四边形初中数学教案(精选五篇)

时间:2019-05-13 01:09:11下载本文作者:会员上传
简介:写写帮文库小编为你整理了多篇相关的《四边形初中数学教案》,但愿对你工作学习有帮助,当然你在写写帮文库还可以找到更多《四边形初中数学教案》。

第一篇:四边形初中数学教案

1.教材分析

(1)知识结构:

(2)重点和难点分析:

重点:四边形的有关概念及内角和定理.因为四边形的有关概念及内角和定理是本章的基础知识,对后继知识的学习起着重要的作用.难点:四边形的概念及四边形不稳定性的理解和应用.在前面讲解三角形的概念时,因为三角形的三个顶点确定一个平面,所以三个顶点总是共面的,也就是说,三角形肯定是平面图形,而四边形就不是这样,它的四个顶点有不共面的情况,又限于我们现在研究的是平面图形,所以在四边形的定义中加上“在同一平面内”这个条件,这几个字的意思学生不好理解,所以是难点.2.教法建议

(1)本节的引入最好使用我们提供的多媒体课件,通过这个课件,使学生认识到这些四边形都是常见图形,研究它们具有实际应用意义,从而激发学生学习数学的兴趣.(2)本节的教学,要以三角形为基础,可以仿照三角形,通过类比的方法建立四边形的有关概念,如四边形的边、顶点、内角、外角、内角和、外角和、周长等都可同三角形类比,要结合三角形、四边形的图形,对比着指给学生看,让学生明确这些概念.(3)因为在三角形中没有对角线,所以四边形的对角线是一个新概念,它是解决四边形问题时常用的辅助线,通过它可以把四边形问题转化为三角形问题来解决.结合图形,让学生自己动手作四边形的一条对角线,并观察四边形的一条对角线把它分成几个三角形?两条对角线呢?使学生加深对对角线的作用的认识.(4)本节用到的数学思想方法是化归转化的思想和类比的思想,教师在讲解本节知识时要渗透这两种思想方法,并且在本节小结中对这两种数学思想方法进行总结,使学生明白碰到复杂的、未知的问题要转化为简单的、已知的问题.一、素质教育目标

(一)知识教学点

1.使学生掌握四边形的有关概念及四边形的内角和外角和定理.

2.了解四边形的不稳定性及它在实际生产,生活中的应用.

(二)能力训练点

1.通过引导学生观察气象站的实例,培养学生从具体事物中抽象出几何图形的能力.

2.通过推导四边形内角和定理,对学生渗透化归思想.

3.会根据比较简单的条件画出指定的四边形.

4.讲解四边形外角概念和外角定理时,联系三角形的有关概念对学生渗透类比思想.

(三)德育渗透点

使学生认识到这些四边形都是常见的,研究他们都有实际应用意义,从而激发学生学习新知识的兴趣.

(四)美育渗透点

通过四边形内角和定理数学,渗透统一美,应用美.

二、学法引导

类比、观察、引导、讲解

三、重点·难点·疑点及解决办法

1.教学重点:四边形及其有关概念;熟练推导四边形外角和这一结论,并用此结论解决与四边形内外角有关计算问题.

2.教学难点:理解四边形的有关概念中的一些细节问题;四边形不稳定性的理解和应用.

3.疑点及解决办法:四边形的定义中为什么要有“在平面内”,而三角形的定义中就没有呢?根据指定条件画四边形,关键是要分析好作图的顺序,一般先作一个角.

四、课时安排

2课时

五、教具学具准备

投影仪、胶片、四边形模型、常用画图工具

六、师生互动活动设计

教师引入新课,学生观察图形,类比三角形知识导出四边形有关概念;师生共同推导四边形内角和的定理,学生巩固内角和定理和应用;共同分析探索外角和定理,学生阅读相关材料. 第一课时

七、教学步骤

【复习引入】

在小学里已经对四边形、长方形、平形四边形的有关知识有所了解,但还很肤浅,这一

章我们将比较系统地学习各种四边形的性质和判定分析它们之间的关系,并运用有关四边形的知识解决一些新问题.

【引入新课】

用投影仪打出课前画好的教材中p119的图.

师问:在上图中你能把知道的长方形、正方形、平行四边形、梯形找出来吗?(启发学生找上述图形,最后教师用彩色笔勾出几个图形).

【讲解新课】

1.四边形的有关概念

结合图形讲解四边形,四边形的边、顶点、角,凸四边形,四边形的对角线(同时学生在书上画出上述概念),讲解这些概念时:

(1)要结合图形.

(2)要与三角形类比.

(3)讲清定义中的关键词语.如四边形定义中要说明为什么加上“同一平面内”而三角形的定义中为什么不加“同一平面内”(三角形的三个顶点一定在同一平面内,而四个点有可能不在同一平面内,如图4—2中的点 .我们现在只研究平面图形,故在定义中加上“在同一平面内”的限制).

(4)强调四边形对角线的作用,作为四边形的一种常用的辅助线,通过它可以把四边形问题转化为三角形来解(渗透化归思想),并观察图4-3用对角线分成的这些三角形与原四边形的关系.

(5)强调四边形的表示方法,一定要按顶点顺序书写四边形如图4—1.

(6)在判断一个四边形是不是凸四边形时,一定要按照定义的要求把每一边都延长后再下结论如图4-4,图4-5.

2.四边形内角和定理

教师问:

(1)在图4-3中对角线ac把四边形abcd分成几个三角形?

(2)在图4-6中两条对角线ac和bd把四边形分成几个三角形?

(3)若在四边形abcd如图4-7内任取一点o,从o向四个顶点作连线,把四边形分成几个三角形.

我们知道,三角形内角和等于180°,那么四边形的内角和就等于:

①2×180°=360°如图4—6;

②4×180°-360°=360°如图4-7.

例1 已知:如图4—8,直线 于b、于c.

求证:(1);(2).本例题是四边形内角和定理的应用,实际上它证明了两边相互垂直的两个角相等或互补的关系,何时用相等,何时用互补,如果需要应用,作两三步推理就可以证出.

【总结、扩展】

1.四边形的有关概念.

2.四边形对角线的作用.

3.四边形内角和定理.

八、布置作业

教材p128中1(1)、2、3.

九、板书设计

width=141>四边形

(一)四边形有关概念 width=116>四边形内角和 width=35>例1

十、随堂练习

教材p122中1、2、3.

第二篇:初中《四边形》知识点归纳

初中《四边形》知识点归纳

四边形性质探索

定义:若两条直线互相平行,则其中一条直线上任意两点到另一条直线的距离相等,这个距离称为平行线之间的距离。

平行四边形:两组对边分别平行的四边形。对边相等,对角相等,对角线互相平分。两组对边分别平行的四边形是平行四边形,两组对边分别相等的四边形是平行四边形,两条对角线互相平分的四边形是平行四边形,一组对边平行且相等的四边形是平行四边形

菱形:一组邻边相等的平行四边形„„。四条边都相等,两条对角线互相垂直平分,每一条对角线平分一组对角。一组邻边相等的平行四边形是菱形,对角线互相垂直的平行四边形是菱形,四条边都相等的四边形是菱形。

矩形:有一个内角是直角的平行四边形。对角线相等,四个角都是直角。有一个内角是直角的平行四边形是矩形,对角线相等的平行四边形是矩形。

正方形:一组邻边相等的矩形。正方形具有平行四边形、菱形、矩形的一切性质。一组邻边相等的矩形是正方形,一个内角是直角的菱形是正方形。

梯形:一组对边平行而另一组对边不平行的四边形。一组对边平行而另一组对边不平行的四边形是梯形。

等腰梯形:两条腰相等的梯形。同一底上的两个内角相等,对角线相等。两腰相等的梯形是等腰梯形,同一底上两个内角相等的梯形是等腰梯形。

直角梯形:一条腰和底垂直的梯形。一条腰和底垂直的梯形是直角梯形。

多边形:在平面内,由若干条不在同一条直线上的线段首尾顺次相连组成的封闭图形叫做多边形。n边形的内角和等于×180

多边形内角的一边与另一边的反向延长线所组成的角叫做这个多边形的外角。多边形的外角和都等于360°。三角形、四边形和六边形都可以密铺。

定义:在平面内,一个图形绕某个点旋转180°,如果旋转前后的图形互相重合,那么这个图形叫做中心对称图形,这个点叫做它的对称中心。

中心对称图形上的每一对对应点所连成的线段都被对称中心平分。

几何表达式举例:

∵∠=90°A=B

∴ΔAB是等腰直角三角形

∵ΔAB是等腰直角三角形

∴∠=90°A=B

10全等三角形的性质:

全等三角形的对应边相等;

全等三角形的对应角相等

八年级数学上册期末复习提纲

几何表达式举例:

∵ΔAB≌ΔEFG

∴AB=EF………

∵ΔAB≌ΔEFG

第三篇:证明方法四边形必备初中

证明线段垂直

一.相交线、平行线: 1.相交直线邻补角相等。

2.a垂直b,c平行a,则c垂直b

二.三角形中:

1.等腰三角形三线合一。2.勾股定理逆定理。

3.三角形三条边上的高所在直线交于同一点。

三.四边形中:

1.菱形对角线互相垂直。2.矩形邻边互相垂直。

四.圆中: 1.垂径定理。2.切线性质定理。3.圆周角定理推论。

4.相交两圆连心线垂直平分公共弦。

五.图形运动:

1.图形翻折,对称轴垂直平分对应点连线。

六.角度计算:

证明线段平行

一.相交线、平行线: 1.同位角相等。2.内错角相等。3.同旁内角互补。4.平行线的传递性。

5.垂直同一条直线的两条直线平行。

6.比例线段。

二.三角形中: 1.三角形中位线。

三.四边形中:

1.平行四边形对边平行。2.梯形两底平行。3.梯形中位线平行两底。

四.图形运动:

1.图形平移对应边平行,对应点连线平行。2.图形翻折对应点连线平行。

五.平面直角坐标系:

1.一次函数斜率相等,两直线平行。六.向量:

1.向量a=k向量b,k不等于0,向量a,向量b不为0向量,向量a所在直线与向量b所在直线平行或重合。

证明角相等的方法 一.相交线、平行线: 1.对顶角相等。

2.等角的余角(或补角)相等。

3.两直线平行,同位角相等、内错角相等。4.凡直角都相等。

5. 角的平分线分得的两个角相等。

二.三角形中:

1.等腰三角形的两个底角相等。

2.等腰三角形底边上的高(或中线)平分顶角(三线合一)。3.三角形外角和定理:三角形外角等于和它不相邻的内角之和。4.全等形中,一切对应角都相等。5.相似三角形的对应角相等。

三.四边形中:

1.平行四边形对边相等,对角线相互平分。2.菱形的每一条对角线平分一组对角。3.等腰梯形在同一底上的两个角相等。

四.圆中:

1.在同圆或等圆中,若有两条弧相等或有两条弦相等,那么它们所对的圆心角相等。2.在同圆或等圆中,等弧所对的圆周角相等.。

3.圆周角定理:在同圆或等圆中,一条弧所对的圆周角等于它所对的圆心角的一半。4.圆内接四边形的性质:圆内接四边形的对角互补;并且每一个外角都等于它的内对角。5.三角形的内心的性质:三角形的内心与角顶点的连线平分这个角。6.正多边形的性质:正多边形的外角等于它的中心角.。

7.从圆外一点引圆的两条切线,圆心和这一点的连线平分这两条切线的夹角。五.角运算:

1.利用等量代换、等式性质 证明两角相等。2.利用三角函数计算出角的度数相等。

证明线段相等的方法 一.常用轨迹中:

1.两平行线间的距离处处相等。

2.线段中垂线上任一点到线段两端点的距离相等。3.角平分线上任一点到角两边的距离相等。

4.若一组平行线在一条直线上截得的线段相等,则在其它直线上截得的线段也相等。

二.三角形中:

1.同一三角形中,等角对等边。(等腰三角形两腰相等、等边三角形三边相等)2.任意三角形的外心到三顶点的距离相等。3.任意三角形的内心到三边的距离相等。

4.等腰三角形顶角的平分线(或底边上的高、中线)平分底边。5.直角三角形中,斜边的中点到直角顶点的距离相等。6.有一角为60°的等腰三角形是等边三角形。

7.过三角形一边的中点与另一边平行的直线,必平分第三边。

8.同底或等底的三角形,若面积相等,则高也相等。同高或等高的三角形,若面积相等,则底也相等。

三.四边形中:

1.平行四边形对边相等,对角线相互平分。

2.矩形对角线相等,且其的交点到四顶点的距离相等。3.菱形中四边相等。

4.等腰梯形两腰相等、两对角线相等。

5.过梯形一腰的中点与底平行的直线,必平分另一腰。

四.正多边形中:

1.正多边形的各边相等。且边长

2.正多边形的中心到各顶点的距离(外接圆半径R)相等、各边的距离(边心距)相等。且

五.圆中:

1.同圆或等圆的半径相等、直径相等;等弧或等圆心角、等圆周角所对的弦、弦心距相等。2.同圆或等圆中,等弦所对的弦心距相等,等弦心距所对的弦相等。3.任意圆中,任一弦总被与它垂直的半径或直径平分。4.自圆外一点所作圆的两切线长相等。

5.两相交或外切或外离圆的二公切线的长相等;两外离圆的二内公切线的长也相等。6.两相交圆的公共弦总被连心线垂直平分。7.两外切圆的一条外公切线与内公切线的交点到三切点的距离相等。8.两同心圆中,内圆的任一切线夹在外圆内的弦总相等且都被切点平分。

六.全等形中:

1.全等形中,一切对应线段(对应的边、高、中线、外接圆半径、内切圆半径……)都相等。

七.线段运算:

1.对应相等线段的和相等;对应相等线段的差相等。

2.对应相等线段乘以的相等倍数所得的积相等;对应相等线段除以的相等倍数所得的商相等。

3.两线段的长具有相同的数学解析式,或二解析式相减为零,或相除为1,则此二线段相等。

第四篇:初中四边形知识点总结

一、平行四边形定义:两组对边分别平行的四边形叫做平行四边形。

平行四边形的性质:(1)平行四边形是中心对称图形,对角线的交点是它的对称中心;

(2)平行四边形的对边平行且相等;

(3)平行四边形的对角相等,邻角互补;

(4)平行四边形的对角线互相平分.平行四边形的判定:

平行四边形面积公式:S=ah(a为一边长,矩形定义:有一个角是直角的平行四边形叫做矩形.矩形的性质:(1)具有平行四边形的所有性质;

(2)对角线相等;

(3)四个角都是直角;

(4)是轴对称图形,它有两条对称轴.矩形的判定方法:(1)有一个角是直角的平行四边形;

(2)有三个角是直角的四边形;

(3)对角线相等的平行四边形;

(4)对角线相等且互相平分的四边形.矩形面积公式:S=ab(a为一边长,菱形定义:有一组邻边相等的平行四边形叫做菱形。菱形的性质:(1)具有平行四边形的性质;(2)四边形相等;

(3)对角线互相垂直,且每一条对角线平分一组对角;(4)既是中心对称图形又是轴对称图形。菱形的判定方法:(1)四条边相等的四边形是菱形;(2)对角线垂直的平行四边形是菱形;(3)定义。

菱形面积公式:①S=ah(a为一边长,正方形定义:有一组邻边相等且有一个角是直角的平行四边形叫做正方形正方形的性质:具有平行四边形、矩形、菱形的性质:(1)四个角是直角,四条边相等;(2)对角线相等,互相垂直平分,每一条对角线平分一组对角;(3)既是中心对称图形又是轴对称图形。正方形的判定方法:(1)有一组邻边相等的矩形是正方形;(2)有一个角是直角的菱形是正方形;(3)定义。

正方形面积公式:①(a为边长h为这条边上的高)))②(b、c为对角线的长

; ②(b为对角线长)

二、b为另一边长

三、h为这条边上的高)

四、)

第五篇:初中数学教案

初中数学教案

教学建议

一、知识结构

二、重点、难点分析

本节的重点是:单项式乘法法则的导出.这是因为单项式乘法法则的导出是对学生已有的数学知识的综合运用,渗透了“将未知转化为已知”的数学思想,蕴含着“从特殊到一般”的认识规律,是培养学生思维能力的重要内容之一.

本节的难点是:多种运算法则的综合运用.是因为单项式的乘法最终将转化为有理数乘法、同底数幂相乘、幂的乘方、积的乘方等运算,对于初学者来说,由于难于正确辩论和区别各种不同的运算以及运算所使用的法则,易于将各种法则混淆,造成运算结果的错误.

三、教法建议

本节课在教学过程中的不同阶段可以采用了不同的教学方法,以适应教学的需要.

(1)在新课学习阶段的单项式的乘法法则的推导过程中,可采用引导发现法.通过教师精心设计的问题链,引导学生将需要解决的问题转化成用已经学过的知识可以解决的问题,充分体现了教师的主导作用和学生的主体作用,学生始终处在观察思考之中.

(2)在新课学习的例题讲解阶段,可采用讲练结合法.对于例题的学习,应围绕问题进行,教师引导学生通过观察、思考,寻求解决问题的方法,在解题的过程中展开思维.与此同时还进行多次有较强针对性的练习,分散难点.对学生分层进行训练,化解难点.并注意及时矫正,使学生在前面出现的错误,不致于影响后面的学习,为后而后学习扫清障碍.通过例题的讲解,教师给出了解题规范,并注意对学生良好学习习惯的培养.

(3)本节课可以师生共同小结,旨在训练学生归纳的方法,并形成相应的知识系统,进一步防范学生在运算中容易出现的错误.

教学设计示例

一、教学目的

1.使学生理解并掌握单项式的乘法法则,能够熟练地进行单项式的乘法计算.

2.注意培养学生归纳、概括能力,以及运算能力.

3.通过单项式的乘法法则在生活中的应用培养学生的应用意识.

二、重点、难点

重点:掌握单项式与单项式相乘的法则.

难点:分清单项式与单项式相乘中,幂的运算法则.

三、教学过程

复习提问:

什么是单项式?什么叫单项式的系数?什么叫单项式的次数?

引言 我们已经学习了幂的运算性质,在这个基础上我们可以学习整式的乘法运算.先来学最简单的整式乘法,即单项式之间的乘法运算(给出标题).

新课 看下面的例子:计算

(1)2x2y·3xy2;(2)4a2x2·(-3a3bx).

同学们按以下提问,回答问题:

(1)2x2y·3xy2

①每个单项式是由几个因式构成的,这些因式都是什么?

2x2y·3xy2=(2·x2·y)·(3·x·y2)

②根据乘法结合律重新组合 2x2y·3xy2=2·x2·y·3·x·y2

③根据乘法交换律变更因式的位置

2x2y·3xy2=2·3·x2·x·y·y2

④根据乘法结合律重新组合 2x2y·3xy2=(2·3)·(x2·x)·(y·y2)

⑤根据有理数乘法和同底数幂的乘法法则得出结论

2x2y·3xy2=6x3y3

按以上的分析,写出(2)的计算步骤:

(2)4a2x2·(-3a3bx)

=4a2x2·(-3)a3bx

=[4·(-3)]·(a2·a3)·(x2·x)·b

=(-12)·a5·x3·b

=-12a5bx3.

通过以上两题,让学生总结回答,归纳出单项式乘单项式的运算步骤是:

①系数相乘为积的系数;

②相同字母因式,利用同底数幂的乘法相乘,作为积的因式;

③只在一个单项式里含有的字母,连同它的指数也作为积的一个因式;

④单项式与单项式相乘,积仍是一个单项式;

⑤单项式乘法法则,对于三个以上的单项式相乘也适用.

看教材,让学生仔细阅读单项式与单项式相乘的法则,边读边体会边记忆.

利用法则计算以下各题. 例1 计算以下各题:

(1)4n2·5n3;

(2)(-5a2b3)·(-3a);

(3)(-5an+1b)·(-2a);

(4)(4×105)·(5×106)·(3×104).

解:(1)4n2·5n3

=(4·5)·(n2·n3)

=20n5;

(2)(-5a2b3)·(-3a)

=[(-5)·(-3)]·(a2·a)·b3

=15a3b3;

(3)(-5an+1b)·(-2a)

=[(-5)·(-2)]·(an+1·a)b

=10an+2b;

(4)(4·105)·(5·106)·(3·104)

=(4·5·3)·(105·106·104)

=60·1015

=6·1016.

例2 计算以下各题(让学生回答):

(3)(-5amb)·(-2b2);

(4)(-3ab)(-a2c)·6ab2.

=3x3y3;

(3)(-5amb)·(-2b2);

=[(-5)·(-2)]·am·(b·b2)

=10amb3

(4)(-3ab)·(-a2c)·6ab2

=[(-3)·(-1)·6]·(aa2a)·(bb2)·c

=18a4b3c.

小结 单项式与单项式相乘是整式乘法中的重要内容,它的运算法则的导出主要依据是,乘法的交换律与结合律以及幂的运算性质.

下载四边形初中数学教案(精选五篇)word格式文档
下载四边形初中数学教案(精选五篇).doc
将本文档下载到自己电脑,方便修改和收藏,请勿使用迅雷等下载。
点此处下载文档

文档为doc格式


声明:本文内容由互联网用户自发贡献自行上传,本网站不拥有所有权,未作人工编辑处理,也不承担相关法律责任。如果您发现有涉嫌版权的内容,欢迎发送邮件至:645879355@qq.com 进行举报,并提供相关证据,工作人员会在5个工作日内联系你,一经查实,本站将立刻删除涉嫌侵权内容。

相关范文推荐

    初中数学教案

    初中数学教案 第七章:圆 第17课时:三角形的内切圆 教学目标: 1、使学生学会作三角形的内切圆. 2、理解三角形内切圆的有关概念. 3、掌握三角形的内心、外心的位置、数量特征. 4、......

    初中数学教案

    教学目标: 教学重点和难点: 教学用具: 教学方法: 教学过程:一、创设情境,引入新课二、新课讲授三、例题讲解四、课堂练习五、课后作业 教学反思:数与代数教案第一课时数的认识 课型......

    初中数学教案

    初中数学教案模板。 xx初中教师专用教案 2009-2010学年度第一学期 课题: 班级: 授课教师: 课时: 学习目 标 重点确定 难点确定 教学工具 教学方法 教 学 过 程 随堂练习: 体......

    初中数学教案

    课 题 §2.2.3 配方法(三) 教学目标 (一)教学知识点 1.利用方程解决实际问题. 2.训练用配方法解题的技能. (二)能力训练要求 1.经历列方程解决实际问题的过程,体会一元二次方......

    方差初中数学教案

    素质教育目标 (一)知识教学点 使学生了解方差、标准差的意义,会计算一组数据的方差与标准差. (二)能力训练点 1.培养学生的计算能力. 2.培养学生观察问题、分析问题的能力,培养学生......

    怎么写初中数学教案

    怎么写初中数学教案? 教学目标:1、理解并掌握三角形中位线的概念、性质,会利用三角形中位线的性质解决有关问题。 2、经历探索三角形中位线性质的过程,让学生实现动手实践、......

    平方根初中数学教案

    平方根初中数学教案 一、教学目标 1.理解一个数平方根和算术平方根的意义; 2.理解根号的意义,会用根号表示一个数的平方根和算术平方根; 3.通过本节的训练,提高学生的逻辑思维......

    初中函数数学教案

    函数初中数学教案 教学目标: 1:是学生分清楚变量与常量,以及会判断哪些量是变量 2:理解函数的概念,分清自变量以及应变量,同时会判断一个变量是不是另一个的函数, 3:能从实际题目中......