第一篇:有理数加法运算律的教学设计
初中数学七年级上册教学设计
1.3.1有理数的加法
第二课时
加法运算律
适用于使用人教版数学教材的七年级学生
主讲教师:吕国勇
单位:随州市曾都区东城八角楼中学
《有理数的加法运算律》教学设计
一、教学内容
《有理数的加法运算律》是人教版七年级数学上册第一章《有理数》第三节的内容。本节共计两课时,加法运算律是第二课时的内容,依据教材的安排本节课应是让学生在理解有理数的加法法则的基础上来运用加法运算律,最终能熟练地进行有理数的加法运算,并能用运算律简化运算。加、减法可以统一成为加法,因此加法的运算是本小节的关键,而加法又是学生初中阶段接触的第一种有理数运算,学生能否接受和形成在有理数范围内进行的各种运算的思考方式(确定结果的符合和绝对值),关键在于本一节的学习。
二、设计理念
七年级年龄段的学生思维活跃、求知欲强、有比较强烈的自我意识,对观察、猜想、探索性的问题充满好奇,但是马虎大意又是他们的通病。因此我采用探究式的学习方法,以编顺口溜的方式让他熟记理解加法的运算法则,并给它归类,以便为本节课运用运算律进行简便运算作准备。以“问题串”引领整个课堂,请同学们通过观察,演算,分析得出结论,并利用小组间竞赛来调动学生积极性,熟练掌握简便运算的方法与技巧。
三、教学目标与重难点
目标:
1、通过有理数加法运算法则,使学生掌握有理数加法的运算律,并能用有理数加法进行简化运算。
2、培养学生观察能力、归纳能力,通过分类结合思想渗透,提高学生运算能力,尤其是简便计算能力的提高。
3、培养学生把实际问题抽象成数学问题的能力。重点:有理数加法运算律。
难点:灵活运用有理数运算律师运算简便。
四、学情分析
1.学生对正数加正数,正数加零的情况较为熟练,但计算准确率不高。2.对异号两数相加确定符号,绝对值大减小掌握不好。3.学生善于形象思维,思维活跃,能积极参与讨论。
五、教学策略
1.将本节课的教学内容设计成五个重要问题,引导学生探究总结,理解运用; 2.通过小组赛的形式调动学生的学习热情,用不但的巩固练习来掌握简便运算的技巧;
3.在教学过程中,将每一个环节的要点及时归纳,并准确地表达,帮助学生构建知识体系。
六、教学流程
(一)、回顾整理,启发思维
1、有理数加法的法则是什么?你是怎么理解的? 顺口溜:同号取同号,绝对值相加,异号取大号,绝对值相减(大-小)互为相反两数相加得零,零同任何数相加得任何数。
【设计意图】有理数加法法则对于刚进入初中的同学来说点长,不便于理解记忆,编成顺口溜既对加法法则进行了分类,帮助理解和记忆,并且为本节用运算律简便运算作好了准备。
2.想一想,小学里我们学过的加法运算定律有哪些?先说说,再用字母表示写在下面:
、3、计算
⑴+(-20)=
(-20)+30= ⑵
[ 8 +(-5)] +(-4)= + [(-5)]+(-4)]=
思考:观察上面的式子与计算结果,你有什么发现?(1)、请说说你发现的规律
(2)、自己换几个数字验证一下,还有上面的规律吗
(3)、由上可以知道,小学学习的加法交换律、结合律在有理数范围内同样适应,即:两个数相加,交换加数的位置,和
.式子表示为
三个数相加,先把前两个数相加,或者先把后两个数相加,和
用式子表示为
想想看,式子中的字母可以是哪些数?
【设计意图】加法运算律在小学学生已经学习了,通过举例,演算把运算律扩展到有理数的范围。注重新旧知识的结合。
(二)合作探究
1.(例1)
计算:(1)16 +(-25)+ 24 +(-35)
(2)(-2)+3+1+(-3)+2+(-4)
1332(3)3(2)5(8)
454
5【设计意图】例题结合书本选取了三个有代表性的计算题,①是同号两相加简便,②是互为相反数相加简便,③是同分母的相加简便让学生感受运用运算律简便运算的好处。
观察发现总结规律: 简便运算常用的三个规律:
⑴、一般地,总是先把有互为相反数的先相加
⑵、再把分母相同的数结合在一起相加,或能凑整的结合在一起相加。
⑶、最后把同号的结合在一起相加。
2.当堂训练
请同学们完成书本P24 第2题
【设计意图】学以致用,用刚学的知识技巧来解决计算问题,训练学生计算的速度与准确率,并配以小组竞赛形式调动积极性。(1).(8)102(1)(2).5(6)39(4)(7)(3).(0.8)1.2(0.7)(2.1)0.83.512411(4).()()()235233.(例2)
每袋小麦的标准重量为90千克,10袋小麦称重记录如下: 91 91 91.5 89 91.2 91.3 88.7 88.8 91.8 91.1 10袋小麦总计超过多少千克或不足多少千克?10袋小麦的总重量是多少千克? 想一想,你会怎样计算,再把自己的想法与同伴交流一下。
【设计意图】要注重对教材文本的利用,这是书本中的例题,背景较好可发充分开发运用既对前面正负数进行了复习巩固,又把今天学的知识进行了深化运用。要求学生分两组用两种方法来解决问题,看哪一组完成得又快又好。4.当堂训练
仿照例题完成书本P26第8题
【设计意图】及时巩固所学的知识,培养学生计算认真仔细的习惯。
(三)归纳总结感受思想
(1)你会用加法交换律、结合律简化运算了吗?(2)本节课你学习到了哪些数学思想方法?
【设计意图】由学生总结,归纳反思,加深对知识的理解,并且能熟练运用所学知识解决问题及养成归纳总结的习惯和语言表达的能力。
(六)布置作业(1)P
54习题2
(2)请同学们回家用有理数牌和父母进行有理数加法运算比赛可使用运算律简便计算哟。
【设计意图】充分发挥家庭教育资源,让学生在快乐的游戏中达到熟练的程度。
七、设计说明
1.通过“问题串”的设置,激发兴趣,引起学生深层次的思考; 2.通过“互举例子”、“小组竞赛”两个活动,鼓励学生主动参与活动。
3.通过法则运算律的符号化,促进学生数学语言的形成,数学表示能力的提升。4.在活动中注重运用态势、语言对学生进行即兴评价,在整个评价的设计中安排多维评价:既关注学生合作交流的意识和能力、又关注学生数学思维能力与发展水平、还关注学生发现问题和解决问题的能力。
第二篇:《加法运算律》教学设计
《加法运算律》教学设计
【教学目标】:
1、在解决实际问题的过程中,发现加法交换律和结合律,学会用字母表示加法交换律和结合律。
2、在探索运算律的过程中,发展学生的分析比较、归纳概括的能力,渗透数学思想,培养学生的符号感。
3、使学生感受数学与生活的联系,自主探索初步获得成功的体验,增强学习数学的信心。
【教学重点】:
理解并掌握加法交换律和加法结合律。
【教学难点】:
归纳概括出加法交换律和加法结合律。
【教学过程】:
一、谈话导入
1、师生谈话。
师:同学们,你们有大课间活动吗?有什么项目?有没有小朋友喜欢跳绳和踢毽子的?(学生自由发言)
2、自主提问。
课件出示教材第55页例1情境图,你能从图中获取哪些数学信息?(学生自由说)追问:你能根据这些信息提出哪些用加法计算的问题?
生回答:(1)跳绳的有多少人?
(2)参加活动的女生有多少人?(3)跳绳和踢毽子的一共有多少人?
3、导入新课。
师:在过去的学习中,我们进行过很多的加法运算,你知道在加法运算里有哪些基本规律吗?今天我们就一起来探索加法中的运算规律。(板书课题:加法运算律)
二、探究新知
1、加法交换律。
(1)提出问题:求跳绳的有多少人,应该怎样列式计算?
(2)列式解答:指名学生回答,教师板书:28+17=45(人)或17+28=45(人)(3)观察发现。
提问:这两道算式都是求什么的人数?结果都是多少?再观察算式,说说它们有何相同点和不同点。
引导学生发现:这两道算式都是求跳绳的总人数,加数相同,得数也一样,只不过是把两个加数的位置调换了一下。
引导:我们可以用什么符号将这两道算式连起来呢?(等号)师板书:28+17=17+28(4)照样子写一写。
师:你能再写几个这样的算式吗?(学生写写)(5)让学生用自己喜欢的方法表示出这种规律。
提问:观察这些等式,你有什么发现?(两个加数交换位置,和不变)学生在各自的练习本上表示规律后,投影展示并交流学生不同的表示方法。(6)教学用字母表示加法交换律。
明确:如果用字母a、b分别表示两个加数,上面的规律可以写成: a+b=b+a 教师指出:两个数相加,交换两个加数的位置,和不变。这就是加法交换律。(板书:加法交换律)
2、加法结合律。
(1)课件出示问题:跳绳和踢毽子的一共有多少人?
学生独立列式计算。教师巡视,并指名两人板演不同的方法。
(2)汇报交流。
法一:先算出跳绳的有多少人。法二:先算出女生有多少人?
(28+17)+23 28+(17+23)= 45+23 =28+40 = 68(人)=68(人)提问:这两道算式有什么相同的地方和不同的地方? 学生观察、比较这两个不同算式的计算结果。
追问:这两道算式的结果相同,我们可以把它写成等式吗?怎样写? 根据学生的回答,师板书:(28+17)+23=28+(17+23)(3)探索规律。
①出示下面两道算式,让学生算一算,下面的○里能填等号吗?(45+25)+16○45+(25+16)(39+18)+22○39+(18+22)
②组织观察:比较上面的三组算式,和同学说说有什么发现。学生交流得出:每组两个算式中的三个加数相同。
先把前两个数相加,或者先把后两个数相加,和不变。追问:如果用字母a、b、c分别表示三个加数,这个规律可以怎样表示? 师板书:(a+b)+c=a+(b+c)
小结:三个数相加,先把前两个数相加,或者先把后两个数相加,和不变。这就是加法结合律。(板书:加法结合律)
三、练习巩固
1、完成教材第56页“练一练”。
让学生说说每个等式各运用了什么运算律及判断的依据。师重点强调第三小题既交换了位置,又改变了运算顺序,所以该小题运用了加法交换律和加法结合律。
2、完成 “练习九”第1题。
重点引导学生观察最后一小题,运用了加法交换律和结合律。
3、完成“练习九”第2题。
这种验算方法在以前学过,通过这几题的练习加深学生的认识,明确可以运用加法交换律进行验算。
4、完成“练习九”第3题。
让学生通过计算和观察、比较,进一步认识加法交换律和结合律。让学生计算,并说说每组中两题的联系。
比较每组中的两题,说说哪一题计算起来更加简便。明确可以利用加法的交换律和结合律进行简便计算。
四、反思总结
通过本课的学习,你有什么收获? 还有哪些疑问?
【教材简析与说明】:
《加法运算律》是苏教版小学四年级数学下册第六单元第1课时的内容,这部分内容看似简单,却是后面的运算律的铺垫,因此学好这个内容至关重要。在加法运算律的教学中,教材首先创设操场上跳绳和踢毽子的情境,贴近学生的生活,能够激起学生学习的积极性,有探究新知的欲望。其次鼓励学生算法多样化,得出不同的解题方法,进而引导学生观察发现,比较归纳得出加法的运算律。在探索规律时,以学生为主体,由浅入深,循序渐进,符合小学生的思维发展和认知特点。在初步发现加法交换律时,引导学生用自己喜欢的方式表示,再统一用字母表示,既尊重了学生,又能很好地让学生接受字母表示的方法。最后教材出示了一些练习,突出重难点,层次分明,形式多样,及时巩固了所学的加法运算律。
第三篇:加法运算律教学设计
加法运算律
【教学内容】义务教育课程标准实验教科书(西师版)四年级上册第46~ 48页例
1、例2的教学内容。
【教学目标】1.使学生理解和掌握加法交换律和结合律,懂得用字母表示的意义。2.通过经历对加法运算定律的探究、发现过程,培养学生观察、分析、比较、概括的能力。3.在学生学习加法运算定律的过程中,培养其数学交流的能力和合作的意识。【教学重难点】理解和掌握加法交换律和结合律。【教具学具准备】多媒体课件 【教学过程】
一、探究加法结合律
1.出示情景图:三年级89人,二年级96人,一年级104人,问题是:3个年级共有学生多少人?
2.教师:该怎样列式? 89+96+104 3.教师:请同学们再想想该怎样计算?(1)学生独立思考。(2)(2)分组讨论。
(3)全班交流。教师:谁代表你们这组说一说是怎样计算的? 学生1:我们先计算89+96算出二、三年级共有185人,再用185+104算出3个年级一共有289人。
学生2:我们先计算96+104算出一、二共有200人,再用89+200算出3个年级一共有289人。教师:同学们的方法都正确,下面请你们在书上完成“填一填”。4.学生填空后对答案。
5.引导归纳。教师:从上面两组的计算中,你发现了什么? 教师:那么左、右两个算式之间可以用什么符号连接? 教师:对,能写成一个等式,89+96+104=89+(96+104)。教师:你们的发现是不是适合其他算式,请自己举例验证。如果适合,请用一个等式表示。教师:看来,你们的发现都适合三个数相加的情况。恭喜同学们又发现了加法的一个运算定律。为了简便易记我们需要几个字母表示? 学生分组用字母表示。汇报并板书:(a+b)+c=a+(b+c)。教师:想给这个定律起什么名? 教师:同学们起的名字都很好,我们就按约定俗成的叫法,把它称作加法结合律吧。学生齐读加法结合律,(a+b)+c=a+(b+c)。
6今天我们学习的内容就是教科书上第46、47页的内容,请同学们把书上的重点句勾画出来理解并记忆。
二、巩固规律1.第47页,课堂练习第1题。学生独立填空,再集体评讲。2.第48页,课堂练习第2题。(1)理解题意。(2)学生独立完成。(3)集体校对。
(4)问:136+89+64与 89+(136+64)用等号相连的依据是什么?3.练习九第1题。独立完成,集体评讲校对答案。
四、全课小结教师:通过今天的学习,你知道了什么?教师:结合律是加法运算。
(板书:加法运算律)它们在计算中怎样应用呢?下节课我们继续学习
第四篇:加法运算律教学设计
“加法运算律”教学设计
教学内容:苏教版数学教科书第7册第56—58页。
教学目标:
1.理解并掌握加法交换律和加法结合律,并能够用字母来表示加法交换律和结合律。
2.通过对熟悉的实际问题的解决,进行比较和分析,发现并概括出运算律。
教学重点:理解并掌握加法交换律、结合律,能用字母来表示。
教学难点:发现并概括出运算律。教学准备:配套课件。
教学过程
课前谈话:
同学们都喜欢参加体育活动吧,来说说都喜欢哪些体育项目?
一、观察主题图,提出问题
同学们,气候渐渐转凉了,学校又要组织大家进行冬锻比赛了,冬锻比赛中有些什么项目呢?看,同学们正在紧张训练呢!电脑出示情境图,提问:从这张图片中,你获得了哪些数学信息? 你能根据这些信息,提出几个用加法计算的问题吗?根据学生的回答,相机以课件出示:参加跳绳的一共有多少人?参加活动的女生一共有多少人?参加活动的一共有多少人? 设计意图:紧扣教材中的主题图展开教学,让学生在观察的基础上指出图中所含的数学信息,并从中提出一些用加法计算的问题,有利于培养和提高学生用数学眼光看待事物的能力,同时也为后续的探究学习提供了基本素材。
二、教学加法交换律 1.列式计算。
指名学生口头列式,教师板书:28+17 17+28 2.观察两个算式:这两个算式都是来求出参加跳绳的人数,猜猜看结果可能会怎样?(相等)3.学生计算,媒体演示,用等号连接。4.观察比较这个等式,你有什么发现? 学生交流后板书:交换两个加数的位置,结果不变。
5,老师也从这个等式发现了一个规律出示:交换28和17的位置,和不变。6.比较老师和你们的两个发现,哪一个发现肯定是正确的?为什么? 7.交流得出:老师的发现是通过计算证明了的,而你们的发现到底正确不正确还不知道,暂且就把这个发现看做是我们的猜想?(板书:猜想?)既然是猜想就需要我们去验证(板书),同学们想想看,我们可以怎样来验证呢? 8.学生交流后得出:可以再举一些例子。
9.让学生再举例说一说,追问:现在我们有了几个这样的等式,能不能证明我们的猜想就正确了呢?(学生说还不能)10.追问:到底要举多少个例子才能证明我们的猜想呢?(足够多)11.达成共识:每个人举3个例子,整个班级就有一百多个例子,这样就比较多了。
12.学生自主举例,并且交流。
在交流的过程中,强调一定要把两边的结果计算了以后才能写上等号。
13.从同学们举的这些例子来看,都能够证明“交换两个加数的位置,结果不变”这个猜想。有没有找到交换两个加数的位置,结果发生变化的例子? 14.用语言文字叙说比较麻烦,大家能不能用自己喜欢的符号、图形、字母等把发现的规律表示出来呢?在自备本上试着写一写。
教师巡视,让部分学生上台展示创意,并让学生解释说明。
展示后教师小结:看来,用符号、字母等表示就是简单!在数学上,我们统一用字母a、b来表示两个加数,可以写作a+b=b+a。
设计意图:教师顺应学生的学情,当学生感觉到用言语表述规律显得麻烦、不便时,教师及时让学生采用 自己喜欢的形式把规律表示出来,很适合学生的“胃口”,能够提高学生的学习兴致,也有利于培养学生的创新思维。
15.小结、揭题:刚才我们在解决实际问题时,通过列式计算,发现了规律,又自由列举了很多例子来验证了规律,最后探索出了一条重要规律。其实在一些四则运算中包含了一些规律性的东西,我们把这些规律叫做运算律(板书课题“运算律”)。我们刚才发现的加法中的这条规律叫做加法交换律(板书:加法交换律),在数学上通常用字母a+b=b+a表示。
三、学习加法结合律
1.过渡:刚才通过解决第一个问题,我们研究出了加法交换律,现在我们再来研究这一个问题,看看会不会有新的发现? 2.列式计算,得出等式。(1)指名回答,板书:28+17+23 第一步先求什么?(参加跳绳的人数)为了看得更清楚,我们可给28+17添上括号,也就表示先算前两个数的和,再和第三个数相加,我们一起算一算结果是多少?(68人)(2)还是这个式子28+17+23(板书),如果要先算参加活动的女生人数应该怎么办? 教师根据学生回答添上括号:28+(17+23)。
添上括号后表示先算后两个数的和,再跟第一个数相加,结果又是多少呢?我们一起算算结果又是多少?。(68人)(3)比较答案,用等号连接两个算式。
3.请同学们观察比较这个等式,你有什么发现? 4.让学生用自己的语言交流。
5.小结:从刚才同学的交流中发现,要用语言来表述这个发现,好像有一定的困难,那能不能用我们刚才学到的方法,用含有字母的式子来表示你的发现呢? 6.交流得出:(a+b)+c=a+(b+c)7.这也是我们的发现,同学们想想看,怎样来证明我们的猜想呢? 8.让学生举例交流。
9、比较发现,举出的例子都能够证明我们的这个发现是正确的。
设计意图:根据新教材的教学目标,要淡化规律的表述,让学生体会字母表示规律的好处。教师选择恰当的时机,在学生感到用语言表述比较困难的时候,不失时机地让学生直接用宇母表示加法结合律,能让学生真切感受到用字母表示运算律的优越性。
10.教师揭示:这就是我们今天所学的第二个运算律——加法结合律(板书:加法结合律)。如果用字母表示就是——学生齐读字母公式。
三、巩固练习
1.下面各题中分别运用了什么运算律?以手势进行判断,用手掌代表加法交换律,拳头代表加法结合律。
82+0=0+82 47+(30+8)=(47+30)+8(84+68)+32=84+(68+32)75+(48+25)=(75+25)+48(注意引导学生发现第4小题是运用了加法交换律和加法结合律)2.填空练习。
(45+36)+64=45+(□十□)560+(140+70)=(560+□)+ □ 18+(24+□)=(18+□)+32(18+□)+b=18+(a+□)小结:看来运算律真有用,可以使计算变得很方便,大家把加起来是100的两个数放到一起先加,这可真是个好办法。
3.老师这里有两行树叶,上面都有数字,哪两片树叶上的数的和是100,请把他们连起来。
想一想:什么样的两个数加起来会是100? 设计意图:练习设计时,灵活运用教材上的练习题。第一个练习让学生用手势答题,能更好地让学生理解“第四小题中的等式同时综合运用了两种运算律”这一教学难点,加深学生体验。第二个练习让学生进行计算,通过比较计算速度的快慢,让学生感受到运用加法运算律的优越性,并结合第三个练习题渗透了简算方法的指导,为后续的加法简便运算学习打下坚实的基础。
四、课堂总结
通过本节课的学习,你有什么收获?我们是通过什么方法找到这些规律的?教师:是啊,运用这些方式能够找到一些运算中的秘密,这些方法在数学中的用处非常大。
设计意图:全课总结,让学生梳理本堂课所学知识和技能,并回顾学习方法,旨在通过反思来促进学生对新知的整体建构,同时也让学生在数学活动中获得成功的体验,进一步增强对数学的兴趣和信心。
第五篇:加法运算律教学设计
《加法运算律》教学设计
教学内容:苏教版小学数学四年级 教学目标:
1、使学生参与探索加法交换律和结合律的过程,学会加法交换律和结合律,初步感知加法运算律的价值,发展应用意识。
2、在探索运算律的过程中,发展学生的分析、比较、抽象、概括能力, 初步培养归纳、推理的能力,培养学生的符号感。
3、让学生在数学学习过程中获得探究的乐趣和成功的喜悦,进一步增强对数学学习的兴趣和信心,初步形成探究问题的意识和习惯。
教学重点:参与探索加法交换律和加法结合律,能用字母来表示加法交换律和结合律。
教学难点:使学生参与探索加法结合律和交换律的过程,发现并概括出运算律。
教学准备:多媒体课件 教学过程:
一、创设情境
师:同学们喜欢体育活动吗?谁来说说你最喜欢哪些体育活动? 仔细观察,从图中你知道了哪些数学信息?
二、提出问题
师:根据这些信息,你能提出用加法计算的问题吗?(预设)①参加跳绳的一共有多少人? ②参加活动的女生一共有多少人?
③跳绳的男生和踢毽子的女生一共有多少人 ④参加活动的一共有多少人?
三、探索加法交换律: 1.观察
师:我们先来解决第一个问题:参加跳绳的一共有多少人? 能口头列式吗?
师:请同学们仔细观察,这两个算式有什么相同的地方?有什么不同的地方?
2、举例
师:你能举出像这样的例子吗?
3、找共性
师:仔细观察这几组等式,它们有什么相同点,又有什么不同点?
4、概括
师:从这些例子中你发现了什么规律?谁来说一说?
5、验证
师:是不是任意两个加数,交换了位置,和都不变呢?从刚才这几个算式中得到的结论,只能是一个猜想,要验证这个猜想,就要举更多的例子进行验证。现在就请同学们举例,举出的例子越多越好。
师:请同学们停下来,谁来汇报,你举了什么例子进行验证的? 像这样的例子举得完吗?(举不完)那你能不能举出“交换两个加数的位置和不相等”的情况呢?(不能)
四、归纳总结
看来举了这么多的例子都验证我们的发现是正确的。交换两个加数的位置,和不变。
6、用字母表示交换律
师:你能用自己喜欢的方式把这个规律表示出来吗? 师:大家说的都很好,你比较喜欢哪一种表示方法?“a+b=b+a”
7、用途
师:加法交换律是我们的老朋友了,想一想,什么时候曾经用过它?——加法验算。
8、总结方法
师:同学们,刚才我们共同经历了“举例——找共性——概括——验证”等一系列的探究活动,发现了规律。这整个过程,就是归纳法。它是数学上经常使用的一种方法。
师:下面我们继续用这种方法来探究加法运算中的另一个规律。
五、探索加法结合律 1.在情境中感受规律
师:刚才通过解决第一个问题,我们得到了加法交换律,现在我们再来研究第二个问题“参加活动的一共有多少人?”
师:你们会列综合算式解决这个问题吗? 师:谁来说说?怎么列式的?
板书出:(28+17)+23 = 28+(17+23)观察比较这两个算式。
2.感知众多案例,积累感性认识。
老师这里还有两道算式,注意看!(屏示:(3+6)+4 = 3+(6+4)、(5+9)+1 = 5+(9+1))根据研究方法,我们举出了这些例子,接下来我们应该进行哪一步?
3、找共性,概括规律
师:请同学们仔细观察这三组等式,在小组内进行讨论。4.举例验证。
你能不能再多举些例子来验证? 这样的例子能举完吗?有没有同学举出的例子左右两边和不相同的?
六、归纳总结 5.归纳加法结合律。
看来,我们的发现不只是巧合,三个数相加确实有规律!规律就是:三个数相加,可以先把前两个数相加,再和第三个数相加;也可以先把后两个数相加,再和第一个数相加,它们的和不变。
师:这个规律就是我们今天要认识的另一个运算律——加法结合律。
加法结合律也可以用字母来表示:(a+b)+c=a+(b+c)
七、比较两个运算律
师:刚才我们一起用归纳法探究出了加法中的两个运算规律,加法交换律和加法结合律,比较一下这两个运算规律,它们有什么相同
之处和不同之处?
八、趣味练习,拓展提高
师:接下来,我们就运用今天所学的知识解决一些实际问题。1.你能把得数相同的算式连一连吗?
(1)72+16 A.(75+25)+48
(2)45+(88+12)B.16+72
(3)75+(48+25)C.(45+88)+12 2.你能在方框内填出合适的数吗?(45+36)+64=45+(36+□)560+(140+70)=(560+□)+□ 18+(c+□)=(18+□)+a
九、全课总结
师:说一说这节课你学到了什么? 板书设计:
运算律
加法交换律 28+17=17+28 归纳法 …… 举例
a+b=b+a 找共性 概括
验证
加法结合律
28+17)+23=28+(17+23)(a+b)+c=a+(b+c)(