第一篇:圆的面积教学设计1
《圆的面积》第一课时教学设计
新民镇胡家坡小学 宫文涛
教学内容:圆的面积(北师大版义务教育课程标准实验教书六年级数学上册第16页到第18页内容)
教学目标:
1.结合面积的意义了解圆面积的含义,通过对圆面积计算公式的推导,掌握圆的面积计算方法。
2.能正确运用公式计算圆的面积,并能运用圆面积计算方法解决简单的有关圆面积计算的实际问题。
3.通过面积单位的回顾使学生初步体会 “化曲为直”的思想。教学重点:圆的面积计算公式的推导和圆面积的计算。教学难点:圆面积公式的推导。教学准备:课件、圆面积演示仪。教学过程:
一、回顾与导入。1.说出圆周长的计算公式。
2.在计算半圆周长的时候,我们计算过圆周长的一半。你能用字母式子表示圆周长的一半吗?
3.想一想,说一说。
(1)桌面大还是凳子面大?教室的地面大还讲台面大?
(2)右面的两个圆哪个大哪个小?
(3)引导学生回顾什么是面积,从而引入“圆的面积”。
二、探究新知。
1.课件展示情境图(教材第14页浇灌图),引导学生想到要知道这个喷水装置转一周能喷多大的面积,就是要求圆的面积。那么圆的面积怎样计算呢,这就是我们这节课要探讨的内容。同学们有兴趣吗?
2.估一估半径5m的圆的面积有多大。
课件呈现在边长10m的正方形中画一个最大的圆,再在圆里画一个最大的正方形,通过数方格的方法让学生估一估。(鼓励学生用多样的方法估一估)
3.回顾面积单位,引导学生体会“化曲为直”的思想。请同学描述一下1平方米、1平方分米、1平方厘米有多大? 这样的正方形就是度量面积的“尺子”,请同学们对比一下正方形和圆,看能准确地量出圆的面积吗?(课件演示帮助学生思考)互相交流自己的看法和想法。(只有想办法把圆转化成直线图形)
4.师生一起操作,体会“化曲为直”。
(1)学生用自己8等分的圆转化 师:你拼出的图形是什么样? 生:像平行四边形。
师:请同学们把边上的一份拿出来平均分成两份,给拼成的图形两边各补一份,看看有什么变化?
生:像长方形。
(2)教师用16等分的教具演示,学生观察。师:你发现教师的操作与你们有什么不同? 生:分成的份数多,拼成的图形更像长方形。
(3)课件展示分的更多份数的拼法,引导学生想像最终可以拼成一个比较标准的长方形。
5.引导学生推导圆面积的计算公式。
圆的面积 = 长方形的面积 长×宽 πr×r
S = πr2
现在你会计算圆的面积了吗?必须知道什么条件?
6.试计算喷水装置转一周能喷多少平方米的草坪?(课件展示情境图,引导学生理解喷水头的射程就是圆的半径)
三、课堂练习。(课件逐个出示)1.r=3cm 2.d=10cm 3.c=25.12cm 第2、3小题先引导学生明白已知条件是什么,要求圆的面积必须的条件是什么,然后再让学生独立计算。
四、拓展练习。
草地上拴有一只羊,绳长6米,你能算出羊能吃到草的最大范围的面积是多少吗?
四、全课小结。
1.学生互相交流这节课有什么收获? 2.教师引导学生小结。
第二篇:圆面积教学设计)
《圆的面积》教学设计
教学目标:
1、通过学生观察、操作、分析和讨论,推导出圆的面积计算公式。2.能正确运用圆的面积公式计算圆的面积,并能运用圆面积知识解决一些简单的实际问题。
3.培养学生类比推理的能力,及观察能力和动手操作能力。
教学重点:理解和掌握圆面积的计算公式,能利用公式进行计算。教学难点:理解圆面积的推导过程。教具、学具准备:
1、圆面积演示学具
2、课件
3、把圆8等分、16等分和32等分的硬纸板若干个
4、剪刀若干把
教学过程:
一、创设情境,生成问题
1、播放孙悟空为唐僧画保护圈的视频。
2、让学生为老师画一保护圈。老师扮演唐僧,学生扮演孙悟空(进行演示)注:唐僧与孙悟空分别拿金箍棒的一端进行画圆。
师:同学们通过刚才的视频与演示,说说从中你能发现数学知识吗? 学生观察并讨论,然后指名回答。
师:同学们说得很好。请大家说说这个圆形的面积指的是哪部分呢? 师:说得很好,今天这节课我们就来学习如何求唐僧画的保护圈面积有多大。(板书:圆的面积)
二、探索交流,解决问题
1、圆面积概念
师:请同学们拿出你们准备的圆片,用手摸一摸圆的表面 你发现了什么?
师:下面小组内的同学互相比一比圆片,看看哪个大,哪个小? 师:通过比较我们知道了圆有大有小,请看课件(展示课件),同时想一想你能用一句话概括什么叫做圆的面积吗?
生:圆所围平面的大小叫做圆的面积。(教师板书,让学生齐读一遍。)
2、尝试转化,推导公式(学习圆的面积公式)(1).确定“转化”的策略。
师:同学们,你们想一想,当我们还不会计算平行四边形的面积的时候,是利用什么方法推导出了平行四边形的面积计算公式呢?
师:同学们再想想,我们又是怎样推导出三角形的面积计算公式的呢? 师:对了,我们将平行四边形、三角形“转化”成其它图形的方法来推导出它们的面积计算公式。
(2).尝试“转化”。
请大家看屏幕(利用课件演示),老师先给大家一点提示。
师:(教师配合课件演示作适当说明)如果我们把一个圆形平均分成16份(如图三),其中的每一份(如图四,课件闪烁其中1份)都是这个样子的。同学们,你们觉得它像一个什么图形呢?
师:是的,其中的每一份都是一个近似三角形。请同学们再想一想,这个近似三角形这一条边(教师指示)跟圆形有什么关系呢?
师:如果我们用这些近似三角形重新拼组,就可以将这个圆形“转化”成其它图形了。同学们,老师为你们每个小组都准备了一个已经等分好了的圆形,请你们动手拼一拼,把这个圆形“转化”成我们已学过的其它图形,开始吧!
(3).探究联系。
师:同学们,“转化”完了吗?好,请大家来展示一下你们“转化”后的图形。
师:好,各个小组都不错。现在请同学们思考一个问题:你们把一个圆形“转化”成了现在的图形之后,它们的面积有没有改变?请小组内讨论。
师:谁来告诉大家,它们的面积有没有改变?
师:是的,没有改变,就是说:这个近似的长方形的面积=圆的面积。师:虽然我们现在拼成的是一个近似的长方形,但是如果把圆等分成32份、64份、128份、256份„„一直这样下去分成很多很多份,拼成的图形就变为真正的长方形(课件演示,如图八)。(4).推导公式。
师:现在我们就来看这个长方形。同学们,如果圆的半径为r,你们知道这个长方形的长和宽分别是多少吗?现在请小组为单位进行讨论讨论。
师:好,同学们,谁能首先告诉老师,这个长方形的宽是多少?(r)
师:那这个长方形的长是多少呢?(教师边演示课件边说明)这个长方形是由两个半圆展开后拼成的,请大家看屏幕,这个红色的半圆展开后,其中这条黄色的线段就是长方形的长(如图十),请同学们仔细观察(课件继续演示如图十一,半圆展开后再还原,再展开,),这个长方形的长究竟与圆的什么有关?究竟是多少呢?(πr)
师:现在我们已经知道了这个长方形的长和宽(如图十三),它的面积应该是多少?那圆的面积呢?
长方形面积=长×宽 圆
面 积=πr×r
老师根据学生的回答进行相关的板书。
师:你们真了不起,学会了“转化”的方法推导出圆的面积计算公式。现在请大家读一读,记一记,写一写圆的面积计算公式。
3、运用公式,解决问题(1).教学例3。
一个圆的半径是4厘米,它的面积是多少平方厘米?
师:同学们,从这个公式我们可以看出,要求圆的面积,必须先知道什么?(出示例3)如果我们知道一个圆的直径是4厘米,我们该怎样求它的面积呢?请大家动笔算一算这个圆形花坛的面积吧!
(2).教学例4。
街心花园中圆形花坛的周长是18.84米,花坛的面积是多少平方米? A、学生读题,找出已知条件和问题。B、分析题意。
师:请同学们想一想:要求圆形花坛的面积必须知道什么条件? 生:必须知道圆的半径。
生:那么圆的半径题中直接告诉了吗? 生:没有。师:题中告诉了我们什么条件? 生:圆的周长。
师:那么怎样来求半径呢?你能告诉大家利用哪个公式吗? 生:利用r=C÷π÷2(3)学生独立列式解答。(4)集体订正。
小结:通过刚才的学习,我们知道要求圆的面积,必须知道半径这个条件,当题中没有直接告诉我们时,应先求出圆的半径,再求圆的面积。
三、巩固应用,内化提高
师:下面老师来检测一下大家的掌握情况,请看基本练习(课件出示):教材第95页“做一做”
1、2题。(学生独立完成,老师巡视指导,集体订正。)
重点强调:当圆的半径题中没有告诉时,一般应想求出圆的半径,再求圆的面积。
四、回顾整理,反思提升
1、同学们,通过这节课的学习,你有什么收获?
2、拓展练习
师:这是一张光盘,这张光盘由内、外两个圆构成。光盘的银色部分是一个圆环。请同学们用想到的方法算一算这个圆环的面积吧!
第三篇:圆面积教学设计
教学内容
六年级上册第69~71例
1、例2。教材分析
圆的面积是六年级上册第一单元的内容,本单元是在学生掌握了直线图形的周长和面积,并且对圆已有初步认识的基础上进行学习的。从认识圆入手,到圆的周长和面积,与直线图形的学习顺序是一致的。但是,学习圆是从学习直线图形到学习曲线图形,无论是内容本身,还是研究问题的方法都有所变化。学生初步认识研究曲线图形的基本方法——“化曲为直”、“化圆为方”,同时也渗透了曲线图形与直线图形的内在联系,感受极限思想。
在本单元中,本节内容安排在“认识圆,圆的周长”之后,这样可以让学生借鉴在学习圆周长时的经验来研究圆的面积;有利于让学生感悟学习习近平面图形的规律和方法。
教学目标
1.学生通过观察、操作、分析和讨论,推导出圆的面积公式。2.能够利用公式进行简单的面积计算。
3.渗透转化思想,初步了解极限思想,培养学生的观察能力和动手操作能力。教法分析
1.教法分析:
针对学生年龄特点和心理特征,以及他们现在的知识水平。采用启发式,小组合作等教学方法,让尽可能多的学生主动参与到学习过程中。课堂上教师要成为学生的学习伙伴,与学生“同甘共苦”一起体验成功的喜悦,创造一个轻松,高效的学习氛围。
2.学法指导
通过实例引入,引导学生关注身边的数学,在借助长方形面积公式来推导圆的面积公式的同时,使学生体会到观察,归纳,联想,转化等数学学习方法,在师生互动中让每个学生都动口,动手,动脑。培养学生学习的主动性和积极性。
3.教学手段
采用多媒体辅助手段,充分调动学生的感官,增加形象感与趣味性,腾出足够的时空和自由度使学生成为课堂的主人。
教、学具准备 1.CAI课件;
2.把圆8等分、16等分和32等分的硬纸板若干个; 3.剪刀若干把。教学过程
一、以情激趣,导入新课
师:同学们,你们想一想,当我们还不会计算平行四边形的面积的时候,是利用什么方法推导出了平行四边形的面积计算公式呢? 预设:
引导学生明确:我们是用“割补法”将平行四边形转化成长方形的方法推导出了平行四边形的面积计算公式。
师:同学们再想想,我们又是怎样推导出三角形的面积计算公式的呢?
师:对了,我们将平行四边形、三角形“转化”成其它图形的方法来推导出它们的面积计算公式
师:那么,怎样才能把圆形转化为我们已学过的其它图形呢?(板书课题:圆的面积)
二、展示目标,自主探索
请大家看屏幕(利用课件演示),老师先给大家一点提示。师:(教师配合课件演示作适当说明)如果我们把一个圆形平均分成16份(如图三),其中的每一份(如图四,课件闪烁其中1份)都是这个样子的。同学们,你们觉得它像一个什么图形呢?
师:是的,其中的每一份都是一个近似三角形。请同学们再想一想,这个近似三角形这一条边(教师指示)呢? 预设:
引导学生观察,明确这个近似三角形的两条边其实都是圆的半径。师:如果我们用这些近似三角形重新拼组,就可以将这个圆形“转化”成其它图形了。同学们,老师为你们每个小组都准备了一个已经等分好了的圆形,请你们动手拼一拼,把这个圆形“转化”成我们已学过的其它图形,开始吧!预设:
学生利用这种近似三角形拼组图形会有一定的难度,教师要加强巡视和有针对性的指导,既鼓励学生拼出自己想象中的图形,又要引导他们拼出最简单、最容易计算面积的图形。一般情况下,学生会拼出如下几种图形(如图
五、图
六、图七)。
跟圆形有什么关系
3.探究联系。
师:同学们,“转化”完了吗?好,请大家来展示一下你们“转化”后的图形。预设:
分组逐个展示,并将其中“转化”成长方形的一组的作品贴在黑板上。如果有小组转化成了不规则的图形,教师应及时引导他们转化为我们已学过的平面图形。
师:好,各个小组都不错。现在请同学们思考一个问题:你们把一个圆形“转化”成了现在的图形之后,它们的面积有没有改变?请小组内讨论。
师:谁来告诉大家,它们的面积有没有改变?
师:是的,没有改变,就是说:这个近似的长方形的面积=圆的面积。师:虽然我们现在拼成的是一个近似的长方形,但是如果把圆等分成32份、64份、128份、256份„„一直这样下去分成很多很多份,拼成的图形就变为真正的长方形(课件演示,如图八)。
4.推导公式。
师:现在我们就来看这个长方形。同学们,如果圆的半径为r,你们知道这个长方形的长和宽分别是多少吗?现在请小组为单位进行讨论讨论。
师:好,同学们,谁能首先告诉老师,这个长方形的宽是多少?
预设:
根据学生的回答,教师演示课件,同时闪烁圆的半径和长方形的宽,并标示字母r,如图九。
师:那这个长方形的长是多少呢?(教师边演示课件边说明)这个长方形是由两个半圆展开后拼成的,请大家看屏幕,这个红色的半圆展开后,其中这条黄色的线段就是长方形的长(如图十),请同学们仔细观察(课件继续演示如图十一,半圆展开后再还原,再展开,),这个长方形的长究竟与圆的什么有关?究竟是多少呢?
预设:
教师引导学生明白:这个长方形的长与圆的周长有关,并且是圆的周长的一半(如果学生有困难的话,教师利用课件演示,如图十二)。并且让学生通过计算得出长方形的长就是πr。
师:现在我们已经知道了这个长方形的长和宽(如图十三),它的面积应该是多少?那圆的面积呢?
预设:
老师根据学生的回答进行相关的板书。
师:你们真了不起,学会了“转化”的方法推导出圆的面积计算公式。现在请大家读一读,记一记,写一写圆的面积计算公式。
二、运用公式,解决问题 1.教学例1。
师:同学们,从这个公式我们可以看出,要求圆的面积,必须先知道什么?(出示例1)如果我们知道一个圆形花坛的直径是20m,我们该怎样求它的面积呢?请大家动笔算一算这个圆形花坛的面积吧!预设:
教师应加强巡视,发现问题及时指导,并提醒学生注意公式、单位使用是否正确。2.完成做一做。
师:真不错!现在请同学们翻开数学课本第69页,请大家独立完成做一做的第1题。订正。3.教学例2。
师:(出示例2)这是一张光盘,这张光盘由内、外两个圆构成。光盘的银色部分是一个圆环。请同学们小声地读一读题。开始!师:怎样求这个圆环的面积呢?大家商量商量,想想办法吧!师:找到解决问题的方法了吗?
师:好的,就按同学们想到的方法算一算这个圆环的面积吧!预设:
教师继续对学困生加强巡视,如果还有问题的学生并给予指导。交流,订正。
三、课堂作业。
教材第70页第 2、3、4题。
四、课堂小结
师:同学们,通过这节课的学习,你有什么收获?
教学反思
本节课的教学设计主要体现以下特点:
1.注重学生的实践活动。在面积公式推导过程中,学生的实际操作是必不可少的一部份,如放在课堂上会占用很多时间,考虑到学生操作起来较慢,于是先让学生预先进行实际的操作,然后把操作的成果带回来上课用。
2.使学生运用迁移的方法,把新知识转化为旧知识,把圆转化成已经学过的图形。通过让学生回忆平行四边形、三角形、梯形的面积公式的推导,复习了“转化”的思想,顺其自然也可以想到把圆转化成已学过的图形,介绍分割圆的方法,展示由“曲”变“直”的过程,小组讨论,推导出圆面积公式。培养学生动手操作,口头表达和逻辑思维的能力,渗透了极限和转化思想。
3.圆除了剪拼成近似的长方形外,还可以转化成近似的三角形、近似的梯形。如果让学生在这里再动手操作,对学生思维的拓展是有很大的好处,但一节课无法容纳这么多的内容,所以这一节课就选择了单纯让学生把圆转化成近似长方形来推导圆面积的公式。
4、充分运用多媒体,形象演示圆面积的转化过程,有助提高学生的思维能力。
第四篇:《圆面积》教学设计
《圆面积》教学设计
作为一名教师,通常需要准备好一份教学设计,借助教学设计可以促进我们快速成长,使教学工作更加科学化。我们应该怎么写教学设计呢?以下是小编为大家整理的《圆面积》教学设计,仅供参考,大家一起来看看吧。
《圆面积》教学设计1教学内容
课本第143页例2;练一练第1~6题。
教材分析
这部分内容是学生在学会了求圆的周长与直径、半径的关系以及已知圆的半径求圆面积的基础上,来学习已知圆的周长。求圆面积的应用题。
学情分析
本班学生计算能力还可以,就是对应用题有一种害怕心理。
教学目标
1、进一步掌握圆面积公式,并能正确地计算圆面积。
2、能运用圆面积计算公式,正确地解决一些简单的实际问题。
教学重点
会熟练运用公式求圆面积。
教学难点
求出需要的条件,即圆的半径。
教学准备
作业纸、课件。
教学过程
一、复习。
课件出示:
(一)求下列各题中圆的半径。
(1)C=6.28分米,r=?;(2)d=30厘米,r=?
(3)C=15.7分米,r=?;(4)d=18.84厘米,r=?
(二)、求下列各圆的面积。
(1)r=2分米,S=?(2)d=6米,S=?
(3)r=10厘米,S=?(4)d=3分米,S=?
只要求学生进行口头表述计算公式(不求计算结果)
要求两人一小组,到室外找一个圆形物体的平面,计算出它的面积。
运用学生事先准备的工具(细绳、直尺等)
小组把作业纸上交,交流心得
姓名
准备工具
物体名称周长
半径
面积
练一练第1~6题。
《作业本》p73。
板书设计:
圆面积公式的应用
R=d÷2
R=c÷π÷2
S=πr
《圆面积》教学设计2教学内容:西师版六年级数学上册20页例2、例3。
教学目标:
1、知识与能力:使学生正确认识圆的面积的含义;理解掌握圆面积的计算公式,并能正确地计算圆的面积。
2、过程与方法:激发学生参与整个课堂教学活动的兴趣,让学生在“提出问题——分析问题——解决问题——应用问题”的研究性学习的模式中推导出圆面积公式。
3、情感、价值观:渗透转化的数学思想和极限思想,同时对学生进行辩证唯物主义思想的初步教育。
教学重点:圆面积计算公式的推导。
教学难点:极限思想的渗透及圆面积公式的推导。
教具学具:剪刀4把,圆纸片,大小不一的两个圆。
教学过程:
你认识圆吗?你已经知道了圆的那些知识?回顾以前学的平面图形,你还想知道圆的什么知识?
圆的面积怎样求呢?请你拿出准备的圆纸片,摸一摸,体验一下圆面。你能比划圆的面积吗?你能说出圆的面积指的是什么吗?
学生说后,老师小结指出:圆的面积,就是圆所围成的平面图形的大小。今天这一课,我们就来研究怎样求圆的面积。揭示课题:圆的面积
1、积极动脑,讨论推法
师:下面,就请大家来想办法找出求圆的面积的科学方法——面积公式。
如学生想不出方法,就生回忆长方形、平行四边形、三角形的面积公式推导过程。如有学生想出就让学生举手谈设想。①、摆——长方形面积推导就是通过摆面积单位,然后推导出长方形的面积公式。②、剪、拼——平行四边形面积的推导就是先沿高剪开,然后再拼成已学过的长方形来推导出平行四边形的面积公式的。③、旋转、移拼——三角形、梯形面积的推导就是通过旋转,然后再移拼成已学的平行四边形来推导出面积公式的。
师指出:学习总是化未知为已知;求一个新的图形的面积时也是把新图形转化成已知图形来求面积。(板书:转化。)
2、分组操作,反思求悟
把学生分组,根据三种想法去操作,看能不能找出圆面积的求法。如果有困难,困难在那里?为什么求不出圆的面积?
学生汇报研究情况。(圆是曲线围成的,不可以直接用面积单位来摆;旋转也不行转来转去还是圆。)由此让生悟出:摆不行;旋转也不行;只有剪拼有点希望。
3、抓住契机,相机引导
师:摆不行,旋转也不行,只有通过剪,拼转化成已学的图形可以试一试了。
师:那么,能不能随意剪、随意拼呢?请大家比一比:
师出示大小不一的两个圆,哪个面积大?为什么?也就是说圆的面积与什么有关?引导得出:圆的面积与半径有关。
师:既然圆面积与半径有关,那么剪的时候就可以沿什么去剪呢?(半径)对,就应沿半径的方向去把圆剪开;并且,剪开后再拼成一个以半径为边的图形?
请大家再来试试剪和拼。
4、学生尝试,研究转化过程
学生在小组内进行,师巡视指导,若学生有困难,师可引导:首先,在剪的时候,不能随意剪,要沿半径剪,并且要等分。我们先从最少的情况来研究:把圆两等分再拼。(生操作)怎样?能不能拼成已经学过的图形?(不能。)那就在此基础上继续等分再拼——试试四等分。让学生认识到如果这样无限等分下去,再对插,最终将会把圆转化成平行四边形(三角形、梯形等)。
1、设疑:很好,刚才的研究,同学们表现得很不错。根据尝试操作,我们把圆转化成了平行四边形,现在大家能够找到圆面积的计算方法吗?
2、学生小组或同桌合作探究,推导公式。
(1)、讨论探究,出示提示语:
平行四边形的长相当于圆的(),宽相当于圆的()?
让学生讨论之后动笔试一试,看能否推导出圆的面积公式。
(2)、指名学生上台演示公式推导过程
3、揭示公式,验证猜想。让学生齐读公式。
4、用字母表示公式。
提问:要求圆的面积只要知道什么就行?(半径)
1、教学例3:修建一个半径是30米的圆形鱼池,它的占地面积是多少平方米?
学生自做,指名学生板演,老师巡视,了解学生完成作业情况,后集体订正。
2、完成教材21页“课堂活动”第1题。
学生自做,后同桌交流,交流时介绍一下思路及结果。
今天这一堂课,通过同学们自己的猜测、讨论、操作、思考,把圆转化成已经学的平行四边形来研究探讨得出了圆的面积公式,很不简单,希望同学们今后继续发扬这种对学习的研究精神,在研究中去学习数学。
六、巩固、拓展知识。
1、从自己身边找一个圆形物体,请你想办法求出它的面积。
2、把圆分成若干等份后,拼成近似的梯形或三角形,推算出圆面积计算公式。
七、板书略。
《圆面积》教学设计3【教学内容】:教材67--68页圆的面积
【教学目标】:
1、理解和掌握圆面积的计算公式,培养学生观察、操作、分析、概括的能力及逻辑推理能力。
2、利用已有知识,运用数学思想,推导出圆的面积计算公式,渗透转化,极限、以直代曲等数学思想。
3、培养认真观察,深入思考的良好品质,锻炼自己面对困难,勇于克服,锲而不舍的.精神。
【教学重点】:圆面积的计算
【教学难点】:圆面积公式的推导
【教、学具准备】1.多媒体课件;
2.把圆8等分、16等分和32等分的硬纸板若干个;
3.剪刀若干把
【教学过程】
师:同学们,你们想一想,我们学习的平行四边形、三角形、梯形的面积的时候,是利用什么方法推导出了它们的面积公式呢?
预设引导学生明确:我们是用转化的方法推导出了面积计算公式。
师:对了,在研究这些平面图形的面积时,我们利用了转化,对应的数学方法解决了问题,那么我们能不能利用这些数学思想求圆的面积呢?
(板书:圆的面积)
【设计意图】:通过复习已学图形面积公式的推导,勾起对已有知识的回忆,为新知打下基础。
1、师:那么,怎样才能把圆形转化为我们已学过的其它图形呢?
(1)学生通过预习,小组内讨论你发现了什么?
(2)小组派代表发言
(发现:通过转化,可以成为其他图形.并说说你们是怎么做的?)
(学生通过分的份数不同,发现分的份数越多,拼出来的越接近长方形。
【设计意图】:学生通过小组合作讨论,发现问题,激发学生学习兴趣,培养自主学习能力,也为高效课堂奠定基础。
2、小组合作,尝试推导公式
现在请同学们思考一个问题:你们把一个圆形转化成了现在的图形之后,它们的面积有没有改变?
(1)请小组内讨论。
学生发现这个近似的长方形的面积=圆的面积。
师:虽然我们现在拼成的是一个近似的长方形,但是如果把圆等分成32份、64份、128份、256份……一直这样下去分成很多很多份,拼成的图形就变为真正的长方形
(2)尝试推导公式。
师:现在我们就来看这个长方形。同学们,如果圆的半径为r,你们知道这个长方形的长和宽分别是多少吗?现在请小组为单位进行讨论讨论。
师:好,同学们,谁能首先告诉老师,这个长方形的宽是多少?
预设:根据学生的回答,教师演示课件,同时闪烁圆的半径和长方形的宽,并标示字母r
师:那这个长方形的长是多少呢?(教师边演示课件边说明)这个长方形是由两个半圆展开后拼成的,请大家看屏幕,这个红色的半圆展开后,其中这条黄色的线段就是长方形的长。
请同学们仔细观察(课件继续演示如图,半圆展开后再还原,再展开,),这个长方形的长究竟与圆的什么有关?究竟是多少呢?
预设:教师引导学生明白:这个长方形的长与圆的周长有关,并且是圆的周长的一半(如果学生有困难的话,教师利用课件演示)。并且让学生通过计算得出长方形的长就是。
师:现在我们已经知道了这个长方形的长和宽,它的面积应该是多少?那圆的面积呢?
小组内讨论发现:长方形的面积=长×宽圆的面积=周长的一半×半径
【设计意图】:通过学生课上分组讨论与交流,调动学生多种感官参与学习,发挥学生的主体作用和互助合作的精神,使他们在交流合作中获得经验。
1.教学例
1.师:同学们,从这个公式我们可以看出,要求圆的面积,必须先知道什么?(出示例1)如果我们知道一个圆形花坛的直径是20m,我们该怎样求它的面积呢?请大家动笔算一算这个圆形花坛的面积吧!
(1)找两个学生到前面版演
教师加强巡视,发现问题及时指导,并提醒学生注意公式、单位使用是否正确。
2.加强练习教师出示课件题目,看谁做得又对又快。
3.数学小诊所师:课件出示题目,学生抢答
【设计意图】:以做练习的形式,检验学生对这节课的学习效果,有利于了解学生的学习情况,便于教师及时调整教学。四、对本课内容进行回顾,今天你都学到了什么?引导学生回顾今天所学知识点。
《圆面积》教学设计4教学目标
1.能正确运用圆的面积公式计算圆的面积,并能在具体的生活情境中将实际问题转化为数学问题,用所学的圆的面积知识解决一些简单的问题。
2.使学生在参与数学学习活动的过程中,初步养成独立思考,善于发现问题和提出问题,并能有条理地表达自己解决问题的思路的习惯,体会学习成功的快乐,树立学好数学的信心。
3.在实际情境中体会数学与生活的联系,培养学生对数学的热情。
教学重点
灵活运用圆的面积公式解决实际问题
教学难点
能够把实际问题转化为数学问题,用数学的方法予以解决。
教学过程
自学课本16页前两部分的内容,并尝试完成这两道题,将不明白的地方标出来?
请小组内所有学生将自己不明白或不理解的问题提出来在组内互帮互学,并能够把自己解决问题的思路说出来,互相交流。组长在汇报时要说出本组主要解决了什么问题,或者说我们通过学习交流知道了什么,还有什么不明白的地方。
1.组织各小组进行汇报展示组内交流情况。
学生需讨论的问题是:
(1)第一个情境中把实际问题转化为数学问题,即根据题意求能浇灌多大面积的农田,就是求半径是3厘米的圆的面积。
(2)第二个情境中具有一定的综合性,所以知道要求圆的面积是多少?必须先求出圆的半径;另一方面从圆的周长公式可知,已知周长可以求出圆的半径。
1.闹钟的分针长10cm。
(1)从2时到3时分针扫过的面积是多少?
(2)从2时到3时分针针尖走过了多少厘米?
(3)如果时针的长度是8cm,那么从2时到3时时针扫过的面积是多少?
先独立思考,然后两人交流一下再独立完成,如果还有困难可以在小组内交流
2.一块边长为10米的正方形草地,在正方形右下角的顶点上有一棵树,在树上拴着一头牛,绳长是10米,牛能吃到的草场面积是多少?(拴牛的长度忽略不计)
你能画图表示题意吗?
小组同学合作完成认真思考,完成下题
1.闹钟的分针长10cm。
(1)从2时到3时分针扫过的面积是多少?
(2)从2时到3时分针针尖走过了多少厘米?
(3)如果时针的长度是8cm,那么从1时到6时时针扫过的面积是多少?
2.一块边长为10米的正方形草地,在正方形右下角的顶点上有一棵树,在树上拴着一头牛,绳长是10米,牛能吃到的草场面积是多少?(拴牛的长度忽略不计)
你能画图表示题意吗?
《圆面积》教学设计5一、创设情境,引出问题
教师活动
学生活动及达成目标
复习,平行四边形、三角形、梯形面积计算公式推导过程,引发学生思考:能否用转化法求圆的面积呢?
指名学生回忆平行四边形、三角形、梯形面积计算公式的推导。学生汇报时,教师引导其他学生注意倾听并对发言的学生进行补充。
达成目标:以旧引新,激趣质疑,引起学生的学习兴趣。
二、共同探索,总结方法
教师活动
学生活动及达成目标
(一)教师引导学生,在研究多边形面积时,利用割补、拼组等方法,将多边形转化成已学的图形来求面积。
在此基础上提出:“是否也可以把圆分割成若干等分后转化为已学过的图形呢?”试试看吧!(二)引导学生进一步思索:拼成的长方形与圆有什么联系?
(三)在学生动手操作16等份的拼法之后,电脑演示32等份、64等份、128等份所拼的图形,让学生体验分成的份数越多,拼成的图形就越接近长方形。
(四)放手让学生自主探究,根据长方形和圆的关系,从而推导圆的面积公式。
1、学生拿出已准备好的圆,自主探索,试着剪拼。学生通过观察,发现拼出的是近似的长方形。
达成目标:自然渗透转化的思想。
2、小组讨论。
学生汇报讨论结果:从图中可以看出:长方形的长近似于(圆周长的一半),宽近似于(半径)。
3、明确方法,体验极限
(1)学生动手操作16等份的拼法;
(2)比较每一次所拼图形的变化;
小结:图形的面积没有改变,圆的面积=拼成的近似长方形的面积。
达成目标:体会“无限逼近”的极限思想。
4、推导圆的面积公式
根据长方形长和宽与圆的周长和半径的关系推导出圆的面积公式
长方形的面积=长×宽
圆的面积=周长的一半×半径
S=πr×r
S=πr2
达成目标:学生对比圆与长方形,发现形变的过程中面积不变,推导出圆的面积公式,很好地培养了推理能力。
三、运用方法,解决问题
教师活动
学生活动及达成目标
教师质疑:求圆的面积需要什么条件?是不是只有知道半径才能求圆的面积?
课件出示例1
课件出示例2——圆环面积的计算。
找两名方法不同的同学到前面板演。教师引导学生发现可以利用乘法分配律进行两种方法的转化。
学生根据公式,提出只要知道半径或直径,就可以求圆的面积。
学生完成例1。
学生自主完成例2,将两种计算方法进行比较。
达成目标:学生掌握正确、灵活的圆和圆环面积计算方法。
四、反馈巩固,分层练习
教师活动
学生活动及达成目标
基础练习:出示68页的做一做
拓展练习:小力量得一棵树干的周长是125.6厘米。这棵树干的横截面积约是多少?
学生独立完成。
达成目标:学生把数学知识应用到生活中。
五、课堂总结,提升认识
教师活动
学生活动及达成目标
这节课你运用了哪些学习方法,你有什么收获?你对自己这堂课的表现是怎么评价的?
学生总结本节课的收获,并对自己或同伴表现作出评价。
《圆面积》教学设计6教学内容:人教版小学数学教材六年级上册第69~70页例3及相关练习。
教学目标:
1.结合具体情境认识与圆相关的组合图形的特征,掌握计算此类图形面积的方法,并能准确计算。
2.在解决实际问题的过程中,通过独立思考、合作探究、讨论交流等活动,培养学生分析问题和解决问题的能力。
3.结合例题渗透传统文化的教育,通过体验图形和生活的联系感受数学的价值,提升学习的兴趣。
教学重点:掌握计算组合图形面积的方法,并能准确计算。
教学难点:对组合图形进行分析。
教学准备:课件、学具、作业纸。
教学过程:
一、创设情景,谈话引入
1.师:古时候,由于人们的活动范围狭小,往往凭自己的直觉认识世界,看到眼前的地面是平的,以为整个大地是平的,并且把天空看作是倒扣着的一口巨大的锅。我国古代有“天圆如张盖,地方如棋局”的说法。(结合课件出示)虽然这种说法是错误的,却产生了深远的影响,尤其体现在建筑设计上。
2.课件展示:鸟巢和水立方等建筑,精美的雕窗。
【设计意图】由传统文化对建筑设计产生的影响导入课堂,自然地引出例题的教学,极大地激发了学生学习的兴趣和探索的热情。
二、探究新知,解决问题
1.实践操作(课件出示教材例3中的雕窗插图)
师:谁能说说这两种设计有什么联系和区别?
预设1:左边的雕窗外面是方的里面是圆的;右边的雕窗外面是圆的里面是方的。
师:我们可以将上述特征分别概括地称为外方内圆、外圆内方。
预设2:都是由圆和正方形这两个图形组成的。
师:也就是我们以前学过的什么图形?(组合图形)你能用学具组合出这两个图形吗?
学生操作,作品展示。
【设计意图】动手操作的过程是从实物中抽象出图形的过程,使学生充分体会图形的组合与位置关系,理解组合图形面积的产生。与此同时,激活了原有的关于组合图形的认识,找到了新知的生长点。
2.解决问题
(1)阅读与理解
师:怎样计算正方形和圆之间部分的面积?需要什么条件?先想一想,再同桌交流。
预设1:正方形的面积减去圆的面积;圆的面积减去正方形的面积。
预设2:需要知道正方形的边长和圆的半径。
师:只告诉你这两个圆的半径都是1米,你能计算出这两部分的面积吗?
学生思考,尝试练习。
(2)分析与解答
师:谁来说说你是怎么计算左图中正方形和圆之间部分的面积的?
预设:正方形的面积是2×2=4(m2),减去圆的面积(3.14 m2),等于0.86 m2。
师:你是怎么知道正方形的边长的?
根据学生回答课件展示:正方形的边长=圆的直径。
师:在右图中你能得出正方形的边长吗?(不能)该如何计算正方形的面积呢?
预设1:可以把右图中的正方形看成两个三角形。
追问:三角形的底和高分别是多少?相当于什么?(底是2 m,高是1 m,相当于圆的直径和半径。)
结合学生回答课件展示。
预设2:也可以看成四个三角形。
师:这样一来,每个三角形的底和高各是多少呢?相当于什么?(底和高都是1 m,相当于圆的半径。)
师:那么,圆与正方形之间部分的面积可以怎样计算?(学生练习,分析订正。)
【设计意图】让学生经历观察思考、分析推理等学习活动,得出公共边以及图形各要素之间的关系,自主地运用已有的知识达成问题的解决。教学过程中,注重把时间和空间还给学生,教师只用几个简单的设问,引出的却是学生自主学习的过程展示。
三、回顾反思,理解算法
师:如果两个圆的半径都是,结果又是怎样的?结合左图我们一起来算一算。
左图:。
师:像这样,你能计算出右图中正方形和圆之间部分的面积吗?
学生练习,反馈讲评。
右图:。
师:我们可以把题目中的条件=1 m代入上述的两个结果算一算,有什么发现?
预设:和之前计算的结果完全一致。
【设计意图】“授人以鱼,不如授人以渔”,在解决具体问题的基础上发现一般的数学规律是本堂课教学的重要内容。在层层深入的学习过程中,始终坚持为学生创设探索的情境,利用知识内在的魅力吸引学生主动投入到知识的发展过程中。
四、课堂练习,强化认识
1.基础练习
(1)有一块长20米,宽15米的长方形草坪,在它的中间安装了一个射程为5米的自动旋转喷灌装置,它不能喷灌到的草坪面积是多少?
师:求不能喷灌到的草坪面积,就是求什么?
(2)一件古代铜钱的模型(如图),已知外圆的直径是20cm,中间正方形的边长为6cm。这个模型的面积是多少?
师:可以用怎样的方法验证结果是否正确?
2.拓展练习
在每个正方形中分别作一个最大的圆,并完成下表。
采用四人小组合作的方式完成,小组汇报展示。
师:你发现了什么?如果正方形的边长为,你能得出怎样的结论?
正方形面积为,圆的面积为,面积之比为。
师:如果是在圆内作一个最大的正方形,又会有怎样的关系呢?这个问题就作为今天的课外作业。
【设计意图】基础练习的设计在于运用新知解决生活中的实际问题,并强调对结果进行验证的意识。拓展练习采用小组合作的方式解答,进一步揭示了圆与正方形的面积之间的关系,对于培养学生的合作交流意识、发展数学思维能力等方面具有重要的意义。
五、全课总结,畅谈收获
通过本节课的学习,你有什么收获?谁来说一说。
《圆面积》教学设计7教学目标:
1.通过操作,引导学生推导出圆面积的计算公式,并能运用公式解答一些简单的实际问题。
2.激发学生参与整个课堂教学活动的学习兴趣,培养学生的分析、观察和概括能力,发展学生的空间观念。
3.渗透转化的数学思想和极限思想。
教学重点:
利用圆面积计算公式正确计算圆的面积。
教学难点:
圆面积计算公式的推导。
教具准备:
等分圆教具。
学具准备:
分成十六等分、十二等分的圆形纸片。
教学过程:
1.创设情景,出示图片:一片草地中间拴着一只小狗。
提问:小狗的最大活动范围是什么?
引出圆面积的概念:圆所占平面的大小就是圆的面积。
2.我们以前都学过什么图形的面积,平行四边形的面积计算公式是怎么推导出来的?圆的面积能不能也用这种方法推导出计算公式?
3.揭示课题:
今天这节课我们就来研究圆面积的计算方法。(板书课题:圆面积计算)
1.圆面积公式推导。
(1)动手实验。
a:学生把附页1的两个圆剪下来拼一拼(同桌合作)
b:派代表展示
(2)你有什么发现?
学生很惊奇的发现:圆转化成一个近似的平行四边形。
引导提问:a:这个图形哪里不像平行四边形呢?(边不是线段)
b:你知道这是为什么吗?怎样使拼成的图形更接近于平行四边形呢?(通过交流使,使学生明白:如果分的份数越多,每一份就会越小,拼成的图形就会越接近于长方形。)
接着,教师展示:把圆割拼成一个近似于长方形的图形。
问:圆的面积与长方形的面积有什么关系?(相等)
(3)分析圆与长方形的关系
要求小组讨论:看拼成的长方形与圆有什么联系?你能根据长方形的面积计算公式推导出圆的面积计算公式吗?
出示提示:a:拼成的长方形的面积怎样计算?
b:指出长和宽(用彩笔标出长和宽)
c:长方形的长和宽与圆的周长、半径有什么关系?
(学生汇报讨论结果。引导学生说出因为拼成的长方形的面积与圆的面积相等,长方形的长相当于圆周长的一半,宽相当于圆的半径。然后教师按其汇报板书:)
因为:长方形的面积= 长 × 宽
所以:圆的面积 = 周长的一半× 半径
S = πr × r
S = πr2
师:计算圆的面积需要知道什么条件?(半径)
2.你能计算出小狗的最大活动范围吗?需要知道什么条件?
在练习本上算一算。指名汇报。
3.教学例1
出示例题:圆形花坛的直径是20米,它的面积是多少㎡?
(1)这个问题如何解决?
(先求出半径再求面积)
(2)学生尝试练习,指名板演。
强调:r2表示r×r。
完成练习十六1-3题
1、第1题
学生独立完成,将结果填入表中,展示汇报。
2、第2题
(1)认真读题,弄清题意。
(2)独立列式计算,指名板演。
3、第3题
(1)说一说你的解题思路。
(2)学生独立思考列式解答
这节课你自己运用了什么方法,学到了哪些知识?
五、布置作业:练习十六第5题。
板书设计:
圆的面积
因为长方形的面积=长×宽
所以 圆的面积=周长的一半×半径
S=πr×r
S=πr2
第五篇:圆面积的综合应用教学设计
《圆面积的综合应用》教学设计
浙江省诸暨市璜山镇化泉小学 张垚杰(初稿)浙江省诸暨市实验小学教育集团 陈菊娣(修改)
浙江省诸暨市教育局教研室 汤 骥(统稿)
教学内容:人教版小学数学教材六年级上册第69~70页例3及相关练习。
教学目标:
1.结合具体情境认识与圆相关的组合图形的特征,掌握计算此类图形面积的方法,并能准确计算。
2.在解决实际问题的过程中,通过独立思考、合作探究、讨论交流等活动,培养学生分析问题和解决问题的能力。
3.结合例题渗透传统文化的教育,通过体验图形和生活的联系感受数学的价值,提升学习的兴趣。
教学重点:掌握计算组合图形面积的方法,并能准确计算。
教学难点:对组合图形进行分析。
教学准备:课件、学具、作业纸。
教学过程:
一、创设情景,谈话引入
1.师:古时候,由于人们的活动范围狭小,往往凭自己的直觉认识世界,看到眼前的地面是平的,以为整个大地是平的,并且把天空看作是倒扣着的一口巨大的锅。我国古代有“天圆如张盖,地方如棋局”的说法。(结合课件出示)虽然这种说法是错误的,却产生了深远的影响,尤其体现在建筑设计上。
2.课件展示:鸟巢和水立方等建筑,精美的雕窗。
【设计意图】由传统文化对建筑设计产生的影响导入课堂,自然地引出例题的教学,极大地激发了学生学习的兴趣和探索的热情。
二、探究新知,解决问题
1.实践操作(课件出示教材例3中的雕窗插图)
师:谁能说说这两种设计有什么联系和区别?
预设1:左边的雕窗外面是方的里面是圆的;右边的雕窗外面是圆的里面是方的。
师:我们可以将上述特征分别概括地称为外方内圆、外圆内方。
预设2:都是由圆和正方形这两个图形组成的。
师:也就是我们以前学过的什么图形?(组合图形)你能用学具组合出这两个图形吗?
学生操作,作品展示。
【设计意图】动手操作的过程是从实物中抽象出图形的过程,使学生充分体会图形的组合与位置关系,理解组合图形面积的产生。与此同时,激活了原有的关于组合图形的认识,找到了新知的生长点。2.解决问题
(1)阅读与理解
师:怎样计算正方形和圆之间部分的面积?需要什么条件?先想一想,再同桌交流。
预设1:正方形的面积减去圆的面积;圆的面积减去正方形的面积。
预设2:需要知道正方形的边长和圆的半径。
师:只告诉你这两个圆的半径都是1米,你能计算出这两部分的面积吗?
学生思考,尝试练习。
(2)分析与解答
师:谁来说说你是怎么计算左图中正方形和圆之间部分的面积的?
预设:正方形的面积是2×2=4(m),减去圆的面积(3.14 m),等于0.86 m。
师:你是怎么知道正方形的边长的?
根据学生回答课件展示:正方形的边长=圆的直径。
师:在右图中你能得出正方形的边长吗?(不能)该如何计算正方形的面积呢?
预设1:可以把右图中的正方形看成两个三角形。
追问:三角形的底和高分别是多少?相当于什么?(底是2 m,高是1 m,相当于圆的直径和半径。)
结合学生回答课件展示。
预设2:也可以看成四个三角形。
师:这样一来,每个三角形的底和高各是多少呢?相当于什么?(底和高都是1 m,相当于圆的半径。)
师:那么,圆与正方形之间部分的面积可以怎样计算?(学生练习,分析订正。)
【设计意图】让学生经历观察思考、分析推理等学习活动,得出公共边以及图形各要素之间的关系,自主地运用已有的知识达成问题的解决。教学过程中,注重把时间和空间还给学生,教师只用几个简单的设问,引出的却是学生自主学习的过程展示。
三、回顾反思,理解算法
师:如果两个圆的半径都是,结果又是怎样的?结合左图我们一起来算一算。
左图:。
师:像这样,你能计算出右图中正方形和圆之间部分的面积吗?
学生练习,反馈讲评。
右图:。
师:我们可以把题目中的条件=1 m代入上述的两个结果算一算,有什么发现?
预设:和之前计算的结果完全一致。
【设计意图】“授人以鱼,不如授人以渔”,在解决具体问题的基础上发现一般的数学规律是本堂课教学的重要内容。在层层深入的学习过程中,始终坚持为学生创设探索的情境,利用知识内在的魅力吸引学生主动投入到知识的发展过程中。
四、课堂练习,强化认识 1.基础练习
(1)有一块长20米,宽15米的长方形草坪,在它的中间安装了一个射程为5米的自动旋转喷灌装置,它不能喷灌到的草坪面积是多少?
师:求不能喷灌到的草坪面积,就是求什么?
(2)一件古代铜钱的模型(如图),已知外圆的直径是20cm,中间正方形的边长为6cm。这个模型的面积是多少?
师:可以用怎样的方法验证结果是否正确? 2.拓展练习
在每个正方形中分别作一个最大的圆,并完成下表。
采用四人小组合作的方式完成,小组汇报展示。
师:你发现了什么?如果正方形的边长为,你能得出怎样的结论?
正方形面积为,圆的面积为,面积之比为。
师:如果是在圆内作一个最大的正方形,又会有怎样的关系呢?这个问题就作为今天的课外作业。
【设计意图】基础练习的设计在于运用新知解决生活中的实际问题,并强调对结果进行验证的意识。拓展练习采用小组合作的方式解答,进一步揭示了圆与正方形的面积之间的关系,对于培养学生的合作交流意识、发展数学思维能力等方面具有重要的意义。
五、全课总结,畅谈收获
通过本节课的学习,你有什么收获?谁来说一说。