第一篇:“用圆面积知识解决问题”教学设计
“用圆面积知识解决问题”教学设计
教学内容:义务教育课程标准实验教科书数学六年级上册第67页。
教学目标: 灵活应用圆面积的知识解决实际问题。在解决问题中学习使用平移、旋转等数学方法。培养学生学习数学的兴趣,感受数学的乐趣。
教学难点:利用图形变换(平移、旋转),实现未知向已知的转化。
教具:多媒体课件、茶杯垫等。
设计思路:
本堂练习课本着“数学源于生活,最终服务于生活”的理念进行设计。通过层层深入、循序渐进的探究,让学生感受数学知识在生活中的广泛应用。第一,强化基础。学生利用手中的材料分组讨论并计算“茶杯垫”面积,有效复习圆面积的计算方法(半径一圆面积;直径一半径一圆面积;周长一半径一圆面积)。第二,变式练习。通过计算与圆有关的组合图形的面积,感受生活中“圆”的美,引导学生“通过平移、旋转等方法将不规则图形变为规则图形”,灵活运用圆面积的计算方法解决问题。第三,思考与发现。通过尝试验证,感悟数学规律,培养学生热爱数学的情感。
教学过程:
一、创设情境。强化练习
展示情境:今天某制造厂来了一位客户,他要求厂方为他们公司赶制一批圆形茶杯垫。但是他没有给出杯垫的具体大小,而是带来了样品,要求按照样品来制造。工人们很为难,同学们,你们能帮帮他们吗?
出示样品。
师:老师把茶杯垫样品带来了,要生产出这种茶杯垫需要用多大面积的材料,这要用到我们学过的哪些知识?
(学生讨论。师生小结:圆面积的计算。)小组合作(每4人为一组活动)。你能用直尺、彩带等工具,按照大屏幕上的样品计算出这个圆形杯垫的面积吗?教师先请几个学生说一说,要计算这个圆形杯垫的面积自己是怎么想的。如,需要用到哪些数据,怎样得到它们,会测量吗?
(教师巡视,和同学们一起活动;发现问题,启发或指导学生讨论解决。)师生小结:只要知道圆的半径、直径或周长中的任一条件都可以计算出圆的面积。
二、变式练习
师:同学们,这个制造厂还设计了其他款式新颖的产品,他们想知道做这些产品(阴影部分)各需要多大面积的材料,也请同学们帮他们算一算。每组任选一题,完成后集体订正(得数保留两位小数)。
(订正时挑学生讲讲第(2)题的思考方法、计算过程与结果,其余两题核对结果。)
课件出示: 师:遇到这样的题目,要先从整体上观察,然后运用平移或旋转的知识,变不规则为规则,使计算更合理、简洁。
三、拓展训练设疑。
师:同学们,通过刚才的练习,我们发现圆在生活中的应用是很广泛的,比如说(课件出示相关图片:蒙古包、水桶、碗、太阳伞、茶杯、锅)这些物体上都有一个面是圆形的,同学们有没有想过,这些物体的面为什么要设计成圆形?
验证。
(1)师:老师想用6.28米的绳子分别围成圆形、正方形与长方形,你认为围成的图形哪个面积最大?(在学生述说自己想法的基础上,提示:A.6.28米分别是三个图形的什么?B.不论如何围三个图形的面积都是唯一的吗?C.长方形的周长即使不变,但长、宽改变了面积也将随之而变。长、宽的大小越接近,长方形的面积越大。)请4人小组合作计算验证。
(2)各小组汇报交流。
(3)结论:周长相等的情况下,围成的三个图形中,圆的面积最大。
出示图形,巩固并深化认识。
师:现在同学们能解释这些物体的横截面为什么要设计成圆形了吗?
小结:正因为在周长相等的条件下,圆的面积是最大的(等周定律),所以圆的应用在我们的生活中处处可见。
第二篇:圆面积教学设计)
《圆的面积》教学设计
教学目标:
1、通过学生观察、操作、分析和讨论,推导出圆的面积计算公式。2.能正确运用圆的面积公式计算圆的面积,并能运用圆面积知识解决一些简单的实际问题。
3.培养学生类比推理的能力,及观察能力和动手操作能力。
教学重点:理解和掌握圆面积的计算公式,能利用公式进行计算。教学难点:理解圆面积的推导过程。教具、学具准备:
1、圆面积演示学具
2、课件
3、把圆8等分、16等分和32等分的硬纸板若干个
4、剪刀若干把
教学过程:
一、创设情境,生成问题
1、播放孙悟空为唐僧画保护圈的视频。
2、让学生为老师画一保护圈。老师扮演唐僧,学生扮演孙悟空(进行演示)注:唐僧与孙悟空分别拿金箍棒的一端进行画圆。
师:同学们通过刚才的视频与演示,说说从中你能发现数学知识吗? 学生观察并讨论,然后指名回答。
师:同学们说得很好。请大家说说这个圆形的面积指的是哪部分呢? 师:说得很好,今天这节课我们就来学习如何求唐僧画的保护圈面积有多大。(板书:圆的面积)
二、探索交流,解决问题
1、圆面积概念
师:请同学们拿出你们准备的圆片,用手摸一摸圆的表面 你发现了什么?
师:下面小组内的同学互相比一比圆片,看看哪个大,哪个小? 师:通过比较我们知道了圆有大有小,请看课件(展示课件),同时想一想你能用一句话概括什么叫做圆的面积吗?
生:圆所围平面的大小叫做圆的面积。(教师板书,让学生齐读一遍。)
2、尝试转化,推导公式(学习圆的面积公式)(1).确定“转化”的策略。
师:同学们,你们想一想,当我们还不会计算平行四边形的面积的时候,是利用什么方法推导出了平行四边形的面积计算公式呢?
师:同学们再想想,我们又是怎样推导出三角形的面积计算公式的呢? 师:对了,我们将平行四边形、三角形“转化”成其它图形的方法来推导出它们的面积计算公式。
(2).尝试“转化”。
请大家看屏幕(利用课件演示),老师先给大家一点提示。
师:(教师配合课件演示作适当说明)如果我们把一个圆形平均分成16份(如图三),其中的每一份(如图四,课件闪烁其中1份)都是这个样子的。同学们,你们觉得它像一个什么图形呢?
师:是的,其中的每一份都是一个近似三角形。请同学们再想一想,这个近似三角形这一条边(教师指示)跟圆形有什么关系呢?
师:如果我们用这些近似三角形重新拼组,就可以将这个圆形“转化”成其它图形了。同学们,老师为你们每个小组都准备了一个已经等分好了的圆形,请你们动手拼一拼,把这个圆形“转化”成我们已学过的其它图形,开始吧!
(3).探究联系。
师:同学们,“转化”完了吗?好,请大家来展示一下你们“转化”后的图形。
师:好,各个小组都不错。现在请同学们思考一个问题:你们把一个圆形“转化”成了现在的图形之后,它们的面积有没有改变?请小组内讨论。
师:谁来告诉大家,它们的面积有没有改变?
师:是的,没有改变,就是说:这个近似的长方形的面积=圆的面积。师:虽然我们现在拼成的是一个近似的长方形,但是如果把圆等分成32份、64份、128份、256份„„一直这样下去分成很多很多份,拼成的图形就变为真正的长方形(课件演示,如图八)。(4).推导公式。
师:现在我们就来看这个长方形。同学们,如果圆的半径为r,你们知道这个长方形的长和宽分别是多少吗?现在请小组为单位进行讨论讨论。
师:好,同学们,谁能首先告诉老师,这个长方形的宽是多少?(r)
师:那这个长方形的长是多少呢?(教师边演示课件边说明)这个长方形是由两个半圆展开后拼成的,请大家看屏幕,这个红色的半圆展开后,其中这条黄色的线段就是长方形的长(如图十),请同学们仔细观察(课件继续演示如图十一,半圆展开后再还原,再展开,),这个长方形的长究竟与圆的什么有关?究竟是多少呢?(πr)
师:现在我们已经知道了这个长方形的长和宽(如图十三),它的面积应该是多少?那圆的面积呢?
长方形面积=长×宽 圆
面 积=πr×r
老师根据学生的回答进行相关的板书。
师:你们真了不起,学会了“转化”的方法推导出圆的面积计算公式。现在请大家读一读,记一记,写一写圆的面积计算公式。
3、运用公式,解决问题(1).教学例3。
一个圆的半径是4厘米,它的面积是多少平方厘米?
师:同学们,从这个公式我们可以看出,要求圆的面积,必须先知道什么?(出示例3)如果我们知道一个圆的直径是4厘米,我们该怎样求它的面积呢?请大家动笔算一算这个圆形花坛的面积吧!
(2).教学例4。
街心花园中圆形花坛的周长是18.84米,花坛的面积是多少平方米? A、学生读题,找出已知条件和问题。B、分析题意。
师:请同学们想一想:要求圆形花坛的面积必须知道什么条件? 生:必须知道圆的半径。
生:那么圆的半径题中直接告诉了吗? 生:没有。师:题中告诉了我们什么条件? 生:圆的周长。
师:那么怎样来求半径呢?你能告诉大家利用哪个公式吗? 生:利用r=C÷π÷2(3)学生独立列式解答。(4)集体订正。
小结:通过刚才的学习,我们知道要求圆的面积,必须知道半径这个条件,当题中没有直接告诉我们时,应先求出圆的半径,再求圆的面积。
三、巩固应用,内化提高
师:下面老师来检测一下大家的掌握情况,请看基本练习(课件出示):教材第95页“做一做”
1、2题。(学生独立完成,老师巡视指导,集体订正。)
重点强调:当圆的半径题中没有告诉时,一般应想求出圆的半径,再求圆的面积。
四、回顾整理,反思提升
1、同学们,通过这节课的学习,你有什么收获?
2、拓展练习
师:这是一张光盘,这张光盘由内、外两个圆构成。光盘的银色部分是一个圆环。请同学们用想到的方法算一算这个圆环的面积吧!
第三篇:圆面积教学设计
教学内容
六年级上册第69~71例
1、例2。教材分析
圆的面积是六年级上册第一单元的内容,本单元是在学生掌握了直线图形的周长和面积,并且对圆已有初步认识的基础上进行学习的。从认识圆入手,到圆的周长和面积,与直线图形的学习顺序是一致的。但是,学习圆是从学习直线图形到学习曲线图形,无论是内容本身,还是研究问题的方法都有所变化。学生初步认识研究曲线图形的基本方法——“化曲为直”、“化圆为方”,同时也渗透了曲线图形与直线图形的内在联系,感受极限思想。
在本单元中,本节内容安排在“认识圆,圆的周长”之后,这样可以让学生借鉴在学习圆周长时的经验来研究圆的面积;有利于让学生感悟学习习近平面图形的规律和方法。
教学目标
1.学生通过观察、操作、分析和讨论,推导出圆的面积公式。2.能够利用公式进行简单的面积计算。
3.渗透转化思想,初步了解极限思想,培养学生的观察能力和动手操作能力。教法分析
1.教法分析:
针对学生年龄特点和心理特征,以及他们现在的知识水平。采用启发式,小组合作等教学方法,让尽可能多的学生主动参与到学习过程中。课堂上教师要成为学生的学习伙伴,与学生“同甘共苦”一起体验成功的喜悦,创造一个轻松,高效的学习氛围。
2.学法指导
通过实例引入,引导学生关注身边的数学,在借助长方形面积公式来推导圆的面积公式的同时,使学生体会到观察,归纳,联想,转化等数学学习方法,在师生互动中让每个学生都动口,动手,动脑。培养学生学习的主动性和积极性。
3.教学手段
采用多媒体辅助手段,充分调动学生的感官,增加形象感与趣味性,腾出足够的时空和自由度使学生成为课堂的主人。
教、学具准备 1.CAI课件;
2.把圆8等分、16等分和32等分的硬纸板若干个; 3.剪刀若干把。教学过程
一、以情激趣,导入新课
师:同学们,你们想一想,当我们还不会计算平行四边形的面积的时候,是利用什么方法推导出了平行四边形的面积计算公式呢? 预设:
引导学生明确:我们是用“割补法”将平行四边形转化成长方形的方法推导出了平行四边形的面积计算公式。
师:同学们再想想,我们又是怎样推导出三角形的面积计算公式的呢?
师:对了,我们将平行四边形、三角形“转化”成其它图形的方法来推导出它们的面积计算公式
师:那么,怎样才能把圆形转化为我们已学过的其它图形呢?(板书课题:圆的面积)
二、展示目标,自主探索
请大家看屏幕(利用课件演示),老师先给大家一点提示。师:(教师配合课件演示作适当说明)如果我们把一个圆形平均分成16份(如图三),其中的每一份(如图四,课件闪烁其中1份)都是这个样子的。同学们,你们觉得它像一个什么图形呢?
师:是的,其中的每一份都是一个近似三角形。请同学们再想一想,这个近似三角形这一条边(教师指示)呢? 预设:
引导学生观察,明确这个近似三角形的两条边其实都是圆的半径。师:如果我们用这些近似三角形重新拼组,就可以将这个圆形“转化”成其它图形了。同学们,老师为你们每个小组都准备了一个已经等分好了的圆形,请你们动手拼一拼,把这个圆形“转化”成我们已学过的其它图形,开始吧!预设:
学生利用这种近似三角形拼组图形会有一定的难度,教师要加强巡视和有针对性的指导,既鼓励学生拼出自己想象中的图形,又要引导他们拼出最简单、最容易计算面积的图形。一般情况下,学生会拼出如下几种图形(如图
五、图
六、图七)。
跟圆形有什么关系
3.探究联系。
师:同学们,“转化”完了吗?好,请大家来展示一下你们“转化”后的图形。预设:
分组逐个展示,并将其中“转化”成长方形的一组的作品贴在黑板上。如果有小组转化成了不规则的图形,教师应及时引导他们转化为我们已学过的平面图形。
师:好,各个小组都不错。现在请同学们思考一个问题:你们把一个圆形“转化”成了现在的图形之后,它们的面积有没有改变?请小组内讨论。
师:谁来告诉大家,它们的面积有没有改变?
师:是的,没有改变,就是说:这个近似的长方形的面积=圆的面积。师:虽然我们现在拼成的是一个近似的长方形,但是如果把圆等分成32份、64份、128份、256份„„一直这样下去分成很多很多份,拼成的图形就变为真正的长方形(课件演示,如图八)。
4.推导公式。
师:现在我们就来看这个长方形。同学们,如果圆的半径为r,你们知道这个长方形的长和宽分别是多少吗?现在请小组为单位进行讨论讨论。
师:好,同学们,谁能首先告诉老师,这个长方形的宽是多少?
预设:
根据学生的回答,教师演示课件,同时闪烁圆的半径和长方形的宽,并标示字母r,如图九。
师:那这个长方形的长是多少呢?(教师边演示课件边说明)这个长方形是由两个半圆展开后拼成的,请大家看屏幕,这个红色的半圆展开后,其中这条黄色的线段就是长方形的长(如图十),请同学们仔细观察(课件继续演示如图十一,半圆展开后再还原,再展开,),这个长方形的长究竟与圆的什么有关?究竟是多少呢?
预设:
教师引导学生明白:这个长方形的长与圆的周长有关,并且是圆的周长的一半(如果学生有困难的话,教师利用课件演示,如图十二)。并且让学生通过计算得出长方形的长就是πr。
师:现在我们已经知道了这个长方形的长和宽(如图十三),它的面积应该是多少?那圆的面积呢?
预设:
老师根据学生的回答进行相关的板书。
师:你们真了不起,学会了“转化”的方法推导出圆的面积计算公式。现在请大家读一读,记一记,写一写圆的面积计算公式。
二、运用公式,解决问题 1.教学例1。
师:同学们,从这个公式我们可以看出,要求圆的面积,必须先知道什么?(出示例1)如果我们知道一个圆形花坛的直径是20m,我们该怎样求它的面积呢?请大家动笔算一算这个圆形花坛的面积吧!预设:
教师应加强巡视,发现问题及时指导,并提醒学生注意公式、单位使用是否正确。2.完成做一做。
师:真不错!现在请同学们翻开数学课本第69页,请大家独立完成做一做的第1题。订正。3.教学例2。
师:(出示例2)这是一张光盘,这张光盘由内、外两个圆构成。光盘的银色部分是一个圆环。请同学们小声地读一读题。开始!师:怎样求这个圆环的面积呢?大家商量商量,想想办法吧!师:找到解决问题的方法了吗?
师:好的,就按同学们想到的方法算一算这个圆环的面积吧!预设:
教师继续对学困生加强巡视,如果还有问题的学生并给予指导。交流,订正。
三、课堂作业。
教材第70页第 2、3、4题。
四、课堂小结
师:同学们,通过这节课的学习,你有什么收获?
教学反思
本节课的教学设计主要体现以下特点:
1.注重学生的实践活动。在面积公式推导过程中,学生的实际操作是必不可少的一部份,如放在课堂上会占用很多时间,考虑到学生操作起来较慢,于是先让学生预先进行实际的操作,然后把操作的成果带回来上课用。
2.使学生运用迁移的方法,把新知识转化为旧知识,把圆转化成已经学过的图形。通过让学生回忆平行四边形、三角形、梯形的面积公式的推导,复习了“转化”的思想,顺其自然也可以想到把圆转化成已学过的图形,介绍分割圆的方法,展示由“曲”变“直”的过程,小组讨论,推导出圆面积公式。培养学生动手操作,口头表达和逻辑思维的能力,渗透了极限和转化思想。
3.圆除了剪拼成近似的长方形外,还可以转化成近似的三角形、近似的梯形。如果让学生在这里再动手操作,对学生思维的拓展是有很大的好处,但一节课无法容纳这么多的内容,所以这一节课就选择了单纯让学生把圆转化成近似长方形来推导圆面积的公式。
4、充分运用多媒体,形象演示圆面积的转化过程,有助提高学生的思维能力。
第四篇:用反比例知识解决问题优秀教学设计
教学目标:
1.掌握用反比例的方法解答相关应用题。
2.通过解答应用题使学生熟练地判断两种相关联的量是否成反比例,从而加深对反比例意义的理解。
3.培养学生分析问题、解决问题的能力。
4.发展学生综合运用知识解决问题的能力。
教学重点:
掌握用反比例的方法解答相关应用题。
教学难点:
通过解答应用题使学生熟练地判断两种相关联的量是否成反比例,掌握用反比例的方法解答相关应用题。
教 法:
创设情境,质疑引导。经历用比例方法解决问题的过程,体验解决问题的策略,培养和发展学生的发散思维。
学 法:
理解分析与合作交流相结合。
教 具: 课件
教学过程:
一、定向导学(5分)
1、判断下面每题中的两种量成什么比例?并说明理由。
(1)总价一定,单价和数量。
(2)我们班学生做操,每行站的人数和站的行数。
(3)路程一定,速度和时间。
(4)水费一定,每吨水的价钱和用水的吨数。
2、出示目标
(1)掌握用反比例的方法解答相关应用题。
(2)熟练地判断两种相关联的量是否成反比例,从而加深对反比例意义的理解。
二、自主学习(10分钟)
内容:课本62页例61、方法:自主学习,小组合作
2、时间:5分钟
3、思考问题:
(1)、题目中有哪些变化的量和不变的量?你是从题中哪里发现的?
(2)、这三种量成什么关系?你是怎样判定的?
(3)、列出关系式。
4、跟踪练习
这批书如果每包20本,要捆18包。如果要捆15包,每包多少本?
三、合作交流(10分钟)
1、课本59页“做一做”第2题
2、六年级一班学生在操场做操,每行站4人,可以站9行。如果每行站6人,可以站几行?
3、聪聪每分钟走60米,8分钟可以到家。如果她从家走到学校用了6分钟,每分钟走多少米?
四、质疑探究(5分)
针对学生的学习情况,重点强调用反比例知识解决问题的解题步骤和方法。
(1)、题目中有哪些变化的量和不变的量?
(2)、这三种量成什么关系?
(3)、列出关系式。
五、小结检测(10分钟)
1、这节课有什么收获?你学会了什么?
2、检测
第64页的5、6、7、8题
板书设计:
用比例解决问题
(1)、题目中有哪些变化的量和不变的量?
(2)、这三种量成什么关系?
(3)、列出关系式。
第五篇:“用除法解决问题”教学设计
“用除法解决问题”教学设计
教学内容:义务教育课程标准实验教科书人教版数学二年级下册第54~55页例2~例3。
教学目标:
1.通过操作和语言表达活动,使学生理解“一个数是另一个数的几倍”的含义,体会数量之间的相互关系。
2.使学生经历将“求一个数是另一个数的几倍”的实际问题转化为“求一个数里含有几个另一个数”的数学问题的过程,初步学会用转化的方法来解决简单的实际问题。
3.逐步培养学生“说”操作的意识和能力,提高操作的思维含量和自主探究能力。
教学重点:使学生经历从实际问题中抽象出“一个数是另一个数的几倍”的数量关系的过程,会用乘法口诀求商解决实际问题。
教学难点:将“求一个数是另一个数的几倍”的数量关系转化为“一个数里含有几个另一个数的除法”问题。
教学过程:
一、导入新课
1.观察填空。
指名学生回答,并讲一讲蜻蜓的只数是蝴蝶的2倍,就是5的2倍,2个5等于10(只)的思考过程。
2.摆小棒。
老师在投影仪上摆5根小棒,然后问:老师摆了几根小棒?(5根)
提问:谁愿意到上面来摆小棒?
请一名小朋友到投影仪上来摆小棒,其他小朋友在桌面上摆小棒。
如果小朋友们摆的小棒是老师的3倍,应怎样摆?(学生继续操作。)
提问:你是怎样摆的?一共摆了多少根小棒?
学生摆的根数是老师的3倍,就是摆5的3倍,5根5根的摆,摆3个5根,一共是15根。
板书:3个5根是15根
5的3倍是(15)
3.小结:我们刚才一起复习了有关“倍”的知识,今天我们继续学习有关“倍”的数学问题。
[设计意图]巩固学生已有的知识和操作技能,为学习求“一个数是另一个数的几倍”做好知识和探究方法的准备。
二、动手操作,探究新知
1.摆小飞机,认识“倍”。
师:(用5根小棒摆出一架飞机)小朋友们想不想摆小飞机呀?
(请一名小朋友到投影仪上摆小飞机,其他小朋友在桌面上摆小飞机,教师指导。)
组织汇报交流,用多少根小棒摆了小飞机几架。
学生(可能)的摆法:
用10根小棒摆了小飞机2架;用15根小棒摆了小飞机3架;用20根小棒摆了小飞机4架„„
(老师对学生进行鼓励性评价,激发学生进一步探索的信心。)
教师在投影上用15根小棒摆小飞机3架,也就是说15根小棒是5根小棒的3倍。接着提问:谁能说一说用10根小棒摆了小飞机2架,就是说哪个数是哪个数的几倍?用20根小棒摆呢?
让学生多说一说,进一步理解“倍”的意义。
[设计意图]学生通过用小棒摆小飞机再说一说的活动,激发了学习兴趣。学生在摆小飞机的活动中,经历了动手操作和用语言表达自己的所做所想的过程,逐渐抽象出了“一个数是另一个数的几倍”的含义,认识了“倍”概念,训练了学生的抽象思维能力。
2.再摆一摆,把对“几倍”的理解转化成“除法”问题。
教师用投影出示下图:
师:老师用5根小棒摆了小飞机1架,小朋友们准备用多少根小棒来摆小飞机?(15根)小朋友摆小飞机用的小棒数是老师用的小棒数的几倍?(3倍)
(让学生互相说一说,因为5根小棒摆1架小飞机,所以15根小棒可以摆小飞机3架,15根是5根的3倍。)
师:谁能把这15根小棒迅速地摆一摆(不用摆成小飞机样子),能够让大家一下子就看出15是5的3倍来呢?
板书:15是5的(3)倍
请小朋友在投影仪上摆出下图,并说一说。
学生:把15根小棒,每5根小棒分一份,15根里面有3个5根,所以15是5的3倍。
板书:15根里有3个5根
师:如果你们用20根小棒来摆小飞机,所用小棒根数是老师的几倍?(20根是4个5根,所以20是5的4倍。)
小结:“求一个数是另一个数的几倍”的含义就是“求一个数里含有几个另一个数”,用除法计算。像上面摆小飞机就是求15是5的几倍。想:15里面有几个5,用除法算15÷5=3,所以15是5的3倍。说明“倍”是一种关系,不是计量单位,所以3后面什么也不用写。板书:15÷5=3
[设计意图]让学生通过摆小棒,应用转化的数学思想,把“一个数是另一个数的几倍”的实际问题转化成“一个数里面有几个另一个数”的除法问题。让学生学会用数学的方式来思考问题,提高了思维质量。
3.想一想,说一说。
(1)苹果3个,梨6个,梨的个数是苹果的几倍?(6里面有几个3,用除法算6÷3=2。)
(2)萝卜6个,茄子2个,萝卜的个数是茄子的几倍?(6里面有几个2,用除法算6÷2=3。)
[设计意图]让学生由实物联想到倍数关系,使学生体验到数学来源于生活。
(3)摆圆片。(动手操作,再说一说哪个数是哪个数的几倍。)
a.第一行摆4个○,第二行摆8个○。
b.第一行摆9个○,第二行摆3个○。
(4)8里面有()个4,8是4的()倍
12里面有()个3,12是3的()倍
24里面有()个6,24是6的()倍
42里面有()个7,42是7的()倍
三、运用知识解决问题
1.引导学生读课本第54页至55页的内容。
2.学习例3(思考回答问题)。
(1)仔细看图,从图中你获得了哪些信息?
(2)引导学生想一想,怎样解决“唱歌人数是跳舞人数的几倍”。
(3)引导学生独立解决问题。
(4)让学生说出自己的想法,并组织学生集体订正。
(5)还能提出什么问题。(根据学生的问题、思路引导分析解决。)
3.引导学生完成“做一做”。
4.归纳小结:求一个数是另一个数的几倍,就是求一个数里有几个另一个数,用除法计算。
[设计意图]突出学生的自主参与,独立思考。教师是学生学习的组织者、引导者与合作者,让学生有充分的时间学习探索。
四、巩固训练
1.练习十二第1题。
要求学生认真看图。(1)图中有些什么动物?(2)分别是多少只?(3)独立分析解决,小鹿的只数是小猴的几倍?(4)为什么这样列式?(5)还能提出其他问题吗?
2.独立完成第2题。
作者单位
云南师大附小
◇责任编辑:李瑞龙◇