函数的概念教学设计说明

时间:2019-05-13 01:26:51下载本文作者:会员上传
简介:写写帮文库小编为你整理了多篇相关的《函数的概念教学设计说明》,但愿对你工作学习有帮助,当然你在写写帮文库还可以找到更多《函数的概念教学设计说明》。

第一篇:函数的概念教学设计说明

函数的概念教学设计说明

一、本质、地位、作用分析:

函数这一章在高中数学中,起着承上启下的作用,本节《函数的概念》是函数这一章的起始课.它上承集合,下引性质.是派生数学概念的强大“固着点”.本节在复习初中函数概念的基础上,用集合和对应的观点来研究函数,加深对函数概念的理解,为高中后续课程的学习打下基础,函数的概念将贯穿整个高中数学的始终,渗透到数学的各个领域。

二、教学目标分析

我们生活的世界时刻都在发生变化,变化无处不在.这些变化着的现象都可以用数学有效地描述它们的变化规律.函数正是描述客观世界变化规律的重要数学模型,通过函数模型可以帮助我们科学地预测将发生什么,进而解决实际问题.因此,学习函数知识对研究客观世界、掌握事物变化规律具有重要的意义.教科书采用了从实际例子中抽象概括出用集合与对应的语言定义函数的方式介绍函数概念.这样不仅为学生理解函数概念打了感性基础,而且注重培养了学生的抽象概括能力,启发学生运用函数模型表述、思考和解决现实世界中蕴涵的规律,逐渐形成善于提出问题的习惯,学会数学表达和交流,发展数学应用意识.本课主要是从两集合间对应来描绘函数的概念,是一个抽象过程,学生学习可能有所不适应.教学中宜逐步设计合理的阶梯,从实际问题逐步建构函数的初步定义,对函数的概念的研究遵循“直观感知、抽象概括”的认知过程展开,学生在对生活中的实例观察感知基础上,借助帮助学生总结它们的共同特征得出定义,构建函数的一般概念,并通过辨析问题深化对定义的理解,这样就避免了学生死记硬背概念,有利于理解数学概念的本质。使学生更好地参与教学活动,展开思维,体验探索的乐趣,增强学习数学的兴趣.为更好地巩固函数的概念,设置了有梯度的例题,例1的三个小题都是选择题,第一小题重点考察是变量x与y是否具有函数关系,紧扣定义,验证定义即可;第二小题考察从集合A到集合B的函数应该满足什么条件,方法一可以通过定义验证对于集合A中的每一个元素,在集合B中是否有元素而且是唯一的元素与之相对应;另一种方法是从集合A到集合B的函数,其特点是:A就是函数 的定义域,B包含函数的值域,值域可以变化,只要是B的子集即可。如果条件“从A到B的函数”改为“以A为定义域,以B为值域的函数”,学生应当注意这道题变化前后的区别,再次加深函数的概念的理解;第三个题考察函数相等的条件,了解函数的三要素是定义域、对应关系和值域,而三者中起决定因素的是定义域和对应关系,使学生对于函数有直观的认识。例2是一道解答题,考察求函数的定义域问题,函数问题首要考虑定义域,这是研究函数的值域,单调性等一些性质的前提,所以函数的定义域显得尤为重要,本例的意图是让学生总结如何求函数的定义域;例3是求函数值问题,旨在让学生明白f(a)与f(x)的区别,真正理解函数;最后设计了一道易错题,考察含参问题一定要注意分类讨论。这四个题都是学生自己讨论、自己写出解题过程、自己讲解,最后教师点评。

整个教学过程主要是对函数概念的探究和应用。通过对概念的探究,不仅培养和提高了学生对抽象问题的感知和概括能力,而且通过对函数概念的感性认识进一步让学生认识到数学和生活密不可分,数学来源于生活并服务于生活,加深了学生学习数学的兴趣。

三、教学问题诊断:

(1)班级学生状况分析:

1.在学习本节课之前,学生在初中已经学习了函数的概念,对函数已经有了一些直观的认识;

2.学生已具有小组合作学习的经验,能积极参与讨论,对高效课堂的学习模式已经熟悉,但部分学生课前预习抓不住重点,自学能力不强;

3.少部分学生能从初中所学的函数的概念再加上生活中一些函数模型学习本课,大部分学生对于抽象的、不可触摸的函数概念理解不透彻,不知道怎么应用,因此我们采取对生活中常见的三类例子进行分析,从实际例子中抽象概括出用集合与对应的语言定义函数的方式介绍函数概念.这样不仅为学生理解函数概念打了感性基础,而且注重培养了学生的抽象概括能力,启发学生运用函数模型表述、思考和解决现实世界中蕴涵的规律,逐渐形成善于提出问题的习惯,学会数学表达和交流,发展数学应用意识.4.学生对学习概念兴趣不高,对学习抽象的函数概念有畏惧情绪,所以,学生需要受到鼓励和安慰,增强学习的兴趣。

(2)学情分析:

学生在初中已经学习了函数,并且已经认识一次函数、二次函数、正比例函数和反比例函数,对于函数已经有了直观的认识,但对于类似“x=1”、“y=1”、x1x0等一些表达式是否是函数没有概念,无从下手,这就说明初 f(x)x1x0 中所学的概念太过狭隘,这就要求我们从更高的层面再次学习函数。函数的概念从初中的变量学说到高中阶段的对应学说,显得很抽象,不好理解,特别“对于A中的任意一个元素,B中都有唯一的元素与之相对应”这句话的怎么理解,它有什么深刻的含义,这就要求我们用生活中同学们所熟悉的实例出发,提出问题让学生思考,解释为什么要强调A中任意,B中唯一,很自然的归纳出函数的定义,并通过一些例题加深对函数概念的认识和理解。对于函数的三要素、函数相等的条件、函数的定义域问题以及函数求值问题是对函数概念的升华,是为了加深对函数概念的理解,也是对函数概念的应用

四、教法特点以及预期效果分析:

(1)教法特点:

·情境激趣策略:根据学生的特点,本节课借助对生活中常见的三类实例及多媒体手段,观察思考数学在生活中的应用,促进思维的深层次加工和提高课堂参与度,激发学生兴趣,调动学生的积极性,使学生觉得学有所用;

·问题目标引导探究策略:通过问题目标的驱动,引导学生积极思考生活中的函数问题,并通过直观感知、抽象概括一步步加深对函数概念的理解,使学习循序渐进、由浅入深,积极地参与到猜想、探究的学习中;

·自主合作、实验探究式学习策略:建立小组讨论、交流、合作的课堂氛围,主张“先学后导,问题评价”的教学思维,采用小组合作学习方式,师生共同围绕研究这节课的主要内容和问题进行自主学习、合作交流,在讨论的过程中使学生思维更加开放、多样和灵活,给予学生一定的自主性和创造发挥的空间,使学生乐意学习,主动学习。(2)预期效果分析:

本节课借助多媒体辅助教学,采用“引导-探究式“教学方法,整个教学过程遵循”直观感知-归纳总结“的认知规律,注重发展学生的合情推理能力,降低对抽象问题理解的难度,同时加强了抽象问题具体化的培养,注重知识产生的

过程性,使学生更容易的记住本节课知识。考虑到学生的实际,有意地设计了一些铺垫和引导,既巩固已有知识,又为新知识提供了附着点,充分体现学生的主体地位。

本节课做题过程中渗透了分类讨论的数学思想方法,设计中注重对学生自己发现问题,自己解决问题能力的培养,使学生学会思考、掌握方法,有利于培养学生思维的广阔性与深刻性。相信通过这节课的学习会达到比较好地教学效果。

第二篇:函数教学设计说明

人教版 数学 八年级 上册

第十四章

一次函数

§14.1.2 函数

案 设 计 说 明

江西省赣州市文清实验学校 谢志华

【教学设计说明】

这节课本着以观察为起点,以问题为主线,以培养能力为核心的宗旨;遵照教师为主导,学生为主体,训练为主线的教学原则;遵循特殊到一般,具体到抽象,由浅入深,由易到难的认识规律。整个教学过程突出以下构想:(1).创设情境,引人入胜

首先根据学生的认知基础,播放一组生活中熟悉的体现运动变化的课件视频与图片,激发学生的求知欲,使学生感知变量和函数的存在和意义,体会变量之间的相互依存关系和变化规律,为新课的开展创设良好的教学氛围,同时培养学生从数学的角度观察生活,思考问题的能力。

(2).过程凸现,紧扣重点

函数概念的形成过程是本节的重点。所以本节突出概念形成过程的教学。首先列举学生熟悉例子,引导学生从实例中观察分析探索变量之间的规律,抽象出函数的概念。然后提出注意问题,帮助学生把握概念的本质特征,再通过生活中的函数举例进一步理解函数的概念,最后引导学生运用概念并及时反馈,同时在概念的形成过程中,着意培养学生观察分析抽象概括的能力。引导学生从运动变化的角度看问题时,向学生渗透唯物主义观点的教育。(3).动态显现,化难为易

本节课的难点是理解函数概念。教学活动中充分利用多媒体有声有色有动感的画面,使抽象的问题形象化,静态方式的动态化,直观深刻地揭示函数概念的本质。不仅叩开学生的思维之门,也打开他们的心灵之窗,使他们在欣赏享受中,在美的熏陶中主动地轻松愉快地获得新知。

(4).例子展现,多方渗透

为了使抽象的概念具体化,通俗易懂,本节列举了大量的生活中的例子和其他学科中的例子,培养学生的发散思维,加强学科间的渗透,知识间的联系,也增强学生学数学的意识。

第三篇:函数概念教学反思

函数概念教学反思

山东省济钢高级中学 翟争艳

函数是高中数学中一个非常重要的内容之一,贯穿整个高中数学学习,乃到一生的数学学习过程。然而函数这部分知识在教学中又是一大难点。这主要是因为概念的抽象性,学生理解起来不容易,接受起来就更难。函数成了高一新生进入高中的一条拦路虎。有些学生高中毕业了,对函数这个概念也没有理解透彻。突破了它后面的学习就容易了。所以在函数概念的教学上要下足功夫,争取不让学生吃夹生饭。我注意对知识进行重组,努力去揭示函数概念的本质,使学生真正理解它,觉得它有用,而乐于学习它。本班学生思维活跃,课堂上能从多个不同的角度积极提出问题,并解决问题,全员参与,热情高涨。应当说在学生的共同努力下,本节课比较好地完成了预定的教学目标。给我留下较深印象的有以下几处:

一、设置问题情境,激发学生的学习兴趣。

首先复习初中函数的定义,强调变量之间的依赖关系,接着提出问题,在这个定义下,y=5是函数吗,大部分学生认为它不是函数,有的说:它只是一个式子,而没有自变量,有的说:5没有发生变化,用已有概念不太容易回答的问题,引发学生的认知冲突。学生学习热情高涨,学习积极性和主动性得到了充分调动,急于解决问题。

二.探究课本三个实例,概念形成。

提出问题2:你从例题中了解到哪些信息?自变量,因变量的取值范围是什么?自变量与因变量有何关系?问题情景的设置应形成逐层深入环环相扣的问题链,以问题解决为线索,引导学生主动讨论、积极探索。学生独立思考2-3分钟,然后分组讨论,交流。讨论、整理出本组同学所想到的各种想法。实际问题引出概念,激发学生学习兴趣,给学生思考、探索的空间,让学生体验数学发现和创造的历程,提高分析和解决问题的能力。通过小组讨论、自主回答,不同层次的学生选取适合自己的问题,同分享团队协作的喜悦成果,调动了学生的积极性。体现学生学习方式的变革,倡导自主学习、合作学习、探究学习的学习方式;体现“以人为本”思想,强调课堂教学的有效性,不仅强调在实践中完成学

生自身知识的建构,并要求在完成学习任务的同时有所感悟、有所创造.在这一环节中,我主要是要通过表格、解析式刻画变量之间的对应关系,关注自变量和因变量的范围,逐步使学生体会两个集合之间的对应关系,了解函数概念的本质,同时也为下节课函数的表示法做好铺垫。在整个交流中,我既有对正确认识的赞赏,又有对错误见解的分析。师生互动,抓住函数概念这一重点,举出实例来突破理解对应法则f这一难点。函数是一个系统,而不只是一个单纯的式子。它由定义域、值域、对应法则三要素组成。我形象地将这一系统比喻成计算机,输入的数集为定义域,输出的数集为值域。让学生看得见、摸得着,把抽象的函数概念形象化,效果很好。

三、师生合作,总结归纳函数定义。

最后归纳出函数定义,并在全班交流。学生自己探究数学结论,使学生尝试用集合与对应的语言进行描述,通过学生的观察、尝试、讨论来归纳结论,体现了学生自主探究的学习方式。让他们通过实践来进一步体验到在集合对应观下的函数内涵,从特殊到一般,揭示数学通常的发现过程,给学生“数学创造”的体验。这种引出概念的方式自然而又易于学生接受和形成概念。通过教师的再提炼又得到观点,再揭示近代函数定义的本质:在讲解概念时,在多媒体上有意识的用不同颜色的字体,突出强调重点,调动学生的非智力因素理解概念。在这个近代函数定义下,完成提出的问题,y=5是函数,大家有种恍然大悟的感觉,解决课前提出的问题,觉得学有所用。

四.对练习题的设计由浅入深,层层递进,突出本节课的重点,突破难点。知识应用的目标落实的比较好。

总体来说,这堂课较好地使学生在学习中完成了“引起关注----激发热情----参与体验”的过程。倡导课前预习,先学后教,以学定教,学生能课前自主解决的内容课堂不讲,增加课堂容量,追求课堂教学效益的最大化;引导学生学会阅读教材、理解教材,体会数学概念的形成过程,由具体实例到抽象知识再用抽象知识解决具体问题的认知过程,注重培养学生的自学能力和良好的学习习惯.但也存在一些不足:

1.语言方面还不够精炼,喜欢用口头禅,爱重复啰嗦生怕学生不懂,随口加一些不严格的内容。其实知识点够不够精简好记,重点难点学生是很轻松地懂了,还是说模模糊糊脑袋都懵了,这全在于老师在备课和上课上下的功夫,在于老师自己想透了没,找到合适的讲授或类比方法没。突破完全在一瞬间一个简单的道理,所以在课下要下功夫,找到突破难点的好方法。

2.由于学生提前预习,先学后教,课堂教学中知识缺乏系统性、完整性;课堂容量大,时间有些紧,课堂留白不足.3.在学生回答问题时,应该关注学生所表现出来的态度,用恰当的语言给与肯定和鼓励,使不同层次的学生获得不同的成功体验,从而增强信心,激发学生学习的兴趣。

在今后的教学中要不断的反思与探索,不断提高自己的业务能力和水平,使自己更为成熟和完善,更好的服务于学生。

第四篇:函数概念教学反思

函数概念教学反思

函数是高中数学中一个非常重要的内容之一,贯穿整个高中数学学习。其重要性体现在:

1、函数源于在现实生活,具有广泛的应用。

2、函数是沟通代数、几何、三角等内容的桥梁。

3、函数部分内容蕴涵重要数学方法,分类讨论的思想,数形结合的思想,化归的思想等。这些思想方法是进一步学习数学和解决数学问题的基础。然而函数这部分知识在教学中又是一大难点这主要是因为概念的抽象性,学生理解起来不容易,由于函数这部份知识的主要思想特点体现于一个“变”字,接受起来就更难。研究的主要是“变量”与“变量”之间的关系,要求用变量的眼光,运动变化的观点去看待相关问题,所以函数成了高一新生进入高中的一条拦路虎。突破了它后面的学习就容易了。所以在函数概念的教学上要下足功夫,争取不让学生吃夹生饭。我注意对知识进行重组。努力去提示函数概念的本质,使学生真正理解它,觉得它有用,而乐于学习它。

课堂气氛较为活跃。学生不仅能在课堂上勇于发言,而且能做到言之有理,还能积极参与小组讨论交流,共同分享团队协作的成果,基本完成教学目标。我是这样处理函数概念这部分教学的: 为了节省时间,我提前给学生复习范围,复习有关初中函数的定义,课本引例以及回答的问题,让学生学有准备。

一、激情引趣,提高学生的问题意识

首先课本引例,引出初中函数的定义。

二、分析实例

在问题的设计和给出时,关键是要把握探究的新问题与学生原有知识点之间的距离“度”。通过小组讨论、自主回答,由不同层次的学生选取适合自己的问题,调动了学生的积极性。在这一环节中,我主要是要通过表格、解析式刻画变量之间的对应关系,关注 和 的范围,逐步使学生体会到变化的过程,了解函数概念的本质。同时也为下节课函数的表示法做好铺垫。引导学生体会到数学来源于生活并为生活服务,同时也渗透职业高中学生的奋斗目标。

三、数学建模

在数学教学过程中,突出“问题解决---数学建模---解决问题”的探究过程。我先引导学生将实例1抽象出数学模型,再由学生自己将实例2抽象出数学模型。在这一环节中,学生到黑板前板演,其他学生补充,进一步理解通过函数的对应图来认识函数,达到数形结合的效果,使学生对概念理解上更直观。

然后归纳出函数定义,并在全班交流。学生自己探究数学结论,使学生尝试用集合与对应的语言进行描述,通过学生的观察、尝试、讨论来归纳结论,体现了学生自主探究的学习方式。让他们通过实践来进一步体验到在集合对应观下的函数内涵,从特殊到一般,揭示数学通常的发现过程,给学生“数学创造”的体验。这种引出概念的方式自然而又易于学生接受和形成概念。

通过教师的再提炼又得到观点,再揭示近代函数定义的本质:

1、函数是描述的是两个非空数集之间的一种特殊对应关系。

2、对于函数符号,学生较难理解,以符号的简洁美,引起学生的有意注意,加强学生理解。

3、函数是一个系统,而不只是一个单纯的式子。它由定义域、值域、对应法则三要素组成。通过例题的讲解,进一步地巩固了定义域与值域,同时突出了值域与集合b的关系。

总体来说,这堂课较好地使学生在学习中完成了“引起关注----激发热情----参与体验”的过程。但也存在一些不足,比如,有的时候语言方面还不够精炼,在今后的教学就中要不断的反思与探索,走向更为成熟与完善 课堂气氛较为活跃。学生不仅能在课堂上勇于发言,而且能做到言之有理,还能积极参与小组讨论交流,共同分享团队协作的成果,基本完成教学目标。

我是这样处理函数概念这部分教学的:

为了节省时间,我提前给学生复习范围,复习有关初中函数的定义,二个引入的实例以。函数是高中数学中一个非常重要的内容之一,贯穿整个高中数学学习。其重要性体现在:

1、函数源于在现实生活,具有广泛的应用。

2、函数是沟通代数、几何、三角等内容的桥梁。

3、函数部分内容蕴涵重要数学方法,分类讨论的思想,数形结合的思想,化归的思想等。这些思想方法是进一步学习数学和解决数学问题的基础。

然而函数这部分知识在教学中又是一大难点这主要是因为概念的抽象性,学生理解起来不容易,由于函数这部份知识的主要思想特点体现于一个“变”字,接受起来就更难。研究的主要是“变量”与“变量”之间的关系,要求用变量的眼光,运动变化的观点去看待相关问题,所以函数成了高一新生进入高中的一条拦路虎。突破了它后面的学习就容易了。

函数的概念表现出来的都是抽象的数学形式,在数学的教学中,要强调对数学本质的认识,否则会将生动活泼的数学思维活动淹没在形式化的海洋里。所以函数概念的教学更忌照本宣科,我注意对知识进行重组。努力去提示函数概念的本质,使学生真正理解它,觉得它有用,而乐于学习它。

及回答的问题,让学生学有准备。

一、激情引趣,提高学生的问题意识

首先复习初中函数的定义,在这个定义下,以学生乘车与车费问题,引出 是函数吗?大部分学生认为它不是函数,有的说:它只是一个式子,而没有自变量,有的说:0.5没有发生变化,用已有概念不太容易回答的问题,引发学生的认知冲突,有到了承上启下的作用。营造出一种宽松的探究心向,使问题呈现巧而生趣,找准与教材内容之间的结合点.二、分析实例

以 “2003-2008年二职高一学生入学人数表”,销“售计算器求收款总数 =25 ”两个实例引入,在问题的设计和给出时,关键是要把握探究的新问题与学生原有知识点之间的距离“度”。通过小组讨论、自主回答,由不同层次的学生选取适合自己的问题,调动了学生的积极性。在这一环节中,我主要是要通过表格、解析式刻画变量之间的对应关系,关注 和 的范围,逐步使学生体会到变化的过程,了解函数概念的本质。同时也为下节课函数的表示法做好铺垫。引导学生体会到数学来源于生活并为生活服务,同时也渗透职业高中学生的奋斗目标。

三、数学建模

在数学教学过程中,突出“问题解决---数学建模---解决问题”的探究过程。我先引导学生将实例1抽象出数学模型,再由学生自己将实例2抽象出数学模型。在这一环节中,学生到黑板前板演,其他学生补充,进一步理解通过函数的对应图来认识函数,达到数形结合的效果,使学生对概念理解上更直观。

然后归纳出函数定义,并在全班交流。学生自己探究数学结论,使学生尝试用集合与对应的语言进行描述,通过学生的观察、尝试、讨论来归纳结论,体现了学生自主探究的学习方式。让他们通过实践来进一步体验到在集合对应观下的函数内涵,从特殊到一般,揭示数学通常的发现过程,给学生“数学创造”的体验。这种引出概念的方式自然而又易于学生接受和形成概念。

通过教师的再提炼又得到观点,再揭示近代函数定义的本质:

1、函数是描述的是两个非空数集之间的一种特殊对应关系。

2,对于函数符号,学生较难理解,以符号的简洁美,引起学生的有意注意,加强学生理解。

3、函数是一个系统,而不只是一个单纯的式子。它由定义域、值域、对应法则三要素组成。我形象地将这一系统比喻成计算机,输入的数集为定义域,输出的数集为值域。

为了让学生更清楚定义域、值域、对应法则,我让学生设计了一个VB的小程序,根据学生已有的计算机基础,学生很快地现场编程,突出了计算机数学与专业紧密相联,焕起学生对数学的学习热情。

通过例题的讲解,进一步地巩固了定义域与值域,同时突出了值域与集合B的关系。

通过小组竞赛,加深学生对概念的理解。

总体来说,这堂课较好地使学生在学习中完成了“引起关注----激发热情----参与体验”的过程。但也存在一些不足,比如,在学生编程的时候,我提出了要解决引入的“乘车问题”,但我马上发现学生的眼光都集中到编程那里,当时就改变了教学策略,如果把这一问题能当堂解决就更好了。有的时候语言方面还不够精炼,在今后的教学就中要不断的反思与探索,走向更为成熟与完善。

函数是高中数学中一个非常重要的内容之一,它贯穿整个高中阶段的数学学习,乃到一生的数学学习过程。其重要性主要体现在:

1、函数本身源于在现实生活,例如自然科学乃至于社会科学中,具有广泛的应用。

2、函数本身是数学的重要内容,是沟通代数、几何、三角等内容的桥梁。亦是今后进一步学习高等数学的基础和方法。

3、函数部分内容蕴涵大量的重要数学方法,如函数的思索,方程的思想,分类讨论的思想,数形结合的思想,化归的思想,换元法,侍定系数法、配方法等。这些思想方法是进一步学习数学和解决数学问题的基础,是我们教学过程中应注意重点讲解学生重点掌握的部分。

然而函数这部份知识在教学中又是一大难点这主要是因为概念的抽象性,学生理解起来相当不容易,接受起来就更难这又是由于函数这部份知识的主要思想特点体现于一个“变”字。即研究的主要是“变量”与“变量”之间的关系,要求用变量的眼光,运动变化的关点去看侍和接触相关问题,这与初中学习知识的以静态观点为中习的思维特点有较大差异,所以函数成了高一新生进入高中首先到的一条拦路虎,有些学生高中毕业了,对函数这个概念也没有理解透澈。

实际上,在学习函数这部份知识中,函数概念是最重要的,也就是最难的地方,突破了它后面的学习就容易了。现行的数学教材,其主要内容表现的都是数学知识的技术形式。函数的概念亦是如此,不管是传统定义也好,还是近代定义也好,表现出来的都是抽象数学形式,在数学的教学中,学习形式化的表达是一项基本要求,但是不能只限于形式表达,要强调对数学本质的认识,否则会将生动活泼的数学思维活动淹没在形式化的海洋里。对数学知识的教学要返璞归真,努力揭示数学概念、法则,结论发展过程和本质。对越是抽象的数学概念,越是如此。所以函数概念的教学更忌照本宣科,要注意对知识进行重组。努力去提示函数概念的本质,使学生真正理解它,觉得它有用,而乐于学习它。

篇二:函数的概念教学反思

函数概念的引入一般有两种方法,一种方法是先学习映射,再学习函数;另一种方法是通过具体的实例,体会数集之间的一种特殊的对应关系,即函数。为了充分运用学生已有的认知基础,为了给抽象概念以足够的实例背景,以有助于学生理解函数概念的本质,我采用后一种方式,即从三个背景实例入手,在体会两个变量之间依赖关系的基础上,引导学生运用集合与对应的语言刻画函数概念。继而,通过例题,思考、探究、练习中的问题从三个层次理解函数概念:函数定义、函数符号、函数三要素,并与初中定义进行对比。

在学习用集合与对应的语言刻画函数之前,还可以让学生先复习初中学习过的函数概念,并用课件进行模拟实验,画出某一具体函数的图像,在函数的图像上任取一点P,测出点P的坐标,观察点P 的坐标横坐标与纵坐标的变化规律。使学生看到函数描述了变量之间的依赖关系,即无论点P在哪个位置,点P的横坐标总对应唯一的纵坐标。由此,使学生体会到,函数中的函数值的变化总是依赖于自变量的变化,而且由自变量唯一确定。

篇三:函数的概念教学反思

学习培训提供的视频,结合本节课的上课经历,我反思如下:

一、备课要完备,上课按照备课来走

备课要多研究课本,研究课本的题目设置,备课前还要翻看海南省五年来高考题,以做到和编书者出题者步调一致。比如新课改后课本多是举例引入或得出概念、公式、定理,淡化逻辑证明,而高考更多是考基础性常规题,那么老实备课的时候就要注意重视应用,淡化理论。

我个人的问题是上课思路容易混乱,喜欢用口头禅,爱重复啰嗦生怕学生不懂,随口加一些不严格的内容。那么解决方法就是(1)备课的时候,通过举例和好玩的生活实例直接引入核心内容,从直观上接受重点“任意x唯一y”,尽可能简化解释,多做具体示例;(2)上课时铺开课本和备课本,是不是扫两眼,禁止临时加话。(3)在备课基础上,上课讲完备课的内容即可,在各内容之间加一句简单的承上启下的连接就行了。

二、对学生睡觉者记名上报德育处,没有观众的表演没有激情

我认为学习是学生的权利,而不是我强迫学,所以之前我从不管学生讲话玩手机睡觉。但是后面发现居然有一大片睡觉,而且我明明很有激情,讲着讲着我就困了。于是我采用了请班长科代表记名,每堂课交名单给我,期末汇总上交德育处的方法,正好12月12日学校在升旗时,发布了一个自动退学处分,学生都是害怕开除的,所以后面每节课,只有个别自我放弃的学生睡觉了。上课一眼扫下去,都坐得端端正正,我就有更多表演的欲望和随机应变的串场内容。

三、上课多一些夸张的表情和声调,以抵抗数学高难度带来的乏味 数学对海南学生来说,难是肯定的,所以极易疲惫。老师要充满爱的去搞笑,娇嗔耍宝装萌讲笑话,或者夸张发音,故意带口音,跟学生一唱一和瞎说,都可以带来学生一笑。长期还会融洽师生关系,得到学生的喜爱。

四、核心还是重点反复强调,难点要技巧性突破

对一个老师来说,不管你的课堂多么生动活泼,这只是形式,核心还是在知识点够不够精简好记,重点难点学生是很轻松地懂了,还是说模模糊糊脑袋都懵了,这全在于老师在备课和上课上下的功夫,在于老师自己想透了没,找到合适的讲授或类比方法没。突破完全在一瞬间一个简单的道理,千万不要把师生都绕进去。

每章结束后,我会和学生一起在书皮上把本章核心知识点简洁总结,方便翻看。不重要的不需要记忆,我会直接告诉学生。

最后,把一本课本和高考强调的核心知识点总结成好记的数字:比如必修1是7。比如必修2是71221k。

篇四:函数的概念教学反思

函数是研究现实世界变化规律的一个重要模型,对函数的学习一直以来都是中学阶段的一个重要的内容。函数的概念是学习后续“函数知识”的最重要的基础内容,而函数的概念又是一个比较抽象的,对它的理解一直是一个教学难点,学生对这些问题的探索以及研究思路都是比较陌生的,因此,在教学过程中,注意通过对以前学过的“变量之间的关系”的回顾与思考,力求提供生动有趣的问题情境,激发学生的学习兴趣;并通过层层深入的问题设计,引导学生进行观察、操作、交流、归纳等数学活动,在活动中归纳、概括出函数的概念;并通过师生交流、生生交流、辨析识别等加深学生对函数概念的理解。

函数是初中阶段数学学习的一个重要内容,学生又是第一次接触函数,充分考虑学生的接受能力,从生动有趣的问题情景出发,通过对一般规律的探索过程,从实际问题中抽象出一次函数和正比例函数的概念.又通过具有丰富的现实背景的例题,进一步理解一次函数和正比例函数的概念,为下一步学习《一次函数图像》奠定基础,并形成用函数观点认识现实世界的能力与意识.学生第一次利用数形结合的思想去研究一次函数的图像,感到陌生是正常的.在教学过程中教师应通过情境创设激发学生的学习兴趣,对函数与图像的对应关系应让学生动手去实践,去发现,对一次函数的图像是一条直线应让学生自己得出.在得出结论之后,让学生能运用“两点确定一条直线”,很快做出一次函数的图像.在巩固练习活动中,鼓励学生积极思考,提高学生解决实际问题的能力.

根据学生状况,教学设计也应做出相应的调整。如第一环节:创设情境 引入课题,固然可以激发学生兴趣,但也可能容 易让学生关注与代数表达式的寻求,甚至队部分学生形成一定的认知障碍,因此该环节也可以直接开门见山,直切主题,如提出问题:一次函数的代数形式是y=kx+b,那么,一个一次函数对应的图形具有什么特征呢?今天我们就研究一次函数对应的图形特征—本节课是学生首次接触利用数形结合的思想研究一次函数图象和性质,对他们而言观察对象、探索思路、研究方法都是陌生的,因而在教学过程中教师应通过问题情境的创设,激发学生的学习兴趣,并注意通过有层次的问题串的精心设计,引导学生观察一次函数的图像,探讨一次函数的简单性质,逐步加深学生对一次函数及性质的认识.在师生互动、生生互动的探索实践活动中,促成学生对一次函数知识结构的构建和完善;在巩固议练活动中,提高学生解决问题的能—本节课的重点是要学生了解正比例函数的确定需要一个条件,一次函数的确定需要两个条件,能由条件利用待定系数法求出一些简单的一次函数表达式,并能解决有关现实问题.本节课设计注重发展了学生的数形结合的思想方法及综合分析解决问题的能力及应用意识的培养,为后继学习打下基础.

探究的过程由浅入深,并利用了丰富的实际情景,既增加了学生学习的兴趣,又让学生深切体会到一次函数就在我们身边,应用非常广泛.教学中注意到利用问题串的形式,层层递进,逐步让学生掌握求一次函数表达式的一般方法.教学中还注意到尊重学生的个体差异,使每个学生都学有所获. 根据本班学生及教学情况可在教学过程中选择下述内容进行补充或拓展,也可留作课后作业.本节课的重点是要学生了解正比例函数的确定需要一个条件,一次函数的确定需要两个条件,能由条件利用待定系数法求出一些简单的一次函数表达式,并能解决有关现实问题.本节课设计注重发展了学生的数形结合的思想方法及综合分析解决问题的能力及应用意识的培养,为后继学习打下基础.课设计注重发展了学生的数形结合的思想方法及综合分析解决问题的能力及应用意识的培养,为后继学习打下基础.探究的过程由浅入深,并利用了丰富的实际情本节课的重点是要学生了解正比例函数的确定需要一个探究的过程由浅入深,并利用了丰富的实际情本节课的重点是要学生了解正比例函数的确定需要一个条件,一次函数的确定需要两个条件,能由条件利用待定系数法求出一些简单的一次函数表达式,并能解决有关现实问题.本节课设计注重发展了学生的数形结合的思想方法及综合分析解决问题的能力及应用意识的培养,为后继学习打下基础.

篇五:函数的概念教学反思

对于教师来说,'反思教学' 就是教师自觉地把自己的课堂教学实践, 作为认识对象而进行全面而深入的冷静思考和总结,它是一种用来提高自身的业务,改进教学实践的学习方式,不断对自己的教育实践深入反思,积极探索与解决教育实践中的一系列问题。进一步充实自己,优化教学,并使自己逐渐成长为一名称职的人类灵魂工程师。以下是我在上了函数的概念之后的一点反思:

这堂课堂气氛较为活跃。学生不仅能在课堂上勇于发言,而且还敢于质疑并且能做到言之有理,还能积极参与小组讨论交流,共同分享团队协作的成果,基本完成教学目标。

这堂课是研究函数的概念。这节课主要采用了探索、发现、归纳、反馈的教学流程,达成了对函数的概念的教学。

函数性质的研究是高中阶段数学学习的一个重要组成部分,因此函数概念的学习是研究函数性质时应予以考查的一个重要方面,并且要在后续学习中体现这个性质的应用。它在计算函数值,讨论函数单调性,绘制函数图象均有用处,对学生来说这是一个新的概念。引进新概念的过程也是培养学生探索问题、发现规律、作出归纳的过程。因此在教学时没有生硬地提出问题,而是采用生活中的事例引入,继而引出数值在直角坐标系中的对应关系导出新概念,不仅顺乎自然而且为以后研究函数奇偶性的几何意义(图形对称的两条定理)埋下伏笔。

本堂课的一个亮点是反馈过程中给出几个例题后所引起学生的思考、发言、争执、讨论以至正确答案的达成一致的过程,其中教师起了很及时和恰当的提示。学生的勇于质疑使课堂上呈现一派生气勃勃的景象,学习积极性和主动性得到了充分调动,使学生对看似简单的函数的概念也产生了不容轻视感,同时也发展了能力。一般来说学生在学习一些简单的知识点时会觉得乏味,在组织教学时充分考虑了这些浅显、平淡的知识还有一些值得思索和注意的地方。真正体现出“浅显中有新意,平淡中有隽永”。

我上课的最大风格是注重将新概念讲清讲透,能在师生互动的过程中培养学生的探索能力和高度概括能力,并使学生举一反三。难能可贵有同学能概括出的结论,因此可以以它作为下节课研究函数奇偶性的引入语。

总体来说,这堂课较好地使学生在学习中完成了“引起关注----激发热情----参与体验”的过程,是一堂比较成功的课。

遗憾之处是发言的学生由于受时间的约束,发言的人数和长度不够理想。

(1)函数的概念,看起来比较简单,学生学习时也往往感觉的乏味。因此,在组织教学时必须考虑到如何使学生感到这些浅显、平淡的知识还有一些值得思索与注意的地方。

(2)根据学生的接受能力可将内容安排两节课的教学。

 共2页:  上一页

   下一页

第五篇:函数概念教学设计

函数的概念

一.教材分析

函数是数学中最重要的概念之一,且贯穿在中学数学的始终,只有对概念作到深刻理解,才能正确灵活地加以应用。本课中学生对函数概念理解的程度会直接影响数学其它知识的学习,结合教学课程标准与学生的认知水平,函数的第一课应以函数概念的理解为中心进行教学。

二、学情分析

从学生知识层面看:学生在初中初步探讨了函数的相关知识,通过高一 “集合”的学习,对集合思想的认识也日渐提高,为重新定义函数提供了知识保证。

从学生能力层面看:通过以前的学习,学生已有一定的分析、推理和概括能力,初步具备了学习函数概念的基本能力。

三、教学目标

知识与技能:让学生理解构成函数的三要素、函数概念的本质、抽象的函数符号f(x)的意义。

过程与方法:在教师设置的问题引导下,学生通过自主学习交流,反馈精讲、当堂训练,经历函数概念的形成过程,渗透归纳推理的数学思想,发展学生的抽象思维能力。

情感态度价值观:在学习过程中,学会数学表达和交流,体验获得成功的乐趣,建立自信心。

四、教学难重点 重点:理解函数的概念;

难点:概念的形成过程及理解函数符号y = f(x)的含义。

[重难点确立的依据]:函数的概念抽象性都比较强,要求学生的理性认识的能力也比较高,对于刚刚升入高中不久的学生来说不易理解。而且由于函数在高考中可以以低、中、高挡题出现,所以近年来高考有一种“函数热”的趋势,所以本节的重点难点必然落在和函数的概念及函数符号的理解与运用上。

从多个角度创设多个问题情境,组织学生围绕重点自主思考,让学生自主、合作探索,体会函数概念的本质从而突破难点。

五、教法与学法选择

充分尊重学生的主体地位,让学生在教师设置的问题的引导下、通过自主学习等环节自主构建知识体系,自主发展数学思维,教师采用问题教学法、探究教学法、交流讨论法等多种学习方法,充分调动学生的积极性。

六、教学过程设计 引入

现实世界是充满变化的,函数是描述变化规律的重要数学模型,也是数学的基本概念,也是基本思想,另外函数的概念也是不断发展的。引出课题

问题提出

1.请回忆在初中我们学过那些函数?(学生回答老师补充)

2、回忆初中函数的定义是什么? 一般地,设在一个变化过程中有两个变量x、y,如果给定一个x值,相应地就确定了一个y值,那么我们称y是x的函数,其中x是自变量,y是因变量。

知识探究一 函数

给定两个非空的数集A,B,如果按照某个对应关系f,对于集合A中的任何一个数x,在集合B中都有唯一确定的数f(x)与之对应,那么就把对应关系f叫做定义在集合A上的函数记作f:A→B 或y=f(x),x∈A.其中,x叫做自变量,与x值相对应的f(x)值叫做函数值.x的取值范围称为定义域,函数值f(x)的取值范围称为值域.定义理解一——y=f(x)1.x是自变量,它是法则所施加的对象。

2.f是对应法则,它可以是解析式,可以是表格,也可以是图像。

3.y=f(x)表示y是x的函数,不是f与x的乘积。f(x)只是函数值,f才是函数,()表示f对自变量x作用。

定义理解二——唯一确定

通过三个例子和学生共同总结出:

1.函数中每个x与y的对应关系,可以是一对一,也可以是多对一,但不能是一对多,即y是唯一确定的

2.A中元素不能剩,B中元素可以剩下。

定义理解三——定义域值域

根据定义,函数是两个数集A,B间的对应关系

自变量的集合A叫做函数的定义域;函数值的集合{f(x)|x∈A}叫做函数的值域.例如:A={0,1,2},B={0,2,4,5},f:A→B f(x)=2x

定义域为{0,1,2},值域为{0,2,4} 从而共同探究出:值域是集合B的子集

函数的三要素:

定义域、对应关系、值域;

函数的值域由函数的定义域和对应关系所确定; 定义域相同,对应关系完全一致,则两个函数相等.f(x)=3x+1与f(t)=3t+1是同一个函数.x2f(x)=x与f(x)=不是同一个函数.x然后和学生共同探究常见的已学函数的定义域和值域:

知识探究二 区间

(设a, b为实数,且a

(1){x|x ≤-1或5 ≤ x<6}(2){x|x ≥9}(3){x|1

(5){x|x≥0且x≠1}

练习作业:把常见的函数的定义域和值域用区间表示.七、小结

1.用集合的语言描述函数的概念 2.函数的三要素 3.用区间表示数集

八、作业

1.P28 练习1,2 2.P34习题2-1A组:1,2

下载函数的概念教学设计说明word格式文档
下载函数的概念教学设计说明.doc
将本文档下载到自己电脑,方便修改和收藏,请勿使用迅雷等下载。
点此处下载文档

文档为doc格式


声明:本文内容由互联网用户自发贡献自行上传,本网站不拥有所有权,未作人工编辑处理,也不承担相关法律责任。如果您发现有涉嫌版权的内容,欢迎发送邮件至:645879355@qq.com 进行举报,并提供相关证据,工作人员会在5个工作日内联系你,一经查实,本站将立刻删除涉嫌侵权内容。

相关范文推荐

    数列的概念教学设计说明

    数列的概念教学设计说明 博爱县第一中学 石利 一、本课数学内容的本质、地位、作用分析 《数列的概念》是《普通高中课程标准实验教科书·数学必修5》 (北师大版)第一章第一......

    函数的概念教学设计

    《函数的概念》的教学设计 【教材分析】本节课选自《普通高中课程标准实验教科书数学Ⅰ必修本(A版)》的第一章1.2.1函 数的概念。函数是中学数学中最重要的基本概念之一,它贯穿......

    函数的概念教学反思

    函数的概念教学反思 函数是中专数学中一个非常重要的内容之一,贯穿整个中专数学学习。其重要性体现在: 1、函数源于在现实生活,具有广泛的应用。 2、函数是沟通代数、几何、三......

    函数的概念教学设计(定稿)

    §1.2.1函数的概念 一.教材分析 函数是高中数学的重要知识内容,是高中数学知识的一条主线,是高考的重点和难点.本节的内容是函数学习的第一节,是在初中学习了简单的一次函数、正......

    函数的概念教学反思)

    函数的概念教学反思 在高中数学中, 函数概念的教学是我们教师的一个难题。听了老师的讲座,给我带来了新的思路,也为解决这个难题提供了很好的指导。 虽然对函数概念本质理解并......

    函数的概念教学反思

    函数的概念教学反思1 本节的学习内容是在前面学过二次函数的概念和二次函数y=ax2、y=ax2+h、y=a(x-h)2的图像和性质的基础上,运用图像变换的观点把二次函数y=ax2的'图像经过一......

    函数概念教学学习体会解读

    函数概念教学学习体会 义务教育阶段的数学课程将致力于使学生获得适应未来社会生活和进一步发展所必需的重要数学事实(包括数学知识、数学活动经验),以及基本的数学思想方法和......

    《函数的概念》教学设计

    《函数的概念》教学设计 人教版《普通高中课程标准实验教科书数学Ⅰ必修本(A版)》第一章 概述: 《函数的概念》的教学需要两课时,本节课是第一课时,是一节函数的概念课.如何上好......