第一篇:人教版高一数学《函数奇偶性》教案
人教版高一数学《函数奇偶性》教案
指对数的运算
一、反思数学符号:
“”“”出现的背景
数学总是在不断的发明创造中去解决所遇到的问题。
2方程的根是多少?;
①这样的数存在却无法写出来?怎么办呢?你怎样向别人介绍一个人?
描述出来。
②那么这个写不出来的数是一个什么样的数呢?怎样描述呢?
①我们发明了新的公认符号“”作为这样数的“标志”
的形式即是一个平方等于三的数
②推广:则
③后又常用另一种形式分数指数幂形式
3方程 的根又是多少?①也存在却无法写出来??同样也发明了新的公认符号“”专门作为这样数的标志,的形式
即是一个2为底结果等于3的数
②推广:则
二、指对数运算法则及性质:
幂的有关概念:
正整数指数幂:=
零指数幂:)
负整数指数幂:
正分数指数幂:
负分数指数幂:
0的正分数指数幂等于0,负分指数幂没意义
2根式:
如果一个数的n次方等于a,那么这个数叫做a的n次方根如果,那么x叫做a的次方根,则x=
0的任何次方根都是0,记作
式子叫做根式,n叫做根指数,a叫做被开方数
当n为奇数时,=
当n为偶数时,=
=
3指数幂的运算法则:
=
=
3)=
4)=
二对数
对数的定义:如果,那么数b叫做以a为底N的对数,记作 ,其中a叫做
,叫做真数
2特殊对数:
=
;
=
=
;
;
=
=
=
=
;
=
三、经典体验:
化简根式:;
;
;
2解方程:;
;;
;
3化简求值:
;
4【徐州六县一区09-10高一期中】16求函数的定义域。
四、经典例题
例:1画出函数草图:
练习:1“等式lg3x2=2成立”是“等式lg3x=1成立”的 ▲
.必要不充分条
例:2若则
▲
.
练习:1已知函数求的值
▲
.
例3:函数f=lg是
(奇、偶)函数。
点拨:
为奇函数。
练习:已知则
.
练习:已知则的值等于
练习:已知定义域为R的函数在是增函数,满足且,求不等式
的解集。
例:4解方程.
解:设,则,代入原方程,解得,或(舍去).由,得.经检验知,为原方程的解.
练习:解方程.
练习:解方程.
练习:解方程:
练习:设,求实数、的值。
解:原方程等价于,显然,我们考虑函数,显然,即是原方程的根.又和都是减函数,故也是减函数.
当时,;当时,因此,原方程只有一个解.分析:注意到,故倒数换元可求解.
解:原方程两边同除以,得.设,原方程化为,化简整理,得.,即..
解析:令,则,∴原方程变形为,解得。由得,∴,即,∴,∴。由得,∴,∵,∴此方程无实根。故原方程的解为。评注:将指数方程转化为基本型求解,是解决该类问题的关键。
解析:由题意可得,,原方程可化为,即。
∴,∴。
∴由非负数的性质得,且,∴。
评注:通过拆项配方,使问题巧妙获解。
例:已知关于的方程有实数解,求的取值范围。
已知关于的方程的实数解在区间,求的取值范围。
反思提炼:1常见的四种指数方程的一般解法
(1)
方程的解法:
(2)
方程的解法:
(3)
方程的解法:
(4)
方程的解法:
2.常见的三种对数方程的一般解法
(1)方程的解法:
(2)方程的解法:
(3)方程的解法:
3.方程与函数之间的转化。
4.通过数形结合解决方程有无根的问题。
后作业:
对正整数n,设曲线在x=2处的切线与轴交点的纵坐标为,则数列的前n项和的公式是
[答案] 2n+1-2
[解析] ∵=xn,∴′=′+′•xn=n•xn-1-xn
f′=-n•2n-1-2n=•2n-1
在点x=2处点的纵坐标为=-2n
∴切线方程为+2n=•2n-1.
令x=0得,=•2n,∴an=•2n,∴数列ann+1的前n项和为22-1=2n+1-2
2.在平面直角坐标系中,已知点P是函数的图象上的动点,该图象在P处的切线交轴于点,过点P作的垂线交轴于点N,设线段N的中点的纵坐标为t,则t的最大值是_____________
解析:设则,过点P作的垂线
,所以,t在上单调增,在单调减。
第二篇:高一数学知识点归纳:指数函数、函数奇偶性
指数函数的一般形式为,从上面我们对于幂函数的讨论就可以知道,要想使得x能够取整个实数集合为定义域,则只有使得
如图所示为a的不同大小影响函数图形的情况。
可以看到:
(1)指数函数的定义域为所有实数的集合,这里的前提是a大于0,对于a不大于0的情况,则必然使得函数的定义域不存在连续的区间,因此我们不予考虑。
(2)指数函数的值域为大于0的实数集合。
(3)函数图形都是下凹的。
(4)a大于1,则指数函数单调递增;a小于1大于0,则为单调递减的。
(5)可以看到一个显然的规律,就是当a从0趋向于无穷大的过程中(当然不能等于0),函数的曲线从分别接近于Y轴与X轴的正半轴的单调递减函数的位置,趋向分别接近于Y轴的正半轴与X轴的负半轴的单调递增函数的位置。其中水平直线y=1是从递减到递增的一个过渡位置。
(6)函数总是在某一个方向上无限趋向于X轴,永不相交。
(7)函数总是通过(0,1)这点。
(8)显然指数函数无界。
奇偶性
注图:(1)为奇函数(2)为偶函数
1.定义
一般地,对于函数f(x)
(1)如果对于函数定义域内的任意一个x,都有f(-x)=-f(x),那么函数f(x)就叫做奇函数。
(2)如果对于函数定义域内的任意一个x,都有f(-x)=f(x),那么函数f(x)就叫做偶函数。
(3)如果对于函数定义域内的任意一个x,f(-x)=-f(x)与f(-x)=f(x)同时成立,那么函数f(x)既是奇函数又是偶函数,称为既奇又偶函数。
(4)如果对于函数定义域内的任意一个x,f(-x)=-f(x)与f(-x)=f(x)都不能成立,那么函数f(x)既不是奇函数又不是偶函数,称为非奇非偶函数。
说明:①奇、偶性是函数的整体性质,对整个定义域而言
②奇、偶函数的定义域一定关于原点对称,如果一个函数的定义域不关于原点对称,则这个函数一定不是奇(或偶)函数。
(分析:判断函数的奇偶性,首先是检验其定义域是否关于原点对称,然后再严格按照奇、偶性的定义经过化简、整理、再与f(x)比较得出结论)
③判断或证明函数是否具有奇偶性的根据是定义
2.奇偶函数图像的特征:
定理奇函数的图像关于原点成中心对称图表,偶函数的图象关于y轴或轴对称图形。
f(x)为奇函数《==》f(x)的图像关于原点对称
点(x,y)→(-x,-y)
奇函数在某一区间上单调递增,则在它的对称区间上也是单调递增。
偶函数在某一区间上单调递增,则在它的对称区间上单调递减。
3.奇偶函数运算
(1).两个偶函数相加所得的和为偶函数.(2).两个奇函数相加所得的和为奇函数.(3).一个偶函数与一个奇函数相加所得的和为非奇函数与非偶函数.(4).两个偶函数相乘所得的积为偶函数.(5).两个奇函数相乘所得的积为偶函数.(6).一个偶函数与一个奇函数相乘所得的积为奇函数.
第三篇:4.高一数学(人教新课标A版)函数的单调性和奇偶性教案!
函数的单调性和奇偶性
一、目标认知 学习目标:
1.理解函数的单调性、奇偶性定义;
2.会判断函数的单调区间、证明函数在给定区间上的单调性; 3.会利用图象和定义判断函数的奇偶性;
4.掌握利用函数性质在解决有关综合问题方面的应用.重点、难点:
1.对于函数单调性的理解;
2.函数性质的应用.二、知识要点梳理 1.函数的单调性
(1)增函数、减函数的概念
一般地,设函数f(x)的定义域为A,区间
如果对于M内的任意两个自变量的值x1、x2,当x1<x2时,都有f(x1)<f(x2),那么就说f(x)在区间M上是增函数;
如果对于M内的任意两个自变量的值x1、x2,当x1<x2时,都有f(x1)>f(x2),那么就说f(x)在区间M上是减函数.如果函数f(x)在区间M上是增函数或减函数,那么就说函数f(x)在区间M上具有单调性,M称为函数f(x)的单调区间.要点诠释:
[1]“任意”和“都”;
[2]单调区间与定义域的关系----局部性质;
[3]单调性是通过函数值变化与自变量的变化方向是否一致来描述函数性质的;
[4]不能随意合并两个单调区间.(2)已知解析式,如何判断一个函数在所给区间上的单调性?
基本方法:观察图形或依据定义.2.函数的奇偶性
偶函数:若对于定义域内的任意一个x,都有f(-x)=f(x),那么f(x)称为偶函数.奇函数:若对于定义域内的任意一个x,都有f(-x)=-f(x),那么f(x)称为奇函数.要点诠释:
[1]奇偶性是整体性质;
[2]x在定义域中,那么-x在定义域中吗?----具有奇偶性的函数,其定义域必定是关于原点对称的;
[3]f(-x)=f(x)的等价形式为:,f(-x)=-f(x)的等价形式为:;
[4]由定义不难得出若一个函数是奇函数且在原点有定义,则必有f(0)=0;
[5]若f(x)既是奇函数又是偶函数,则必有f(x)=0;
[6],.三、规律方法指导
1.证明函数单调性的步骤:
(1)取值.设是
定义域内一个区间上的任意两个量,且
;
(2)变形.作差变形(变形方法:因式分解、配方、有理化等)或作商变形;
(3)定号.判断差的正负或商与1的大小关系;
(4)得出结论.2.函数单调性的判断方法:
(1)定义法;
(2)图象法;
(3)对于复合函数在区间
同(同时为增或
同时为减),则为
减函数.为增函数;若
与
单调性相反,则或者
上是单调函数;若
与
单调性相,若
在区间
上是单调函数,则3.常见结论:
(1)若
(2)若是增函数,则和
为减函数;若
和
是减函数,则
为增函数;
均为增(或减)函数,则在的公共定义域上为增(或减)
函数;
(3)若且为增函数,则函数为增函数,为减函数;
若且为减函数,则函数为减函数,为增函数.(4)若奇函数数,且有最小值
在上是增函数,且有最大值,则在是增函;若偶函数在是减函数,则在是增函数.经典例题透析
类型
一、函数的单调性的证明
1.证明函数上的单调性.证明:在(0,+∞)上任取x1、x2(x1≠x2),令△x=x2-x1>0
则
∵x1>0,x2>0,∴
∴上式<0,∴△y=f(x2)-f(x1)<0
∴
上递减.总结升华:
[1]证明函数单调性要求使用定义; [2]如何比较两个量的大小?(作差)[3]如何判断一个式子的符号?(对差适当变形)举一反三:
【变式1】用定义证明函数上是减函数.思路点拨:本题考查对单调性定义的理解,在现阶段,定义是证明单调性的唯一途径.证明:设x1,x2是区间
上的任意实数,且x1<x2,则
∵0<x1<x2≤1 ∴x1-x2<0,0<x1x2<1
∵0<x1x2<1
故
∴x1<x2时有f(x1)>f(x2),即f(x1)-f(x2)>0
上是减函数.上是增函数;在今后的学习中经常
总结升华:可以用同样的方法证明此函数在会碰到这个函数,在此可以尝试利用函数的单调性大致给出函数的图象.类型
二、求函数的单调区间
2.判断下列函数的单调区间;
(1)y=x2-3|x|+2;(2)
解:(1)由图象对称性,画出草图
∴f(x)在增.上递减,在上递减,在上递
(2)
∴图象为
∴f(x)在
举一反三:
【变式1】求下列函数的单调区间:
上递增.(1)y=|x+1|;(2)
(3).解:(1)
∴函数的减区间为
画出函数图象,函数的增区间为(-1,+∞);
(2)定义域为,其中u=2x-1为增函数,在(-∞,0)与(0,+∞)为减函数,则上为减函数;
(3)定义域为(-∞,0)∪(0,+∞),单调增区间为:(-∞,0),单调减区间为(0,+∞).总结升华:
[1]数形结合利用图象判断函数单调区间;
[2]关于二次函数单调区间问题,单调性变化的点与对称轴相关.[3]复合函数的单调性分析:先求函数的定义域;再将复合函数分解为内、外层函数;利用已知函数的单调性解决.关注:内外层函数同向变化复合函数为增函数;内外层函数反向变化复合函数为减函数.类型
三、单调性的应用(比较函数值的大小,求函数值域,求函数的最大值或最小值)3.已知函数f(x)在(0,+∞)上是减函数,比较f(a2-a+1)与的大小.解:
又f(x)在(0,+∞)上是减函数,则
4.求下列函数值域:
.(1); 1)x∈[5,10]; 2)x∈(-3,-2)∪(-2,1);
(2)y=x2-2x+3;
1)x∈[-1,1]; 2)x∈[-2,2].思路点拨:(1)可应用函数的单调性;(2)数形结合.解:(1)位得到,如图
2个单位,再上移2个单
1)f(x)在[5,10]上单增,;
2)
(2)画出草图
;
1)y∈[f(1),f(-1)]即[2,6];
2)
举一反三:
.【变式1】已知函数.(1)判断函数f(x)的单调区间;
(2)当x∈[1,3]时,求函数f(x)的值域.思路点拨:这个函数直接观察恐怕不容易看出它的单调区间,但对解析式稍作处理,即可得到我们相对熟悉的形式.域.,第二问即是利用单调性求函数值
解:(1)
上单调递增,在上单调递增;
(2)故函数f(x)在[1,3]上单调递增
∴x=1时f(x)有最小值,f(1)=-2
x=3时f(x)有最大值
∴x∈[1,3]时f(x)的值域为
.5.已知二次函数f(x)=x2-(a-1)x+5在区间
上是增函数,求:(1)实数a的取值范围;(2)f(2)的取值范围.解:(1)∵对称轴是决定f(x)单调性的关键,联系图象可知
只需;
(2)∵f(2)=22-2(a-1)+5=-2a+11又∵a≤2,∴-2a≥-4
∴f(2)=-2a+11≥-4+11=7
.类型
四、判断函数的奇偶性
6.判断下列函数的奇偶性:
(1)
(2)
(3)f(x)=x2-4|x|+3
(4)f(x)=|x+3|-|x-3|
(5)
(6)
(7)
思路点拨:根据函数的奇偶性的定义进行判断.解:(1)∵f(x)的定义域为
(2)∵x-1≥0,∴f(x)定义域,不关于原点对称,因此f(x)为非奇非偶函数;
不关于原点对称,∴f(x)为非奇非偶函数;
(3)对任意x∈R,都有-x∈R,且f(-x)=x2-4|x|+3=f(x),则f(x)=x2-4|x|+3为偶函数 ;
(4)∵x∈R,f(-x)=|-x+3|-|-x-3|=|x-3|-|x+3|=-f(x),∴f(x)为奇函数;
(5)
,∴f(x)为奇函数;
(6)∵x∈R,f(x)=-x|x|+x ∴f(-x)=-(-x)|-x|+(-x)=x|x|-x=-f(x),∴f(x)为奇函数;
(7)
举一反三:
【变式1】判断下列函数的奇偶性:
(1),∴f(x)为奇函数.;
(2)f(x)=|x+1|-|x-1|;
(3)f(x)=x2+x+1;
(4).思路点拨:利用函数奇偶性的定义进行判断.解:(1)
;
(2)f(-x)=|-x+1|-|-x-1|=-(|x+1|-|x-1|)=-f(x)∴f(x)为奇函数;
(3)f(-x)=(-x)2+(-x)+1=x2-x+1
∴f(-x)≠-f(x)且f(-x)≠f(x)∴f(x)为非奇非偶函数;
(4)任取x>0则-x<0,∴f(-x)=(-x)2+2(-x)-1=x2-2x-1=-(-x2+2x+1)=-f(x)
任取x<0,则-x>0 f(-x)=-(-x)2+2(-x)+1=-x2-2x+1=-(x2+2x-1)=-f(x)
x=0时,f(0)=-f(0)∴x∈R时,f(-x)=-f(x)∴f(x)为奇函数.举一反三:
【变式2】已知f(x),g(x)均为奇函数,且定义域相同,求证:f(x)+g(x)为奇函数,f(x)·g(x)为偶函数.证明:设F(x)=f(x)+g(x),G(x)=f(x)·g(x)则
F(-x)=f(-x)+g(-x)=-f(x)-g(x)=-[f(x)+g(x)]=-F(x)
G(-x)=f(-x)·g(-x)=-f(x)·[-g(x)]=f(x)·g(x)=G(x)
∴f(x)+g(x)为奇函数,f(x)·g(x)为偶函数.类型
五、函数奇偶性的应用(求值,求解析式,与单调性结合)
7.已知f(x)=x5+ax3-bx-8,且f(-2)=10,求f(2).解:法一:∵f(-2)=(-2)5+(-2)3a-(-2)b-8=-32-8a+2b-8=-40-8a+2b=10
∴8a-2b=-50 ∴f(2)=25+23a-2b-8=8a-2b+24=-50+24=-26
法二:令g(x)=f(x)+8易证g(x)为奇函数
∴g(-2)=-g(2)∴f(-2)+8=-f(2)-8
∴f(2)=-f(-2)-16=-10-16=-26.8.f(x)是定义在R上的奇函数,且当x<0时,f(x)=x2-x,求当x≥0时,f(x)的解析式,并画出函数图象.解:∵奇函数图象关于原点对称,∴x>0时,-y=(-x)2-(-x)
即y=-x2-x又f(0)=0,如图
9.设定义在[-3,3]上的偶函数f(x)在[0,3]上是单调递增,当f(a-1)<f(a)时,求a的取值范围.解:∵f(a-1)<f(a)∴f(|a-1|)<f(|a|)
而|a-1|,|a|∈[0,3]
.类型
六、综合问题
10.定义在R上的奇函数f(x)为增函数,偶函数g(x)在区间的图象重合,设a>b>0,给出下列不等式,其中成立的是_________.①f(b)-f(-a)>g(a)-g(-b);
②f(b)-f(-a)<g(a)-g(-b);
③f(a)-f(-b)>g(b)-g(-a);
④f(a)-f(-b)<g(b)-g(-a).答案:①③.(1)11.求下列函数的值域:
(2)
(3)的图象与f(x)
思路点拨:(1)中函数为二次函数开方,可先求出二次函数值域;(2)由单调性求值域,此题也可换元解决;(3)单调性无法确定,经换元后将之转化为熟悉二次函数情形,问题得到解决,需注意此时t范围.解:(1)
;
(2)经观察知,;
(3)
令
.12.已知函数f(x)=x2-2ax+a2-1.(1)若函数f(x)在区间[0,2]上是单调的,求实数a的取值范围;
(2)当x∈[-1,1]时,求函数f(x)的最小值g(a),并画出最小值函数y=g(a)的图象.解:(1)∵f(x)=(x-a)2-1 ∴a≤0或a≥2
(2)1°当a<-1时,如图1,g(a)=f(-1)=a2+2a
2°当-1≤a≤1时,如图2,g(a)=f(a)=-1
3°当a>1时,如图3,g(a)=f(1)=a2-2a
,如图
13.已知函数f(x)在定义域(0,+∞)上为增函数,f(2)=1,且定义域上任意x、y都满足f(xy)=f(x)+f(y),解不等式:f(x)+f(x-2)≤3.解:令x=2,y=2,∴f(2×2)=f(2)+f(2)=2 ∴f(4)=2
再令x=4,y=2,∴f(4×2)=f(4)+f(2)=2+1=3 ∴f(8)=3
∴f(x)+f(x-2)≤3可转化为:f[x(x-2)]≤f(8)
.14.判断函数上的单调性,并证明.证明:任取0<x1<x2,∵0<x1<x2,∴x1-x2<0,x1·x2>0
(1)当
时
0<x1·x2<1,∴x1·x2-1<0
∴f(x1)-f(x2)>0即f(x1)>f(x2)
(2)当x1,x2∈(1,+∞)时,上是减函数.上是增函数.难点:x1·x2-1的符号的确定,如何分段.15.设a为实数,函数f(x)=x2+|x-a|+1,x∈R,试讨论f(x)的奇偶性,并求f(x)的最小值.解:当a=0时,f(x)=x2+|x|+1,此时函数为偶函数;
当a≠0时,f(x)=x2+|x-a|+1,为非奇非偶函数.(1)当x≥a时,[1]
且
[2]
上单调递增,上的最小值为f(a)=a2+1.(2)当x<a时,[1]
上单调递减,上的最小值为f(a)=a2+1
[2]上的最小值为
综上:
.学习成果测评 基础达标
一、选择题
1.下面说法正确的选项()A.函数的单调区间就是函数的定义域
B.函数的多个单调增区间的并集也是其单调增区间 C.具有奇偶性的函数的定义域定关于原点对称 D.关于原点对称的图象一定是奇函数的图象
2.在区间上为增函数的是()
A.
C.
B.
D.
3.已知函数
A.B.4.若偶函数在 C.D.为偶函数,则的值是()
上是增函数,则下列关系式中成立的是()
A.
B.
C.
5.如果奇函数上是()
A.增函数且最小值是
C.减函数且最大值是
6.设是定义在在区间
D.
上是增函数且最大值为,那么在区间
B.增函数且最大值是
D.减函数且最小值是
上的一个函数,则函数,在上一定是()
A.奇函数
B.偶函数
C.既是奇函数又是偶函数
D.非奇非偶函数.7.下列函数中,在区间
上是增函数的是()
A.
B.
C.
D.
8.函数f(x)是定义在[-6,6]上的偶函数,且在[-6,0]上是减函数,则()
A.f(3)+f(4)>0
B.f(-3)-f(2)<0
C.f(-2)+f(-5)<0
D.f(4)-f(-1)>0
二、填空题
1.设奇函数的定义域为,若当的解是____________.时,的图象
如右图,则不等式
2.函数
3.已知
4.若函数____________.5.函数____________.三、解答题,则函数的值域是____________.的值域是____________.是偶函数,则的递减区间是在R上为奇函数,且,则当,1.判断一次函数
2.已知函数(2)在定义域上
反比例函数,二次函数的单调性.的定义域为,且同时满足下列条件:(1)是奇函数;
单调递减;(3)
3.利用函数的单调性求函数
4.已知函数
求的取值范围.的值域;
.① 当时,求函数的最大值和最小值;
在区间
上是单调函数.② 求实数的取值范围,使
能力提升
一、选择题
1.下列判断正确的是()
A.函数数
C.函数函数
2.若函数
A.
C.
3.函数
A.
C.
4.已知函数围是()
A.
B.
是奇函数
B.函数是偶函
是非奇非偶函数
D.函数既是奇函数又是偶
在上是单调函数,则的取值范围是()
B.
D.的值域为()
B.
D.
在区间上是减函数,则实数的取值范
C.
D.
5.下列四个命题:(1)函数增函数;(2)若
函数的递增区间
在时是增函数,也是增函数,所以是
与轴没有交点,则且;(3)
为;(4)和表示相等函数.其中正确命题的个数是()
A.
B.
C.
D.
6.定义在R上的偶函数则()
A.
C.
二、填空题
1.函数
2.已知定义在______.上的奇函数,当
时,那么
时,的单调递减区间是____________________.B.
D.,满足,且在区间
上为递增,3.若函数
4.奇函数
则
5.若函数
三、解答题
1.判断下列函数的奇偶性 在区间
在上是奇函数,则的解析式为________.上是增函数,在区间__________.上的最大值为8,最小值为-1,在上是减函数,则的取值范围为__________.(1)
2.已知函数且当时,(2)的定义域为,且对任意
是,都有
上的减函数;(2)函数,恒成立,证明:(1)函数是奇函数.3.设函数与的定义域是
且,是偶函数,是奇函数,且
4.设为实数,函数
(1)讨论,求和的解析式.,的最小值..的奇偶性;(2)求综合探究
1.已知函数,的奇偶性依次
为()
A.偶函数,奇函数
B.奇函数,偶函数
C.偶函数,偶函数
D.奇函数,奇函数
2.若是偶函数,其定义域为,且在,则
上是减函数,则的
大小关系是()
A.>
B.<
C.
D.
3.已知_____.,那么=
4.若
在区间上是增函数,则的取值范围是________.5.已知函数果对于
6.当
7.已知 的定义域是,且满足,(1)求
;(2)解不等式,如
.,都有时,求函数的最小值.在区间内有一最大值,求的值.8.已知函数的值.的最大值不大于,又当,求答案与解析 基础达标
一、选择题
1.C.2.B.3.B.奇次项系数为
4.D.5.A.奇函数关于原点对称,左右两边有相同的单调性
6.A.7.A.8.D.二、填空题
1.2.3.值最大
4...在上递减,在上递减,在上递减
.奇函数关于原点对称,补足左边的图象
是的增函数,当
时,.该函数为增函数,自变量最小时,函数值最小;自变量最大时,函数
5.三、解答题
1.解:当.,在是增函数,当,在是减函数;
当,在是减函数,当,在是增函数;
当,在是减函数,在是增函数,当,在是增函数,在是减函数.2.解:,则,3.解:,显然是的增函数,4.
解
:
对称轴
∴
(2)对称轴
∴
或
当.或
时,在上单调
能力提升
一、选择题
1.C.选项A中的 而
而有意义,非关于原点对称,选项B中的
有意义,非关于原点对称,选项D中的函数仅为偶函数;
2.C.对称轴,则,或,得,或
3.B.4.A.对称轴,是的减函数,当
5.A.(1)反例;(2)不一定
和,开口向下也可;(3)画出图象 ;(4)对应法则不同
可知,递增区间有
6.A.二、填空题
1.2.∵.设
.画出图象,则∴,,3..∵∴
即
4..在区间
上也为递增函数,即
5.三、解答题..1.解:(1)定义域为,则,∵
(2)∵
2.证明:(1)设
∴
∴函数
(2)由
即
∴
3.解:∵是偶函数,则
∴且
为奇函数.∴
既是奇函数又是偶函数.,而
是上的减函数;
得,而
是奇函数.,即函数
是奇函数,∴,且
而,得,即,∴
4.解:(1)当
当时,时,.为偶函数,为非奇非偶函数;
(2)当时,当时,当时,不存在;
当时,当时,当
时,.综合探究
1.D.画出
则
当
时,则的图象可观察到它关于原点对称或当,时,2.C.,3..,4..设则,而
,则
5.解:(1)令,则
(2)
,则
6.解:对称轴
.当,即时,是的递增区间,;
当,即;
时,是的递减区间,当,即时,.7.解:对称轴
则,当即时,得
是或的递减区间,而,即
;
当即,时,是的递增区间,则
得或,而,即不存在;当即时,则,即;∴或.8.解:,对称轴,当时,是的递减区间,而,即与矛盾,即不存在;
当时,对称轴,而,且
即
∴.,而,即
第四篇:函数奇偶性教案
函数的奇偶性
授课教师——李振明
授课班级——高一(8)
教学目的:
1、使学生理解函数的奇偶性的概念,并能判断一些简单函数的奇偶性;
2、进一步培养学生分析问题和解决问题的能力。教学重点和难点: 函数奇偶性的判断
一、引入新课: 题1:已知函数f(x)=3x 画出图形,并求: f(2),f(-2),f(-x)。
题2:已知函数g(x)= 2x2画出图形,并求: g(1),g(-1),g(-x)。
考察:f(x)与f(-x),g(x)与g(-x)之间的关系是什么?
二、定义:对于函数f(x),在它的定义域内,任
意一个x.①如果都有f(-x)=f(x),则函数f(x)叫做奇函数。②如果都有f(-x)=f(x),则函数f(x)叫做偶函数。
三、例:判断下列函数的奇偶性
① f(x)=x5+x ② f(x)=x4-x2 ③ f(x)=3x+1 定理:
1、性质:奇函数的图象关于原点对称。偶函数的图象关于y轴对称。
2、如果一个函数的图象关于原点对称,那么这个函数是奇函数。
如果一个函数的图象关于y轴对称,那么这个函数是偶函数。
四、巩固练习
(1)如果对于函数f(x)的(任意一个X),都有(f(-x)=f(x)),那么函数f(x)就叫做偶函数。
如果对于函数f(x)的(任意一个X),都有(f(-x)=f(x)),那么函数f(x)就叫做奇函数。
(2)奇函数的图象关于(关于原点)对称,偶函数的图象关于(y轴对称)对称。
(3)已知函数y = f(x)是奇函数,如果f(a)=1那么f(-a)=(-1)(4).在下列各函数中,偶函数是(B)
(5)函数f(x)=|x+2|-|x-2|的奇偶性是(A)
A.奇函数
B.偶函数
C.既是奇函数又是偶函数 D.既不是奇函数又不是偶函数
四、小结
1、定义:对于函数f(x),在它的定义域内,把任 意一个x换成-x,(x,-x都在定义域)。
①如果都有f(-x)=f(x),则函数f(x)叫做奇函数。②如果都有f(-x)=f(x),则函数f(x)叫做偶函数。
2、性质:奇函数的图象关于原点对称。
偶函数的图象关于y轴对称。如果一个函数的图象关于原点对称,那么这个函 数是奇函数。
如果一个函数的图象关于y轴对称,那么这个函 数是偶函数。
五、课后思考题
已知函数f(x)=(m2-1)x2 +(m-1)x+n+2,则当m、n为何值时,为奇函数
f(x)
第五篇:函数奇偶性教案
函数的奇偶性
廖登玲
一、教学目标:
1、知识与技能 :
理解奇函数、偶函数的概念,掌握判断函数奇偶性的方法;
2、过程与方法:
通过观察、归纳、抽象、概括,自主建构奇函数、偶函数等概念;能运用函数奇偶
性概念解决简单的问题,领会数形结合的数学思想方法;培养发现问题、分析问题、解决问题的能力.
二、教学重难点:
教学重点:函数奇偶性概念及其判断方法。
教学难点:对函数奇偶性的概念的理解及如何判定函数奇偶性。
三、教学方法:
通过学生熟悉的实际生活问题引入课题,为概念学习创设情境,拉近数学与现实的距离,激发学生求知欲,调动学生主体参与的积极性.在形成概念的过程中,紧扣概念中的关键语句,通过学生的主体参与,正确地形成概念.在鼓励学生主体参与的同时,教会学生清晰的思维、严谨的推理,并顺利地完成书面过程
四、教学过程:
1、创设情境,引入课题:
让学生自己列举出生活中对称的实例,师:我们知道,“对称”是大自然的一种美,在我们的生活中,有许多的对称美:如美丽的蝴蝶、古建筑等等。这种对称美在数学中也有大量的反应,这节课我们就来一起发现数学中的对称美。
2、观察归纳,形成概念:
(1)请同学们利用描点法做出函数f(x)=x/3 与函数g(x)=x^3 的图像,观察这两个函数图像具有怎样的对称性并思考和讨论以下的问题?
①这两个函数的图像有什么共同的特征?②从图像看函数的定义域有什么特点? 生:函数y=x/3的图像是定义域为R的直线,函数y=x^3的图像是定义域为R的曲线,它们都关于原点对称,且当x属于函数定义域时,它的相反数-x也在定义域内。
(2)让学生注意到x=-
3、-
2、-1、0、1、2、3 时两个函数的函数值,可以发现两个函数的对称性反应到函数上具有的特性:关于原点对称,进而提出在定义域内是否对所有的x,都有类似的情况?借助课件演示,让学生通过运算发现函数的对称性实质:当自变量互为相反数时,函数值互为相反数。然后通过解析式给出简单证明:f(-x)=(-x)/3=-(x/3)=-f(x);g(-x)=(-x)^3=-(x^3)=-g(x),进一步说明这个特性对定义域内的任意一个x都成立。
(3)师:具有此种特征的函数还有很多,我们能不能用数学语言对这类函数的特征进行描述?
(板书):如果对于函数定义域内的任意一个x,都有f(x)=-f(-x),那么函数叫做奇函数。
3、设疑答问,深化概念
教师设计下列问题并组织学生讨论思考回答:
问题1:奇函数定义中有“任意”二字,说明函数的奇偶性是怎样的一个性质?与单调性有何区别?
答:在奇函数的定义中“如果对于函数f(x)的定义域内任意一个x”这句话它表示函数奇偶性针对的是函数的整个定义域,它表示函数的奇偶性是函数在定义域上的一个整体性
质,它不同于单调性,单调性它针对的是定义域中的某个区间,是一个局部性质。问题2:-x与x在几何上有何关系?具有奇偶性的函数的定义域有何特征?
答:二者在几何上关于原点对称,函数的定义域关于原点对称是一个函数为奇函数或偶函数的首要条件。
问题3:(1)对于任意一个奇函数f(x),图像上的点f(x)关于原点的对称点f(-x)的坐标是什么?点(-x,-f(x))是否也在函数f(x)的图像上?由此可得到怎样的结论?(2)如果一个函数是奇函数,定义域中的x可以等于0.那么f(0)的值等于多少?
引导学生通过回答问题3把奇函数图像的性质总结出来,即:①函数f(x)是奇函数,则其图像关于原点对称,②对于奇函数f(x),若f(0)有定义,则f(0)=0.然后教师利用多媒体演示两幅关于y轴对称的函数图像,让学生仿照奇函数,观察图像,给出偶函数的定义:如果对于函数定义域内的任意一个x,都有f(x)=f(-x),那么函数叫做偶函数。并让学生自己研究一下偶函数图像的性质,即函数f(x)是偶函数,则其图像关于y轴对称。
4、知识应用,巩固提高 例
1、判断下列函数的奇偶性:
(1)f(x)=1/x(奇函数)
(2)f(x)=-(x^2)+1(偶函数)
(3)f(x)=x+1(非奇非偶)
(4)f(x)=0(既奇又偶)
选例1的第(1)小题板书来示范解题的步骤:对于函数f(x)=1/x,其定义域为(-∞,+∞).因为对定义域内的每一个x,有-x∈(-∞,+∞),且f(-x)=-1/x=-f(x),(f(x)+f(-x)=0), 所以,函数为奇函数。
其他例题让几个学生板演,其余学生在下面自己完成,针对板演的同学所出现的步骤上的问题进行及时纠正,教师要适时引导学生做好总结归纳。(1)通过例1总结判断函数奇偶性的步骤:
①求出函数的定义域I,并判断若x∈I,是否有-x∈I
②验证f(-x)=f(x)或f(-x)=-f(x)(f(x)-f(-x)=0 或f(x)+f(-x)=0)③得出结论
(2)通过讲解板演同学的解题,得出函数奇偶性的相关性质:
① 对于一个函数来说,它的奇偶性有四种可能:是奇函数但不是偶函数,是偶函数但不是奇函数,既是奇函数又是偶函数,既不是奇函数也不是偶函数。
②存在既是奇函数,又是偶函数的函数:f(x)=0
五、总结反思:
从知识、方法两个方面来对本节课的内容进行归纳总结,让学生谈本节课的收获,并进行反思。从而关注学生的自主体验,反思和发表本堂课的体验和收获。
六、任务后延,兴趣研究:
1、思考:如果改变奇函数的定义域,它还是奇函数吗?如:y = x3(x≠0),y = x3(x≠1),y = x3(x≥0),y=x3(-1≤x≤1),试判断它们是奇函数吗?
2、课后作业(略)