以3个点就连了3条线(贴示黑板条:)

师:接着想想4个点共连了6条线段,这又可以怎么计算呢?(贴示:)

师:计算3个点连出的线段数时,我们用了1+2,再增加1个点,就在增加了3条线段,我们就再加3,所以列式为1+2+3=6(条),那么按着这个方法,你能列出5个点共连线段的算式吗?(根据学生回答,贴示:)

(2)观察算式,探究算理。师:下面,同学们仔细观察看看这些算式,有什么发现吗?生1:计算3个点的总线段数是1+2,计算4个人的总线段数是1+2+3,计算5个点的总线段数是1+2+3+4,它们都是从1开始依次加的。

2.观察对比,发现增加线段与点数的关系。

师:仔细观察这张表格,在这张表格里有哪些信息呢?

(引导学生明确:2个点时总条数是1,3个点时就增加2条线段,总条数是3;4个点时增加了3条线段,总条数是6;5个点时增加了4条线段,总条数是10;到6个点时增加了5条线段,总条数是15。)

师:那么,看着这些信息你有什么发现吗?

(学生尝试回答出:2个点时连1条线段,增加到3个点时就增加了2条线段,到4个点时就会再增加3条线段,5个点就增加4条线段,6个点就增加5条线段。每次增加的线段数和点数相差1。)

师也可以提问引导:当3个点时,增加条数是几?(生:2条)那点数是4时,增加条数是多少?(生:3条)点数是5时呢?(4条)6时呢?(5条)那么,你们有什么新发现?

师小结:我们可以发现,每次增加的线段数就是(点数-1)。

师:那么你说的点数减1的那个数其实是什么数?(生:就是每次增加一个点时,增加的线段数。)

(3)归纳小结,应用规律。

师:现在我们知道了总线段数其实就是从1依次连加到点数减1的那个数的自然数数列之和。因此,我们只要知道点数是几,就从1开始,依次加到几减1,所得的和就是总线段

数。同学们,你们明白了吗?

师:下面我们运用这条规律去计算一下6个点和8个点时共连的线段数,就请同学们打开数学书91页,把算式写在书上相应的横线上!(学生独立完成,教师巡视,之后学生板演算式集体评议)

4.回应课前游戏的设疑,进一步提升。

(1)师:现在我们就知道了课前游戏的答案,在纸上任意点上8个点,每两点连成一条线,可以连成28条线段。有这么多条,难怪同学们数时会比较麻烦呢!看来利用这个规律可以非常方便的帮助我们计算点数较多时的总线段数。下面你们能根据这个规律,计算出12个点、20个点能连多少条线段?(学生独立完成)

(2)反馈

师:我们来看看答案吧!(课件示:12个点共连了1+2+3+4+5+6+7+8+9+10+11=45(条),师:20个点共连的线段数为:1+2+3+4+5一直加到19,为了书写方便,这些列式还可以省略不写中间的一些加数,列式可以写为:1+2+3„„+9+10+11=45(条)(课件示)

师: 提出问题:想一想, 计算n个点连成线段的条数可以怎样列式?

学生独立思考、回答、相互补充得出:1+2+3+„(n-1)

师生共同理解算式的含义: 从1开始(n-1)个连续自然数的和。

三、创设情境,生成问题

上一节课,我们已经复习了一部分有关数学思考的知识,这节课,我们接着进行学习。(出示课件:课本P93例7)仔细观察,说说图中呈现的数学信息,想一想,哪两位班长是同班的?

四、探索交流,解决问题

1、让学生谈谈看了这些条件的感想,想一想有没有什么方法,能使这么复杂的条件一目了然。

2、组织学生在小组内和同学互相交流。

学生分组整理,教师巡视指导,参与讨论。

3、全班反馈交流。

师:哪个小组愿意来展示一下自己的交流成果?

学生可能会出现以下几种情况:

1、我们小组用A、B、C、D、E、F分别表示三个班的6位班长;每班各有2位班长,每次开会,每班都只有1位班长参加。第一次到会的有A、B、C,说明A不可能和B、C同班。如从第一次和第三次到会情况看见,A去了两次,这两次其他班到会的班长是B、C和E、F,只有D两次都没到会,说明A和D同班。

师:刚才同学的推理实际上用到“排除法”以A为例。和A同班的可能是B、C、D、E、F,有五种情况,所以只要排除其中四种情况,剩下的一种情况就是答案。

从已知条件可以看出,A、B、E各到会两次,因此A、B、E都可以作为“突破口”。从A或B入手的推理,上面已作介绍,下面再给出从E入手的推理。

从第二次到会的是B、D、E,排除了B、D与E同班的可能,再从第三次到会者是A、E、F,排除A、F与E同班的可能,所以剩下的C与E同班。

五.还原生活,解决问题。

师:下面,我们一起来看看小精灵聪聪给我们带来了什么题目!(课件示情景问题:10个好朋友,每2位好朋友握手1次,大家一共要握多少次手?)

师:你们能帮他解决这个问题吗?小组同学互相说说!(小组合作交流,之后学生回答:这道题其实就可以把它转化为我们刚才解决的连线问题。那么答案就是1+2+3+„+9=45)

六、巩固练习

师:同学们,在我们生活中有许多看似复杂的问题,我们都可以尝试从简单问题去思考,逐步找到其中的规律,从而来解决复杂的问题。下面我们就来看看书上的几道练习题,看看能不能运用这样的思考方法去解决它们。

1.练习十八第2题。

师:同学们,你们可以先用小棒摆一摆,找找其中的规律。

(学生独立完成,鼓励学生多角度思考问题,多样化解决方法)

2.练习十八第3题。

师:仔细观察表格,你能找出规律吗?请同学们想想多边形的内角和与它的边数有什么关系呢?

(1)小组交流

(2)反馈

注意引导学生发现:多边形里分成的三角形个数正好是这个多边形的边数-2!所以,多边形内角和就等于边数减2的差去乘180?

3.练习十八第1题。

师:同学们,前面几道题我们通过看图列表,或是动手摆小棒等活动,找到一定的规律来解决问题,下面我们来做一道找规律填数的题目。请翻开书94页,看到第1题,同学们自己在书上填写答案.(1)学生独立完成(2)反馈(根据学生回答课件动态演示)

六、全课总结

师:今天同学们都表现得非常棒,我们运用了化难为易的数学思考方法,解决了一些问题。希望同学们在以后的学习中经常运用数学思考方法去解决生活中的问题。

第四篇:六年级下《数学思考》教学设计

“数学思考”教学设计

温宿怎第六小学 韩爱丽

【教学内容】

人教版六年级下册第100页例1及练习二十二第1~3题。【教学目标】

1.通过学生观察、探索,使学生掌握数线段的方法。

2.渗透“化难为易”的数学思想方法,能运用一定规律解决较复杂的数学问题。3.培养学生归纳推理探索规律的能力。【教学重、难点】

引导学生发现规律,找到数线段的方法。【教具、学具准备】

多媒体课件 【教学过程】

一、游戏设疑,激趣导入。

1.师:同学们,课前我们来做一个游戏吧,请你们拿出纸和笔在纸上任意点上8个点,并将它们每两点连成一条线,再数一数,看看连成了多少条线段。(课件出现下图,之后学生操作)

2.师:同学们,有结果了吗?(学生表示:太乱了,都数昏了)大家别着急,今天,我们就一起来用数学的思考方法去研究这个问题。(板书课题)

【评析】巧设连线游戏,紧扣教材例题,同时又让数学课饶有生趣。任意点8个点,再将每两点连成一条线,看似简单,连线时却很容易出错。这样在课前制造一个悬疑,不仅激发了学生学习欲望,同时又为探究“化难为简”的数学方法埋下伏笔。

二、逐层探究,发现规律。

1.从简到繁,动态演示,经历连线过程。师:同学们,用8个点来连线,我们觉得很困难,如果把点减少一些,是不是会容易一些呢?下面我们就先从2个点开始,逐步增加点数,找找其中的规律。

师:2个点可以连1条线段。为了方便表述我们把这两个点设为点A和点B。(同步演示课件,动态连出AB,之后缩小放至表格内,并出现相应数据,如下图)

师:如果增加1个点,我们用点C表示,现在有几个点呢?(生:3个点)

如果每2个点连1条线段,这样会增加几条线段?(生:2条线段,课件动态连线AC和BC)那么3个点就连了几条线段?(生:3条线段)

师:你说得很好!为了便于观察,我们把这次连线情况也记录在表格里。(课件动态演示,如下图)

师:如果再增加1个点,用点D表示(课件出现点D)现在有几个点?又会增加几条线段呢?根据学生回答课件动态演示连线过程)那么4个点可以连出几条线段?(生:4个点可以连出6条线段。课件动态演示,如下图)

师:大家接着想想5个点可以连出多少条线段?为什么?(引导学生明白:4个点连了6条线段,再增加1个点后,又会增加4条线段,所以5个点时可以连出10条线段。课件根据学生回答同步演示,如下图)

师:现在大家再想想,6个点可以连多少条线段呢?就请同学们翻到书第91页,请看到表格的第6列,自己动手连一连,再把相应的数据填写好。(学生动手操作,之后指名一生展示作品并介绍连线情况,课件演示:完整表格中6个点的图与数据)

【评析】让学生从2个点开始连线,逐步经历连线过程,随着点数的增多,得出每次增加的线段数和总线段数,初步感知点数、增加的线段数和总线段数之间的联系。2.观察对比,发现增加线段与点数的关系。

师:仔细观察这张表格,在这张表格里有哪些信息呢?

(引导学生明确:2个点时总条数是1,3个点时就增加2条线段,总条数是3;4个点时增加了3条线段,总条数是6;5个点时增加了4条线段,总条数是10;到6个点时增加了5条线段,总条数是15。)

师:那么,看着这些信息你有什么发现吗?

(学生尝试回答出:2个点时连1条线段,增加到3个点时就增加了2条线段,到4个点时就会再增加3条线段,5个点就增加4条线段,6个点就增加5条线段。每次增加的线段数和点数相差1。)

师也可以提问引导:当3个点时,增加条数是几?(生:2条)那点数是4时,增加条数是多少?(生:3条)点数是5时呢?(4条)6时呢?(5条)那么,你们有什么新发现? 师小结:我们可以发现,每次增加的线段数就是(点数-1)。

【评析】在经历了丰富的连线过程之后,整体观察和对比表格中的数据,从而进一步发现每次增加条数就是点数-1,为后面推导总线段数的算法做好铺垫)

3.进一步探究,推导总线段数的算法。(1)分步指导,逐个列出求总线段数的算式。

师:同学们,我们知道了6个点可以连15条线段,现在你们有什么办法知道8个点可以连多少条线段吗?

(尝试让学生回答,学生可能会从7个点连线的情况去推理8个点的连线情况。)师追问:如果当点数再大一些时,我们这样去计算是不是很麻烦呢? 师:我们先来看看,3个点时,可以连多少条线段?你是怎么知道的?

生:2个点连1条线段,增加一个点,就增加了2条线段,1+2=3(条),所以3个点就连了3条线

(贴示黑板条:)

师:接着想想4个点共连了6条线段,这又可以怎么计算呢?(贴示:)

师:计算3个点连出的线段数时,我们用了1+2,再增加1个点,就在增加了3条线段,我们就再加3,所以列式为1+2+3=6(条),那么按着这个方法,你能列出5个点共连线段的算式吗?(根据学生回答,贴示:(2)观察算式,探究算理。

师:下面,同学们仔细观察看看这些算式,有什么发现吗?

生1:计算3个点的总线段数是1+2,计算4个人的总线段数是1+2+3,计算5个点的总线段数是1+2+3+4,它们都是从1开始依次加的。

生2:我觉得计算总线段数其实就是从1开始加2,加3,加4,一直加到比点数少1的数。生3 :可以,比如3个点的总线段数,就是从1加到2;4个点的总线段数,就是从1开始依次加到3,5个点时,就是1一直加到4,这样推理下去,就是从1开始一直加到点数数减1的那个数。

师:那么你说的点数减1的那个数其实是什么数?(生:就是每次增加一个点时,增加的线段数。)(3)归纳小结,应用规律。

师:现在我们知道了总线段数其实就是从1依次连加到点数减1的那个数的自然数数列之和。因此,我们只要知道点数是几,就从1开始,依次加到几减1,所得的和就是总线段数。同学们,你们明白了吗?

师:下面我们运用这条规律去计算一下6个点和8个点时共连的线段数,就请同学们打开数学书91页,把算式写在书上相应的横线上!

(学生独立完成,教师巡视,之后学生板演算式集体评议)

4.回应课前游戏的设疑,进一步提升。

(1)师:现在我们就知道了课前游戏的答案,在纸上任意点上8个点,每两点连成一条线,可以连成28条线段。有这么多条,难怪同学们数时会比较麻烦呢!看来利用这个规律可以非常方便的帮助我们计算点数较多时的总线段数。下面你们能根据这个规律,计算出12个点、20个点能连多少条线段?(学生独立完成)(2)反馈

师:我们来看看答案吧!(课件示:12个点共连了1+2+3+4+5+6+7+8+9+10+11=45(条),)师:20个点共连的线段数为:1+2+3+4+5一直加到19,为了书写方便,这些列式还可以省略不写中间的一些加数,列式可以写为:1+2+3„„+9+10+11=45(条)(课件示)

5.还原生活,解决问题。

师:下面,我们一起来看看小精灵聪聪给我们带来了什么题目!(课件示情景问题:10个好朋友,每2位好朋友握手1次,大家一共要握多少次手?)师:你们能帮他解决这个问题吗?小组同学互相说说!(小组合作交流,之后学生回答:这道题其实就可以把它转化为我们刚才解决的连线问题。那么答案就是1+2+3+„+9=45)

【评析】在探讨总线段数的算法时,同样延用从简到繁的思考方法,先探究3个点时总线段数怎么计算,之后列出4个点和5个点时总线段数的算式,让学生观察发现这些算式的共有特征:都是从1依次加到点数减1的那个数,从而让学生明白总线段数其实就是从1依次连加到点数减1的那个数的自然数数列之和。接着让学生用已建立的数学模型去推算6个点,8个点时一共可以连成多少条线段。这样既巩固算法,同时还回应了课前游戏的设疑。最后拓展提升,还原生活,去解决生活中的实际问题。整个过程都在逐步地让学生去体会化难为易的数学思想,懂得运用一定的规律去解决较复杂的数学问题。

三、巩固练习

师:同学们,在我们生活中有许多看似复杂的问题,我们都可以尝试从简单问题去思考,逐步找到其中的规律,从而来解决复杂的问题。下面我们就来看看书上的几道练习题,看看能不能运用这样的思考方法去解决它们。

1.练习二十二第2题。

师:同学们,你们可以先用小棒摆一摆,找找其中的规律。(学生独立完成,鼓励学生多角度思考问题,多样化解决方法)

2.练习二十二第3题。

师:仔细观察表格,你能找出规律吗?请同学们想想多边形的内角和与它的边数有什么关系呢?(1)小组交流(2)反馈

注意引导学生发现:多边形里分成的三角形个数正好是这个多边形的边数-2!所以,多边形内角和就等于边数减2的差去乘180? 3.练习二十二第1题。

师:同学们,前面几道题我们通过看图列表,或是动手摆小棒等活动,找到一定的规律来解决问题,下面我们来做一道找规律填数的题目。请翻开书94页,看到第1题,同学们自己在书上填写答案.(1)学生独立完成

(2)反馈(根据学生回答课件动态演示)

四、全课总结

师:今天同学们都表现得非常棒,我们运用了化难为易的数学思考方法,解决了一些问题。希望同学们在以后的学习中经常运用数学思考方法去解决生活中的问题。

第五篇:2016北师大六年级数学下反比例教学设计

北师大版反比例教学设计

教学目标:

1、结合丰富的实例,认识反比例。

2、能根据反比例的意义,判断两个相关联的量是不是成反比例。

3、利用反比例解决一些简单的生活问题,感受反比例关系在生活中的广泛应用。教学重点:

认识反比例,能根据反比例的意义判断两个相关联的量是不是成反比例。教学难点:

认识反比例,能根据反比例的意义判断两个相关联的量是不是成反比例。

教具准备:PPT课件

教学过程:

一、复习导入

1、什么是正比例?成正比例的量有什么特点? 2.请说一说下面各题中两个量是否成正比例。(1)每行人数一定,总人数和行数

(2)车的速度一定,路程与时间。

(3)长方形的长一定,宽和面积。(4)小明的年龄和他的体重。3.引入新课。

看来同学们对正比例的知识理解掌握的非常好,有正就有反,学完正比例,我们接下来该探究反比例的知识了。(板书课题:反比例)请同学猜想一下成反比例的两个量关系是怎样的,到底同学们的猜想是否正确,我们要用事实来验证一下。

二、探索新知

(一)、借助表格,感受相关的量。

1、课件出示教材46页上方的表格图,观察表格,并把表格填写完整。(1)引导:同学们请看这两个表格,表1是面积为24cm2的长方形相邻两边边长的变化关系,表2是周长为24cm的长方形相邻两边边长的变化关系。你能把表格填写完整吗?试一试。(2)学生填写表格。(3)指名汇报填写结果。

2、观察填写完整后的数据,说一说你发现了什么?

3、表1和表2中,长方形相邻两边边长之间的变化规律相同吗?

(二)、明确反比例的意义。

1、王叔叔要去游长城,不同的交通工具的速度和行驶所需时间如下图(课件出示教材46页相关表格)。

(1)、请同学们观察表格,看看有什么发现?(2)、指名汇报发现。

2、归纳反比例的概念。像这样,速度和时间两个量,速度变化,所用的时间也随着变化,而且速度与时间的积(也就是路程)一定,我们就说速度和时间成反比例。

3、追问:如何判断两个量是否成反比例?

教师根据学生汇报小结:两个相关联的量,一个量增加,另一个就减少,一个量减少,另一个就增加;而且两个量的积是一定的。这样的两个量就成反比例。

4、质疑:在第一个问题中,表1和表2中相邻两边的边长(长和宽)成反比例吗?

三、巩固练习

1、课件出示小明平均每天看的页数和看完全书所需天数变化情况表。

⑴把表格补充完整。

⑵说一说看完全书所需天数与平均每天看的页数的变化关系。⑶平均每天看的页数与看完全书所需天数是不是成反比例? 说明理由。

2、课件出示奇思读一本书,已读的页数与剩下的页数的情况变化表。(1)请同学独立把表格填写完整。

(2)判断已读的页数与剩下的页数成反比例吗?为什么?

3、请举一个成反比例的例子,并与同伴交流。

4、判断下面各题中的两个量是否成反比例,并说明理由。⑴行驶的路程一定,车轮的周长与车轮需要转动的圈数。⑵一个人跑步的速度和他的体重。⑶平行四边形的面积一定,它的底和高。⑷笑笑从家步行到学校,已走的路程和剩下的路程

四、课堂小结。这节课你有什么收获?

五、课后思考

同学们思考一下:正比例和反比例有什么异同?

下载2013-2014下六年级数学教学设计(小编推荐)word格式文档
下载2013-2014下六年级数学教学设计(小编推荐).doc
将本文档下载到自己电脑,方便修改和收藏,请勿使用迅雷等下载。
点此处下载文档

文档为doc格式


声明:本文内容由互联网用户自发贡献自行上传,本网站不拥有所有权,未作人工编辑处理,也不承担相关法律责任。如果您发现有涉嫌版权的内容,欢迎发送邮件至:645879355@qq.com 进行举报,并提供相关证据,工作人员会在5个工作日内联系你,一经查实,本站将立刻删除涉嫌侵权内容。

相关范文推荐

    六年级数学下数学广角教案教学设计

    六年级数学下数学广角教案教学设计 1、教学内容 教科书第70、71页。2、教学理念 爱因斯坦说过"兴趣是最好的老师",喜欢和好奇心比什么都重要,它是能力发展的动力。以魔术的方......

    六年级数学下教学反思

    六年级数学下《比例尺》教学反思 (2009——2010学年度第二学期) 李建鹏 在教学比例尺的过程中,针对课本上出现的两种问题,一类是已知比例尺和图上距离求实际距离,另一类是已知比......

    六年级下数学教学工作计划

    六年级数学下册教学工作计划 一、指导思想 严格遵循党的教育方针,爱岗敬业,正确传授学生知识,并对学生进行适当的思想教育,培养其成为新时期现代化建设的接班人和建设者。认真培......

    六年级数学下

    一、填空 1、一根圆柱形木头地面直径和高都是10cm,如果将这根木头横切成两个小圆柱,表面积增加了(157 )cm2。 2、2.3L=( 2.3 )dm3=( 2300 )cm34.03m3=( 4 )m3( 30 )dm3 0.6分钟=( 36 )秒4t7......

    六年级数学下数学思考教案教学设计五篇范文

    六年级数学下数学思考教案教学设计 【教学内容】: 人教课标版教材六年级下册第六单元总复习P91的内容和相关习题 【教学目标】: 1.通过引导学生观察、探究、记录、归纳,得到解......

    六年级数学教学设计

    人教版六年级上数学教学设计 一、 班级学生情况分析 六年级现有学生35人。大部分学生对数学学习的积极性比较高,能从已有的知识和经验出发获取知识,抽象思维水平有了一定的发......

    六年级数学教学设计

    六年级数学教学设计 六年级数学教学设计1 教学目的:使学生掌握,以及四则运算各部分间的关系。比较熟练地进行整数、小数、分数的四则运算。教学过程 :一、四则运算的意义1.整数......

    六年级数学教学设计

    六年级数学教学设计 六年级数学教学设计1 教学目标:1.通过复习近平面图形的变换方法,整体上进一步把握图形与变换的意义和方法。2.会用平移、旋转的方法改变图形的位置,能按比......