第一篇:函数单调性的应用 教案
《函数单调性的应用》教案
一、教材分析-----教学内容、地位和作用
本课是北师大版新课标普通高中数学必修一第二章第三节《函数的单调性》的内容,该节中内容包括:函数的单调性、函数的最值。总课时安排为3课时,《函数单调性的应用》是本节中的第三课时。
函数的单调性是函数众多性质中的重要性质之一,函数的单调性一节中的知识是今后研究具体函数的单调性理论基础;在解决函数值域、最值,比较两个函数值的大小或自变量的大小、求参变量的取值范围以及解函数不等式等具体问题中均有着广泛的应用;在历年的高考中对函数的单调性的应用考查每年都有涉及;同时在这一节中利用函数图象来研究函数性质的数形结合思想将贯穿于我们整个高中数学教学。
在本节课是以函数的单调性的应用为主线,它始终贯穿于整个课堂教学过程;这是本节课的重点内容。
二、学情分析
教学目标的制定与实现,主要取决于我们对学习者掌握的程度。只有了解学习者原来具有的认知结构,学习者的准备状态,学习风格,情感态度等,我们才能制定合适的教学目标,安排合适的教学活动与评价标准。不同的教学环境,不同的学习主体有着不同的学习动机和学习特点。
我所教授的班级的学生具体学情具体到我们班级学生而言有以下特点:学习习惯不太好,需要不断的引导和规范;数学基本功不太扎实,演算不能做到又准又快;独立解决问题能力弱,畏难情绪严重,探索精神不足。只有少部分学生学习习惯良好,学风严谨,思维缜密。
三、教学目标:
根据新课标的要求,以及对教材结构与内容分析,考虑到学生已有的认知结构及心理特征,制定如下教学目标:
(一)三维目标 1 知识与技能:
(1).会利用函数单调性求最值或值域.(2).会利用函数单调性比较两个函数值或两个自变量的大小.(3).会利用函数单调性求参变量的取值范围.(4).会利用函数单调性解函数不等式.(5).通过函数单调性应用的教学,逐步培养学生观察、分析、概括与合作能力; 2 过程与方法:
(1)通过本节课的学习,通过“数与形”之间的转换,渗透数形结合的数学思想。
(2)通过合作探究活动,明白考虑问题要细致、缜密,说理要严密、明确。3 情感,态度与价值观:在平等的教学氛围中,通过学生之间、师生之间的交流、合作与评价,拉近学生之间、师生之间的情感距离,培养学生对数学的兴趣。
(二)重点、难点
重点:利用函数单调性求最值或值域,求参变量的取值范围 难点:利用函数单调性解函数不等式
四、教学方法:
合作学习认为教学是师生之间、生生之间相互作用的过程,强调多边互动,共同掌握知识。视教学为师生平等参与和互动的过程,强调教师只是小组中的普通一员,起到一个引导者,管理者角色。在课堂教学中要加强知识发生过程的教学,充分调动学生的参与的积极性,有效地渗透数学思想方法,发展学生个性品质,从而达到提高学生整体的数学素养的目的。
结合教学目标和学生情况我采用合作交流,探究学习相结合的教学方法。
五、教学过程及设计:
第一环节:复习回顾以下知识点: 1.回顾增函数和减函数的定义.2.复习函数最值的定义.3.函数最大(小)值应该是所有函数值中最大(小)的,即对于任意的x∈I,都有f(x)≤M(f(x)≥M). 第二环节:学习学习目标
第三环节:自主学习与合作探究(学习提示:函数单调性的应用主要体现在以下四个方面 :1.利用函数单调性求最值或值域.2.利用函数单调性比较两个函数值或两个自变量的大小.3.利用函数单调性求参变量的取值范围.4.利用函数单调性解函数不等式.)
1.利用函数单调性求最值或值域.例1.求函数f(x)
练习:求二次函数yx22x2,在x[2,3]上的最值.2.利用函数单调性比较两个函数值或两个自变量的大小.1例2:已知f(x)是[0,)上的增函数,比较f()与f(a2a1)的大小.练习:如果f(x)x2bxc,对称轴为x=2,试比较f(1)、f(2)、f(4)的大小.3.利用函数单调性求参变量的取值范围.例3.已知函数f(x)x22(a1)x2在区间(,4]上是减函数,则实数a的取值范围是()x在区间[2,4]上的最大值和最小值.x2A.(,3] B.[3,)C.(,3] D.[3,)变式练习:已知函数f(x)x22(a1)x2的减区间为(,4],求实数a的值.活动实施:前三个例题及练习题自主学习与合作交流相结合,学生分组合作与交流,分小组展示和讲解,学生评价与老师评价相结合,并且体现了一题多解和一题多变。
在判断函数单调性时引导学生用不同的方法判断,比如例题1可以用定义法和图像法.通过例题1的学习要知道:
(一)利用函数单调性求最值的三个常用结论
1.如果函数f(x)在区间[a,b]上是增(减)函数,则f(x)在区间[a,b]的左、右端点处分别取得最小(大)值和最大(小)值.2.如果函数f(x)在区间(a,b]上是增函数,在区间[b,c)上是减函数,则函数f(x)在区间(a,c)上有最大值f(b).3.如果函数f(x)在区间(a,b]上是减函数,在区间[b,c)上是增函数,则函数f(x)在区间(a,c)上有最小值f(b).(二)求最大值、最小值时的三个关注点
(1)利用图象写出最值时要写最高(低)点的纵坐标,而不是横坐标.(2)单调性法求最值勿忘求定义域.(3)单调性法求最值,尤其是闭区间上的最值,最忌不判断单调性而直接将两端点值代入求解时一定要注意.例题2的练习注意引导学生用不同的方法解决,并且要知道:当自变量的取值不在同一个单调区间时,要先根据函数的性质化到同一个单调区间上。
例题3要学生比较例题与变式练习的区别,让学生明白函数在区间A上单调与单调区间是A的区别.4.利用函数单调性解函数不等式.例4.已知y=f(x)在定义域(-1,1)上是减函数,且f(1-a) 变式练习:已知y=f(x)在定义域(1,+∞)上是增函数,且f(1+a) 第四个环节:课堂小结 本节主要学习了函数单调性的应用,主要体现在以下四个方面:1.会利用函数单调性求最值或值域.2.会利用函数单调性比较两个函数值或两个自变量的大小.3.会利用函数单调性求参变量的取值范围.4.会利用函数单调性解函数不等式.并且表扬本节课表现比较好的小组与同学,鼓励大多数学生积极参与与学习.第五个环节:作业布置 必做题: 3.已知f(x)是定义在[1,1]上的增函数,且f(x1)f(13x)求x的取值范围.4.函数f(x)是定义在(0,)上的增函数,满足f(xy)f(x)f(y),f(8)3解函数不等式f(x)f(x2)3.选做题: 已知f(x)是定义在R上的函数,并且对任意x, y,都有f(x+ y)=f(x)+f(y)-1成立,当x>0时,f(x)>1,(1)证明f(x)在R上是增函数;(2)若f(4)=5,求f(2)的值;(3)若f(4)=5,解不等式f(3 m2-m-2)<3. 函数单调性 一、教学目标 1、建立增(减)函数及单调性、单调区间的概念 2、掌握如何从函数图象上看出单调区间及单调性 3、掌握如何利用定义证明一段区间上的函数单调性 二、教学重难点 1、了解增(减)函数定义 2、用定义法证明一段区间上的函数单调性 三、教材、学情分析 单调性是处于教材《数学•必修一》B版第二章第一节,初中对单调性有着初步感性认识,到这节课我们给单调性严格的定义。单调性是对函数概念的延续和扩展,也是我们后续研究函数的基础,可以说,起到了承上启下的作用。 四、教学方法 数形结合法、讲解法 五、教具、参考书 三角尺、PPT、数学必修 一、教师教学用书 六、教学过程 (一)知识导入 引入广宁县一天气温变化折线图 询问学生今天的温度是如何变化的? 学生答:气温先上升,到了14时开始不断下降。 由此导入函数图像的上升下降变化,给出f(x)=x和f(x)=x²的图像,询问学生,这两个函数图象是如何变化的? 学生答:前一个不断上升,后一个在y轴左边下降,在y轴右边上升。再询问学生并提醒学生回答:从上面的观察分析,能得出什么结论? 不同的函数,其图像的变化趋势不同,同一函数在不同区间上的变化趋势也不同,函数图像的变化规律就是函数性质的反映。 教师:那么这就是我们要研究的单调性。 (二)给出定义。 教师:首先我们来看一下一元二次函数y=x²的图象的对应值表,当x从0到5上变化时,y是如何变化的。生:随着x的增大而增大 教师:那么我们在这段上升区间中任取两个x1,x2,x1 教师顺势引导出增函数的概念,再由增函数类比画图演示,引导出减函数的概念。强调增(减)函数概念,尤其是在区间内任取x1,x2这句话的理解。由增(减)函数可以引出单调区间的定义,不作很详细讲解。给出例题让学生思考作答,进一步巩固知识点。 (三)证明方法 让学生们思考例二(思想为用定义法证明一段区间的单调性)并尝试解答,一段时间后教师给学生讲解。 讲解完例题后,引导学生归纳用定义法正明一段区间的单调性的方法: 1、设元。 2、做差。 3、变形。 4、断号。 5、定论。 (四)巩固深化 思考:函数y=1/x 的定义域I是什么?在定义域I上的单调性是怎样的? 通过这道问题的讲解说明,让学生们意识到单调性是离不开区间的且单调区间不能求并。 (五)课堂小结 再次对 1、增(减)函数定义。 2、增(减)函数的图象有什么特点?如何根据图象指出单调区间。 3、怎样用定义证明函数的单调性?三个问题进行阐述,牢固学生记忆和理解。 (六)布置作业。 函数单调性概念教学的三个关键点 ──兼谈《函数单调性》的教学设计 北京教育学院宣武分院 彭 林 函数单调性是学生进入高中后较早接触到的一个完全形式化的抽象定义,对于仍然处于经验型逻辑思维发展阶段的高一学生来讲,有较大的学习难度。一直以来,这节课也都是老师教学的难点。最近,在我区“青年教师评优课”上,听了多名教师对这节课不同风格的课堂教学,通过对他们教学案例的研究和思考,笔者认为,在函数单调性概念的教学中,关键是把握住如下三个关键点。 关键点1。学生 学习函数单调性的认知基础是什么? 在这个内容之前,已经教学过一次函数、二次函数、反比例函数等简单函数,函数的变量定义和映射定义,以及函数的表示。对函数是一个刻画某些运动变化数量关系的数学概念,也已经形成初步认识。接踵而来的任务是对函数应该继续研究什么。在数学研究中,建立一个数学概念的意义就是揭示它的本质特征,即共同属性或不变属性。对各种函数模型而言,就是研究它们所描述的运动关系的变化规律,也就是这些运动关系在变化之中的共同属性或不变属性,即“变中不变”的性质。按照这种科学研究的思维方式,使得当前来讨论函数的一些性质,就成为顺理成章的、必要的和有意义的数学活动。至于在多种函数性质中,选择这个时机来讨论函数的单调性而不是其他性质,是因为函数的单调性是学生从已经学习的函数中比较容易发现的一个性质。 就中小学生与单调性相关的经历而言,学生认识函数单调性可以分为四个阶段: 第一阶段,经验感知阶段(小学阶段),知道一个量随另一个量的变化而变化的具体情境,如“随着年龄的增长,我的个子越来越高”,“我认识的字越多,我的知识就越多”等。 第二阶段,形象描述阶段(初中阶段),能用抽象的语言描述一个量随另一个量变化的趋势,如“y随着x的增大而减少”。 第三阶段,抽象概括阶段(高中必修1),能进行脱离具体和直观对象的抽象化、符号化的概括,并通过具体函数,初步体会单调性在研究函数变化中的作用。 第四阶段,认识提升阶段(高中选修系列1、2),要求学生能初步认识导数与单调性的联系。 基于上述认识,函数单调性教学的引入应该从学生的已有认知出发,建立在学生初中已学的一次函数、二次函数以及反比例函数的基础上,即从学生熟悉的常见函数的图象出发,直观感知函数的单调性,完成对函数单调性定义的第一次认识.。 让学生分别作出函数数值有什么变化规律? 的图象,并且观察自变量变化时,函在学生画图的基础上,引导学生观察图象,获得信息:第一个图象从左向右逐渐上升,y随x的增大而增大;第二个图象从左向右逐渐下降,y随x的增大而减小.然后让学生明确,对于自变量变化时,函数值具有这两种变化规律的函数,我们分别称为增函数和减函数.第三个函数图象的上升与下降要分段说明,通过讨论使学生明确函数的单调性是对定义域内某个区间而言的. 在此基础上,教师引导学生用自己的语言描述增函数的定义: 如果函数在某个区间上的图象从左向右逐渐上升,或者如果函数 在某个区间上随自变量x的增大,y也越来越大,我们说函数在该区间上为增函数. 关键点2。为什么要用数学的符号语言定义函数的单调性概念? 对于函数单调性概念的教学而言,有一个很重要的问题,即为什么要进一步形式化。学生在初中已经接触过一次函数、反比例函数、二次函数,对函数的增减性已有初步的认识:随x增大y增大是增函数,随x增大y 减小是减函数。这个观念对他们而言是易于接受的,很形象,他们会觉得这样的定义很好,为什么还要费神去进行符号化呢?如果教师能通过教学设计,让学生感受到进一步符号化、形式化的必要性,造成认知冲突,则学生研究的兴趣就会大大提高,主动性也会更强。其实,数学概念就是一系列常识不断精微化的结果,之所以要进一步形式化,完全是数学精确性、严密性的要求,因为只有达到这种符号化、形式化的程度,才可以进行准确的计算,进行推理论证。 所以,在教学中提出类似如下的问题是非常必要的: 右图是函数函数吗? 的图象,能说出这个函数分别在哪个区间为增函数和减 对于这个问题,学生的困难是难以确定分界点的确切位置.通过讨论,使学生感受到用函数图象判断函数单调性虽然比较直观,但有时不够精确,需要结合解析式进行严密化、精确化的研究,使学生体会到用数量大小关系严格表述函数单调性的必要性,从而将函数的单调性研究从研究函数图象过渡到研究函数的解析式.关键点3:如何用形式化的语言定义函数的单调性? 从数学学科这个整体来看,数学的高度抽象性造成了数学的难懂、难教、难学,解决这一问题的基本途径是顺应学习者的认知规律:在需要和可能的情况下,尽量做到从直观入手,从具体开始,逐步抽象,即数学的思考方式。恰当运用图形语言、自然语言和符号化的形式语言,并进行三者之间必要的转化,可以说,这是学习数学的基本思考方式。而函数单调性这一内容正是体现数学基本思考方式的一个良好载体,教学中应该充分关注到这一点。长此以往,便可使学生在学习知识的同时,学到比知识更重要的东西—学会如何思考?如何进行数学的思考? 一般说,对函数单调性的建构有两个重要过程,一是建构函数单调性的意义,二是通过思维构造把这个意义用数学的形式化语言加以描述。对函数单调性的意义,学生通过对若干函数图象的观察并不难认识,因此,前一过程的建构学习相对比较容易进行。后一过程的进行则有相当的难度,其难就难在用数学的符合语言来描述函数单调性的定义时,如何才能最大限度地通过学生自己的思维活动来完成。这其中有两个难点: (1)“x增大”如何用符号表示;同样,“f(x)增大”如何用符号表示。(2)“‘随着’x增大,函数f(x)‘也’增大”,如何用符号表示。 用数学符号描述这两种数学意义的最大要害之处,在于要用数学的符号来描述动态的数学对象。 在初中数学中,除了学习函数的初级概念,用y=f(x)表示函数y随着自变量x的变化而变化时,接触到一点动态数学对象的数学符号表示以外,绝大多数都是用数学符号表示静态的数学对象。因此,从用静态的数学符号描述静态的数学对象,到用静态的符号语言刻画动态数学对象,在思维能力层次上存在重大差异,对刚刚由初中进入高中学习的学生而言,无疑是一个很大的挑战! 因此,在教学中可以提出如下问题2: 如何从解析式的角度说明 在上为增函数? 这个问题是形成函数单调性概念的关键。在教学中,教师可以组织学生先分组探究,然后全班交流,相互补充,并及时对学生的发言进行反馈、评价,对普遍出现的问题组织学生讨论,在辨析中达成共识.对于问题2,学生错误的回答主要有两种: ①在给定区间内取两个数,例如1和2,因为函数. ,所以 在上为增②可以用0,1,2,3,4,5验证: 在所以函数上是增函数。 对于这两种错误,教师要引导学生进一步展开思考。例如,指出回答②试图用自然数列来验证结论,而且引入了不等式表示不等关系,但是,只是对有限几个自然数验证不行,只有当所有的比较结果都是一样的:自变量大时,函数值也大,才可以证明它是增函数,那么怎么办?如果有的学生提出:引入非负实数a,只要证明 就可以了,这就把验证的范围由有限扩大到了无限。教师应适时指出这种验证也有局限性,然后再让学生思考怎样做才能实现“任意性”就有坚实的基础了。也就是,从给定的区间内任意取两个自变量,然后求差比较函数值的大小,从而得到正确的回答: 任意取在,有为增函数. ,即,所以这种回答既揭示了单调性的本质,也让学生领悟到两点:(1)两自变量的取值具有任意性;(2)求差比较它们函数值的大小。至此,学生对函数单调性有了理性的认识.在前面研究的基础上,引导学生归纳、抽象出函数单调性的定义,使学生经历从特殊到一般,从具体到抽象的认知过程。 教学中,教师引导学生用严格的数学符号语言归纳、抽象增函数的定义,并让学生类比得到减函数的定义.然后指导学生认真阅读教材中有关单调性的概念,对定义中关键的地方进行强调.同时设计了一组判断题: 判断题: ①②若函数③若函数满足f(2) 和(2,3)上均为增函数,则函数在(1,3)上为增函数.④因为函数减函数.在上都是减函数,所以在上是通过对判断题的讨论,强调三点: ①单调性是对定义域内某个区间而言的,离开了定义域和相应区间就谈不上单调性. ②有的函数在整个定义域内单调(如一次函数),有的函数只在定义域内的某些区间单调(如二次函数),有的函数根本没有单调区间(如常函数). ③函数在定义域内的两个区间A,B上都是增(或减)函数,一般不能认为函数在上是增(或减)函数. 从而加深学生对定义的理解 北京4中常规备课 【教学目标】 1.使学生从形与数两方面理解函数单调性的概念,初步掌握利用函数图象和单调性定义判断、证明函数单调性的方法. 2.通过对函数单调性定义的探究,渗透数形结合数学思想方法,培养学生观察、归纳、抽象的能力和语言表达能力;通过对函数单调性的证明,提高学生的推理论证能力. 3.通过知识的探究过程培养学生细心观察、认真分析、严谨论证的良好思维习惯,让学生经历从具体到抽象,从特殊到一般,从感性到理性的认知过程. 【教学重点】 函数单调性的概念、判断及证明. 【教学难点】 归纳抽象函数单调性的定义以及根据定义证明函数的单调性. 【教学方法】 教师启发讲授,学生探究学习. 【教学手段】 计算机、投影仪. 【教学过程】 一、创设情境,引入课题 课前布置任务: (1)由于某种原因,2008年北京奥运会开幕式时间由原定的7月25日推迟到8月8日,请查阅资料说明做出这个决定的主要原因.(2)通过查阅历史资料研究北京奥运会开幕式当天气温变化情况.课上通过交流,可以了解到开幕式推迟主要是天气的原因,北京的天气到8月中旬,平均气温、平均降雨量和平均降雨天数等均开始下降,比较适宜大型国际体育赛事.下图是北京市今年8月8日一天24小时内气温随时间变化的曲线图.引导学生识图,捕捉信息,启发学生思考. 问题:观察图形,能得到什么信息? 预案:(1)当天的最高温度、最低温度以及何时达到;(2)在某时刻的温度; (3)某些时段温度升高,某些时段温度降低.在生活中,我们关心很多数据的变化规律,了解这些数据的变化规律,对我们的生活是很有帮助的. 问题:还能举出生活中其他的数据变化情况吗? 预案:水位高低、燃油价格、股票价格等. 归纳:用函数观点看,其实就是随着自变量的变化,函数值是变大还是变小. 〖设计意图〗由生活情境引入新课,激发兴趣. 二、归纳探索,形成概念 对于自变量变化时,函数值是变大还是变小,初中同学们就有了一定的认识,但是没有严格的定义,今天我们的任务首先就是建立函数单调性的严格定义.1.借助图象,直观感知 问题1: 分别作出函数数值有什么变化规律? 的图象,并且观察自变量变化时,函 预案:(1)函数 在整个定义域内 y随x的增大而增大;函数 在整个定义域内 y随x的增大而减小. (2)函数在上 y随x的增大而增大,在上y随x的增大而减小. (3)函数 在上 y随x的增大而减小,在上y随x的增大而减小. 引导学生进行分类描述(增函数、减函数).同时明确函数的单调性是对定义域内某个区间而言的,是函数的局部性质. 问题2:能不能根据自己的理解说说什么是增函数、减函数? 预案:如果函数 在某个区间上随自变量x的增大,y也越来越大,我们说函数 在某个区间上随自变量x的增大,y越来越小,我们在该区间上为增函数;如果函数说函数在该区间上为减函数. 教师指出:这种认识是从图象的角度得到的,是对函数单调性的直观,描述性的认识. 【设计意图】从图象直观感知函数单调性,完成对函数单调性的第一次认识. 2.探究规律,理性认识 问题1:下图是函数和减函数吗? 的图象,能说出这个函数分别在哪个区间为增函数 学生的困难是难以确定分界点的确切位置. 通过讨论,使学生感受到用函数图象判断函数单调性虽然比较直观,但有时不够精确,需要结合解析式进行严密化、精确化的研究. 〖设计意图〗使学生体会到用数量大小关系严格表述函数单调性的必要性. 问题2:如何从解析式的角度说明 在为增函数? 22预案:(1)在给定区间内取两个数,例如1和2,因为1<2,所以为增函数. (2)仿(1),取很多组验证均满足,所以(3)任取,所以 在,因为 为增函数. 在为增函数. 在,即对于学生错误的回答,引导学生分别用图形语言和文字语言进行辨析,使学生认识到问题的根源在于自变量不可能被穷举,从而引导学生在给定的区间内任意取两个自变量. 【设计意图】把对单调性的认识由感性上升到理性认识的高度,完成对概念的第二次认识.事实上也给出了证明单调性的方法,为证明单调性做好铺垫.3.抽象思维,形成概念 问题:你能用准确的数学符号语言表述出增函数的定义吗? 师生共同探究,得出增函数严格的定义,然后学生类比得出减函数的定义.(1)板书定义(2)巩固概念 判断题: ①. ②若函数 ③若函数 在区间 和(2,3)上均为增函数,则函数 在区间(1,3)上为增函 . ④因为函数在区间上是减函数.上都是减函数,所以在 通过判断题,强调三点: ①单调性是对定义域内某个区间而言的,离开了定义域和相应区间就谈不上单调性. ②对于某个具体函数的单调区间,可以是整个定义域(如一次函数),可以是定义域内某个区间(如二次函数),也可以根本不单调(如常函数). ③函数在定义域内的两个区间A,B上都是增(或减)函数,一般不能认为函数在上是增(或减)函数. 思考:如何说明一个函数在某个区间上不是单调函数? 【设计意图】让学生由特殊到一般,从具体到抽象归纳出单调性的定义,通过对判断题的辨析,加深学生对定义的理解,完成对概念的第三次认识.三、掌握证法,适当延展 例 证明函数 在上是增函数. 1.分析解决问题 针对学生可能出现的问题,组织学生讨论、交流. 证明:任取 ,设元 求差 变形,断号 ∴ ∴ 即 ∴函数 2.归纳解题步骤 在上是增函数. 定论 引导学生归纳证明函数单调性的步骤:设元、作差、变形、断号、定论. 练习:证明函数 问题:要证明函数 在区间 上是增函数,除了用定义来证,如果可以证得对 在上是增函数. 任意的,且有可以吗? 引导学生分析这种叙述与定义的等价性.让学生尝试用这种等价形式证明函数在 〖设计意图〗初步掌握根据定义证明函数单调性的方法和步骤.等价形式进一步发展可以得到导数法,为用导数方法研究函数单调性埋下伏笔. 四、归纳小结,提高认识 学生交流在本节课学习中的体会、收获,交流学习过程中的体验和感受,师生合作共同完成小结. 1.小结 (1)概念探究过程:直观到抽象、特殊到一般、感性到理性.(2)证明方法和步骤:设元、作差、变形、断号、定论.(3)数学思想方法和思维方法:数形结合,等价转化,类比等. 2.作业 书面作业:课本第60页习题2.3 第4,5,6题. 课后探究:(1)证明:函数 在区间 上是增函数的充要条件是对任意的上是增函数.,且 有. (2)研究函数的单调性,并结合描点法画出函数的草图. 《函数的单调性》教学设计说明 一、教学内容的分析 函数的单调性是学生在了解函数概念后学习的函数的第一个性质,是函数学习中第一个用数学符号语言刻画的概念,为进一步学习函数其它性质提供了方法依据. 对于函数单调性,学生的认知困难主要在两个方面:(1)要求用准确的数学符号语言去刻画图象的上升与下降,这种由形到数的翻译,从直观到抽象的转变对高一的学生是比较困难的;(2)单调性的证明是学生在函数内容中首次接触到的代数论证内容,而学生在代数方面的推理论证能力是比较薄弱的.根据以上的分析和教学大纲的要求,确定了本节课的重点和难点. 二、教学目标的确定 根据本课教材的特点、教学大纲对本节课的教学要求以及学生的认知水平,从三个不同的方面确定了教学目标,重视单调性概念的形成过程和对概念本质的认识;强调判断、证明函数单调性的方法的落实以及数形结合思想的渗透;突出语言表达能力、推理论证能力的培养和良好思维习惯的养成. 三、教学过程的设计 为达到本节课的教学目标,突出重点,突破难点,教学上采取了以下的措施:(1)在探索概念阶段, 让学生经历从直观到抽象、从特殊到一般、从感性到理性的认知过程,完成对单调性定义的三次认识,使得学生对概念的认识不断深入. (2)在应用概念阶段,通过对证明过程的分析,帮助学生掌握用定义证明函数单调性的方法和步骤. (3)考虑到我校学生数学基础较好、思维较为活跃的特点,对判断方法进行适当的延展,加深对定义的理解,同时也为用导数研究单调性埋下伏笔. 函数的单调性 教学目标 知识目标:初步理解增函数、减函数、函数的单调性、单调区间的概念,并掌握判断一些简单函数单调性的方法。 能力目标:启发学生能够发现问题和提出问题,学会分析问题和创造地解决问题;通过观察——猜想——推理——证明这一重要的思想方法,进一步培养学生的逻辑推理能力和创新意识。 德育目标:在揭示函数单调性实质的同时进行辩证唯物主义思想教育。: 教学重点:函数单调性的有关概念的理解 教学难点:利用函数单调性的概念判断或证明函数单调性 教 具: 多媒体课件、实物投影仪 教学过程: 一、创设情境,导入课题 [引例1]如图为2006年黄石市元旦24小时内的气温变化图.观察这张气温变化图: 问题1:气温随时间的增大如何变化? 问题2:怎样用数学语言来描述“随着时间的增大气温逐渐升高”这一特征? [引例2]观察二次函数的图象,从左向右函数图象如何变化?并总结归纳出函数图象中自变量x和 y值之间的变化规律。 结论:(1)y轴左侧:逐渐下降; y轴右侧:逐渐上升; (2)左侧 y随x的增大而减小;右侧y随x的增大而增大。 上面的结论是直观地由图象得到的。还有很多函数具有这种性质,因此,我们有必要对函数这种性质作更进一步的一般性的讨论和研究。 二、给出定义,剖析概念 ①定义:对于函数f(x)的定义域I内某个区间上的任意两个自变量的值 ⑴若当图3); ⑵若当图4)。<时,都有f()>f(),则f(x)在这个区间上是减函数(如<时,都有f() ②单调性与单调区间 若函数y=f(x)在某个区间是增函数或减函数,则就说函数y=f(x)在这一区间具有单调性,这一区间叫做函数y=f(x)的单调区间.此时也说函数是这一区间上的单调函数.由此可知单调区间分为单调增区间和单调减区间。 注意: (1)函数单调性的几何特征:在单调区间上,增函数的图象是上升的,减函数的图象是下降的。 当x1 几何解释:递增 函数图象从左到右逐渐上升;递减 函数图象从左到右逐渐下降。 (2)函数单调性是针对某一个区间而言的,是一个局部性质。 有些函数在整个定义域内是单调的;有些函数在定义域内的部分区间上是增函数,在部分区间上是减函数;有些函数是非单调函数,如常数函数。 判断2:定义在R上的函数 f(x)满足 f(2)> f(1),则函数 f(x)在R上是增函数。(×) 函数的单调性是函数在一个单调区间上的“整体”性质,不能用特殊值代替。 训练:画出下列函数图像,并写出单调区间: 三、范例讲解,运用概念 具有任意性,例1、如图,是定义在闭区间[-5,5]上的函数出函数。的单调区间,以及在每一单调区间上,函数的图象,根据图象说 是增函数还减 注意: (1)函数的单调性是对某一个区间而言的,对于单独的一点,由于它的函数值是唯一确定的常数,因而没有增减变化,所以不存在单调性问题。 (2)在区间的端点处若有定义,可开可闭,但在整个定义域内要完整。 例2 判断函数 f(x)=3x+2 在R上是增函数还是减函数?并证明你的结论。 引导学生进行分析证明思路,同时展示证明过程: 证明:设任意的 由 于是 即 所以。 在R上是增函数。,得,且,则 分析证明中体现函数单调性的定义。 利用定义证明函数单调性的步骤: ①任意取值:即设x1、x2是该区间内的任意两个值,且x1 ②作差变形:作差f(x1)-f(x2),并因式分解、配方、有理化等方法将差式向有利于判断差的符号的方向变形 ③判断定号:确定f(x1)-f(x2)的符号 ④得出结论:根据定义作出结论(若差0,则为增函数;若差 0,则为减函数) 即“任意取值——作差变形——判断定号——得出结论” 例 3、证明函数 证明:设,且 在(0,+)上是减函数.,则 由 又由 于是 即。,得,得即 (*)。 所以,函数 问题1 : 在区间 在上是单调减函数。 上是什么函数?(减函数)在定义域 上是减函数?(学生讨论 问题2 :能否说函数得出) 四、课堂练习,知识巩固 课本59页 练习:第1、3、4题。 五、课堂小结,知识梳理 1、增、减函数的定义。 函数单调性是对定义域的某个区间而言的,反映的是在这一区间上函数值随自变量变化的性质。 2、函数单调性的判断方法:(1)利用图象观察;(2)利用定义证明: 证明的步骤:任意取值——作差变形——判断符号——得出结论。 六、布置作业,教学延伸 课本60页习题2.3 :第4、5、6题。 函数的单调性(教案) 一、教学目标 1、使学生从形与数两方面理解函数单调性的概念,初步掌握利用函数图象和单调性定义判断、证明函数单调性的方法。 2、通过对函数单调性定义的探究,渗透数形结合的数学思想方法,培养学生观察、归纳、抽象的能力和语言表达能力;通过对函数单调性的证明,提高学生的推理论证能力。 3、通过知识的探究过程培养学生细心观察、认真分析、严谨论证的良好思维习惯,让学生经历从具体到抽象,从特殊到一般,从感性到理性的认知过程。 二、重点、难点分析 1、重点:函数单调性的概念、判断及证明。 2、难点:归纳抽象函数单调性的定义以及根据定义证明函数的单调性。 三、教学过程 1、学生动手作图,引入课题:结合函数图像画法的相关知识,让学生实际动手操作,分别画出函数f(x)x,f(x)x,f(x)x2,f(x)x2的图像。如下: 图1 图2 图3 图4 2、借助图像,直观感知:引导学生识图,捕捉信息,启发学生思考。并让学生回答以下两个问题: (1)以上4个函数图像中,随自变量x的变化,函数值f(x)发生了怎样的变化? ① 图1中,函数值f(x)随自变量x的增大而增大,减小而减小; ② 图2中,函数值f(x)随自变量x的增大而减小,减小而增大; ③ 图3中,对于y轴的左半部分而言,函数值f(x)随自变量x的增大而减小,减小而增大。对于y轴的右半部分而言,函数值f(x)随自变量x的增大而增大,减小而减小。 ④ 图4中,对于y轴的左半部分而言,函数值f(x)随自变量x的增大而增大,减小而减小。对于y轴的右半部分而言,函数值f(x)随自变量x的增大而减小,减小而增大。 (2)如何用数学语言描述上述函数中,函数值f(x)随自变量x的变化情况? ① 对于函数f(x)x而言,x1,x2(,),当x1x2时,都有f(x1)f(x2)。 ② 对于函数f(x)x而言,x1,x2(,),当x1x2时,都有f(x1)f(x2)。 ③ 对于函数f(x)x2而言,x1,x2(,0),当x1x2时,都有f(x1)f(x2)。而x1,x2(0,),当x1x2时,都有f(x1)f(x2)。 ④ 对于函数f(x)x2而言,x1,x2(,0),当x1x2时,都有f(x1)f(x2)。而x1,x2(0,),当x1x2时,都有f(x1)f(x2)。 3、归纳探索,形成概念:引导学生归纳总结出增函数和减函数的定义: (1)增函数:I为函数f(x)的定义域,DI,若x1,x2D,当x1x2时,都有f(x1)f(x2),则函数f(x)在D上是增函数。 (2)减函数:I为函数f(x)的定义域,DI,若x1,x2D,当x1x2时,都有f(x1)f(x2),则函数f(x)在D上是增函数。 4、例题讲解,巩固定义;归纳总结,寻求一般证明步骤:讲解例题,引导学生归纳证明函数单调性的步骤(设元、求差、变形、断号,定论)。 k例题1:证明波意耳定律P,(k为正常数)为减函数。 Vk 证明:按题意,只要证明函数P在区间(0,)上是减函数即可。 V V1,V2(0,),当V1V2时,有: 设元 P(V1)P(V2)kk 求差 V1V2V2V 1变形 VV1 k 又V1,V2(0,),V1V2 VV120,V1V20,同时,k0,断号 P(V1)P(V2)0 即,P(V1)P(V2).所以,函数Pk在区间(0,)上是减函数。定论 V3 5、通过例题,强调关键点:提出课文中容易误解和忽略指出,予以提醒。 1(1)例题2:“已知f(x),因为f(1)f(2),所以函数f(x)是增函数。” x这种说法对吗? 解析:单调性是对定义域内某个区间而言的,离开了定义域和相应区间就谈不上单调性。 2(2)例题3:能否直接观察函数f(x)x,(x0)的图像(如下),说出这 x个函数分别在哪个区间为增函数和减函数? 图5 解析:学生难以确定分界点的确切位置。从而,使学生感受到用函数图象判断函数单调性虽然比较直观,但有时不够精确,需要结合解析式进行严密化、精确化的研究。 (3)例题4:如何从解析式的角度说明f(x)x2在[0,)为增函数? 222法一: 在给定区间内取两个数,例如1和2,因为12,所以f(x)x[0,)为增函数。 法二:仿法一,取很多组验证均满足,所以f(x)x2在[0,)为增函数。法三:任取x1,x2[0,)且x1x2,因为x12x22(x1x2)(x1x2)0,即x12x22,所以f(x)x2在[0,)为增函数。 解析:自变量不可能被穷举,证明函数的单调性时,要在给定的区间内任意取两个自变量。 (4)例题5:“若函数f(x)满足f(2)f(3),则函数在区间[2,3]上为增函数。”这种说法对吗? 解析:对于某个具体函数的单调区间,可以是整个定义域(如一次函数),可以是定义域内某个区间(如二次函数),也可以根本不单调(如常函数)。 (5)例题6:“若函数f(x)在区间(1,2]和(2,3)上均为增函数,则函数f(x)在区间(1,3)上为增函数。”与“因为函数f(x)减函数,所以f(x)1在区间(,0]和(0,)上都是x1在(,0]和(0,)上是减函数”这两种种说法对吗? x解析:函数在定义域内的两个区间A,B上都是增(或减)函数,一般不能认为函数在Ab上是增(或减)函数。 四、作业布置 教材p39 A组:第2题、第5题、第6题; B组:第1题、第3题。第二篇:函数单调性教案(简单)
第三篇:函数单调性
第四篇:函数的单调性教案
第五篇:函数的单调性(教案)