第一篇:倍数与因数教学设计
倍数与因数教学设计
设计思路 :
这节课教学倍数和因数的认识,学习找一个自然数的倍数和因数。教材通过用12个同样大小的正方形拼成不同长方形的操作,让学生写出不同的乘法算式,直观感知倍数和因数的关系。在此基础上再依据算式具体说明倍数和因数的含义,利用已有的乘除法知识,自主探索并总结找一个数的倍数和因数的方法。
教学目标:
1、通过用动手操作和写不同的乘法算式,认识倍数和因数;依据倍数和因数的含义和已有的乘除法知识,自主探索并总结找一个数的倍数和因数的方法。
2、在探索中,感受数学知识的内在联系,体会数学内容的奇妙、有趣,产生对数学的好奇心。
教学重点:
理解因数和倍数的含义。
教学难点:
自主探索并总结找出一个数的倍数和因数的方法。
教学过程
一、揭题
谈话:在生活中,我们常常用形影不离来表示两个人的关系非常亲密,在我们的数学王国里也有不少数关系密切,今天我们就来认识一对形影不离的好朋友:倍数和因数。
二、认识因数和倍数
1、观看大屏幕,用12个正方形摆成一个长方形,你们会拼吗?
每排摆几个,摆几排?用乘法算式表示出来。分成四人小组,用正方形摆一摆,哪个小组汇报一下。
还有不同的摆法吗? 12个正方形可以拼成3种不同的长方形,列出了3个乘法算式。
2、同学们,不要以为这三个算式很简单很普通哦,今天我们要学习的内容可都藏在里面呢。(看课件)
(在数学中,因为4×3=12,所以4是12的因数,3也是12的因数,12是4的倍数,12也是3的倍数。)(暂停)
谁能照着老师的样子说一说。(请2-3个学生说一说)
谁能说说下面两个算式里,什么数是什么数的倍数,什么数是什么数的因数吗?(1×12=12、2×6=12)
我们在说1×12=12的时候,你发现了什么?(12既是12的因数,又是12的倍数)
3、友情提醒:(看课件)
为了方便,我们研究因数倍数时一般指不是0的自然数。
二、探求因数和倍数
1、学生尝试找出18的所有因数。
(1)那我们来看18这个数,它有哪些因数呢?(学生说)你是怎么想的?
学生独立完成,交流想法
核对答案。
(2)教学“试一试”
15的因数有:
16的因数有:
(3)观察18、15和16的所有因数,你有什么发现吗?(小结:一个数最小的因数是(1),最大的是(它本身),一个数因数的个数是(有限的)。
2、学习找一个数的倍数。
刚才我们用一些好的方法找出了一个数的因数,那你们有信心又快又准确的找出一个数的倍数吗?比一比谁找的快找的多,看谁先把它找完。
请找出3的倍数。(学生独立完成)
汇报结果。
你是怎么找的?怎样找一个数的倍数比较方便?找倍数时一般按照从小到大的顺序去找。一个数的倍数的个数是无限的。我们一般写出5、6个,后面加省略号。
(2)猜一猜:一个数的倍数又会有哪些特点呢? 把你们的猜想在小组里先交流交流。(请2-3个学生说说)
光凭一题不能肯定我们的猜测就是正确的。我们再做几题验证一下。
试一试:找出2、5的倍数。
总结:一个数最小的倍数是它本身,没有最大的。一个数的倍数的个数是无限的。
找出40以内6的倍数。
三、应用倍数和因数
通过刚才的学习我们掌握了找一个数的因数和倍数的方法,并发现了因数和倍数的特点。下面我们就用这些知识去解决一些生活中的实际问题。
1、谁是谁非。(正确的在括号里画“√”,错误的在括号里画“×”。)
(1)4×5=20,4是因数,20是倍数。
(2)18最大的因数和最小的倍数,都是它本身。
(3)1的因数只有一个。
(4)8所有的因数是2、4、8。
2、想想做做
根据下面的算式,说说哪个数是哪个数的倍数,哪个数是哪个数的因数。
11×4=44 12×5=60 9×8=72
3、游戏(找朋友)
(1)找8的因数朋友;找24的因数朋友找;15的因数朋友
(2)5的倍数;9的倍数;1的倍数
3、猜年龄
刚才同学们学习的真不错,我们放松一下。老师知道我们四年级的同学今年大多数应该是13岁了,那老师今年多少岁你们想知道吗?
我今年的年龄恰好是13的倍数,你能猜到老师的年龄吗?
4、介绍完美数(课件出示)
四、全课总结
五、挑战自我
1、想一想自然数A最大的因数是几?最小的因数呢?最小的倍数是几?
2、100以内谁的因数最多?
倍数与因数教学设计
教学目标
1、让学生通过操作,利用乘法算式,认识倍数的因数的意义,理解倍数和因数的关系,掌握找一个数的因数和倍数的方法,发现一个数的倍数、因数的某些特征。
2、让学生体会一个数的倍数与因数之间相互依存的关系,发展学生的数感,培养学生观察、分析、抽象能力,并在找一个数的倍数和因数的过程中,培养学生思维的有序性。
3、使学生感悟数学知识内在联系的逻辑美,增强学生学习数学的兴趣。教学重点和难点
重点:
1、理解倍数与因数的意义及相互依存关系。
2、掌握找一个数的倍数和因数的方法。难点:
1、理解倍数与因数的相互依存关系。
2、找全一个数的所有因数。
教学具准备:小黑板、12个小正方形 教学过程设计
(一)激趣导入
陶老师先来考考大家的语文水平,你能用“()是()的()”这样一句话来表示陶老师和你的关系吗?
人与人之间有这样相互依存的关系,我们的数学中也有这样相互依存的关系,相信通过本节课的学习你会有所发现。
(二)认识倍数和因数
1、出示12个小正方形。
师:数一数,一共有几个小正方形?如果老师请你把这12个同样的小正方形拼成一个长方形,会拼吗?能不能用一条简单的乘法算式表达出来?
2、指名学生列式,提问其他学生:“你知道他是怎么摆的吗?”要求学生说出每排摆几个,摆了几排。
3、根据学生的回答,适时贴出各种不同摆法: 12×1=12 6×2=12 4×3=12 4、12个同样大小的正方形拼成长方形,能列出三道不同的乘法算式,千万别小看这些乘法算式,咱们今天研究的内容就在这里。以4×3=12为例,12是4的倍数,那12也是(3的倍数),4是12的因数,那3也是(12的因数)。同学们很有迁移的能力,这就是我们今天要研究的倍数和因数。(板书课题)
5、根据另外两道乘法算式,说说谁是谁的倍数,谁是谁的因数。
6、刚才在听的时候发现12×1=12说因数和倍数时有两句特别拗口,是哪两句?
说明:虽然是拗口了点,不过数学上还真是这么回事。12的确是12的因数,12也确实是12的倍数。为了方便,我们在研究倍数和因数时所说的数一般指不是0的自然数。
7、说一说(1)根据72÷8=9,说一说哪一个数是哪一个数的倍数,哪一个数是哪一个数的因数。(2)从下面的数中任选两个数,说一说哪一个数是哪一个数的倍数,哪一个数是哪一个数的因数。3、5、18、20、36
(三)探索找一个数因数和倍数的方法。
1、找一个数的因数。
(1)谈话:看来同学们对于倍数和因数已经掌握得不错了。不过刚才陶老师在听的时候发现了一个奥秘,好几个数都是36的因数,你发现了吗?这五个数中那些数是36的因数? 其实要找36的一两个因数并不难,难就难在你有没有能力把36的所有因数全部找出来?能不能?
由于这个问题有一点难度,所以陶老师作几点说明: ① 思考一下,什么样的数是36的因数? ② 可以独立完成,也可以同桌合作完成。
③ 想一想怎么找不重复不遗漏,如有困难可参照书本第71页。④ 写下因数,如果能把怎么找到的方法写在作业纸上更好。(2)学生找完后交流:你是怎么找的?怎样找不重复不遗漏?
(3)小结:为了不重复不遗漏,我们在寻找一个数的因数时,可以按一定顺序,一组一组地写出36的所有因数。
(4)完成“试一试”,然后集体交流。
2、找一个数的倍数。
(1)谈话:寻找一个数的因数大家掌握得不错,这节课还要研究倍数呢!你能找出3的倍数吗?想一想,什么样的数是3的倍数?(2)师生共同寻找。
提问:怎么找不重复不遗漏?能全部说完吗?可以怎样表示3的倍数?(3)小结并规范写法:
3的倍数:3、6、9、12、15……
(4)完成“试一试”,然后集体交流。
3、探索一个数的倍数和因数的特点:
①观察比较:一个数的倍数和因数有什么特点呢?
②学生在小组内进行比较、分析、讨论,然后集体交流。
③小结归纳:一个数的倍数的个数是无限的,一个数的因数的个数是有限的;一个数的倍数中最小的是它本身,最大的不存在,而一个数的 因数中最小的是1,最大的是它本身。
4、填一填。15的因数有()
30以内7的倍数有()
(四)课堂小结 通过本节课的学习,你有什么收获?你发现数学中相互依存的关系了吗?其实数学中有趣的事儿多着呢!
阅读《神奇而有趣的“完美数”》,感受数学的神奇。
学生尝试寻找第二个完美数,师提示:第二个完美数比20大,比30小,是个双数,而且正好是老师的年龄。
(五)课堂作业 《数学补充习题》 教后反思:
总的感觉是上好一堂课不容易。倍数和因数是学生闻所未闻的两个新概念,是纯知识性的内容,而且整节课的容量较大,学生能有效的掌握每一个知识点比较困难。为了更好更有效的达到教学目的,突破教学难点,我主要注重下面三个方面的设计:
1、捕捉生活与数学之间的联系,帮助学生理解概念间的关系。试上下来我感觉学生对倍数因数间的相互依存关系理解不到位,看着学生我突然想到可以利用我与学生的关系呀。于是我把生活中的相互依存关系迁移到数学中的倍数和因数,这样设计自然又贴切,既让学生感受到了数学与生活的联系,初步学会从数学的角度去观察事物、思考问题,激发对数学的兴趣,又帮助学生理解了倍数因数之间的相互依存关系。
2、以思维的条理性和有序性作为难点的突破口。
在教学一个数的因数时,我让学生通过比较发现,有序的思考一个数的因数不但可以避免重复、遗漏,而且书写整洁清楚。让学生充分感受有条理、有序的思考是一种非常有效的学习方法。当学习求一个数的倍数时,学生就自然而然的去有序的思考,通过合作交流,学生作业的汇报,发现只有有序的去找,才没有遗漏,没有重复。整节课下来,我发现这种有序思维不但能加速解决数学问题的思维进度,而且还有利于优化学生的思维品质,快速发展学生的思维。
3、以精心设计的练习作为有效训练的载体。
为了帮助学生理解数和数之间的倍数和因数关系,练习中我设计了72÷8=9这道除法算式,让学生说说哪一个数是哪一个数的倍数,哪一个数是哪一个数的因数,这样学生就明白了除法算式中也有倍数和因数关系。接着我有设计了3、5、18、20、36这5个数,运用所学知识让学生选择性说说哪两个数存在倍数和因数的关系。这样的设计,培养了学生观察、分析问题、口头表达的能力,也为了更进一步巩固了倍数和因数的概念理解。在课尾,我还设计了寻找“完美数”的活动,这一活动充分调动学生参与学习、主动学习的积极性,并让学生感受到了数学的神齐、有趣,激发了学生学习数学的兴趣。
第二篇:《因数与倍数》教学设计
《因数与倍数》教学设计
编制者:李伊丹 学校:杭州市丁信小学
【教学内容】
教材第5页例1
【教学目标】
1.通过整数除法的算式分类,在观察比较的基础上,理解因数和倍数的概念。
2.通过举例证明,体会“因数与倍数是互相依存的”。
3.知道“在研究因数和倍数时,所说的数是指自然数(一般不包括0)”。
【教学重难点】
重难点:理解因数和倍数的概念。
【教学过程】
一、课前活动,直面难点
1.同学们喜欢玩脑筋急转弯吗?有三个人,其中有两个爸爸,两个儿子,你能说出他们之间的身份关系吗?
(引导学生说清三个人的关系,重点强调:谁是谁的爸爸,谁是谁的儿子)
2.生活中有这种相互依存的关系,在我们数学王国里,数与数之间也存在着这种相互依存的关系。
(呈现课题: 因数和倍数)
二、观察分类,感知概念
1.出示教材第5页例1。
(1)观察引导:请你观察这些算式有什么共同的特点?
(都是除法算式,除数和被除数都是整数)
(2)分类引导:你能不能按照算式的商把这些除法算式分分类?
左边这一类:商是整数并且没有余数,
2.现在我们把目光聚焦在第一类算式上,5题都是整数除法,而且它们的商也都是整数没有余数,在这样的整数除法算式里,它们就存在着因数和倍数的关系。
3.到底什么是因数,什么是倍数呢?它们的关系到底是怎样的呢?
三、结合算式,理解概念
1.明确因数与倍数的意义。(教学例1)
(1)观察这些算式,他们的被除数、除数和商有什么特点?
小结:在整数除法中,如果商是整数而没有余数,都是整数,在这样的整数除法中,我们就说被除数是除数的倍数,除数是被除数的因数。
例如12÷2=6这个算式,我们就说12是2的倍数,2是12的因数
30÷6=5这个算式,我们就说30是6的倍数,6是30的因数
(2)学生尝试。三个算式中,谁是谁的因数?谁是谁的倍数?
(3)深化认识。师:63÷9=7这个算式,有的同学把9是63的因数简单的说成9是因数,可以吗?
(对比呈现)小结:为什么都要说谁是谁的因数呢?因数和倍数的关系是什么呢?
因数和倍数的关系,也像刚开始我们谈到的爸爸和儿子的关系一样,它们也是相互依存,相互联系的。必须要说谁是谁的倍数,谁是谁的因数,二者不能单独存在。
(4)即时练习。谁是谁的倍数?谁是谁的因数?
解析:
第1个算式:56÷7=8 56是7的倍数,7是56的因数
延伸:56也是8的倍数,8也是56的因数,为什么?
小结:根据除法的关系,可以把这个算式转化成 56÷8=7,所以被除数即是除数的倍数,也是商的倍数。而除数和商都是被除数的因数
第2个算式:6×7=42,你知道这个算式中:谁是谁的倍数?谁是谁的因数吗?
根据乘除法的关系,可以根据这个算式写出两个除法算式:42÷6=7 42÷7=6
所以:42是6和7的倍数,6和7是42的因数
第3个算式:4.2÷0.6=7 4.2是0.6的倍数,这样说对吗?
小结:不对,我们前面研究因数和倍数时,所说的数都是指整数,而这里的4.2和0.6是小数
四、启思导疑,构建模型
1.像上面那样的算式有很多,你能不能用一个字母式子表示出这样的除法算式呢?
α÷b=c(α、b、c是非0的自然数)。
2.延伸练习:在这个算式中,你能说出因数和倍数的关系吗?
(a)是(b)和(c)的倍数
(b)和(c)是(a)的因数
五、实践应用,拓展思维
1.动口说一说
(1)像0,1,2,3,4…这样的数是(),最小的自然数是()。
(2)在20÷4=5中,()是()和5的倍数,()和()是()的因数。
(3)在3×6=18中,3和6是18的(),18是()和()的()。
2.用心判一判。
(1)36÷9=4,所以36是9的倍数。()
(2)15是倍数,3是因数。()
(3)5.7是3的倍数。()
3.动脑想一想。
妈妈买来30个苹果,让小明把苹果放入篮子中。不许一次拿完,也不许一个一个地拿,要每次拿的个数相同,拿到最后一个不剩,小明共有几种拿法?每种拿法每次各拿几个?
六、反思总结,自我构建
请同学们回忆一下,这节课,你学到了哪些知识?你觉得自己这节课表现怎么样?
第三篇:《倍数与因数》教学设计
《倍数与因数》教学设计
一、教学目标:
1、知识与技能:结合具体情境,联系乘法认识倍数和因数,能在100以内找出10以内某个自然数的所有倍数。
2、过程与方法:经历探索找一个数的倍数的方法的过程,发展合情推理能力。
3、情感态度:积极参与数学学习活动,初步养成乐于思考的良好品质。
二、教学重难点:
重点:掌握理解倍数和因数的概念。难点:理解倍数与因数之间的联系与区别。
三、教学过程:
1、创设情境,导入新课
师:同学们,我们人与人之间存在着各种关系,谁能说一说自己与爸爸的关系是什么?
生1:父子关系。生2:父女关系。
师:那么你们与老师又是什么关系呢? 生:师生关系。
师:能单独说老师是师生关系吗? 生:不能。
师小结:是呀,人与人之间的关系是相互的,在数学王国里,也有一些存在着相互依存关系的数,这节课我们就来学习。
2、自主探究,合作交流
①认识倍数与因数。
(1)课件出示教材31页第一个问题。
师:仔细观察两个班的队形,请你算一算两班各有多少人。(2)交流计算结果。9×4=36(人)5×7=35(人)(3)回顾乘法算式各部分的名称。
师:请你们说一说这两个算式里各部分的名称。(学生任选一题,说出各部分的名称)师(揭题):这些乘数和积之间有什么关系?今天我们就有学习因数与倍数。(板书课题:因数与倍数)
现在请同学们自学教材31页“认一认”,并思考下面的问题。(课件出示教材31页第二个问题)思考: 1)读了智慧老人的话,你知道了什么? 2)关于倍数与因数,你发现了什么? 预设
生1:在算式9×4=36中,36是9和4的倍数,9和4是36的因数。生2:在算式5×7=35中,35是5和7的倍数,5和7是35的因数。生3:倍数与因数指的是乘法算式中积和乘数之间的关系。生4:在学习倍数与因数时,只在非0自然数范围内研究。(4)质疑:在算式5×7=35中,能说5和7是因数,35是倍数吗?为什么? 学生讨论后师指出:倍数与因数是两个数之间的关系,是相互依存的。叙述时一定要说清楚谁是谁的倍数,谁是谁的因数。
(5)出示除法算式:75÷25=3启发学生思考:根据整数除法的算式能不能确定两个数之间的倍数因数关系呢?
②你写我说:同桌间互相写算式,说说哪个数是哪个数的倍数,哪个数是哪个数的因数,可以是乘法算式也可以是除法算式。③深入探究,拓展延伸。
出示问题:找一找下面哪些数是7的倍数,说说你是怎样找的。(请学生先独立思考,小组交流后再全班交流判断的方法)7,14,17,25,77 预设
生1:7的倍数有7,14,77,我是用除法找的。生2:我是用乘法找的,7的倍数有7,14,77。
师:通过用除法找7的倍数,你发现了什么?(引导学生发现,在整除的情况下,因数和倍数的关系才成立)师:7的倍数是不是只有这些呢?要想找到100以内7的所有倍数,用哪种方法比较好?(体会用乘法比较好,有序思考可以做到不重复不遗漏)7的其他倍数有多少个?(学生操作之后汇报明确一个数的倍数有无穷多个,最小的倍数是它本身。)师:质疑:一个数的倍数有无数个,那一个数的因数的个数也是无数个的吗?(不是)
小结找一个数的倍数的方法:把这个数从1乘起,所得的这个积就是这个数的倍数。一个数的倍数有无数个,其中最小的是它本身。因数的个数是有限的,最大的是它本身,最小的是1。
3、课堂练习,反馈提升 教材32页1-6题
四、板书设计
倍数与因数(相互依存)
9×4=36
5×7=35 36是9和4的倍数。
35是5和7的倍数。9和4是36的因数。
5和7是35的因数。一个数的倍数有无穷多个,最小的倍数是它本身。
第四篇:《倍数与因数》教学设计
《倍数与因数》教学设计
教学目标:
1、结合具体情境,认识自然数和整数,联系乘法认识倍数和因数。
2、探索找一个数的倍数的方法,能在1-100的自然数中,找出10以内某个自然数的所有倍数。
教学重难点:
重点:结合具体情境,认识倍数和因数。
难点:理解倍数和因数的含义,掌握找一个数的倍数的方法。教学过程:
一、情境导入,探索新知
1、我们生活在一个充满数的世界里。请同学们观察这些数,按照它们的特征可以怎样分类呢?它们各属于哪一类呢?
引导学生揭示自然数、整数等概念。
2、你在生活中都遇到过哪些数?把你想到的数与小组同学交流一下,看看它们是哪一类数?
二、情境激趣,探究新知
1、认识倍数与因数
出示教材上的队形图。从解决书上提出的问题的过程中引出算式。9×4=36 5×7=35 说说在算式中每个数字的名称以及所表达的意义。
2、认一认
以算式为例,说明倍数和因数的含义。
引导思考:在乘法9×4=36中,9和4是什么数?36是什么数?它们之间有怎样的关系?
发现:9和4是乘数,36积,关系:乘数×乘数=积
指出:由于解决问题的需要,当我们探讨乘法算式各部分之间的关系时,可以说20是4和5的倍数,4和5是20的因数。因数和倍数是相互依存的。
这里出现了两个新的概念:倍数和因数。
师:根据5×7=35,你能说出哪个数是哪个数的倍数,哪个数是哪个数的因
数吗?
你能根据乘法算式18÷6=3这个算式来确定两个数之间的倍数和因数的关系吗?
说明:在研究倍数和因数时,范围限制为不是零的自然数。
3、根据算式说一说哪个数是哪个数的倍数,哪个数是哪个数的因数。出示25×3=75,20×5=100 4.找7的倍数。
找到后,小组内交流自己的想法。
三、巩固练习,拓展提升
1、课本第32页第2题。
2、游戏
同学们,要下课了,让我们一起做一个游戏。
规则:老师出示一张卡片,如果你的学号是卡片上的数倍数,你就可以出教室,但要到讲台前大声说一句“几是几的倍数,或几是几的因数”。
四、课堂总结:本节课你有什么收获?你想提示大家注意什么问题?
五、、布置作业
第五篇:《倍数与因数》教学设计
教学目标:
1、使学生结合整数乘法算式,让学生初步认识倍数和因数的含义。
2、自己探索出求一个数倍数和因数的方法。
3、使学生在认识倍数和因数以及探索一个数的倍数或因数过程中,进一步体会数学知识之间的内在联系。
教学重难点:
1、认识倍数和因数的含义,理解它们之间是相互依存的关系。
2、探索出求一个数倍数的方法。
一、创设情境,提出问题。
1.同学们一年一度的秋季运动会就要开始了,淘气与笑笑所在的班级分别排出了下面两种队形,你能算一算他们两个班各有多少人吗?9×4=36(人)5×7=35(人)
2.大家别小看了这两道很普通的乘法算式,里面却蕴含了丰富的学问,咱们就以9×4=36为例,在这道算式中,4、9、36分别叫什么?乘数和积之间还有一种更具体的关系,想知道吗?请翻开教材31页自学“认一认”部分。
二、探究发现,建立模型。
(一)认识倍数与因数 1.学生自学。
2.通过自学,发现4、9和36有什么样的关系了吗? 3.学生汇报。
4.在这两句话中出现了两个数学名词,它们是?(因数和倍数)5.揭题:这就是我们今天所要研究的内容——倍数与因数。(板书课题)
6.刚才在你自学的时候,智慧老人告诉我们一句很关键的话,你注意到了吗?
我们只在自然数(零除外)范围内研究倍数和因数。什么是自然数?那也就是在1、2、3„„这些自然数的基础上研究倍数与因数。
7.那你还能根据其它的乘法算式说一说谁是谁的倍数?谁是谁的因数吗?
请个别同学说乘法算式,其他同学来回答倍数与因数的问题。8.老师这有两道算式,谁来试一试。45÷5=9 1×36=36 用心倾听的同学一定会发现,1×36=36 说因数和倍数时,有两句话特别拗口,就像绕口令一样,是哪两句?
36是36的因数,36是36的倍数。
既然这两么拗口,那能不能直接说36是因数,36是倍数呢?(不能)这样的话就不知道36是谁的因数,36是谁的倍数了,因数与倍数在数学中一种相互依存的关系,所以我们在表达时一定要讲清谁是谁的因数,谁是谁的倍数。
通过这道题你还有发现吗?
一个数是它本身的因数,也是它本身的倍数。
(二)找倍数
1.刚才我们是根据乘法或除法算式来判断谁是谁的倍数,谁是谁的因数。那现在老师如果给你几个数,你能判断一下谁是7的倍数吗?注意要说清你的理由。7、14、17、25、77 2.与同桌交流一下你的想法。3.学生汇报。
4.其实要找出7的倍数并不难,难的是你能不能找出7的所有倍数?下面就请小组合作来找7的倍数,不过在找之前,老师要给大家一个温馨提示:想一想怎样才能有顺序、不重复、不遗漏地找到7的倍数?老师只给你3分钟的时间,看看哪一个小组找到的数有序、多。
(1)学生找
(2)小组汇报。用7去分别与1、2、3„„相乘,所得的 积就是7的倍数。
(3)小结:如果给你更长的时间,你能把7的倍数全部写出来吗?(不能)
为什么?因为7的倍数有无数个。所以我们在找一个数的倍数时,可以背这个数的乘法口诀!如一七得七„„,一般可以从小到大写5个,后面用省略号表示。
5.请同学们快速写出100以内8的倍数。(师板书)
6.根据板书,观察7、8的倍数你有什么发现吗?最小的倍数都是它本身。没有最大的倍数。
三、理解应用,强化体验。
1、知道了找倍数的方法,现在就让我们来帮助小兔子回家吧!
完成32页第3题。
2.我们再来找找4和6的倍数。
完成练一练的第5题。连线即可。
3.现在我们再来玩一个动脑筋出教室的游戏。我们每个同学都有自己的学号。老师出示一张卡片,你要说出自己的学号与老师这张卡片存在的倍数与因数的关系,才可以走出教室。
例如;老师出示5,如果你的学号是10,你就可以说:我的学号是10,10是5的倍数,5是10的因数。