第一篇:五年级数学下册《相遇问题》教案
《相遇问题》
五年级数学第七单元第二节 教学内容
北师大版小学数学五年级下册第71-72页 教学目标
1.会分析简单实际问题中的数量关系,会用方程解决实际问题。2.经历解决实际问题的过程,体验数学与日常生活密切关系,提高收集信息,处理信息和建立模型的能力。3.能够熟练解决相遇问题的应用题。
教学重点:列方程解决相遇问题中求相遇时间的问题。教学难点:找出相遇问题的等量关系 教学过程:
一、创设情境
师:路程、速度、时间这三个量之间有什么关系?
师:他回答得真不错,咱们掌声鼓励。老师也鼓掌(不碰上)问:怎 么没声音呀?
师边作手势边叙述:两手碰在一起在数学中称为“相遇” 师:两个掌心怎样放着?(面对面)
师:“面对面”在数学上称为“相对”或“相向”(板书:相对(向)师:两只手掌是怎样运动的?(从两个地方同时相对而行)(板书:两地、同时)
师:两只手掌同时相对而行,相遇就发出响声。这节课,我们一起来 探究有关相遇的问题。(板书课题:相遇)
师:我们再慢慢鼓掌体会一下。两只手掌相遇这种现象我们在日常生 活中经常可以见到。
二、探究新知
出示路线图:张叔叔要给王阿姨送一份材料,他们约定两人同时坐车 出发。遗址公园距天桥50千米。王阿姨的面包车每小时走40千米、叔叔的小轿车每小时走60千米。活动一:估计两人在哪个地方相遇。师:现在请同学们看屏幕
张叔叔、王阿姨是怎样走的?结果会怎样?
媒体演示:屏幕显示张叔叔所在的天桥和王阿姨所在的遗址公园媒体 不断地闪烁、当发出一声悦耳的响声后
张叔叔、王阿姨分别从两地同时出发,相对而行,经过0.5小时后两人相遇,这时又发出一声悦耳的响声张叔叔
走的路程用蓝色表示,王阿姨走过程的路程用红色表示, 师:几个人共同走完全程?
师:出发时间怎样?从哪里出发?出发后方向怎样?结果怎样? 师:谁来说一说他们会在哪个地方相遇?并说出你的依据。(会在李村
附近。因为王叔叔速度快,所以走的路程要远一些
师:因为他们的速度不同。在时间相同的情况下,速度快的走的路程 长一些。所以王叔叔走的路程要多一些。所以,看图可知,相遇地在李村
附近(师标上二人相遇地点)
活动二:思考并解决“出发后几时相遇?”问题。
1、组织学生讨论:如果我们用线段图将相遇问题的过程表示出来,应该怎样画?
2、师:你能从中找出等量关系吗?
小轿车行驶的路程+面包车行驶的路程=总路程 3.师:依据这个等量关系列方程解答。解:设出发后X小时相遇 60X+40X=50 100X=50 X=0.5
答:两车出发后0.5小时相遇。
4、还有其它等量关系吗?怎样解答?(小组讨论)根据“速度和×相遇时间=路程”列方程 解:设出发后X小时相遇。60+40)X=50 X=50÷100 X=0.5
答:两车出发后0.5小时相遇
活动三:解决“相遇地点离遗址公园的路程是多少千米?”问题
1、相遇地点离遗址公园的路程是多少千米?就是求面包车行驶的路程。40X0.5=20(千米)
答:相遇地点离遗址公园的路程是20千米。
2、你还能提出什么问题?
(相遇地点离遗址公园的路程是多少千米?)
总结:我们用方程的方法解决了相遇问题中求相遇时间的问题,生活 中还有许多类似相遇问题的情况。
三、扩展练习
1、挖一条长165米的隧道,由甲、乙两个工程队从两端同时施工。甲队每天向前挖6米,乙队每天向前挖5米。挖通这条隧道需要多少天?
2、小王和小张俩人合作打一份文件共6000字,其中小王每分钟能打80字,小张每分钟能打70字,请问几分钟后他们俩还差600字没打完?
四、课堂总结
同学们,通过这节课的学习你们学到了什么?还有什么疑问?
第二篇:数学相遇问题教案
数学相遇问题教案
教学目标
1.理解相遇问题的基本特点,并能解答简单的相遇求路程的应用题.
2.培养学生初步的逻辑思维能力和解决简单实际问题的能力.
3.渗透运动和时间变化的辩证关系.
教学重点
掌握求路程的相遇问题的解题方法.
教学难点
理解相遇问题中时间和路程的特点.
教学过程
一、以旧引新
(一)口答列式,并说明理由.
1.一辆汽车每小时行60千米,4小时行多少千米?
2.一辆汽车4小时行了240千米,每小时行多少千米?
3.一辆汽车每小时行60千米,行驶240千米需要几小时?
教师板书:速度×时间=路程
(二)创设情境
1.录音(或录相)“有一天,张华放学回家,打开书包正准备做作业.发现没在意将同桌李诚的作业本带回了家,她赶紧给李诚打电话通知他,两人在电话中商量了一会,如果步行的话,有几种办法可以让张华把作业本还给李诚呢?同学们你能帮助他们想出几种办法呢?”
2.小组集体讨论
(1)张华送到李诚家;
(2)李诚来张华家取走;
(3)两人同时从家出发,向对方走去,在途中相遇,交给李诚.
3.认识相遇问题
(1)找两名学生表演第三种情况,其余学生观察并说出是怎么走的?
(同时,从两地,相对而行)
(2)两个人之间的距离有什么变化?(越来越近,最后变为零)
教师指出:当两个人的距离为零时,称为“相遇”
具有“两物、同时从两地相对而行”这种特点的行程问题,叫做“相遇问题”
板书课题:相遇问题
(三)出示准备题:
张华距李诚家390米,两人同时从家里出发,向对方走去.张华每分走60米,李诚每分走70米. 根据已知条件填写下表 走的时间
张华走的路程60米
李诚走的路程70米
两人所走路程的和
现在两人的距离
1分
60米
70米
2分···
3分
···
思考:
1.出发3分钟后,两个人之间的距离是多少?说明什么?(相遇)
2.两个人所走路程的和与两家的距离有什么关系?(两人所走路程和=两家距离)
二、教学新课
(一)教学例3
小强和小丽同时从自己家里走向学校,小强每分走65米,小丽每分走70米.经过4分钟,两人在校门口相遇.他们两家相距多少米?
1.教师指名读题,并在例题中“同时”、“相遇”的下边用红笔做上标记.
请同学解释这两个词的含义.
2.动画演示两人行进的过程,并在图中显示出已知数据.(演示课件:相遇问题)
3.由学生尝试解答例3
4.结合线段图订正答案.
方法一:65×4+70×4
方法二:(65+70)×4
=260+280
=135×4
=540(米)
=540(米)
速度和×相遇时间=路程
5.比较
(1)两种算法哪一种比较简便?
(2)两种算法之间有什么联系?
三、巩固练
(一)志明和小龙同时从两地对面走来,志明每分走54米,小龙每分走52米,经过5分钟两人相遇,两地相距多少米?
(二)两列火车从两个车站同时相向开出.甲车每小时行44千米,乙车每小时行52千米,经过2.5小时相遇.两个车站之间的铁路长多少千米? 讨论:行程问题在出发地点、出发时间、动动方向、运动结果上有什么共同特点?
板书:出发地点:两地
出发时间:同时
运动方向:相向(相对、对面)
运动结果:相遇
(三)两只轮船同时从上海和武汉相对开出.从武汉出发的船每小时行26千米,从上海开出的船每小时行17千米,经过25小时两船相遇.上海到武汉的航路长多少千米?
(四)两辆汽车同时从一个地方向相反方向开出.甲车平均每小时行44.5千米,乙车平均每小时行38.5千米.经过3小时,两车相距多少千米?
1.由学生用手势表述题意.
2.比较:与前面题目相比,有什么不同?又有什么共同之处?
(五)甲、乙两列火车从两地相对行驶.甲车每小时行75千米,乙车每小时行69千米.
甲车开出后1小时,乙车才开出,再经过2小时相遇.两地间的铁路长多少千米?
1.由学生用手势语言向同组同学介绍题意.
2.由学生独立解答
3.出示四种不同解法,请同学小组讨论并做出判断.
方法一:75×1+75×2+69×
2方法二:75×(1+2)+69×2
方法三:75×1+(75+69)×2
方法四:(75+69)×(2+1)
四、课堂小结
通过上面两个例题我们可以看出,行程问题也还有许多变化,请你猜一猜,行程问题还可能有哪些变化?
(相背、同向、不同时、不相遇、相遇后返回第二次相遇,三个物体运动„„)
今天我们学习的是行程问题中最基本的一种,求路程,它需要告诉我们哪些条件?
怎样求?如果要求“相遇时间”该告诉我们哪些条件?怎样求呢?请同学们在课下思考?
五、课后作业
(一)两只轮船同时从上海和武汉相对开出.从武汉开出的船每小时行26千米,从上海开出的船每小时行17千米,经过25小时相遇,上海到武汉的航路长多少千米?
(二)两辆汽车同时从一个地方向相反的方向开出.甲车平均每小时行44.5千米,乙车平均每小时行38.5千米.过3小时,两车相距多少千米?
第三篇:五年级数学解方程相遇问题应用题
1、两地间的铁路长250千米。一列货车和一列客车同时从两地相对开出,客车每小时行52千米,货车每小时行48千米。经过几小时两车相遇?
2.一列货车和一列客车同时从同地相背开出,客车每小时行52千米,货车每小时行48千米。经过几小时两车相距250千米?
3、两城之间的公路长256千米。甲乙两辆汽车同时从两个城市出发,相向而行,经过4小时相遇。甲车每小时行31千米,乙车每小时行多少千米?
4.、两个工程队共同开凿一条117米长的隧道。各从一端相向施工,13天打通。甲队每天开凿4米,乙队每天开凿多少米?
5.甲乙二人同时从相距38千米的两地相向行走,甲每时行3千米,乙每时行5千米,经过几时后二人相距6千米?
6.甲乙两地相距750千米,客车和火车同时从两地出发,相向而行,3小时相遇。已知客车的速度是火车速度的1.5倍,客车的每小时行多少千米?
7.两地相距330千米,两车同时从两地相对开出,开出后5小时相遇.。已知甲车每小时比乙车快2千米,甲车甲车和乙车每小时各行多少千米?
第四篇:北师大版五年级数学下册《相遇问题》教学设计
北师大版数学 第十册:《相遇》教学设计
教学目标:
1.会分析简单实际问题中的数量关系,会用方程解决实际问题。
2.经历解决实际问题的过程,体验数学与日常生活密切关系,提高收集信息,处理信息和建立模型的能力。
3.能够熟练解决相遇问题的应用题。
教学重点:列方程解决相遇问题中求相遇时间的问题。
教学难点:找出相遇问题的等量关系
教学过程:
一、创设情境
师:路程、速度、时间这三个量之间有什么关系?
师:他回答得真不错,咱们掌声鼓励。老师也鼓掌(不碰上)问:怎么没声音呀?
师边作手势边叙述:两手碰在一起在数学中称为“相遇”。
师:两个掌心怎样放着?(面对面)
师:“面对面”在数学上称为“相对”或“相向”。(板书:相对(向))
师: 两只手掌是怎样运动的?(从两个地方同时相对而行)(板书:两地、同时)
师: 两只手掌同时相对而行,相遇就发出响声。这节课,我们一起来探究有关相遇的问题。(板书课题:相遇)
师: 我们再慢慢鼓掌体会一下。两只手掌相遇这种现象我们在日常生活中经常可以见到。
二、探究新知
出示路线图:张叔叔要给王阿姨送一份材料,他们约定两人同时坐车出发。遗址公园距天桥50千米。王阿姨的面包车每小时走40千米,张叔叔的小轿车每小时走60千米。
活动一:估计两人在哪个地方相遇。
师:现在请同学们看屏幕,张叔叔、王阿姨是怎样走的?结果会怎样?
媒体演示:屏幕显示张叔叔所在的天桥和王阿姨所在的遗址公园媒体不断地闪烁,当发出一声悦耳的响声后, 张叔叔、王阿姨分别从两地同时出发,相对而行,经过0.5小时后两人相遇,这时又发出一声悦耳的响声,张叔叔走的路程用蓝色表示, 王阿姨走过程的路程用红色表示,屏幕底色是浅黄色,色彩清晰艳丽。
师:几个人共同走完全程?。
师:出发时间怎样?从哪里出发?出发后方向怎样?结果怎样?(时间:同时;地点:两地;方向:相向(相对);结果:相遇。)
师:谁来说一说他们会在哪个地方相遇?并说出你的依据。(会在李村附近。因为王叔叔速度快,所以走的路程要远一些。)
师:因为他们的速度不同。在时间相同的情况下,速度快的走的路程长一些。所以王叔叔走的路程要多一些。所以,看图可知,相遇地在李村附近(师标上二人相遇地点)。
活动二:思考并解决“出发后几时相遇?”问题。
1、组织学生讨论:如果我们用线段图将相遇问题的过程表示出来,应该怎样画?
2、师:你能从中找出等量关系吗?
(小轿车行驶的路程+面包车行驶的路程=总路程)
3、师:依据这个等量关系列方程解答。
解:设出发后X小时相遇。
60X+40X=50 100X=50 X=0.5
答:两车出发后0.5小时相遇。
4、还有其它等量关系吗?怎样解答?(小组讨论)
根据“速度和×相遇时间=路程”列方程
解:设出发后X小时相遇。
(60+40)X=50 X=50÷100 X=0.5
答:两车出发后0.5小时相遇。
活动三:解决“相遇地点离遗址公园的路程是多少千米?” 问题。
1、相遇地点离遗址公园的路程是多少千米?实际上是求面包车行驶的路程。40X=40 =20
答:相遇地点离遗址公园的路程是20千米。
2、你还能提出什么问题?
(相遇地点离遗址公园的路程是多少千米?)
总结:我们用方程的方法解决了相遇问题中求相遇时间的问题,生活中还有许多类似相遇问题的情况。
三、扩展练习
1、挖一条长165米的隧道,由甲、乙两个工程队从两端同时施工。甲队每天向前挖6米,乙队每天向前挖5米。挖通这条隧道需要多少天?
2、小王和小张俩人合作打一份文件共6000字,其中小王每分钟能打80字,小张每分钟能打70字,请问几分钟后他们俩还差600字没打完?
四、课堂总结
同学们,通过这节课的学习你们学到了什么?
教学反思:
1、从生活实际入手,引导学生将生活问题转化成数学问题,能自主地分析并尝试解决问题,本着“从生活入手——抽象成数学问题——尝试解决方案——应用生成的知识解决更多问题”的思路展开教学,有利于培养学生从生活中发现数学问题并尝试分析解决实际问题的能力。
2、教学中较为充分地发挥学生的自主性,教师创设问题情景,让学生在观察、思考中明确问题的产生,经历尝试解决问题的探究过程,从而获得到成功的体验。尤其是在得到用列方程方法解决相遇问题的最初步骤,我利用了学生的演示作用,整个过程在教师的“主导”下,充分发挥了学生自我思考、探索、思辩的作用,将学生的主动性发挥的淋漓尽致。
诚然,本课时的教学也存在一些遗憾。比如在如何引导学生发现解决相遇问题的方案中,由于个人在个别教学环节中有些偏差,学生未能很好地利用等量关系式列方程解决问题。
另外本节课的教学,我想为我们的应用题教学提供一个思考的空间:怎样才能让我们的应用题教学充分与学生生活实践相联系,达到引导学生自主探索解决生活问题,进而培养学生学习解决实际问题的能力
第五篇:《相遇问题》教案
相遇问题
一、教学内容:
《义务教育教科书(五.四学制).数学(三年级下册)》第99~100页
二、教学目标:
1.结合具体情境理解相遇问题的特征,建立相遇问题的数学模型,掌握“相遇问题”的解题思路,能正确应用模型解决问题。
2.通过摸拟演示和画线段图等方法,学会分析相遇问题的数量关系,提高分析间题和解决问题的能力。
3.经历“现实情境发现和提出问题一分析和解决问题一建立模型一解释应用”的建模过程,积累数学活动经验,增强学生的数学应用意识和创新能力。
三、教学重点:
建立“相遇问题”的数学模型,掌握解题思路,能正确应用摸型解决问题
四、教学难点:
理解“速度和x时间=总路程”的意义,并能正确熟练地应用。
五、教学准备:
教具:多媒体课件,直尺。学具:直尺
六、教学过程:
(一)复习铺垫,调动已有知识经验
1.借助身边实例,复习引入新知
师:我们班的一位同学家住在学校的东面,她每天步行上学,每分钟走60米,5分钟来到学校。请同学们帮忙算算她家离学校有多远?
生:60×5=300(米)
师:能说一说他们用到的数量关系式吗?
速度x时间=路程
师:关于速度、时间、路程的另外两个关系式,还记得吗?
生:路程÷时间=速度 路程÷速度=时间
2.鼓掌游戏,理解同时、相向、相遇的含义
师:看来同学们对上节课的知识掌握得不错,为自己鼓鼓掌,加加油!(学生鼓掌)同学们,你发现了吗?鼓掌也是很有学问的,你们鼓掌时两只手是怎样运动的呢?学生边做鼓掌的动作,师边引导生理解:①两掌手心相对,一个向左,一个右,面对面,这叫相对,也叫相向。②两掌相离,这叫相背。③相背时两掌会越来越远。④相对时,两掌会越来越近,最后会相遇。
板书:相对(相向)、相背、相遇
师:这节课我们就来研究相遇问题。
板书课题:相遇问题
(二)创设情境提出问题
1.创设情境
课件出示课本上的情境图:两辆货车分别从东、西两城同时出发,相向而行,经过4小时在物流中心相遇。
师:仔细观察情境图,图中告诉我们哪些数学信息?
生:大货车的速度是65千米/时,小货车的速度是75千米/时,用的时间是4小时。
师:仔细观察并思考:①几个物体在运动?②出发时间怎样?
③从哪里出发? ④出发后方向怎样?
生:①大货车和小货车在运动。②出发时间都是4小时,③大货车从西城出发,小货车从东城出发。④方向是相对的。
师:大货车和小货车在相同的时间,同时出发,相对行驶,最后在同一个地方-——物流中心相遇。
2.提出问题
师:根据这些信息,你能提出什么数学问题?
生:东西两城相距多少千米?
课件动态展示两辆车相遇的情境。
师:像这样两车从两地同时出发,相向而行,最后相遇,他们所走的路程之和正好等于两地间的距离,我们称它为相遇问题。
(三)、合作探索,解决问题
1.模拟演示(再次播放模拟)
师:你能看懂这段信息吗?什么叫同时出发?
生:一起走。
师:什么叫相向而行?
生:对着开。(用手势比划)
师:相遇点在哪儿?在中间吗?为什么?
生:不在中间,而是离速度慢的一方近一些。
师:这里的4小时是谁的时间?为什么?
生:大货车和小货车都用了4小时,他们是同时行驶的,到相遇为止的时间是一样的。
师:4小时是相遇时间。
师:能不能把大货车和小货车运动的过程表演出来呢?
师:想一想:表演的时候应注意什么? 表演前两人先商量注意事项(一快一慢)。
模拟:找两名学生上台表演。
师:大家对他们的表演还有什么好的建议?
2.画线段图整理信息和问题
师:你能用画线段图的方法将条件和问题整理出来并解决这个问题吗?
要求:①你是怎样列式的;
②清楚每一步里算的是什么;
③记住用手指着你列的式子说
下面请同学们以小组为单位进行整理,寻求解题思路,教师巡视指导。
3、小组交流,探索方法(四人小组交流想法)。
汇报:注意学生说清楚
①你是怎样列式的②算式里每一步算出的是什么?
学生上台前展示自己小组的解题思路,自己讲解,师板书算式:
方法一:大货车4小时行驶的路程十小货车4小时行驶的路程=东西两城相距的路程。
65×4+75×4
=260十300
=560(千米)
方法二:两车每小时所行驶的路程和×行驶的时间=东两两城相距的路程。
(65+75)×4→算式中没有小括号,行吗?
=140×4
=560(千米)
师:引导学生观看电脑小博士的解题思路,加深印象
(四)巩固练习(出示答题卡)
1.自主练习第2题
2.自主练习第6(1)题
3.自主练习6(3)题
(五)课堂总结,总结收获
通过这节课的学习,你有什么收获?