第一篇:初中数学教案:华师大版七年级数学《方程的简单变形》教案
http://www.xiexiebang.com
初中数学教案:华师大版七年级数学《方程的简单变形》教案模
板
1.方程的简单变形
(广西大新县雷平中学 何勇新)教学目的
通过天平实验,让学生在观察、思考的基础上归纳出方程的两种变形,并能利用它们将简单的方程变形以求出未知数的值。重点、难点
1.重点:方程的两种变形。
2.难点:由具体实例抽象出方程的两种变形。教学过程
一、引入
上一节课我们学习了列方程解简单的应用题,列出的方程有的我们不会解,我们知道解方程就是把方程变形成x=a形式,本节课,我们将学习如何将方程变形。
二、新授
让我们先做个实验,拿出预先准备好的天平和若干砝码。
测量一些物体的质量时,我们将它放在天干的左盘内,在右盘内放上砝码,当天平处于平衡状态时,显然两边的质量相等。
如果我们在两盘内同时加入相同质量的砝码,这时天平仍然平衡,天平两边盘内同时拿去相同质量的砝码,天平仍然平衡。
如果把天平看成一个方程,课本第4页上的图,你能从天平上砝码的变化联想到方程的变形吗? 让同学们观察图(1)的左边的天平;天平的左盘内有一个大砝码和2个小砝码,右盘上有5个小砝码,天平平衡,表示左右两盘的质量相等。如果我们用x表示大砝码的质量,1表示小砝码的质量,那么可用方程x+2=5表示天平两盘内物体的质量关系。
问:图(1)右边的天平内的砝码是怎样由左边天平变化而来的?它所表示的方程如何由方程x+2=5变形得到的? 学生回答后,教师归纳:方程两边都减去同一个数,方程的解不变。
问:若把方程两边都加上同一个数,方程的解有没有变?如果把方程两边都加上(或减去)同一个整式呢? 让同学们看图(2)。左天平两盘内的砝码的质量关系可用方程表示为3x=2x+2,右边的天平http://www.xiexiebang.com
内的砝码是怎样由左边天平变化而来的? 把天平两边都拿去2个大砝码,相当于把方程3x=2x+2两边都减去2x,得到的方程的解变化了吗?如果把方程两边都加上2x呢? 由图(1)、(2)可归结为;
方程两边都加上或都减去同一个数或同一个整式,方程的解不变。让学生观察(3),由学生自己得出方程的第二个变形。即方程两边都乘以或除以同一个不为零的数,方程的解不变: 通过对方程进行适当的变形.可以求得方程的解。例1.解下列方程
(1)x-5=7(2)4x=3x-4(1)解两边都加上5,x,x=7+5 即 x=12(2)两边都减去3x,x=3x-4-3x 即 x=-4 请同学们分别将x=7+5与原方程x-5=7;x=3x-4-3,与原方程4x=3x-4比较,你发现了这些方程的变形。有什么共同特点? 这就是说把方程两边都加上(或减去)同一个数或同一个整式,就相当于把方程中的某些项改变符号后,从方程的一边移到另一边,这样的变形叫做移项。
注意:“移项’’是指将方程的某一项从等号的左边移到右边或从右边移到左边,移项时要先变号后移项。
例2.解下列方程
(1)-5x=2(2)x=
这里的变形通常称为“将未知数的系数化为1”。
以上两个例题都是对方程进行适当的变形,得到x=a的形式。
练习:
课本第6页练习1、2、3。
练习中的第3题,即第2页中的方程①先让学生讨论、交流。
鼓励学生采用不同的方法,要他们说出每一步变形的根据,由他们自己得出采用哪种方法简便,体会方程的不同解法中所经历的转化思想,让学生自己体验成功的感觉。
三、巩固练习
教科书第7页,练习
四、小结
本节课我们通过天平实验,得出方程的两种变形:
1.把方程两边都加上或减去同一个数或整式方程的解不变。
2.把方程两边都乘以或除以(不等零)的同一个数,方程的解不变。第①种变形又叫移项,移项别忘了要先变号,注意移项与在方程的一边交换两项的位置有本质的区别。
http://www.xiexiebang.com
五、作业
教科书第7—8页习题6.2.1第1、2、3。
来源:中师教育 www.xiexiebang.com
第二篇:七年级数学下-等式的性质与方程的简单变形-华师大版
七年级数学导学稿(2)
主备人:卢苏婷 审核:杨杰 学习内容:等式的性质与方程的简单变形 学习目标:
1.理解并掌握方程的两个变形规则;
2.使学生了解移项法则,即移项后变号,并且能熟练运用移项法则解方程; 3.运用方程的两个变形规则解简单的方程. 学习过程
一、自主学习
我们来做这样一个实验,测一个物体的质量(设它的质量为x).首先把这个物体放在天平的左盘内,然后在右盘内放上砝码,并使天平处于平衡状态,此时两边的质量相等,那么砝码的质量就是所要称的物体的质量.
请同学来做这样一个实验,如何移动天平左右两盘内的砝码,测物体的质量.
实验1:如图(1)在天平的两边盘内同时取下2个小砝码,天平依然平衡,所测物体的质量等于3个小砝码的质量.
实验2:如图(2)在天平的两边盘内同时取下2个所测物体,天平依然平衡,所测物体的质量等于2个小砝码的质量.
实验3:如图(3)将天平两边盘内物体的质量同时缩少到原来的二分之一,天平依然平衡,所测物体的质量等于3个小砝码的质量.
上面的实验操作过程,反映了等式基本性质:
1、2、由等式的基本性质可得方程的变性规则:
方程的两边都加上或都减去,方程的解不变. 方程两边都乘以或都除以,方程的解不变. 请同学们回忆等式的性质和方程的变形规律有何相同之处?并请思考为什么它们有相同之处?
总结:通过实验操作,可求得物体的质量,同样通过对方程进行适当的变形,可以求得方程的解.
二、合作探究
1、解下列方程.
(1)x-5 = 7;(2)4x = 3x-4.
问题:什么是移项?
总结(1)上面两小题方程变形中,均把含未知数x的项,移到方程的左边,而把常数项移到了方程的右边.
(2)移项需变号,即:跃过等号,改变符号.
三、成果展示、解下列方程:
(1)-7x = 2;(2)
注:1.上面两题的变形通常称作“将未知数的系数化为1”.2.上面两个解方程的过程,都是对方程进行适当的变形,得到x = a的形式.
四、精讲点拨
3x2 ; 2
3、下面是方程x + 3 = 8的三种解法,请指出对与错,并说明为什么?(1)x + 3 = 8 = x = 8-3 = 5;
(2)x + 3 = 8,移项得x = 8 + 3,所以x = 11;(3)x + 3 = 8移项得x = 8-3,所以x = 5.
五、当堂检测
1.判断下列方程的解法对不对?如果不对,应怎样改正.(1)9x = -4,得x = 9; 435x,得x = 1; 53x(3)0,得x = 2;
232(4)yy1,得y =;
55(2)(5)3 + x = 5,得x = 5 + 3;(6)3 = x-2,得x = -2-3 . 2.(口答)求下列方程的解.(1)x-6 = 6;(2)7x = 6x-4;(3)-5x = 60;(4)11y. 423.下面的移项对不对?如果不对,错在哪里?应当怎样改正?(1)从7 + x = 13,得到x = 13 + 7;
(2)从5x = 4x + 8,得到5x-4x = 8 4.用方程的变形解方程:44x + 64 = 328.
课后反思:
第三篇:初中数学华师大版七年级上教案4.6.1.角
4.6角
1.角
【基本目标】
1.使学生通过实际生活中对角的认识,建立起几何中角的概念,并能掌握角的两个定义方法;
2.使学生掌握角的各种表示方法;
3.通过角的第二定义的教学,使学生进一步认识几何图形中的运动、变化的情况,初步会用运动、变化的观点看待几何图形,初步形成辩证唯物主义观点;
4.使学生掌握平角、周角和直角的概念; 5.掌握角的单位换算,会进行计算; 6.会用角准确的表示方向.【教学重点】角的概念及两个定义和角的表示法.【教学难点】角的单位换算和用角准确的表示方向.一、情境导入,激发兴趣
观察下面的图形,你发现什么共同的特点吗?
这些图形都给了我们角的形象.【教学说明】在讲解本部分时,应注意与小学中有关知识相联系,以达到平滑过渡.二、合作探究,探索新知
1.根据你对上面角的观察,你能说说什么样的图形叫做角? 小结:角的定义:
(1)角是由两条有公共端点的射线组成的图形.(2)从运动变化的角度来看,角可以看成是有一条射线绕着它的端点旋转而成的图形.【教学说明】可以利用教学用的圆规,将一条边进行旋转形成角来引导学生从动态的角度给角下一个定义.对于角的两种不同定义,应从不同的角度进行理解,并区别在不同情况下所包含的意义.角的两种定义其实都隐含了组成角的一个重要因素:即两条射线间相对的位置关系.2.如何表示一个角呢?
小结:角的表示方法:有以下几种表示方法(如图所示):
【教学说明】对于角的四种表示方法,各有其优点,在讲解中必须加以说明,并能在讲解中使学生认识到各种表示法的优缺点.要强调表示方法的规范性.3.平角和周角
在上面的旋转过程中,有两种特殊的情况:第一种是绕着端点旋转到角的终边和始边成一直线,这时所成的角叫做平角;第二种是绕着端点旋转到终边和始边重合,这时所成的角叫做周角.【教学说明】在讲解时应该进行教具演示,使学生直观理解平角和周角的定义.4.角的度量
如何使用量角器测量角的大小?
从量角器中我们已经知道如果把周角分成360等份,每一份就是一度,记作1°.但是一个角并不正好是整数度数,与长度单位一样,考虑用更小一些的单位.把一度分成60等份,每一份就是1分,记作1′;而把一分再分成60等份,每一份就是1秒,记作1“.这样,角的度量单位度、分、秒有如下关系: 1周角=360° 1平角=180° 1°=60′1′=60”
【教学说明】让学生通过亲自动手度量角,从而得到角不一定是整度的,所以自然此刻引出分﹑秒.向学生说明此结论不用死记硬背,可以仿照时间来记忆.5.方位角
还记得下图八个方向吗?但在日常生活中,八个方向是不够用的,这只是一种大致的方向.如果要准确地表示方向,那就要借用角度的表示方式.三、示例讲解,掌握新知
例1(1)把18°15′化成用度表示的角;(2)把93.2°化成用度﹑分﹑秒表示的角.解:(1)15′=1560°=0.25° 18°15′=18°+15′=18.25°(2)0.2°=0.2×60′=12′ 93.2°=93°+0.2°=93°12′
【教学说明】先让学生动手做一做,有困难的适当点拨.例2 如图所示,OA是表示北偏东30°方向的一条射线,仿照这条射线画出表示下列方向的射线:
① 偏东25°; ② 偏西60°.解:①以南方向的射线为始边,向东方向旋转25°所成的角,即为所求.②以北方向的射线为始边,向西方向旋转60°所成的角,即为所求.【教学说明】三种不同情况下的方向角的表示法,应是特别重要的知识.另外,在讲解中一个必须讲清楚的是:同一射线上的点的方向是相同的,但两者的位置是不一样的.四、练习反馈,巩固提高
1.计算:
(1)180°-(35°18′5″+62°56′15″);(2)180°-79°36′20″;(3)73°45′55″+61°41′37″.2.写出图中所有小于平角的角.【教学说明】第1题要注意是60进位制,学生可能不太习惯,第2题不要数漏角.【答案】
1.(1)81°45′40″
(2)100°23′40″
(3)135°27′32″
2.(1)∠CAE,∠CAD,∠CAB,∠DAE,∠EAB,∠DAB,∠C,∠CEA,∠AED,∠EDA,∠ADB,∠B(2)∠AOC,∠AOE,∠AOD,∠COE,∠COB,∠COD,∠EOB,∠BOD(3)∠A,∠B,∠C,∠D
五、师生互动,课堂小结
1.角的定义
(1)角是由两条有公共端点的射线组成的图形.(2)从运动变化的角度来看,角可以看成是由一条射线绕着它的端点旋转而成的图形.2.一条射线绕着端点旋转到角的终边和始边成一直线,这时所成的角叫做平角;绕着端点旋转到终边和始边重合,这时所成的角叫做周角.3.角的单位换算
1周角=360°
1平角=180° 1°=60′
1′=60″ 4.我们可以借用角来表示方向.【教学说明】本节课内容比较多,教师要逐一引导学生回顾,对于角的计算要强调是60进制,方位角是新的内容,可再举例让学生加深印象.完成本课时对应的练习.本节课的教学应该从学生所熟悉的图形入手,结合学生小学已经掌握的关于角的知识来逐步引入本节课内容.然后从静态和动态两个角度给角下定义.在讲解时,可利用相关的教具进行直观的演示,以利于学生理解.角的表示方法是本节课的重点,教师一定要讲清楚每种方法怎样表示以及应该注意的问题,使学生能够熟练掌握.角的度量单位的换算是本节课的难点,教师可提醒学生仿照时间的换算来进行记忆.在进行换算时,教师要先进行示范讲解,将每一步的过程演示清楚,然后可适当补充练习,使学生掌握.。
第四篇:华师大版七年级下册数学教案 第六章
问:你能解决这个问题吗?有哪些方法?(让学生思考后,回答,教师再作讲评)算术法:(328-64)÷44=264÷44=6(辆)列方程解应用题:
设需要租用x辆客车,那么这些客车共可乘44x人,加上乘坐校车的64人,就是全体师生328人,可得。
44x+64=328(1)
解这个方程,就能得到所求的结果。
问:你会解这个方程吗?试试看?(学生可能利用逆运算求解,教师加以肯定,同时指出本章里我们将要学习解方程的另一种方法。)问题2:在课外活动中,张老师发现同学们的年龄大多是13岁,就问同学:“我今年45岁,几年以后你们的年龄是我年龄的三分之一?”
小敏同学很快说出了答案。“三年”。他是这样算的:
1年后,老师46岁,同学们的年龄是14岁,不是老师的三分之一。
2年后,老师47岁,同学们的年龄是15岁,也不是老师的三分之一。3年后,老师48岁,同学们的年龄是16岁,恰好是老师的三分之一。
你能否用方程的方法来解呢?
通过分析,列出方程:13+x=(45+x)(2)
问:你会解这个方程吗?你能否从小敏同学的解法中得到启发?
这个方程不像例l中的方程(1)那样容易求出它的解,小敏同学的方法启发了我们,可以用尝试,检验的方法找出方程(2)的解。也就是只要将x=1,2,3,4,……代人方程(2)的两边,看哪个数能使两边的值相等,这个数就
13是这个方程的解。
把x=3代人方程(2),左边=13+3=16,右边=(45+3)=×48=16,因为左边=右边,所以x=3就是这个方程的解。
这种通过试验的方法得出方程的解,这也是一种基本的数学思想方法。也可以据此检验一下一个数是不是方程的解。
问:若把例2中的“三分之一”改为“二分之一”,那么答案是多少? 同学们动手试一试,大家发现了什么问题? 同样,用检验的方法也很难得到方程的解,因为这里x的值很大。另外,有的方程的解不一定是整数,该从何试起?如何试验根本无法人手,又该怎么办? 这正是我们本章要解决的问题。
三、巩固练习
1.教科书
6.2解一元一次方程 1.方程的简单变形
教学目的
通过天平实验,让学生在观察、思考的基础上归纳出方程的两种变形,并能利用它们将简单的方程变形以求出未知数的值。重点、难点
1.重点:方程的两种变形。
2.难点:由具体实例抽象出方程的两种变形。教学过程
一、引入
上一节课我们学习了列方程解简单的应用题,列出的方程有的我们不会解,我们知道解方程就是把方程变形成x=a形式,本节课,我们将学习如何将方程变形。
二、新授
让我们先做个实验,拿出预先准备好的天平和若干砝码。
测量一些物体的质量时,我们将它放在天干的左盘内,在右盘内放上砝码,当天平处于平衡状态时,显然两边的质量相等。
如果我们在两盘内同时加入相同质量的砝码,这时天平仍然平衡,天平两边盘内同时拿去相同质量的砝码,天平仍然平衡。
如果把天平看成一个方程,课本 果我们用x表示大砝码的质量,1表示小砝码的质量,那么可用方程x+2=5表示天平两盘内物体的质量关系。
问:图6.2.1右边的天平内的砝码是怎样由左边天平变化而来的?它所表示的方程如何由方程x+2=5变形得到的? 学生回答后,教师归纳:方程两边都减去同一个数,方程的解不变。问:若把方程两边都加上同一个数,方程的解有没有变?如果把方程两边都加上(或减去)同一个整式呢? 让同学们看图6.2.2。左天平两盘内的砝码的质量关系可用方程表示为3x=2x+2,右边的天平内的砝码是怎样由左边天平变化而来的? 把天平两边都拿去2个大砝码,相当于把方程3x=2x+2两边都减去2x,得到的方程的解变化了吗?如果把方程两边都加上2x呢? 由图6.2.1和6.2.2可归结为;
方程两边都加上或都减去同一个数或同一个整式,方程的解不变。让学生观察(3),由学生自己得出方程的 把方程中的某些项改变符号后,从方程的一边移到另一边,这样的变形叫做移项。
注意:“移项’’是指将方程的某一项从等号的左边移到右边或从右边移到左边,移项时要先变号后移项。
例2.解下列方程
(1)-5x=2(2)x=
这里的变形通常称为“将未知数的系数化为1”。
以上两个例题都是对方程进行适当的变形,得到x=a的形式。
练习:课本
32132、解一元一次方程
下面我们再一起来解几个一元一次方程。
例2.解方程(1)-2(x-1)=4(2)3(x-2)+1=x-(2x-1)方程(1)该怎样解?由学生独立探索解法,并互相交流
此方程既可以先去括号求解,也可以看作关于(x-1)的一元一次方程进行求解。
解一元一次方程,一般要通过去分母,去括号,移项,合并同类项,未知数的系数化为1等步骤,把一个一元一次方程“转化”成x=a的形式。解题时,要灵活运用这些步骤。
补充例2:解方程
x151x7=-
532 问:如果先去分母,方程两边应同乘以一个什么数? 应乘以各分母的最小公倍数,5、2、3的最小公倍数。
三、巩固练习
教科书
其他年级同学每人搬8块,总共搬了400块,问初一同学有多少人参加了搬砖? 引导学生弄清题意,疏理已知量和未知量: 1.题目中有哪些已知量?(1)参加搬砖的初一同学和其他年级同学共65名。(2)初一同学每人搬6块,其他年级同学每人搬8块。(3)初一和其他年级同学一共搬了400块。2.求什么? 初一同学有多少人参加搬砖? 3.等量关系是什么? 初一同学搬砖的块数十其他年级同学的搬砖数=400 如果设初一同学有工人参加搬砖,那么由已知量(1)可得,其他年级同学有(65-x)人参加搬砖;再由已知量(2)和等量关系可列出方程 6x+8(65-x)=400 也可以按照教科书上的列表法分析
三、巩固练习
教科书
四、小结
本节课我们学习了用一元一次方程解答实际问题,列方程解应用题的关键在于抓住能表示问题含意的一个主要等量关系,对于这个等量关系中涉及的量,哪些是已知的,哪些是未知的,用字母表示适当的未知数(设元),再将其余未知量用这个字母的代数式表示,最后根据等量关系,得到方程,解这个方程求得未知数的值,并检验是否合理。最后写出答案。
6.3实践与探索
注相关量的代数式,借助直观形象有助于分析和发现数量关系。
分析:由题意知,长方形的周长始终不变,长与宽的和为60÷2=30(厘米),解决这个问题时,要抓住这个等量关系。
用一块橡皮泥捏出的各种形状的物体,它的体积是不变的。因此等量关系是:圆柱的体积=长方体的体积。
教学目的
通过分析储蓄中的数量关系,以及商品利润等有关知识,经历运用方程解决实际问题的过程,使学生进一步体会方程是刻画现实世界的有效数学模型。重点、难点
1.重点:探索这些实际问题中的等量关系,由此等量关系列出方程。2.难点:找出能表示整个题意的等量关系。教学过程
一、复习
1.储蓄中的利息、本金、利率、本利和等含义,它们之间的数量关系 利息=本金×年利率×年数
本利和=本金×利息×年数+本金 2.商品利润等有关知识。
利润=售价-成本
=商品利润率
二、新授
在本章6.l练习中讨论过的教育储蓄,是我国目前暂不征收利息税的储种,国家对其他储蓄所产生的利息征收20%的个人所得税,即利息税。今天我们来探索一般的储蓄问题。
问题
2、小明爸爸前年存了年利率为2.43%的二年期定期储蓄,今年到期后,扣除利息税,所得利息正好为小明买了一只价值48.6元的计算器,问小明爸爸前年存了多少元? 先让学生思考,试着列出方程,对有困难的学生,教师可引导他们进行分析,找出等量关系。
利息-利息税=48.6 可设小明爸爸前年存了x元,那么二年后共得利息为 2.43%×X×2,利息税为2.43%X×2×20%
根据等量关系,得 2.43%x·2-2.43%x×2×20%=48.6 问,扣除利息的20%,那么实际得到的利息是多少?你能否列出较简单的方程? 扣除利息的20%,实际得到利息的80%,因此可得 2.43%x·2·80%=48.6 解方程,得 x=1250 例1.一家商店将某种服装按成本价提高40%后标价,又以8折(即按标价的80%)优惠卖出,结果每件仍获利15元,那么这种服装每件的成本是多少元? 大家想一想这15元的利润是怎么来的? 标价的80%(即售价)-成本=15 若设这种服装每件的成本是x元,那么
每件服装的标价为:(1+40%)x 每件服装的实际售价为:(1+40%)x·80%
每件服装的利润为:(1+40%)x·80%-x 由等量关系,列出方程:(1+40%)x·80%-x=15 解方程,得 x=125 答:每件服装的成本是125元。
三、巩固练习
教科书 教学目的
1.使学生理解用一元一次方程解工程问题的本质规律;通过对“工 程问题”的分析进一步培养学生用代数方法解决实际问题的能力。
2.使学生在自主探索与合作交流的过程中理解和掌握基本的数学知 识、技能、数学思想方法,获得广泛的数学活动经验,提高解决问题的能力。重点、难点
重点:工程中的工作量、工作的效率和工作时间的关系。
难点:把全部工作量看作“1”。教学过程
一、复习提问
1.一件工作,如果甲单独做2小时完成,那么甲独做I小时完成全部工作量的多少? 2.一件工作,如果甲单独做a小时完成,那么甲独做1小时,完成全部工作量的多少? 3.工作量、工作效率、工作时间之间有怎样的关系?
二、新授
让学生阅读教科书 [等量关系是:师傅做的工作量+徒弟做的工作量=1] 若设两人合作需要x天完成,那么甲、乙分别做了几天?甲、乙的工作效率是多少? 本题中工作总量没有告诉,我们把它看成“1”,根据等量关系可得方程。
(略)
3.你还能提出什么问题?试试看,并解答这些问题。
让学生充分思考,大胆提出问题,互相交流,对于合理的问题,让大家共同解答,对于不合理的问题,让大家探讨为什么不合理?应改为怎样提? 4.李老师把两位同学的问题,合起来后,已知条件增加了什么?求什么? [“徒弟先做1天”,也就是说徒弟比师傅多做1天] 5.要解决本题提出的问题,应先求什么? [先要求出师傅与徒弟各完成的工作量是多少?] 两人的工效已知,因此要先求他们各自所做的天数,因此,设师傅做了x天,则徒弟做(x+1)天,根据等量关系,列方程(略)
解方程得 x=2 师傅完成的工作量为(略),徒弟完成的工作量为(略)
所以他们两人完成的工作量相同,因此每人各得225元。
三、巩固练习
一件工作,甲独做需30小时完成,由甲、乙合做需24小时完成,现由甲独做10小时;请你提出问题,并加以解答。
例如(1)剩下的乙独做要几小时完成?(2)剩下的由甲、乙合作,还需多少小时完成?(3)乙又独做5小时,然后甲、乙合做,还需多少小时完成?
四、小结
1.本节课主要分析了工作问题中工作量、工作效率和工作时间之间的关系,即
工作量=工作效率×工作时间
工作效率=工作量/工作时间
工作时间=工作量/工作效率
2.解题时要全面审题,寻找全部工作,单独完成工作量和合作完成工作量的一个等量关系列方程。
五、作业
教科书习题6.3.2 教学目的
了解一元一次方程的概念,根据方程的特征,灵活运用一元一次方程的解法求一元一次方程的解,进一步培养学生快速准确的计算能力,进一步渗透“转化”的思想方法。重点、难点
1.重点:一元一次方程的解法。2.难点:灵活运用一元一次方程的解法。教学过程
一、复习提问
定义:只含有一个未知数,且含未知数的项的次数1的整式方程。
一元一次方程 解法步骤:去分母、去括号、移项、合并同类项、系数化为l,把一个一元一次方程“转化”成x=a“的形式。
二、练习
1.下列各式哪些是一元一次方程。
(略)
2.解下列方程。(1)(x一3)=2一(x一3)(2)[(x一3)-]=1-x 学生认真审题,注意方程的结构特点。选用简便方法。
合并同类项,得 x=5 方法二:去分母,得 x一3=4一x+3(强调等号右边的“2”也要乘以2,而且不要弄错符号)移项,得 x+x=4+3十3 合并同类项,得 2x=10 系数化为1,得 x=5 方法三:移项(x一3)+(x一3)=2 即 x一3= 2 ∴ x=5 移项,得 3x一5x—4x=6—8十1l 合并同类项,得 一6x=9 系数化为l,得 x=一
点拨:去分母时注意事项,右边的“1"别忘了乘以6,分数线有两层含义,去掉分数线时,要添上括号。
(2)先利用分数的基本性质,将分母化为整数。
原方程化为 一x=x十l 去分母,得 2(10—5x)一4x=90x+6 去括号,得 20一l0x一4x=90x+6 移项,得 一l0x一4x一90x=6—20 合并同类项,得 一104x=一14 系数化为1,得 x=
点拨:“将分母化为整数”与“去分母”的区别。本题去分母之前,也可以先将方程右边的约分后再去分母。4.解方程。(1)|5x一2|=3(2)||=1 分析:(1)把5x一2看作一个数a,那么方程可看作|a|=3,根据绝对值的意义得a=3或a=一3(2)把看作一个数,或把||化成||
解:(1)根据绝对值的意义,原方程化为: 5x一2=3 或5x一2=一3 解方程 5x一2=3 得 x=l 解方程 5x一2=一3 得 x=-
所以原方程解为:x=1或x=-(2)根据绝对值的意义,原方程可化为 =1或 =-1 解方程=1 得x=一1 解方程=-1 得x=2 所以原方程的解为x=一1或x=2 5.已知,|a一3|+(b十1)2 =o,代数式的值比b一a十m多1,求m的值。
解:因为|a一3|≥0(b+1)2≥0 又|a一3|+(b十1)2 =0 ∴|a一3|=0 且(b+1)2 =0 ∴ a-3=0 b十l=0 即a=3 b=一1 把a=3,b=一1分别代人代数式 , b-a+m 得= ×(一1)一3+m=一3+m 根据题意,得 一(-3十m)=l 去括号 得 +3一m=1 即 一+-m=l ∴-十l=1 ∴-=0 ∴ m=0 6.m为何值时,关于x的方程4x一2m=3x+1的解是x=2x一 3m的2倍。
解:关于;的方程4x一2m=3x+1,得x=2m+1 解关于x的方程 x=2x一3m 得x=3m ∵根据题意,得 2m+l=2×3m 解之,得 m=
三、小结
在解一元一次方程时要注意选择合理的解方程步骤,解方程的方法、步骤可以灵活多样,但基本思路都是把“复杂”转化为“简单”,把“新”转化为“旧”,求出解后,要自觉反思求解过程和检验方程的解是否正确。
四.作业
1.教科书 教学目的
使学生进一步能以一元一次方程为工具解决一些简单的实际问题,能借助图表整体把握和分析题意,从多角度思考问题,寻找等量关系,恰当地转化和分析量与量之间的关系,提高学生运用方程解决实际问题的能力。
重点、难点
1.重点:运用方程解决实际问题。2.难点:寻找等量关系,间接设元。
教学过程
一、复习
列一元一次方程解应用题的步骤。
二、新授
例1.为了准备小勇6年后上大学的学费5000元,他的父母现在就参加了教育储蓄,下面有两种储蓄方式。
(1)直接存一个6年期,年利率是2.88%;
(2)先存一个3年期的,3年后将本利和自动转存一个3年期。3年期的年利率是2.7%。
你认为哪种储蓄方式开始存人的本金比较少? 分析:要解决“哪种储蓄方式开始存入的本金较少”,只要分别求出这两种储蓄方式开始存人多少元,然后再比较。
设开始存入x元。.
如果按照 如果按照
三、巩固练习
1.爸爸为小明存了一个3年期的教育储蓄(3年期的年利率为2.7%),3年后能取5405元,他开始存入了多少元? 2.一收割机收割一块麦田,上午收了麦田的25%,下午收割了剩下麦田的20%,结果还剩6公顷麦田未收割,这块麦田一共有多少公顷? 3.儿子今年13岁,父亲今年40岁,父亲的年龄可能是儿子年龄的 4倍吗?
四、小结
本节课我们复习了利用一元一次方程解决实际问题,方程是刻画现实世界的有效数学模型,列方程解实际问题的关键是找到“等量关系”,在寻找等量关系时可以借助图表等,在得到方程的解后,要检验它是否符合实际意义。
第五篇:初中数学教案:七年级数学《代数式的值》教案
初中数学教案:七年级数学《代数式的值》教案模板
教学目标
1.使学生掌握代数式的值的概念,能用具体数值代替代数式中的字母,求出代数式的值; 2.培养学生准确地运算能力,并适当地渗透特殊与一般的辨证关系的思想。教学建议
1.重点和难点:正确地求出代数式的值。2.理解代数式的值:
(1)一个代数式的值是由代数式中字母的取值而决定的.所以代数式的值一般不是一个固定的数,它会随着代数式中字母取值的变化而变化.因此在谈代数式的值时,必须指明在什么条件下.如:对于代数式n-2 ;当n=2 时,代数式n-2 的值是0;当n=4 时,代数式n-2 的值是2.
(2)代数式中字母的取值必须确保做到以下两点:①使代数式有意义,②使它所表示的实际数量有意义,如: 1/(x-1)中
不能取1,因为x=1 时,分母为零,式于1/(x-1)无意义;如果式子中字母表示长方形的长,那么它必须大于0. 3.求代数式的值的一般步骤:
在代数式的值的概念中,实际也指明了求代数式的值的方法.即一是代入,二是计算.求代数式的值时,一要弄清楚运算符号,二要注意运算顺序.在计算时,要注意按代数式指明的运算进行.
4。求代数式的值时的注意事项:
(1)代数式中的运算符号和具体数字都不能改变。(2)字母在代数式中所处的位置必须搞清楚。(3)如果字母取值是分数时,作乘方运算必须加上小括号,将来学了负数后,字母给出的值是负数也必须加上括号。5.本节知识结构:
本小节从一个应用代数式的实例出发,引出代数式的值的概念,进而通过两个例题讲述求代数式的值的方法.6.教学建议
(1)代数式的值是由代数式里的字母所取的值决定的,因此在教学过程中,注意渗透对应的思想,这样有助于培养学生的函数观念.
(2)列代数式是由特殊到一般, 而求代数式的值, 则可以看成由一般到特殊,在教学中,可结合前一小节,适当渗透关于特殊与一般的辨证关系的思想.教学设计示例
代数式的值
(一)教学目标
1使学生掌握代数式的值的概念,能用具体数值代替代数式中的字母,求出代数式的值; 2培养学生准确地运算能力,并适当地渗透特殊与一般的辨证关系的思想。教学重点和难点
重点和难点:正确地求出代数式的值 课堂教学过程设计
一、从学生原有的认识结构提出问题 1用代数式表示:(投影)(1)a与b的和的平方;(2)a,b两数的平方和;(3)a与b的和的50% 2用语言叙述代数式2n+10的意义
3对于第2题中的代数式2n+10,可否编成一道实际问题呢?(在学生回答的基础上,教师打投影)某学校为了开展体育活动,要添置一批排球,每班配2个,学校另外留10个,如果这个学校共有n个班,总共需多少个排球? 若学校有15个班(即n=15),则添置排球总数为多少个?若有20个班呢? 最后,教师根据学生的回答情况,指出:需要添置排球总数,是随着班数的确定而确定的;当班数n取不同的数值时,代数式2n+10的计算结果也不同,显然,当n=15时,代数式的值是40;当n=20时,代数式的值是50我们将上面计算的结果40和50,称为代数式2n+10当n=15和n=20时的值这就是本节课我们将要学习研究的内容
二、师生共同研究代数式的值的意义
1用数值代替代数式里的字母,按代数式指明的运算,计算后所得的结果,叫做代数式的值
2结合上述例题,提出如下几个问题:(1)求代数式2x+10的值,必须给出什么条件?(2)代数式的值是由什么值的确定而确定的? 当教师引导学生说出:“代数式的值是由代数式里字母的取值的确定而确定的”之后,可用图示帮助学生加深印象
然后,教师指出:只要代数式里的字母给定一个确定的值,代数式就有唯一确定的值与它对应
(3)求代数式的值可以分为几步呢?在“代入”这一步,应注意什么呢? 下面教师结合例题来引导学生归纳,概括出上述问题的答案(教师板书例题时,应注意格式规范化)例1 当x=7,y=4,z=0时,求代数式x(2x-y+3z)的值 解:当x=7,y=4,z=0时,x(2x-y+3z)=7×(2×7-4+3×0)=7×(14-4)=70
注意:如果代数式中省略乘号,代入后需添上乘号 例2 根据下面a,b的值,求代数式a-b/a 的值(1)a=4,b=12,(2)a=3/2,b=1 解:(1)当a=4,b=12时,a-b/a =4-12/4 =16-3=13;(2)当a=3/2,b=1时,2
22注意(1)如果字母取值是分数,作乘方运算时要加括号;(2)注意书写格式,“当„„时”的字样不要丢;
(3)代数式里的字母可取不同的值,但是所取的值不应当使代数式或代数式所表示的数量关系失去实际意义,如此例中a不能为零,在代数式2n+10中,n是代数班的个数,n不能取分数最后,请学生总结出求代数值的步骤:①代入数值②计算结果
三、课堂练习
1(1)当x=2时,求代数式x-1的值;
(2)当x=1/3,y=1/4 时,求代数式x(x-y)的值 2当a=1/2,b=1/3 时,求下列代数式的值:(1)(a+b);
(2)(a-b)
3当x=5,y=3时,求代数式(2x-3y)/(3x+2y)的值
222
答案:1.(1)3;(2)1/36 ; 2.(1)25/26 ;(2)1/36; 3.1/21.
四、师生共同小结
首先,请学生回答下面问题: 1本节课学习了哪些内容? 2求代数式的值应分哪几步? 3在“代入”这一步应注意什么”
其次,结合学生的回答,教师指出:(1)求代数式的值,就是用数值代替代数式里的字母按照代数式的运算顺序,直接计算后所得的结果就叫做代数式的值;(2)代数式的值是由代数式里字母所取值的确定而确定的.
五、作业
当a=2,b=1,c=3时,求下列代数式的值:(1)c-(c-a)(c-b);
(2)(c-b)/(c+b).代数式的值
(二)教学目标
1.使学生掌握代数式的值的概念,会求代数式的值; 2.培养学生准确地运算能力,并适当地渗透对应的思想. 教学重点和难点
重点:当字母取具体数字时,对应的代数式的值的求法及正确地书写格式. 难点:正确地求出代数式的值. 课堂教学过程设计
一、从学生原有的认识结构提出问题 1.用代数式表示:(投影)(1)a与b的和的平方;(2)a,b两数的平方和;(3)a与b的和的50%.
2.用语言叙述代数式2n+10的意义.
3.对于第2题中的代数式2n+10,可否编成一道实际问题呢?(在学生回答的基础上,教师打出投影)某学校为了开展体育活动,要添置一批排球,每班配2个,学校另外留10个,如果这个学校共有n个班,总共需多少个排球?
若学校有15个班(即n=15),则添置排球总数为多少个?若有20个班呢?
最后,教师根据学生的回答情况,指出:需要添置排球总数,是随着班数的确定而确定的;当班数n取不同的数值时,代数式2n+10的计算结果也不同,显然,当n=15时,代数式的值是40;当n=20时,代数式的值是50.我们将上面计算的结果40和50,称为代数式2n+10当n=15和n=20时的值.这就是本节课我们将要学习研究的内容.
二、师生共同研究代数式的值的意义
1.用数值代替代数式里的字母,按代数式指明的运算,计算后所得的结果,叫做代数式的值.
2.结合上述例题,提出如下几个问题:(1)求代数式2n+10的值,必须给出什么条件?(2)代数式的值是由什么值的确定而确定的? 当教师引导学生说出:“代数式的值是由代数式 里字母的取值的确定而确定的”之后,可用图示帮助 学生加深印象.
然后,教师指出:只要代数式里的字母给定一个确定的值,代数式就有唯一确定的值与它应.(3)求代数式的值可以分为几步呢?在“代入”这一步,应注意什么呢?
下面教师结合例题来引导学生归纳,概括出上述问题的答案.(教师板书例题时,应注意格式规范化)例1 当x=7,y=4,z=0时,求代数式x(2x-y+3z)的值. 解:当x=7,y=4,z=0时,x(2x-y+3z)=7×(2×7-4+3×0)=7×(14-4)=70.
注意:如果代数式中省略乘号,代入后需添上乘号.
注意(1)如果字母取值是分数,作乘方运算时要加括号;(2)注意书写格式,“当„„时”的字样不要丢;
(3)代数式里的字母可取不同的值,但是所取的值不应当使代数式或代数式所表示的数量关系失去实际意义,如此例中a不能为零,在代数式2n+10中,n是代数班的个数,n不能取分数.
最后,请学生总结出求代数值的步骤: ①代入数值
②计算结果
三、课堂练习
1.(1)当x=2时,求代数式x-1的值;
22.填表:(投影)
四、师生共同小结 首先,请学生回答下面问题:
1.本节课学习了哪些内容?2.求代数式的值应分哪几步? 3.在“代入”这一步应注意什么?
其次,结合学生的回答,教师指出:(1)求代数式的值,就是用数值代替代数式里的字母,按照代数式的运算顺序,直接计算后所得的结果就叫做代数式的值;(2)代数式的值是由代数式里字母所取值的确定而确定的.
五、作业
1.当a=2,b=1,c=3时,求下列代数式的值:
2.填表
3.填表
课堂教学设计说明 由于代数式的值是由代数式里的字母所取的值决定的,因此在设计教学过程中,注意渗透对应的思想,这样有助于培养学生的函数观念。