第一篇:分数除法三 教案
《分数除法三》教学设计
执教者:陈菊萍
教学内容:已知一个数的几分之几是多少,求这个数的应用。教学目标:
知识与技能:使学生学会用方程解答“已知一个数的几分之几是多少,求这个数”的分数应用题。
过程与方法:在解方程中,巩固分数除法的计算方法。情感态度价值观:在探究过程中激发学生的学习兴趣。教学重点:
1.能用方程解决“已知一个数的几分之几是多少,求这个数”的应用题。
2.能正确进行分数除法计算。
教学难点是:确定单位“1”、分析数量关系 教学方法:自主合作探究学习、情景教学法 教学准备:多媒体 教学过程:
一、创设情景,导入新课
师:同学们,你们喜欢课外活动吗? 生:喜欢!
师:大家都喜欢哪些活动?
生:踢毽子、跳绳、跑步、踢足球……
师:大家的课外活动真是丰富多彩,在课外活动中也能发生数学故事,今天我们就一起来感受快乐的数学活动。板书课题:分数除法
(三)二、出示目标,探究新知
(一)出示本课学习目标
(二)检查预习情况
师:在学习新课之前我们先热热身,让老师看看你们预习的情况怎么样? 判断谁是单位“1”,说出下题中各数量的关系。
(1)书的价钱是钢笔价钱的2/5。(钢笔的价钱是单位“1”,等量关系式是:钢笔的价钱 ×2/5=书的价钱)
(2)一种书包打九折出售。(原价是单位“1”,等量关系式是:原价×9/10=
现价)
(3)参加跳绳的人数是操场上参加活动总人数的2/9。(操场上参加活动总人数是单位“1”,等量关系式是:操场上参加活动的总人数×2/9=参加跳绳的人数)
同学们预习得很认真,能准确地找出题里的数量关系。运用这些数量关系我们应怎怎样解决问题呢?(请看)
(三)自主探究,解决问题 1.多媒体呈现情景图(例题)。
师:咱们班的同学都很聪明,老师相信你们自己一定能解决这个问题。老师给你们请来了一个小帮手,你们想不想认识它?
生:想!
2.师出示探究指导:(1)独立思考我能行:(3分钟)
a要解决这个问题,要用到题里的哪些条件? b找到单位“1”,等量关系是什么? c自己尝试解决问题。(2)合作交流我最棒:(2分钟)
做完后与同桌交流列式的根据是什么? 3.汇报交流
师:同学们,谁能说说你是怎样解决这道题的? ……………………
师:是这样解决问题的同学起立,你们依据的是什么呢?
师:同学们说得真好,能运用我们学过的知识来解决问题,这是学习数学很重要的一种思维方式。还有几个同学没有起立,你们是怎样解决这个问题的?
还有其他不一样的方法吗?
生1:老师,我也选择的是:踢足球的有9人,踢足球的人数是操场上活动总人数的1/3这两个条件来求操场上活动的总人数,但是我没用方程,我用的是算术法,直接用9÷1/3=27(人)……
师:你的方法真有创意,还有谁的方法跟他一样? 师:嗯,这种方法非常正确.师:我们每个同学都有自己喜欢的课外活动,现在老师给你们5分钟的时间,运用你所掌握的本领来解决你自己喜欢的问题吧。
(学生解决完后自觉地小组交流起来,教师参与到他们中间去。)
《分数除法三》说课稿
说课人:陈菊萍
一、说教材
本节课的教学内容是本册教材的第三单元分数除法中的《分数除法应用题》。分数除法的应用题历来是学生学习中的难点,它经常需要学生灵活应用数量之间的关系。由于理解困难,学生往往依靠记忆题型来解决问题,这就会失去应用题教学培养学生解决实际问题能力的作用。因此本课教材就是充分考虑到这一因素,利用前面学生已经学习掌握的分数除法的意义和计算法则、分数乘法应用题,以及学生已有的解方程知识的基础上。通过先设未知量,寻找等量关系列方程。教材利用这个“顺向思维”,结合学生在校的体育活动这一熟悉的情境,为学生创设问题情境,从而解答分数除法应用这一问题。结合教材特点、学生的年龄特点和本班学生的认知规律,我确定了本课的教学目标:知识与技能:使学生学会用方程解答“已知一个数的几分之几是多少,求这个数”的分数应用题。过程与方法目标:在解方程中,巩固分数除法的计算方法。情感态度价值观:在探究过程中激发学生的学习兴趣。教学重点:1.能用方程解答“已知一个数的几分之几是多少,求这个数”的应用题。2.能正确进行分数除法计算。教学难点:确定单位“1”、分析数量关系,判断是分数乘法解答还是分数除法解答。
二、说教法和学法
在教学中,我先从学生已有的知识、熟悉的生活学习情境和感兴趣的具体事物出发,尽可能地为学生创设探索新生知识的条件,并让学生通过自主探索而获得知识的内化。因此,本节课我贯彻“借助具体情境,以学生为主体,教师为主导,思维训练为主线”的原则:
1.自主探究,寻求方法。让学生充分自主探究,寻求分数除法的解题方法。2.设计教法体现主体。课堂设计以学生为主体,注重学生的交流,各抒己见,取长补短,共同提高。
3.分层次训练。练习有层次,层层深入。
三、教学过程
(一)创设情景,导入新课
……………………
师:是这样解决问题的同学起立,你们依据的是什么呢?
师:同学们说得真好,能运用我们学过的知识来解决问题,这是学习数学很重要的一种思维方式。还有几个同学没有起立,你们是怎样解决这个问题的?
还有其他不一样的方法吗?
生1:老师,我也选择的是:踢足球的有9人,踢足球的人数是操场上活动总人数的1/3这两个条件来求操场上活动的总人数,但是我没用方程,我用的是算术法,直接用9÷1/3=27(人)……
师:你的方法真有创意,还有谁的方法跟他一样? 师:嗯,这种方法非常正确.师:我们每个同学都有自己喜欢的课外活动,现在老师给你们5分钟的时间,运用你所掌握的本领来解决你自己喜欢的问题吧。
(学生解决完后自觉地小组交流起来,教师参与到他们中间去。)(4)总结方法.师:刚才老师参与到了大家的交流,发现同学们掌握得还真不错,那谁能说一说今天我们解决的分数应用题有什么特点呢?
生1:单位“1”不知道。
生2:可以用方程,也可以用算术方法解。……
师:让我们一起来总结一下方法怎样?我先说前两句:分数应用不算难,掌握方法是关键;
生1:先找单位“1”; 生2:单位“1”已知用乘法,生3:单位“1”未知用除法(或方程)!
师:刚才我们充分利用已有的旧知识解决了今天的新问题,相信同学们今后能应用今天掌握的知识获取更多的新知识,解决一个又一个数学问题。
(三)巩固应用,内化提高
1.某月双休日共有9天,是这个月总天数的3/10,这个月有多少天? 2“丑小鸭”超市让利大酬宾,商品一律八折,一件衬衣现价40元,这件衬衣原价多少元?
(四)回顾整理,强化记忆
师:通过这节课的活动,你有哪些收获?还有什么问题?
《分数除法三》教学反思
《分数除法三》是北师大版小学数学第十册第三单元的内容。分数应用题的教学是小学数学教学中的一个重点,也是一个难点。如何激发学生主动积极地参与学习的全过程呢?《国家数学课程标准》指出:“数学教学要从学生的生活经验和已有的知识背景出发,向他们提供充分的从事数学活动和交流的机会。”整堂课,采用“先学后教 当堂训练”洋思的课堂教学模式,把预习前移,使学生带着明确目的与任务进行预习,不少学生在预习中基本掌握了新课内容,这就为课上高效率学习奠定了基础。
教学时,我没有采用书上的情境,而是从学生的生活实际——阳光体育大课间的课外活动引入,然后结合学生的生活实际出示数学问题((1)书的价钱是钢笔价钱的2/5。(2)一种书包打九折出售。(3)参加跳绳的人数是操场上参加活动总人数的2/9。)检查学生预习情况(找出单位“1”,并说出等量关系式)。这样引发学生参与的积极性,使学生感爱到数学就在自己的身边,在生活中学数学,让学生学习有价值的数学。
整堂课注重运用“自主、合作、探究”的教学方式,通过出示情景图,让学生发现问题,并出示自学指导,给学生提供探究的平台,先让学生根据自学指导独立思考,探究解题方法,在独立探究的基础上,再让学生小组合作讨论,探究不同的解题方法。全班反馈后让学生体会并归纳出:解答分数除法应用题的关键是从数学问题中找出单位“1”,然后判断单位“1”是已知的条件,还是未知的问题,从而选择用什么方法解答。选择用方程解时应先找出数学问题中数量之间的等量关系。这样,使学生经历独立探究、小组探究的过程,掌握了“分数除法问题”的解答方法。
不足之处:由于时间关系,在引导学生感受分数除法应用与分数乘法应用之间的异同时,有些仓促。
第二篇:分数除法 教案
分数除法
教学内容:青岛版小学数学六年级上册第23-24页 教学目标
1.学生通过自主探索,理解分数除以整数的意义,能采用灵活使用的方法进行计算。
2.通过尝试计算,迁移说理,比较分析,抽象概况等方法,使学生探究出分数除以整数的计算方法。
3.引导学生探索知识间的内在联系,让学生在探究中体验成功的喜悦,激发学生的学习兴趣。
4.在探索计算方法的过程中,感受数学与生活的紧密联系。教学重难点
教学重点:理解分数除以整数的意义,掌握分数除以整数的计算方法。教学难点:分数除以整数计算方法的算理。教具、学具
多媒体课件、长方形纸条3张,彩笔 教学过程
一、创设情境,提出问题
师:今天老师给同学们带来了几位新朋友,大家看:(课件出示情境图)
为了迎接新朋友的到来,布艺兴趣小组的同学忙开了,他们准备用
9米的10花布给小猴做新衣服。如果做背心,可以做3件;如果做裤子,可以做2条。
提问:你能根据这些信息提出哪些数学问题呢? 问题:(1)做一件背心需要花布多少米?
(2)做一条裤子需要花布多少米?
这两问题如何列式?同第一单元的知识有何不同的地方? 班内交流:这两道题都用除法解决。第一单元用乘法解决问题。
揭示课题:这就是我们今天要探究的新知识——分数除以整数(板书课题)
二、自主学习,小组探究 1.合作探索,方法多样化。
问题1:做一件背心需要花布多少米? 生列算式:9÷3=? 10
猜一猜计算的结果可能是多少?((可以借助于学具,也可以在练习本上画一画、算一算。)
学生独立探索解决问题的方法。
学生四人一小组纷纷表达自己的想法,教师适时地加以引导和鼓励从不同角度、用不同的策略进行解决。
预设方法:
①画图法(线段图,格子图等)
1999米,米就画9个格子,÷3也就是把米平均分成3101010103份,也就是把9个格子平均分成3份,这样每份就是3个格子,即米。
10993 ②把转化成小数来计算,=0.9,0.9÷3=0.3=(米)
101010991 ③把米平均分成3份,求每份是多少?其实就是求米的是多少,因101039913此÷3=×=(米)1010310一个格子代表同学们通过自己的独立思考发现了这么多方法,真了不起!下面请大家自由选择探索出的计算方法,尝试解决第2个问题。
2.继续探索,方法优化。
问题2:做一件裤子需要花布多少米? 学生自主尝试解决问题,全班交流。99=0.9,0.9÷2=0.45=(米)1020991②把米平均分成2份,求每份是多少?其实就是求米的是多少,因101029919此÷2=×=(米)1010220①通过这道题目的自主解决,学生也发现画图法虽然可以更直观地帮助理解,但是也具有局限性。
看来同学们不仅会猜想、验证,还能很快地找出适合的计算方法。
三、汇报交流,质疑评价 1.运用计算方法。小试牛刀:
(课件出示题目,学生在作业纸上独立完成。)
17÷4 ÷9
9122.方法质疑。
(1)学生汇报方法及计算结果。(2)方法最优化。
在运用这些计算方法时,你有什么发现? 生交流:
①分数变小数的方法也不好,有局限性,因为有时候分数不能化成有限小数,有时候化起来也比较浪费时间。
②还是把除法变乘法的方法最好用,对各种分数除以整数的情况,用这种方法都能顺利解决,计算也比较简便。
3.师生共结,完善计算方法。
提问:你能用自己的话说说分数除以整数的一般计算方法吗? 师生共结:
分数除以整数,分数除以整数(0除外),等于分数乘这个整数的倒数。
四、抽象概括,总结提升
知识总结:请大家回顾一下,我们是怎样探索分数除以整数的计算方法的? 生交流,提升认识:
同学们,在数学的世界中每一个问题的解决都可能有很多种方法,但是不是每种方法都是最好的,所以我们在数学学习中不能浅尝辄止。在这节课的学习中老师一次一次感受你们思维的碰撞,正是在这一次次的思考和实践中,我们才能够探索出最简便、最适合我们的方法。
五、巩固应用,拓展提高 1.填一填。
学生独立完成,巩固分数除以整数的意义和计算方法。集体矫正答案2.连一连
学生独立完成,集体交流。3.火眼金睛辨对错。
(1)815÷5=8155=83((2)把920米长的铁丝截成相等的3段,每段占全长的320。((3)333939313。((4)如果a是不等于0的自然数,那么15a115a。(对于错的题目,说说为什么,并进行更正。4.把67米铁丝平均分成4段,每段长多少米? 学生独立完成,并说说解题思路。巩固分数除以整数的计算方法。设计说明:
1.本节课亮点之处有:))))(1)让学生经历数学思考的过程。
在这节课中,大多数学生都能猜测到9/10÷3的计算结果。但究竟这个猜想对不对,我让学生独立思考合作验证,这就给学生提供了充分从事数学活动的机会,在独立思考探索的基础之上,学生合作交流,使得学生在交流中有话可说,有法可说,是一种有效的、真正意义上的交流互动。
(2)鼓励解决问题方法的多样化。
教师鼓励学生从不同角度、采用不同策略去尝试、发现和验证,寻求最具有普遍性的方法,深刻理解算理,所以学生能够集思广益,探索出了四种验证方法,并通过自主尝试、自己举例应用这些方法,亲身感受到一些方法的局限性,从而找出最具普遍性的最优计算方法,并且通过及时的反思总结出探究一般问题的方法。在这个过程中,学生不仅学会自己研究、创造新知,明确算理,还能亲身体悟到转化等数学思想。
王金华 市中区永安乡天桥小学
第三篇:分数除法教案
分数除法教案 篇1
教学目标
1.使学生理解两个整数相除的商可以用分数来表示.
2.明确分数与除法的关系,加深学生对分数意义的理解.
教学重点
理解、归纳分数与除法的关系.
教学难点
用除法的意义理解分数的意义.
教学步骤
一、铺垫孕伏.
1.读题说得数.
3.2+1.680.8×0.514-7.40.3÷1.54.8×0.02
7.8+0.91.53-0.70.35÷150.4×0.80.8-0.37
2.口述表示的意义.
3.列式计算.
(1)把40棵树苗平均分给5个小组栽,每组栽多少棵?
(2)把8米长的钢管平均分成2段,每段长多少米?
二、探究新知.
1.新课导入.
出示例2:把1米长的钢管平均截成3段,每段长多少米?
板书:1÷3
教师提问:1÷3的结果能用准确的数表示出来吗?怎么办?学习了分数与除法的关系就明白了.(板书、分数与除法)
2.教学例2.
(1)从分数的意义上理解1÷3,即把1米长的钢管着成单位“1”,把单位“1”平均分成3份,表示这样一份的数,可用分数来表示,1米的就是米.(板书米)
(2)学生完整叙述自己想的过程.
(3)反馈练习.
①把1米长的钢管,平均分成8段,每段长多少?
②把1块饼平均分给5个同学,每个同学得到多少块?
3.教学例3.
出示例3:把3块饼平均分给4个孩子,每个孩子分得多少块?
(1)读题列式:3÷4
(2)动手操作:怎样把3块饼平均分给4个同学呢?
(3)学生交流.
甲生:先把每个圆剪成4个块,然后把12个平均分成4份,再把3个拼在一起,每份是块.
乙生:把3个圆放在一起,平均分成4份后,剪下其中的一份,再把1份中的3个拼在一起,得到每个分块.(在3÷4后板书块)
(4)看图根据乙生分饼的过程说出表示的意义.
①乙生把3块饼平均分成了4份,这样的一份是3块饼的,即
②甲生把1块饼平均分成了4份,表示这样的3份的数是.
(5)都是,意义有何不同?(结合算式说出的两种意义)
明确:表示把3平均分成4份,取其中的1份;
还表示把单位“1”平均分成4份,取这样的3份.
(6)反馈练习:说说下面分数的两种意义
4.归纳分数与除法的关系.
(1)教师提问:怎样用分数来表示整数除法的商呢?
学生归纳:可以用分数表示整数除法的商,用除数做分母,用被除数作分子.也就是说分数既表示分数的意义,又表示整数除法的商.
(板书:)
教师明确:分数是一种数,除法是一种运算,所以确切地说,分数的分子相当于除法的被除数,分数的分母相当于除法的.除数.
(2)讨论:用字母表示分数与除法的关系有什么要求?
(3)反馈练习.
三、全课小结.
通过今天的学习,你明白了什么?
四、随堂练习.
1.填空.
分数可以用来表示除法算式的.其中分数的分子相当于(),分母相当于().
2.用分数表示下列各式的商.
4÷511÷1327÷35
9÷913÷1633÷29
3.列式计算.
(1)把5米长的绳子,平均分成12段,每段长多少米?
(2)把一个4平方米的圆形花坛分成大小相同的5块,每一块是多少平方米?
(用分数表示)
(3)小明用15分钟走了1千米路,平均每分走几分之几千米?
五、布置作业.
用分数表示下面各式的商.
3÷47÷1216÷4925÷249÷9
分数除法教案 篇2
教学目标:
能力目标:培养学生动手动脑能力,以及计算能力。
知识目标:
体验整数除以分数的计算方法,并能正确的计算。
情感目标:
培养学生愿意交流合作,喜欢数学的情操,感受数学来源于生活,体验成功的欢乐。
教学重点:整数除以分数的计算方法。
教学策略:
在小组间交流合作的基础上,提高计算能力和计算速度。
教学准备:小黑板
教学过程:
一、导入新课。
前一课我们学习了整数除以分数的计算方法,你们还记得吗?老师考一考你们好吗,看题目。
6÷=÷=÷=÷=
2÷=÷=÷=÷=
通过提问,全班订正,导入新课。并评价。
二、用小黑板出示下列题目。
3x=x=10x=25x=
提问学生解方程的'规律,并指名说一说第一小题的解法。
其它题目独立作,全班订正。
三、课本第三题
指名说出题目的意思,然后解答,全班判定。
四、第四题
1、先独立计算,全班订正。
2、小组间交流发现了什么规律。
3、全班交流。
4、教师小结。
板书设计:
整数除以分数
除以真分数商大于整数
整数除以分数除以1商等于整数
除以假分数商小于整数
分数除法教案 篇3
本课题教时数:1本教时为第1教时备课日期10月22日
教学目标
1、使学生进一步认识分数除法的意义、比的意义和基本性质及其应用,能比较熟练地求比值和把一个比化成简单的整数比。
2、使学生进一步掌握分数除法的计算法则,能正确地计算分数除法和分数除法与加、减法或乘法的混合运算。
教学重难点
能比较熟练地求比值和把一个比化成简单的整数比。
能正确地计算分数除法和分数除法与加、减法或乘法的混合运算。
教学准备
教学过程设计
教学内容
师生活动
备注
一、揭示课题
二、整理知识
三、组织练习
四、课堂小结
本单元我们学习了什么?你学习了哪些内容?
这节课我们先复习分数除法的有关概念和计算。
通过复习,大家要进一步掌握分数除法的意义、比的意义和基本性质,以及这些概念的应用;进一步掌握分数除法的计算法则。要能比较熟练地求比值和正确地进行比的化简,能正确地计算分数除法,以及分数除法与分数加、减法或乘法的混合运算。
1、复习分数除法的意义
问:分数除法表示的意义是什么?
你能根据分数除法表示的意义,把2/155=2/3改写成两道除法算式吗?
指出:分数除法是已知两个数的积和其中一个因数,求另一个因数的运算。
2、复习分数除法计算法则
提问:我们在分数除法里,学过哪几种情况的计算?
分数除法计算的方法是怎样的'?
3、笔算练习
做复习第2题
指出:在分数除法里,无论哪一种情况的计算,都要转化成乘法计算。
4、复习比的意义
问:什么叫比?比的各部分名称是什么?请你举个例子来说明。
比与除法、分数有什么联系?请你根据4:5来说明。
5、做复习第3题
6、复习比的基本性质
提问:化简比和求比值各是依据什么来做的?
1、做复习第5题
2、做复习第6题
3、做复习第7题
指出:有关分数除法的运算,只要按过去的运算顺序,计算时遇到除法计算,只要转化成乘法来计算。
4、做复习第8题
指出:根据求一个数和分数相乘可以表示求这个数的几分之几是多少,可以顺着题意列出方程来解答这样的文字题,也可以根据分数除法的意义列式解答。
这节课复习了什么内容?你进一步明确了哪些知识?
课后感受
教学效果较好,同学们所做的题目的正确率较高。
分数除法教案 篇4
1、分数除法
(1)分数除法的意义和整数除以分数
教学目标:
1、通过实例,使学生知道分数除法的意义与整数除法的意义是相同的,并使学生掌握分数除以整数的计算法则。
2、动手操作,通过直观认识使学生理解整数除以分数,引导学生正确地总结出计算法则,能运用法则正确地进行计算。
3、培养学生观察、比较、分析的能力和语言表达能力,提高计算能力。
教学重点:
使学生理解算理,正确总结、应用计算法则。
教学难点:
使学生理解整数除以分数的算理。
教学过程:
一、复习
1、复习整数除法的意义
(1)引导学生回忆整数除法的计算法则:已知两个因数的积与其中一个因数,求另一个因数的运算。
(2)根据已知的乘法算式:56=30,写出相关的两个除法算式。(305=6,306=5)
2、口算下面各题
36
二、新授
1、教学例1
(1)出示插图及乘法应用题,学生列式计算:1003=300(克)
(2)学生把这道乘法应用题改编成两道除法应用题,并解答。
A、3盒水果糖重300克,每盒有多重?3003=100(克)
B、300克水果糖,每盒100克,可以装几盒?300100=3(盒)
(3)将100克化成千克,300克化成千克,得出三道分数乘、除法算式。
3=(千克)3=(千克)3=3(盒)
(4)引导学生通过整数题组和分数题组的对照,小组讨论后得出:分数除法的意义与整数除法相同,都是已知两个因数的积与其中一个因数,求另个一个因数。都是乘法的逆运算。
2、巩固分数除法意义的练习:P28做一做
3、教学例2
(1)学生拿出课前准备好的纸,小组讨论操作,如何把这张纸的平均分成2份,并通过操作得出每份是这张纸的几分之几。
(2)小组汇报操作过程,得出:将一张纸的平均分成2份,每份是这张纸的。
(3)引导学生数形结合,对照不同的折法,说出两种不同的.计算方法。
A、2==,每份就是2个。
B、2==,每份就是的。
(4)如果把这张纸的平均分成3份呢?让学生从上面两种方法中选择一种进行计算,通过操作对比,让学生发现第二种方法适用的范围更广。
4、引导学生观察2和3两个算式,概括出分数除以整数的计算法则:分数除以整数,等于乘上这个整数的倒数。
三、练习
四、总结
1、今天我们学习了哪些内容?(分数除法的意义及分数除以整数的计算法则)
2、谁来把这两部分内容说一说?
分数除法教案 篇5
教学目标:
1、运用所学知识解决一些生活中的实际问题。
2、加强列方程的思维训练。
3、培养学生分析问题解决问题的能力。
教学过程:备注
活动一:复习与准备
1、爸爸的体重75千克,小明的体重是爸爸的7/15。
(1)、小明的'体重是多少千克?
(2)、小明体内水份的质量占小明体重的4/5,小明体内有多少千克水份?
(3)让学生说出数量关系并列式计算
活动二:出示例1
1、与复习题比较有什么不同?
2、要求小明的体重应该知道什么条件?为什么?
3、以知小明体内有水份28千克,要求小明的体重,需用到哪个数量关系?
4、学生自己列式计算
5、与复习题比较有什么相同点和不同点?你发现了什么?
小结:(略)
1、要求学生自己做第二问
(1)、要求画图分析
(2)、与第一问比有什么不同?
(3)、根据什么等量关系列方程?
小结:
活动三:巩固练习
1、38页做一做
2、40页1、2
板书设计
分数除法教案 篇6
教学目标
使学生进一步掌握分数除法的计算方法,提高分数四则计算的能力。
教学重难点
进一步掌握分数除法的计算方法。
教学准备
教学过程设计
教学内容
师生活动
教学过程
一、揭示课题
二、计算练习
三、综合练习
四、课堂。
五、作业
1、复习法则。
问:分数除法要怎样计算?
2、计算:
5/7÷1014÷4/512/13÷8/9
三人板演。
3、练习八17
上下练习,说说是怎样想的。
问:分数加减法要怎样算?分数乘法怎样算?分数除法呢?
4、练习八18
学生口答,选择说怎样算的?
1、练习八19第一行
四人板演;计算时说明要注意的约分等问题。
2、练习八20
说说已知什么数量,要求什么数量。
练习计算。
口答算式与结果,让学生说说各按怎样的数量关系列式。
3、练习八21
问:解答这道题的数量关系是什么?
学生解答。口答算式。
为什么3/4×2/5来计算?
3、口答。
根据下面的条件,先说出哪个是单位“1”的量,再说出数量关系式。
(1)桃树占果树总棵数的2/5。
(2)三好学生占全班人数的3/20。
(3)修好了一条路的.3/7。
(4)一堆煤的1/4已经运走。
(5)这批布的2/3是花布。
单位“1”的量×几分之几=几分之几的对应数量
练习八19第二、三
课后感受
本节课上下来,分数计算学生们掌握得都不错。在分数乘法应用题如21题的第三小题还存在一些问题,在这些题型方面下功夫。
分数除法教案 篇7
教材分析
这节课是在学习了“已知一个数的几分之几是多少,求这个数”的分数应用题的基础上,根据稍复杂的求一个数的几分之几是多少的分数应用题的数量关系,使学生掌握解题思路,学会用方程解答。根据新旧知识的联系,抓住了数量关系相同,通过复习题的分析解答,让学生找出熟悉的数量关系,再把题进行改动变化。在边画图、边分析的过程中,沟通了知识间的联系,便于学生理解和思维,促进了学生分析思维能力的发展和综合运用知识灵活解决实际问题的能力。
学情分析
在已经学习了,已知一个数的几分之几是多少,求这个数是多少的问题的基础上,六年级学生能在一定的基础之上去拓展,去学习更新的知识。
教学目标
逆向思维,能根据具体的数量和分率,求出单位“1”的量。通过教学, 使学生在理解分数除法意义及掌握分数乘法应用题解题思路的基础上,掌握已知一个数的几分之几是多少求这个数的稍复杂分数除法应用题的解题思路和方法,能比较熟练地用方程解答一些简单的实际问题。
教学重点和难点
1、能确定单位“1”,理清题中的数量关系。
2、利用题中的'等量关系用方程解答。
教学过程
一、1、苹果的重量是X千克,梨的重量比苹果多5千克 。
⑴、梨的重量比苹果多了( )千克。
⑵、梨的重量是( )千克。
2、钢笔X元,比毛笔少了3元 。
⑴、钢笔比毛笔少了( )元。
⑵、毛笔是( )元。
3、小结:解答分数应用题的关键是找准单位“1”,如果单位“1”的具体数量是已知的,要求单位“1”的几分之几是多少,就可以根据分数乘法的意义,直接用乘法计算。
二、新授课
1、教学补充例题:水果店运来了一些苹果,已经卖了36千克 ,还剩下20千克,水果店运来了多少苹果?
(1)卖了 是什么意思?应该把哪个数量看作单位“1”?
(2)引导学生理解题意,画出线段图。
(3)引导学生根据线段图,分析数量关系式:运来苹果的重量-卖了的重量=剩下的重量
(4)指名列出方程。解:设运来苹果X千克。
x-36=20
2、教学例2
(1)出示例题,理解题意。
(2)比航模组多是什么意思?引导学生说出:是把航模组的人数看作单位“1”,美术组少的人数占航模组的 (1+)
(2)学生试画出线段图。
(3)根据线段图,结合题中的分率句,列出数量关系式:
航模小组人数+美术小组比航模小组多的人数=美术小组人数
(4)根据等量关系式解答问题。
解:设航模小组有人。
(1+)=25
=25÷
=20
答:略。
三、小结
1、今天学习了两道应用题,找出它们的共同点?(这两道应用题,题里的单位“1”都是未知的数量,都可以列方程来解,这样顺着题意列出方程思考起来比较方便。)
2、用方程解答稍复杂的分数应用题的关键是什么?(关键是找准单位“1”,再按照题意找出数量间的相等关系列出方程)
四、练习
练习十第4、12、14题。
分数除法教案 篇8
教学内容:
教材第29-30页的内容。
教学目标:
1.能用方程解决简单的有关分数的实际问题,初步体会方程是解决实际问题。
2.探索并掌握分数除以整数的计算方法,并能正确计算。
3.能够运用分数除以整数解决简单的实际问题。
教学重点:
分析分数除法应用题中数量间的关系,用方程解答分数除法应用题。
教学难点:
运用分数除以整数解决简单的实际问题。
教具准备:
多媒体课件
预习提纲:
1.观察课本第29页的图,从中你能获得哪些数学信息呢?
2.根据这些数学信息你能提出哪些问题?
3.分析例题,写出等量关系,并试用方程解答。
4.想想还有别的算法吗?
教学过程:
一、创设情境,引发探究
1.同学们喜欢课外活动吗?你们喜欢参加哪些课外活动?
2.课件出示:从画面中你能获得哪些数学信息呢?这些数量之间有什么关系?
(1)打篮球的人数是踢足球的4/9.
(2)踢毽子的人数是踢足球的1/3.
(3)跳绳的人数是参加活动总人数的2/9.
……
二、提出问题,自主探究
1.根据这些数学信息你能提出哪些问题?
操场上一共有27人参加活动,跳绳的小朋友人数是操场上参加活动总人数的2/9.跳绳的有多少人?
列出这题的等量关系,并解答。全班交流。
2.还能提出哪些数学问题,引出例题
跳绳的小朋友有6人,是操场上参加活动总人数的2/9。操场上有多少人参加活动?
这道题与上题有哪些区别和联系呢?能找到这道题的数量关系吗?
你能用方程的知识,解决这样的问题吗?应该如何解设?小组讨论,再由教师指名在黑板上演示。
解:设操场上有x人参加活动。
χ×2/9=6
χ×2/9÷2/9=6÷2/9
χ×=27
3.想一想,还有别的算法吗?怎么算?为什么?
6÷2/9=27(人)
三、巩固练习,实践探究
刚才同学们根据图中的数学信息,提出了很多的数学问题,这些数学问题,你们能解答吗?
1.操场上打篮球的有4人。
(1)打篮球的人数是踢足球人数的4/9,踢足球的人数是多少?
(2)踢毽子的人数是踢足球人数的.1/3,踢毽子的人数是多少?
(3)操场上踢足球的有9人,是操场上参加活动总人数的1/3,操场上参加活动有多少人?
(4)操场上踢毽子的有3人,是操场上参加活动总人数的1/9,是操场上参加活动总人数的1/3。
2.某月双休日 9天,是这个月总天数的3/10,这个月有多少天?
(板演过程中,着重分析学生可能存在的误解之处。)
3.根据以下方程,编出相应的应用题。
χ×1/5=30 χ×2/3=40
四、回顾反思,总结全课。
通过这节课的学习你有哪些收获?
分数除法教案 篇9
教学目标
1.使学生掌握列方程解答“已知一个数的几分之几是多少,求这个数”的应用题的解答方法
2.培养学生分析问题、解答问题能力,以及认真审题的良好习惯.
教学重点
找准单位“1”,找出等量联系.
教学难点
能正确的分析数量联系并列方程解答应用题.
教学过程
一、复习、引新
(一)确定单位“1”
1.铅笔的支数是钢笔的 倍.
2.杨树的棵数是柳树的 .
3.白兔只数的 是黑兔.
4.红花朵数的 相当于黄花.
(二)小营村全村有耕地75公顷,其中棉田占 .小营村的棉田有多少公顷?
1.找出题目中的已知条件和未知条件.
2.分析题意并列式解答.
二、讲授新课
(一)将复习题改成例1
例1.小营村有棉田45公顷,占全村耕地面积的 ,全村的耕地面积是多少公顷?
1.找出已知条件和问题
2.抓住哪句话来分析?
3.引导学生用线段图来表示题目中的数量联系.
4.比较复习题与例1的相同点与不同点.
5.教师提问:
(1)棉田面积占全村耕地面积的 ,谁是单位“1”?
(2)如果要求全村耕地面积的' 是多少,应该怎样列式?(全村耕地面积× ).
(3)全村耕地面积的 就是谁的面积?(就是棉田的面积)
解:设全村耕地面积是 公顷.
答:全村耕地面积是75公顷.
6.教师提问:应怎样进行检验?你还能用别的方法来解答吗?
(1)把 代入原方程,左边 ,右边是45,左边=右边,所以 是原方程的解.)
(公顷)
(根据棉田面积和 是已知的,全村耕地面积是未知的,根据分数除法意义,已知两个因数的积与其中一个因数,求另一个因数应该用除法计算.)
(二)练习
果园里有桃树560棵,占果树总数的 .果园里一共有果树多少棵?
1.找出已知条件和问题
2.画图并分析数量联系
3.列式解答
解1:设一共有果树 棵.
答:一共有果树640棵.
解1: (棵)
(三)教学例2
例2.一条裤子75元,是一件上衣价格的 .一件上衣多少钱?
1.教师提问
(1)题中的已知条件和问题有什么?
(2)有几个量相比较,应把哪个数量作为单位“1”?
2.引导学生说出线段图应怎样画?上衣价格的
3.分析:上衣价格的 就是谁的价钱?(是裤子的价钱)谁能找出数量间相等的联系?(上衣的单价× =裤子的单价)
4.让学生独立用列方程的方法解答,并加强个别辅导.
解:设一件上衣 元.
答:一件上衣 元.
5.怎样直接用算术方法求出上衣的单价?
(元)
6.比较一下算术解法和方程解法的相同之处与不同之处.
相同点:都要根据数量间相等的联系式来列式.
不同点:算术解法是按照分数除法的意义直接列出除法算式;而方程解法则要先设未知数,再按照等量联系式列出方程.
三、巩固练习
(一)一个修路队修一条路,第一天修了全长 ,正好是160米,这条路全长是多少米?
提问:谁是单位“1”?数量间相等的联系式是什么?怎样列式?
(米)
(二)幼儿园买来 千克水果糖,是买来的牛奶糖的 ,买来牛奶糖多少千克?
(三)新风小学去年植树320棵,相当于今年植树棵数的 .今年、去年共植树多少棵?
1.演示:分数除法应用题
2.列式解答
四、课堂小结
这节课我们学习了列方程解答分数除法应用题的方法.这类题有什么特点?解题时分几步?
五、课后作业
(一)一桶水,用去它的 ,正好是15千克.这桶水重多少千克?
(二)王新买了一本书和一枝钢笔.书的价格是4元,正好是钢笔价格的 .钢笔价格是多少元?
(三)一种小汽车的最快速度是每小时行140千米,相当于一种超音速飞机速度的 .这种超音速飞机每小时飞行多少千米?
第四篇:分数除法教案
分数除法教案 篇1
教学目标:
1、通过实例,使学生知道分数除法的意义与整数除法的意义是相同的,并使学生掌握分数除以整数的计算法则。
2、动手操作,通过直观认识使学生理解整数除以分数,引导学生正确地总结出计算法则,能运用法则正确地进行计算。
3、培养学生观察、比较、分析的能力和语言表达能力,提高计算能力。
教学重点:
使学生理解算理,正确总结、应用计算法则。
教学难点:
使学生理解整数除以分数的算理。
教具准备:多媒体课件
教学过程:
一、旧知铺垫(课件出示)
1、复习整数除法的意义
(1)引导学生回忆整数除法的计算法则:已知两个因数的积与其中一个因数,求另一个因数的运算。
(2)根据已知的乘法算式:5×6=30,写出相关的两个除法算式。(30÷5=6,30÷6=5)
2、口算下面各题
×3 × ×
× ×6 ×
二、新知探究
(一)、教学例1
1、课件出示自学提纲:
(1)出示插图及乘法应用题,学生列式计算。
(2)学生把这道乘法应用题改编成两道除法应用题,并解答。
(3)将100克化成千克,300克化成千克,得出三道分数乘、除法算式。
2、学生自学后小组间交流
3、全班汇报:
100×3=300(克)
A、3盒水果糖重300克,每盒有多重? 300÷3=100(克)
B、300克水果糖,每盒100克,可以装几盒? 300÷100=3(盒)
×3= (千克) ÷3= (千克) ÷3=3(盒)
4、引导学生通过整数题组和分数题组的对照,小组讨论后得出:
分数除法的意义与整数除法相同,都是已知两个因数的积与其
中一个因数,求另个一个因数。都是乘法的逆运算。
(二)、巩固分数除法意义的练习:P28“做一做”
(三)、教学例2
(1)学生拿出课前准备好的纸,小组讨论操作,如何把这张纸的平均分成2份,并通过操作得出每份是这张纸的几分之几。
(2)小组汇报操作过程,得出:将一张纸的平均分成2份,每份是这张纸的。
(3)引导学生数形结合,对照不同的折法,说出两种不同的计算方法。
A、 ÷2= =,每份就是2个。
B、 ÷2= × =,每份就是的。
(4)如果把这张纸的平均分成3份呢?让学生从上面两种方法中选择一种进行计算,通过操作对比,让学生发现第二种方法适用的范围更广。
4、引导学生观察÷2和÷3两个算式,概括出分数除以整数的计算法则:分数除以整数,等于乘上这个整数的倒数。
三、当堂测评(课件出示)
1、计算
÷3 ÷3 ÷20 ÷5 ÷10 ÷6
2、解决问题
(1)、一辆货车2小时耗油10/3升,平均每小时耗油多少升?
(2)、正方形的周长是4/5米,它的边长是多少米?
学生独立完成。
教师讲评,小组间批阅。
四、课堂总结
1、今天我们学习了哪些内容?(分数除法的意义及分数除以整数的计算法则)
2、谁来把这两部分内容说一说?
教学后记
分数除法教案 篇2
教学目标
1.结合具体情境,掌握分数四则混合运算的顺序,能正确进行计算。
2.能运用所学知识解决简单的实际问题,提高综合解题的能力。
3.培养学生认真审题、准确计算的好习惯。
重点难点
重点:掌握分数四则混合运算的顺序。
难点:正确计算分数四则混合运算。
教具学具
投影仪。
教学过程
一、导入
1.笔算下面各题。
24÷4+16×5-37 46+50×[(900-90)÷9]
提问:整数四则混合运算的顺序是什么?
2.计算下面各题。
二、教学实施
(5)分析运算顺序。
提问:这两个算式里分别含有几级运算?应该先算什么,再算什么?
指名让学生回答,并说明运算顺序。全班同学各自在练习本上计算,做完后集体订正。
2.巩固练习。
完成教材第33页“做一做”。
学生说明运算顺序。
3.变式练习。
学生可以先讨论怎样计算,再明确顺序进行计算。
老师说明:一般情况下,在分数、小数混合的`式子里,通常把小数化成分数进行计算。
三、课堂作业新设计
1.填空。
四、思维训练参考答案
思维训练
1.D 2.略
教材习题
教材第33页做一做
板书设计
分数四则混合运算
运算顺序
(1)不含括号的分数混合运算的运算顺序:在一个分数混合运算算式里,如果只
含有同一级运算,按照从左到右的顺序计算;如果含有两级运算,先算第二
级运算,再算第一级运算。
(2)有括号的分数混合运算的运算顺序:在一个分数混合运算的算式里,如果既
有小括号又有中括号,要先算小括号里面的,再算中括号里面的。
备课参考教材与学情分析
例3以吃药片为题材,通过解决问题,引出涉及分数除法的混合运算,使学生看到已经掌握的混合运算顺序,同样适用于分数运算。例3下面的“做一做”是需要用到分数乘除混合运算解决的实际问题。
课堂设计说明
1.加强意义理解,加强分数除法与整数除法、分数乘法的联系,加强复习,使学生利用已有知识进行自主探索。
2.通过解决问题,理解分数混合运算的顺序。
教学例3时,可以先复习以前学过的四则混合运算顺序。出示例题后,可以让学生先说出已知条件与问题,再说说自己解决这个问题的思路。可以从问题入手想,也可以从条件出发思考。列出综合算式后,让学生说说运算顺序,再进行计算。
3.注重直观操作,渗透数学的思想和学习方法。
直观操作——主要体现在计算方法的理解过程中。在例题教学和习题练习中,关注学困生的情况,需要多次演示,强化数量关系的理解(已知一个数的几分之几是多少,求这个数)。
分数除法教案 篇3
【学习目标】
1、知道分数除法的意义,掌握分数除以整数的计算法则。
2、动手操作,通过直观认识理解整数除以分数,总结法则,正确计算。
3、培养观察、比较、分析的能力和语言表达能力,提高计算能力。
【学习重难点】
1、重点是理解算理,正确总结、应用计算法则。
2、难点是理解整数除以分数的算理。
【学习过程】
一、复习
1、复习整数除法的意义是什么?_______________________________________________
2、根据已知的乘法算式:5×6=30,写出相关的两个除法算式。___________________
2、口算下面各题:
1323843151×3 × × × ×6 × 543839412115
二、探索新知
1、认真阅读,仔细观察例1,想一想左右两边的题组有什么不同?_________________
右边的题组是怎样得来的?_________________________________________________
2、讨论:右边的两个分数除法算式是怎样求出得数的?___________________________
思考:分数除法的意义是什么?_____________________________________________
数,求另个一个因数。(都是乘法的逆运算。)
3、巩固分数除法意义的练习:P28“做一做”
4、阅读例2题目,自己拿出一张纸试着折一折,涂一涂,看你能够想到几种不同的折法?
对照不同的折法,列式计算,注意它们的计算过程以及算理。
5、比较例2出现的两种计算方法的异同?你觉得哪种算法的适用范围更广?为什么? _________________________________________________________________
6、阅读例2的第二个问题,独立列式计算,并用折纸来验证自己算对了没有? _________________________________________________________________
7、根据自己的折纸实验和算式,说一说分数除以整数要如何计算?
________________________________________________________________
分数除以整数的计算法则:分数除以整数,等于乘上这个整数的倒数。
三、知识应用:独立完成下面各题,组长检查核对,提出质疑。
6115559÷3 ÷3 ÷20 ÷5 ÷10 ÷6 72168313
四、层级训练:1、巩固训练:P32练习八第1、2题;2、拓展提高:P32练习八第3题
五、总结梳理: 回顾本节课的学习,说一说你有哪些收获?
学习心得__________( a.我很棒,成功了; b.我的收获很大,但仍需努力。) 自我展示台:(写出你的发现或见解)
分数除法教案 篇4
1、 分数除法
(1)分数除法的意义和整数除以分数
教学目标:
1、 通过实例,使学生知道分数除法的意义与整数除法的意义是相同的,并使学生掌握分数除以整数的计算法则。
2、 动手操作,通过直观认识使学生理解整数除以分数,引导学生正确地总结出计算法则,能运用法则正确地进行计算。
3、 培养学生观察、比较、分析的能力和语言表达能力,提高计算能力。
教学重点:
使学生理解算理,正确总结、应用计算法则。
教学难点:
使学生理解整数除以分数的算理。
教学过程:
一、复习
1、复习整数除法的意义
(1)引导学生回忆整数除法的计算法则:已知两个因数的积与其中一个因数,求另一个因数的运算。
(2)根据已知的乘法算式:56=30,写出相关的两个除法算式。(305=6,306=5)
2、口算下面各题
36
二、新授
1、教学例1
(1)出示插图及乘法应用题,学生列式计算:1003=300(克)
(2)学生把这道乘法应用题改编成两道除法应用题,并解答。
A、3盒水果糖重300克,每盒有多重?3003=100(克)
B、300克水果糖,每盒100克,可以装几盒?300100=3(盒)
(3)将100克化成千克,300克化成千克,得出三道分数乘、除法算式。
3=(千克)3=(千克)3=3(盒)
(4)引导学生通过整数题组和分数题组的对照,小组讨论后得出:分数除法的意义与整数除法相同,都是已知两个因数的积与其中一个因数,求另个一个因数。都是乘法的逆运算。
2、巩固分数除法意义的练习:P28做一做
3、教学例2
(1)学生拿出课前准备好的纸,小组讨论操作,如何把这张纸的平均分成2份,并通过操作得出每份是这张纸的几分之几。
(2)小组汇报操作过程,得出:将一张纸的平均分成2份,每份是这张纸的。
(3)引导学生数形结合,对照不同的折法,说出两种不同的计算方法。
A、2==,每份就是2个。
B、2==,每份就是的。
(4)如果把这张纸的平均分成3份呢?让学生从上面两种方法中选择一种进行计算,通过操作对比,让学生发现第二种方法适用的范围更广。
4、引导学生观察2和3两个算式,概括出分数除以整数的计算法则:分数除以整数,等于乘上这个整数的倒数。
三、练习
四、总结
1、今天我们学习了哪些内容?(分数除法的意义及分数除以整数的计算法则)
2、谁来把这两部分内容说一说?
分数除法教案 篇5
教学目的
1理解分数除法的意义,掌握分数除法的计算方法。
2进一步培养学生抽象概括的能力和计算能力。3进一步渗透转化的数学思想。教学重点理解分数除法的意义,掌握分数除以整数的计算方法。教学难点培养数学能力,渗透转化思想。课型讲练课教法讨论、讲解教具投影
板书设计1分数除以整数例1:把一根长4/5米的铁丝,截成相等的两段,每段长几米?解:4/52 = 0.82 = 0.4(米)4/52 = 42/5 = 0.4(米) 4/52 = 4/51/2 = 0.4(米) 课后小结内容设计合理,结构紧凑,一步一步让学生体会分数除以整数,可以有多种方法解答,只有把除以整数改写成乘整数的倒数,这样才是最简便的,学会了把新知改变成旧知来解决问题的这种学习方法,拓展了思路,活跃了思维。 教学过程意图媒体教师活动学生活动
一、复习导入新课为迁移做准备
明确分数除法意义投影 板书 投影 小结 板书1列式计算:一袋洗衣粉重1/2千克,4袋洗衣粉重多少千克?1/24 或41/22改编并列式:把上题改编成两道除法应用题① 4袋洗衣粉重2千克, 一袋洗衣粉重多少千克?2 4 = 1/2(千克)②一袋洗衣粉重1/2千克, 几袋洗衣粉重2千克?21/2 = 4(千克)3讨论:结合以上三题,请同学们思考分数除法的意义。通过以上数学活动,同学们已经明确了分数除法与整数除法的意义相同,是已知两个因数的与其中的一个因数,求另一个因数的运算。那么分数除法又怎样计算呢?今天我们就来研究这个问题。课题:分数除法指名口答 求4个1/2是多少。 生编题,师板书。 根据上题数量关系说出结果
二、新课学习分数除法的计算方法
学习分数除法的计算方法板书 激发兴趣 汇报 板书
板书 1出示例1:把一根长4/5米的铁丝,截成相等的两段,每段长几米?理解4/5米的意义 ?米 ?米
4/5米通过以上活动,我们进一步理解了题意,你能否根据题意把它转化成已学过的知识进行计算?解:①4/52 = 0.82 = 0.4(米)②4/52 = 42/5 = 0.4(米) ③4/52 = 4/51/2 = 0.4(米)重点说明③把4/5米平均分成2份,求每份是多少,就是求4/5米的1/2是多少米?列式是4/51/2。2尝试计算方法:三选一计算3/85 1/32 5/93①3/85 = 3/81/5 = 3/403/85 = 35/8 = 0.6/8 = 3/403/85 = 0.3755 = 0.075②1/32 = 1/31/2 = 1/6 1/32 = 12/3 = 0.5/3 = 1/6③5/93 = 5/91/5 = 5/27哪种方法最好,为什么?3用这种最简便方法计算:7/1314
5/9104归纳计算法则:①口述做上述两题的方法②除以10 改写成乘1/10。③1/10是10 的倒数。分数除以整数(0除外),等于分数乘这个整数的倒数。审题列式 理解意义
讨论方法
选择自己喜欢的方法计算其中一题 讨论③最适用 小组讨论 为什么要0除外
三、练习巩固分数除法的计算法则投影
投影 1计算:14/157 4/53 4/1182填空:2/35 = 2/3( )3/79 = 3/7( )5/610 = 5/6( )19/208 = 19/20( )3/116 = 3/11○1/65/66 = 5/6○( )12/173 = ( )○( )3课后讨论:2/73你会做,32/7你行吗?认真计算
第五篇:分数除法教案
分数除法教案 篇1
教学目标
1.使学生理解两个整数相除的商可以用分数来表示.
2.明确分数与除法的关系,加深学生对分数意义的理解.
教学重点
理解、归纳分数与除法的关系.
教学难点
用除法的意义理解分数的意义.
教学步骤
一、铺垫孕伏.
1.读题说得数.
3.2+1.680.8×0.514-7.40.3÷1.54.8×0.02
7.8+0.91.53-0.70.35÷150.4×0.80.8-0.37
2.口述表示的意义.
3.列式计算.
(1)把40棵树苗平均分给5个小组栽,每组栽多少棵?
(2)把8米长的钢管平均分成2段,每段长多少米?
二、探究新知.
1.新课导入.
出示例2:把1米长的钢管平均截成3段,每段长多少米?
板书:1÷3
教师提问:1÷3的结果能用准确的数表示出来吗?怎么办?学习了分数与除法的关系就明白了.(板书、分数与除法)
2.教学例2.
(1)从分数的意义上理解1÷3,即把1米长的钢管着成单位“1”,把单位“1”平均分成3份,表示这样一份的数,可用分数来表示,1米的就是米.(板书米)
(2)学生完整叙述自己想的过程.
(3)反馈练习.
①把1米长的钢管,平均分成8段,每段长多少?
②把1块饼平均分给5个同学,每个同学得到多少块?
3.教学例3.
出示例3:把3块饼平均分给4个孩子,每个孩子分得多少块?
(1)读题列式:3÷4
(2)动手操作:怎样把3块饼平均分给4个同学呢?
(3)学生交流.
甲生:先把每个圆剪成4个块,然后把12个平均分成4份,再把3个拼在一起,每份是块.
乙生:把3个圆放在一起,平均分成4份后,剪下其中的一份,再把1份中的3个拼在一起,得到每个分块.(在3÷4后板书块)
(4)看图根据乙生分饼的过程说出表示的意义.
①乙生把3块饼平均分成了4份,这样的一份是3块饼的,即
②甲生把1块饼平均分成了4份,表示这样的3份的数是.
(5)都是,意义有何不同?(结合算式说出的两种意义)
明确:表示把3平均分成4份,取其中的1份;
还表示把单位“1”平均分成4份,取这样的3份.
(6)反馈练习:说说下面分数的两种意义
4.归纳分数与除法的关系.
(1)教师提问:怎样用分数来表示整数除法的商呢?
学生归纳:可以用分数表示整数除法的商,用除数做分母,用被除数作分子.也就是说分数既表示分数的意义,又表示整数除法的商.
(板书:)
教师明确:分数是一种数,除法是一种运算,所以确切地说,分数的分子相当于除法的被除数,分数的分母相当于除法的除数.
(2)讨论:用字母表示分数与除法的关系有什么要求?
(3)反馈练习.
三、全课小结.
通过今天的学习,你明白了什么?
四、随堂练习.
1.填空.
分数可以用来表示除法算式的.其中分数的分子相当于(),分母相当于().
2.用分数表示下列各式的商.
4÷511÷1327÷35
9÷913÷1633÷29
3.列式计算.
(1)把5米长的绳子,平均分成12段,每段长多少米?
(2)把一个4平方米的圆形花坛分成大小相同的5块,每一块是多少平方米?
(用分数表示)
(3)小明用15分钟走了1千米路,平均每分走几分之几千米?
五、布置作业.
用分数表示下面各式的商.
3÷47÷1216÷4925÷249÷9
分数除法教案 篇2
分数除法一(分数除以整数)
教学目标和要求
1, 在涂一涂、算一算等活动中,探索并理解分数除法的意义。
2, 探索并掌握分数除以整数的计算方法,并能正确计算。
3, 能够运用分数除以整数解决简单的实际问题。
教学重点
分数除以整数的计算方法。
教学难点
分数除以整数的计算方法
教学准备
教学时数
1课时
教学过程
一, 涂一涂,算一算
1, 把一张纸的4/7平均分成2份,每份是这张纸的几分之几?
2, 把一张纸的4/7平均分成3份,每份是这张纸的几分之几?
(1)第1题让学生可以先用画图、分数的意义等方法解决这个问题,然后根据除法的意义列出算式4/7÷2。在画图、理解分数的意义的基础上,生得出4/7÷2=2/7。因此,学生可能会得到“分母不变,被除数的分子除以除数得到商的分子”。
(2)鼓励学生探索第2题,联系分数乘法的意义,说明把4/7平均分3份,也就是求4/7的1/3,从而理解其基本算理。让学生在第1题的基础上来引导学生发现此时被除数的分子不能被除数整除,从而总结出分数除以整数的一般方法,即用分数乘以除数的倒数。
二, 填一填,想一想
1, 变换探索的角度,呈现三组算式,让学生实际运用,再次验证一个分数除以整数的意义和算理。2
2, 师导学生根据前面的三个活动,总结算法。3,
3, 让学生先列举出分数除法算式,并利用手中的学具具体地分一分,涂一涂,借助图形语言进行理解。
三, 试一试
练习分数除以整数的计算方法,沟通起分数除法与分数乘法的联系。
四, 练一练
1,第26页第2,3题,让学生独立解决。
教学内容(课题)
分数除法教案 篇3
教学目标:
能力目标:培养学生动手动脑能力,以及计算能力。
知识目标:
体验整数除以分数的计算方法,并能正确的计算。
情感目标:
培养学生愿意交流合作,喜欢数学的情操,感受数学来源于生活,体验成功的欢乐。
教学重点:整数除以分数的计算方法。
教学策略:
在小组间交流合作的基础上,提高计算能力和计算速度。
教学准备:小黑板
教学过程:
一、导入新课。
前一课我们学习了整数除以分数的计算方法,你们还记得吗?老师考一考你们好吗,看题目。
6÷=÷=÷=÷=
2÷=÷=÷=÷=
通过提问,全班订正,导入新课。并评价。
二、用小黑板出示下列题目。
3x=x=10x=25x=
提问学生解方程的规律,并指名说一说第一小题的解法。
其它题目独立作,全班订正。
三、课本第三题
指名说出题目的意思,然后解答,全班判定。
四、第四题
1、先独立计算,全班订正。
2、小组间交流发现了什么规律。
3、全班交流。
4、教师小结。
板书设计:
整数除以分数
除以真分数商大于整数
整数除以分数除以1商等于整数
除以假分数商小于整数
分数除法教案 篇4
一、复习
1、同学们,你能口算95930÷362等于多少吗?为什么?(学生回答数据太大,不好口算)
如果已知265×362=95930,你能说出答案吗?为什么?
(引导学生说出整数除法的意义:已知两个因数的积和其中一个因数,求另一个因数的`运算)
二、教学分数除法的意义
1、2/7 ×( )=1,括号内填几分之几?为什么?
2、根据这道乘法算式,你能说两道除法算式吗?根据是什么?
(引导说出分数除法的意义)
3、完成p25做一做
三、分数除以整数的计算法则
1、这节课我们学习分数除法
2、同学们已经了解分数除法的意义,你还想学习关于分数除法的什么知识?
3、事实上,有一些分数除法同学们是会计算的。下面口算几题:
3/8÷3/8 0÷4/9 1÷2/5 3/4÷1
你是根据什么知识口算这几道题的?
4、上面这四道题是一些特殊的分数除法,我们继续学习其他的分数除法。
出示例题:一张纸的平均分成3份,每份是这张纸的几分之几?(图略)
怎样列式? 你能根据图说出算式的结果吗?怎样证明这个结果是正确的呢?(引导学生从多个角度证明结果的正确性 )
根据学生的回答板书:
3/4÷3 = 3÷34 = 1/4
你能归纳这种分数除以整数的计算方法吗?
5、用这种方法口算:
3/4÷3 4/9÷4 10/9÷5 6/7÷2
6、质疑
你认为这种计算方法适用于所有的分数除以整数吗?能举例说明吗?
7、小组讨论,自主学习分数除以整数
用学生所举的例子作为教学例题(例如 1/5÷3),在数学学习过程中,我们经常遇到新问题,这时需要考虑如何将新问题转化为已学过的旧知。现在看一看,我们已经掌握了哪些分数除法的知识:
(1)分数除以整数,用分子除以整数的商作分子,分母不变。
(2) 1除以一个分数,结果是该分数的倒数。
(3)一个分数除以1,结果是原分数。
你能将1/5 ÷3转化成已经掌握的分数除法吗?小组讨论并将讨论结果记录下来。
8、小组汇报
(1)1/5 ÷3=3/15 ÷3=1/15
(2)1/5 ÷3=(1/5 ×5)÷(3×5)=1÷15=
(3)1/5 ÷3=(1/5 ×1/3 )÷(3×1/3 )= 1/5×1/3 ÷1=1/15
(4) ……
你能归纳自己小组讨论的分数除以整数的计算方法吗?
(1)先将分子和分母同时扩大相同的倍数,使除数能整除分子,再用前面的方法计算。
(2)利用商不变性质,将分数除以整数转化成1除以一个数,再计算。
(3)利用商不变性质,将分数除以整数转化成一个分数除以1,再计算。
(4)……
9、观察第三种方法:
1/5 ÷3=(1/5 ×1/3 )÷(3×1/3 )= 1/5×1/3 ÷1=1/15
这个计算过程还可以更简洁些,你能看出来吗?
化简得: 1/5 ÷3=( 1/5×1/3 )÷(3×1/3 )= 1/5×1/3 =1/15
观察 1/5÷3== 1/5×1/3 ,你能说一说吗?
(引导学生说出分数除以整数,等于分数乘整数的倒数)
10、计算方法的优化
刚才小组讨论时,每组用一种方法计算了 1/5÷3,现在你能用其他的方法计算一下吗?
学生计算后提问:你喜欢那种方法?为什么?
总结分数除以整数的计算法则:
分数除以整数(零除外),等于分数乘整数的倒数。
11、对其他的方法,你又有什么要说的吗?
(引导说出当分子能被整数整除时,可以直接用分子除以整数的商作分子,分母不变的方法。培养学生从不同角度观察、分析问题)
四、课堂练习
1、计算下列各题
2/3÷3 2/11÷2 3/8÷6 5/4÷2
2、练习七第1题
3、讨论题
1/3÷a和 1/a÷3(a≠0),那道题的结果大?为什么?
分数除法教案 篇5
教材分析
这节课是在学习了“已知一个数的几分之几是多少,求这个数”的分数应用题的基础上,根据稍复杂的求一个数的几分之几是多少的分数应用题的数量关系,使学生掌握解题思路,学会用方程解答。根据新旧知识的联系,抓住了数量关系相同,通过复习题的分析解答,让学生找出熟悉的数量关系,再把题进行改动变化。在边画图、边分析的过程中,沟通了知识间的联系,便于学生理解和思维,促进了学生分析思维能力的发展和综合运用知识灵活解决实际问题的能力。
学情分析
在已经学习了,已知一个数的几分之几是多少,求这个数是多少的问题的基础上,六年级学生能在一定的基础之上去拓展,去学习更新的知识。
教学目标
逆向思维,能根据具体的数量和分率,求出单位“1”的量。通过教学, 使学生在理解分数除法意义及掌握分数乘法应用题解题思路的基础上,掌握已知一个数的几分之几是多少求这个数的稍复杂分数除法应用题的解题思路和方法,能比较熟练地用方程解答一些简单的实际问题。
教学重点和难点
1、能确定单位“1”,理清题中的数量关系。
2、利用题中的等量关系用方程解答。
教学过程
一、1、苹果的重量是X千克,梨的重量比苹果多5千克 。
⑴、梨的重量比苹果多了( )千克。
⑵、梨的重量是( )千克。
2、钢笔X元,比毛笔少了3元 。
⑴、钢笔比毛笔少了( )元。
⑵、毛笔是( )元。
3、小结:解答分数应用题的关键是找准单位“1”,如果单位“1”的具体数量是已知的,要求单位“1”的几分之几是多少,就可以根据分数乘法的意义,直接用乘法计算。
二、新授课
1、教学补充例题:水果店运来了一些苹果,已经卖了36千克 ,还剩下20千克,水果店运来了多少苹果?
(1)卖了 是什么意思?应该把哪个数量看作单位“1”?
(2)引导学生理解题意,画出线段图。
(3)引导学生根据线段图,分析数量关系式:运来苹果的重量-卖了的重量=剩下的重量
(4)指名列出方程。解:设运来苹果X千克。
x-36=20
2、教学例2
(1)出示例题,理解题意。
(2)比航模组多是什么意思?引导学生说出:是把航模组的人数看作单位“1”,美术组少的人数占航模组的 (1+)
(2)学生试画出线段图。
(3)根据线段图,结合题中的分率句,列出数量关系式:
航模小组人数+美术小组比航模小组多的人数=美术小组人数
(4)根据等量关系式解答问题。
解:设航模小组有人。
(1+)=25
=25÷
=20
答:略。
三、小结
1、今天学习了两道应用题,找出它们的共同点?(这两道应用题,题里的单位“1”都是未知的数量,都可以列方程来解,这样顺着题意列出方程思考起来比较方便。)
2、用方程解答稍复杂的分数应用题的关键是什么?(关键是找准单位“1”,再按照题意找出数量间的相等关系列出方程)
四、练习
练习十第4、12、14题。
分数除法教案 篇6
【学习目标】
1、知道分数除法的意义,掌握分数除以整数的计算法则。
2、动手操作,通过直观认识理解整数除以分数,总结法则,正确计算。
3、培养观察、比较、分析的能力和语言表达能力,提高计算能力。
【学习重难点】
1、重点是理解算理,正确总结、应用计算法则。
2、难点是理解整数除以分数的算理。
【学习过程】
一、复习
1、复习整数除法的意义是什么?_______________________________________________
2、根据已知的乘法算式:5×6=30,写出相关的两个除法算式。___________________
2、口算下面各题:
1323843151×3 × × × ×6 × 543839412115
二、探索新知
1、认真阅读,仔细观察例1,想一想左右两边的题组有什么不同?_________________
右边的题组是怎样得来的?_________________________________________________
2、讨论:右边的两个分数除法算式是怎样求出得数的?___________________________
思考:分数除法的意义是什么?_____________________________________________
数,求另个一个因数。(都是乘法的逆运算。)
3、巩固分数除法意义的练习:P28“做一做”
4、阅读例2题目,自己拿出一张纸试着折一折,涂一涂,看你能够想到几种不同的折法?
对照不同的折法,列式计算,注意它们的计算过程以及算理。
5、比较例2出现的两种计算方法的异同?你觉得哪种算法的适用范围更广?为什么? _________________________________________________________________
6、阅读例2的第二个问题,独立列式计算,并用折纸来验证自己算对了没有? _________________________________________________________________
7、根据自己的折纸实验和算式,说一说分数除以整数要如何计算?
________________________________________________________________
分数除以整数的计算法则:分数除以整数,等于乘上这个整数的倒数。
三、知识应用:独立完成下面各题,组长检查核对,提出质疑。
6115559÷3 ÷3 ÷20 ÷5 ÷10 ÷6 72168313
四、层级训练:1、巩固训练:P32练习八第1、2题;2、拓展提高:P32练习八第3题
五、总结梳理: 回顾本节课的学习,说一说你有哪些收获?
学习心得__________( a.我很棒,成功了; b.我的收获很大,但仍需努力。) 自我展示台:(写出你的发现或见解)