第一篇:1.3.2函数的奇偶性教案
考试指南报——课堂网(www.xiexiebang.com)
1.3.2函数的奇偶性
教学目的:理解函数的奇偶性及其几何意义;学会运用函数图象理解和研究函数的性质;学会判断函数的奇偶性. 教学重点:函数的奇偶性及其几何意义.
教学难点:判断函数的奇偶性的方法与格式.
教学过程:
一、引入课题
1.实践操作:
取一张纸,在其上画出平面直角坐标系,并在第一象限任画一可作为函数图象的图形,然后按如下操作并回答相应问题:
○1以y轴为折痕将纸对折,并在纸的背面(即第二象限)画出第一象限内图形的痕迹,然后将纸展开,观察坐标系中的图形;
问题:将第一象限和第二象限的图形看成一个整体,则这个图形可否作为某个函数y=f(x)的图象,若能请说出该图象具有什么特殊的性质?函数图象上相应的点的坐标有什么特殊的关系?
答案:(1)可以作为某个函数y=f(x)的图象,并且它的图象关于y轴对称;
(2)若点(x,f(x))在函数图象上,则相应的点(-x,f(x))也在函数图象上,即函数图象上横坐标互为相反数的点,它们的纵坐标一定相等.
②以y轴为折痕将纸对折,然后以x轴为折痕将纸对折,在纸的背面(即第三象限)画出第一象限内图形的痕迹,然后将纸展开,观察坐标系中的图形:
问题:将第一象限和第三象限的图形看成一个整体,则这个图形可否作为某个函数y=f(x)的图象,若能请说出该图象具有什么特殊的性质?函数图象上相应的点的坐标有什么特殊的关系?
答案:(1)可以作为某个函数y=f(x)的图象,并且它的图象关于原点对称;
(2)若点(x,f(x))在函数图象上,则相应的点(-x,-f(x))也在函数图象上,即函数图象上横坐标互为相反数的点,它们的纵坐标也一定互为相反数.
二、观察思考
象上面实践操作①中的图象关于y轴对称的函数即是偶函数,操作②中的图象关于原点对称的函数即是奇函数.
1.偶函数(even function)
一般地,对于函数f(x)的定义域内的任意一个x,都有f(-x)=f(x),那编辑部地址:武汉市前三眼桥85号(430000)
联系电话:027—85789995
考试指南报——课堂网(www.xiexiebang.com)
么f(x)就叫做偶函数.
(学生活动):仿照偶函数的定义给出奇函数的定义 2.奇函数(odd function)
一般地,对于函数f(x)的定义域内的任意一个x,都有f(-x)=f(x),那么f(x)就叫做奇函数.
注意:
①函数是奇函数或是偶函数称为函数的奇偶性,函数的奇偶性是函数的整体性质;
②由函数的奇偶性定义可知,函数具有奇偶性的一个必要条件是,对于定义域内的任意一个x,则-x也一定是定义域内的一个自变量(即定义域关于原点对称).
③具有奇偶性的函数的图象的特征:偶函数的图象关于y轴对称;奇函数的图象关于原点对称.
三、典型例题
1.判断函数的奇偶性 例题 课本例题
应用函数奇偶性定义说明两个观察思考中的四个函数的奇偶性.(本例由学生讨论,师生共同总结具体方法步骤)
总结:利用定义判断函数奇偶性的格式步骤:
①首先确定函数的定义域,并判断其定义域是否关于原点对称; ②确定f(-x)与f(x)的关系; ③作出相应结论:若f(-x)= f(x)或 f(-x)-f(x)= 0,则f(x)是偶函数;若f(-x)=-f(x)或 f(-x)+f(x)= 0,则f(x)是奇函数.
说明:函数具有奇偶性的一个必要条件是,定义域关于原点对称,所以判断函数的奇偶性应应首先判断函数的定义域是否关于原点对称,若不是即可断定函数是非奇非偶函数.
2.利用函数的奇偶性补全函数的图象(教材P41思考题)
规律:偶函数的图象关于y轴对称;奇函数的图象关于原点对称.
说明:这也可以作为判断函数奇偶性的依据.
3.函数的奇偶性与单调性的关系
(学生活动)举几个简单的奇函数和偶函数的例子,并画出其图象,根据图象判断奇函数和偶函数的单调性具有什么特殊的特征.
例 已知f(x)是奇函数,在(0,+∞)上是增函数,证明:f(x)在(-∞,0)上也是增函数
解:(由一名学生板演,然后师生共同评析,规范格式与步骤)规律:偶函数在关于原点对称的区间上单调性相反;奇函数在关于原编辑部地址:武汉市前三眼桥85号(430000)
联系电话:027—85789995
考试指南报——课堂网(www.xiexiebang.com)
点对称的区间上单调性一致.
四、归纳小结
本节主要学习了函数的奇偶性,判断函数的奇偶性通常有两种方法,即定义法和图象法,用定义法判断函数的奇偶性时,必须注意首先判断函数的定义域是否关于原点对称.单调性与奇偶性的综合应用是本节的一个难点,需要学生结合函数的图象充分理解好单调性和奇偶性这两个性质.
五、作业布置
课本P46习题1.3(A组)第9、10题,B组第2题. 补充作业:
判断下列函数的奇偶性:
x(1x)x0,2x22xf(x)f(x)x1;
②x(1x)x0.①
3f(x)x2x ;
④ f(x)a
(xR)③
课后思考:
已知f(x)是定义在R上的函数,设g(x)f(x)f(x)f(x)f(x)h(x)22,①试判断g(x)与h(x)的奇偶性; ②试判断g(x),h(x)与f(x)的关系;
③由此你能猜想得出什么样的结论,并说明理由.
编辑部地址:武汉市前三眼桥85号(430000)
联系电话:027—85789995
第二篇:函数奇偶性教案
函数的奇偶性
授课教师——李振明
授课班级——高一(8)
教学目的:
1、使学生理解函数的奇偶性的概念,并能判断一些简单函数的奇偶性;
2、进一步培养学生分析问题和解决问题的能力。教学重点和难点: 函数奇偶性的判断
一、引入新课: 题1:已知函数f(x)=3x 画出图形,并求: f(2),f(-2),f(-x)。
题2:已知函数g(x)= 2x2画出图形,并求: g(1),g(-1),g(-x)。
考察:f(x)与f(-x),g(x)与g(-x)之间的关系是什么?
二、定义:对于函数f(x),在它的定义域内,任
意一个x.①如果都有f(-x)=f(x),则函数f(x)叫做奇函数。②如果都有f(-x)=f(x),则函数f(x)叫做偶函数。
三、例:判断下列函数的奇偶性
① f(x)=x5+x ② f(x)=x4-x2 ③ f(x)=3x+1 定理:
1、性质:奇函数的图象关于原点对称。偶函数的图象关于y轴对称。
2、如果一个函数的图象关于原点对称,那么这个函数是奇函数。
如果一个函数的图象关于y轴对称,那么这个函数是偶函数。
四、巩固练习
(1)如果对于函数f(x)的(任意一个X),都有(f(-x)=f(x)),那么函数f(x)就叫做偶函数。
如果对于函数f(x)的(任意一个X),都有(f(-x)=f(x)),那么函数f(x)就叫做奇函数。
(2)奇函数的图象关于(关于原点)对称,偶函数的图象关于(y轴对称)对称。
(3)已知函数y = f(x)是奇函数,如果f(a)=1那么f(-a)=(-1)(4).在下列各函数中,偶函数是(B)
(5)函数f(x)=|x+2|-|x-2|的奇偶性是(A)
A.奇函数
B.偶函数
C.既是奇函数又是偶函数 D.既不是奇函数又不是偶函数
四、小结
1、定义:对于函数f(x),在它的定义域内,把任 意一个x换成-x,(x,-x都在定义域)。
①如果都有f(-x)=f(x),则函数f(x)叫做奇函数。②如果都有f(-x)=f(x),则函数f(x)叫做偶函数。
2、性质:奇函数的图象关于原点对称。
偶函数的图象关于y轴对称。如果一个函数的图象关于原点对称,那么这个函 数是奇函数。
如果一个函数的图象关于y轴对称,那么这个函 数是偶函数。
五、课后思考题
已知函数f(x)=(m2-1)x2 +(m-1)x+n+2,则当m、n为何值时,为奇函数
f(x)
第三篇:函数奇偶性教案
函数的奇偶性
廖登玲
一、教学目标:
1、知识与技能 :
理解奇函数、偶函数的概念,掌握判断函数奇偶性的方法;
2、过程与方法:
通过观察、归纳、抽象、概括,自主建构奇函数、偶函数等概念;能运用函数奇偶
性概念解决简单的问题,领会数形结合的数学思想方法;培养发现问题、分析问题、解决问题的能力.
二、教学重难点:
教学重点:函数奇偶性概念及其判断方法。
教学难点:对函数奇偶性的概念的理解及如何判定函数奇偶性。
三、教学方法:
通过学生熟悉的实际生活问题引入课题,为概念学习创设情境,拉近数学与现实的距离,激发学生求知欲,调动学生主体参与的积极性.在形成概念的过程中,紧扣概念中的关键语句,通过学生的主体参与,正确地形成概念.在鼓励学生主体参与的同时,教会学生清晰的思维、严谨的推理,并顺利地完成书面过程
四、教学过程:
1、创设情境,引入课题:
让学生自己列举出生活中对称的实例,师:我们知道,“对称”是大自然的一种美,在我们的生活中,有许多的对称美:如美丽的蝴蝶、古建筑等等。这种对称美在数学中也有大量的反应,这节课我们就来一起发现数学中的对称美。
2、观察归纳,形成概念:
(1)请同学们利用描点法做出函数f(x)=x/3 与函数g(x)=x^3 的图像,观察这两个函数图像具有怎样的对称性并思考和讨论以下的问题?
①这两个函数的图像有什么共同的特征?②从图像看函数的定义域有什么特点? 生:函数y=x/3的图像是定义域为R的直线,函数y=x^3的图像是定义域为R的曲线,它们都关于原点对称,且当x属于函数定义域时,它的相反数-x也在定义域内。
(2)让学生注意到x=-
3、-
2、-1、0、1、2、3 时两个函数的函数值,可以发现两个函数的对称性反应到函数上具有的特性:关于原点对称,进而提出在定义域内是否对所有的x,都有类似的情况?借助课件演示,让学生通过运算发现函数的对称性实质:当自变量互为相反数时,函数值互为相反数。然后通过解析式给出简单证明:f(-x)=(-x)/3=-(x/3)=-f(x);g(-x)=(-x)^3=-(x^3)=-g(x),进一步说明这个特性对定义域内的任意一个x都成立。
(3)师:具有此种特征的函数还有很多,我们能不能用数学语言对这类函数的特征进行描述?
(板书):如果对于函数定义域内的任意一个x,都有f(x)=-f(-x),那么函数叫做奇函数。
3、设疑答问,深化概念
教师设计下列问题并组织学生讨论思考回答:
问题1:奇函数定义中有“任意”二字,说明函数的奇偶性是怎样的一个性质?与单调性有何区别?
答:在奇函数的定义中“如果对于函数f(x)的定义域内任意一个x”这句话它表示函数奇偶性针对的是函数的整个定义域,它表示函数的奇偶性是函数在定义域上的一个整体性
质,它不同于单调性,单调性它针对的是定义域中的某个区间,是一个局部性质。问题2:-x与x在几何上有何关系?具有奇偶性的函数的定义域有何特征?
答:二者在几何上关于原点对称,函数的定义域关于原点对称是一个函数为奇函数或偶函数的首要条件。
问题3:(1)对于任意一个奇函数f(x),图像上的点f(x)关于原点的对称点f(-x)的坐标是什么?点(-x,-f(x))是否也在函数f(x)的图像上?由此可得到怎样的结论?(2)如果一个函数是奇函数,定义域中的x可以等于0.那么f(0)的值等于多少?
引导学生通过回答问题3把奇函数图像的性质总结出来,即:①函数f(x)是奇函数,则其图像关于原点对称,②对于奇函数f(x),若f(0)有定义,则f(0)=0.然后教师利用多媒体演示两幅关于y轴对称的函数图像,让学生仿照奇函数,观察图像,给出偶函数的定义:如果对于函数定义域内的任意一个x,都有f(x)=f(-x),那么函数叫做偶函数。并让学生自己研究一下偶函数图像的性质,即函数f(x)是偶函数,则其图像关于y轴对称。
4、知识应用,巩固提高 例
1、判断下列函数的奇偶性:
(1)f(x)=1/x(奇函数)
(2)f(x)=-(x^2)+1(偶函数)
(3)f(x)=x+1(非奇非偶)
(4)f(x)=0(既奇又偶)
选例1的第(1)小题板书来示范解题的步骤:对于函数f(x)=1/x,其定义域为(-∞,+∞).因为对定义域内的每一个x,有-x∈(-∞,+∞),且f(-x)=-1/x=-f(x),(f(x)+f(-x)=0), 所以,函数为奇函数。
其他例题让几个学生板演,其余学生在下面自己完成,针对板演的同学所出现的步骤上的问题进行及时纠正,教师要适时引导学生做好总结归纳。(1)通过例1总结判断函数奇偶性的步骤:
①求出函数的定义域I,并判断若x∈I,是否有-x∈I
②验证f(-x)=f(x)或f(-x)=-f(x)(f(x)-f(-x)=0 或f(x)+f(-x)=0)③得出结论
(2)通过讲解板演同学的解题,得出函数奇偶性的相关性质:
① 对于一个函数来说,它的奇偶性有四种可能:是奇函数但不是偶函数,是偶函数但不是奇函数,既是奇函数又是偶函数,既不是奇函数也不是偶函数。
②存在既是奇函数,又是偶函数的函数:f(x)=0
五、总结反思:
从知识、方法两个方面来对本节课的内容进行归纳总结,让学生谈本节课的收获,并进行反思。从而关注学生的自主体验,反思和发表本堂课的体验和收获。
六、任务后延,兴趣研究:
1、思考:如果改变奇函数的定义域,它还是奇函数吗?如:y = x3(x≠0),y = x3(x≠1),y = x3(x≥0),y=x3(-1≤x≤1),试判断它们是奇函数吗?
2、课后作业(略)
第四篇:函数奇偶性教案
§1.3.2函数的奇偶性
教学目标
1.知识与技能:
理解函数的奇偶性及其几何意义;学会运用函数图象理解和研究函数的性质;学会判断函数的奇偶性;
2.过程与方法:
通过函数奇偶性概念的形成过程,培养学生观察、归纳、抽象的能力,渗透数形结合的数学思想.
3.情态与价值:
通过函数的奇偶性教学,培养学生从特殊到一般的概括归纳问题的能力.
教学重点和难点
教学重点:函数的奇偶性及其几何意义 教学难点:判断函数的奇偶性的方法
教学过程:
一:引入课题
观察并思考函数
以及y=|x|的图像有哪些共同特征?这些特征在函数值对应表是如何体现的?(学生自主讨论)根据学生讨论的结果推出偶函数的定义。
偶函数
一般地,对于函数f(x)的定义域内的任意一个x,都有f(x)f(x),那么f(x)就叫做偶函数.
(学生活动)
依照偶函数的定义给出奇函数的定义.
奇函数
一般地,对于函数f(x)的定义域的任意一个x,都有f(x)f(x),那么f(x)就叫做奇函数.
注意:
1.具有奇偶性的函数的图像的特征:
偶函数的图像关于y轴对称;奇函数的图像关于原点对称.
2.由函数的奇偶性定义可知,函数具有奇偶性的一个必要条件是,对于定义域内的任意一个x,则x也一定是定义域内的一个自变量(即定义域关于原点对称). 二:例题讲解
例1.判断下列函数是不是具有奇偶性.(1)f(x)2x3x[1,2]
2(2)f(x)xxx1
例2.判断下列函数的奇偶性
(1)f(x)x4
(2)f(x)x5
(3)f(x)x总结:利用定义判断函数奇偶性的格式步骤: 首先确定函数的定义域,并判断其定义域是否关于原点对称; ○2 确定f(-x)与f(x)的关系; ○3 作出相应结论: ○若f(-x)= f(x)或 f(-x)-f(x)= 0,则f(x)是偶函数;
若f(-x)=-f(x)或 f(-x)+f(x)= 0,则f(x)是奇函数.
三:课堂练习
课本P36习题1
利用函数的奇偶性补全函数的图象(教材P41思考题)
规律:偶函数的图象关于y轴对称;
奇函数的图象关于原点对称.
1x
(4)f(x)1x2
四:归纳小结,强化思想
本节主要学习了函数的奇偶性,判断函数的奇偶性通常有两种方法,即定义法和图象法,用定义法判断函数的奇偶性时,必须注意首先判断函数的定义域是否关于原点对称.单调性与奇偶性的综合应用是本节的一个难点,需要学生结合函数的图象充分理解好单调性和奇偶性这两个性质.
五:作业布置
1.作业:判断下列函数的奇偶性: f(x)○2x2xx122f(x);
○
x(1x)x0,x(1x)x0.f(x)x32x ;
○4 f(x)a
(xR)○
思考题:若函数f(x)=(x+1)(x-a)为偶函数,求a的值.
第五篇:函数的奇偶性(教案)
3.4函数的奇偶性
教学目标:
1、理解并掌握偶函数、奇函数的概念;
2、熟悉掌握偶函数、奇函数的图像的特征;
3、会证明一些简单的函数的奇偶性。
教学重点:偶函数、奇函数的概念,判断函数的奇偶性; 教学难点:函数的奇偶性的定义的理解。教学过程:
1、创设情境,直观感受
(1)请同学们欣赏图片,并根据图片说一说这些图片具有怎样的对称性。这些图片展现了数学的对称美,他们是轴对称图形或者中心对称图形。我们熟知的函数中也有如此美的图像。函数的图像一般都是呈现在直角坐标系中的,而在我们直角坐标系中,有2条坐标轴以及一个点,今天我们所要研究的就是在坐标轴中的对称。有三种,关于y轴对称,关于原点对称,关于x轴对称。请问,一个函数图像可能关于x轴对称吗?(这个学生应该比较好回答。)那么就只有2种关于y轴对称和关于原点对称。(这里要复习一下一个点关于y轴对称和关于原点对称的点的坐标特点。)
请同桌讨论一下,举出我们所学习的函数中图像是关于y轴对称或者关于原点对称。
(请2组同学进行汇报,并且将函数的大致图像画到黑板上。)
2、概念引入,理性分析
(1)从函数图像上诠释研究奇偶函数的价值
根据同学举得例子,来探讨这2类函数研究的价值:因为这2类函数具有美丽的对称性,那么我们在画函数图像的时候只需要作出一半的图像,另外一半对称过去就可以;而且在研究函数性质的时候,只需要研究一半,另外一半的性质也可以相应的得出。
(2)从符号语言、解析式来诠释奇偶函数
既然这2类函数具有特殊的对称性,那么如何证明这种对称性呢?
(此处引导学生:图像是点集,要证明图像的性质,只需要证明点的性质即可。)第一组图像中的点1,f(1),它关于y轴的对称点为1,f(1),下面证明1,f(1)点在函数的图像上即可,如何证明点在函数图像上呢?只需要证明点的坐标满足函数解析式即可(带入证明)。同样的对于点2,f(2),它关于y轴的对称点为2,f(2),下面说明点2,f(2)在函数图像即可。依次下去,需要验证多少个点才可以?(无数个),那么这样太麻烦,我们想一个简单的方式,找一个具有一般性的点a,f(a),它关于y轴的对称点为a,f(a),下面证明点a,f(a)在函数图像即可,依然是带入验证。
(归纳刚才的研究过程,得出偶函数的定义)
(1)偶函数的定义:
如果对于函数yf(x)的定义域D内的任意实数x,都有f(x)f(x),那么就把函数yf(x)叫做偶函数。
(关键词:“任意”即“所有”、“每一个”)(可提问同学此定义的关键词是什么?)
(2)偶函数的性质:
①定义域关于原点对称;(依据:定义域D内的任意实数x,都有f(x)f(x),也就是说f(x)f(x)是恒等式,恒等式要成立的前提是有意义,xD且xD,得出定义域关于原点对称)
②偶函数的图像关于y轴对称。(依据:有偶函数的定义即可得到)③偶函数中有恒等式f(x)f(x)成立。
(数学中,有“偶”就有“奇”,请同学们类比得出奇函数的定义与性质)(提示同学们从下面几点进行研究:①奇函数图像的特征;②奇函数的定义;③奇函数的性质)
(3)奇函数的定义
如果对于函数yf(x)的定义域D内的任意实数x,都有f(x)f(x),那么就把函数yf(x)叫做奇函数。
(4)奇函数的性质:①定义域关于原点对称;
②奇函数的图像关于原点对称。
③奇函数中有恒等式f(x)f(x)成立。
根据奇函数的定义,请同学们自己列举奇函数的例子。
3、例题分析,巩固理解 例
1、(根据学生列举的奇函数的例子,提问,如何求证此函数是奇函数?依据:定义。)例
2、求证函数f(x)x21是偶函数。
例
3、判断下列函数的奇偶性
(1)yx22,x3,3
(2)y0,x1,1
(此处分析既奇又偶函数的特征:解析式一定是y0的形式,主要就是在定义域上做文章。)
小结:如何判断函数的奇偶性
(1)一看:看定义域是否关于原点对称,如果不关于原点对称,则非奇非偶;(2)二找:找f(x)与f(x)的关系;(3)三判断:根据关系,下结论。
例
4、(如果时间充足,可作为拓展题目)已知yf(x)是偶函数,它在y轴右边图像如图所示,画出yf(x)在y轴左边的图像。(同学做好,可以投影展示)
4、课堂小结
(1)函数奇偶性的定义;(2)判断函数奇偶性的步骤
6、布置作业