科氏力质量流量计的工作原理和典型结构特性

时间:2019-05-13 10:12:20下载本文作者:会员上传
简介:写写帮文库小编为你整理了多篇相关的《科氏力质量流量计的工作原理和典型结构特性》,但愿对你工作学习有帮助,当然你在写写帮文库还可以找到更多《科氏力质量流量计的工作原理和典型结构特性》。

第一篇:科氏力质量流量计的工作原理和典型结构特性

科氏力质量流量计的工作原理和典型结构特性

作者:中国计量研究院流量室 李旭

一、工作原理

如图一所示,截取一根支管,流体在其内以速度V从A流向B,将此管置于以角速度ω旋转的系统中。设旋转轴为X,与管的交点为O,由于管内流体质点在轴向以速度V、在径向以角速度ω运动,此时流体质点受到一个切向科氏力Fc。这个力作用在测量管上,在O点两边方向相反,大小相同,为:

δFc = 2ωVδm

因此,直接或间接测量在旋转管道中流动的流体所产生的科氏力就可以测得质量流量。这就是科里奥利质量流量计的基本原理。

图1 科里奥利力的形成 图2 早期科氏力质量流量计

二、结构

早期设计的科氏力质量流量计的结构如图2所示。将在由流动流体的管道送入一旋转系统中,由安装在转轴上的扭矩传感器,来完成质量流量的测量。这种流量计只是在试验室中进行了试制。

在商品化产品设计中,通过测量系统旋转产生科氏力是不切合实际的,因而均采用使测量管振动的方式替代旋转运动。以此同样实现科氏力对测量管的作用,并使得测量管在科氏力的作用下产生位移。由于测量管的两端是固定的,而作用在测量管上各点的力是不同的,所引起的位移也各不相同,因此在测量管上形成一个附加的扭曲。测量这个扭曲的过程在不同点上的相位差,就可得到流过测量管的流体的质量流量。

我们常见的测量管的形式有以下几种:S形测量管、U形测量管、双J形测量管、B形测量管、单直管形测量管、双直管形测量管、Ω形测量管、双环形测量管等,下面我们分别对其结构作一简单介绍。

1. S形测量管质量流量计

如图3所示,这种流量计的测量系统由两根平行的S形测量管、驱动器和传感器组成。管的两端固定,管的中心部位装有驱动器,使管子振动。在测量管对称位置上装有传感器,在这两点上测量振动管之间的相对位移。质量流量与这两点测得的振荡频率的相位差成正比。

图3 S形质量流量计结构

这种质量流量计的工作原理及工作过程,如图4所示。

图4 无流动时位移传感器的输出

当测量管中流体不流动时,两根测量管在驱动力作用下(作用在每根管子上的力大小相等、方向相反)作对称的等振幅运动。由于管子两端是固定的,在管子中间振幅最大,到两端逐渐减为零。这时在两个传感器上测得的相位如图4B所示,由图中可以看出,两传感器测得的相位差为零。当测量管内流体以速度V流动时,流体中任意值点的流速,可认为是两个分流速的合成:水平方向Vx及垂直方向Vy(与振动方向相同)。在恒定流条件下,流体沿水平方向的流速Vx保持恒定。从图5中可以看出,管子的进、出口处振幅为零,流体质点垂直移动速度Vx为零;

图5 振动管受力分析

当流体质点有进口流入图示振动方向的测量管时,流体质点的垂直流动速度为+Vy,同样在流体质点流向出口时,其垂直流动速度为-Vy。由此可以推出,流体质点在通过振动的测量管时,垂直方向的速度是一个从零逐渐加大,直到中间最大,再逐渐减小到零的过程。由力学原理可知,速度的变化是由加速度引起的,而加速度是力作用于其上的结果。根据这个原理,称这个垂直速度变化为科氏加速度Ac,因此作用于流体质量M上的科氏力为Fc=Mac。在测量管上与中心距离相等的两点上,作用的科氏力大小相等,方向相反。

此科氏力作用在测量管上,就产生了如图5所示的结果,即在中间点上产生一对力,引起测量管轻微的扭曲或变形。而实际上在振荡运动时是两根S管同时所受的振荡,其运动方向相反,受力相等,如图6所示。

图6 作用在测量管上的科氏力

随着振荡运动的进行,测量管被周期性地分开、靠拢,科氏力也周期性地作用在两根测量管上,通过安装在测量管上的位移创按其A、B,测出由科氏力引起的测量管相对位置的变化,通常转化为测两点的相位差,如图7所示。这个相位差的大小与质量流量成正比。

图7 位移传感器的输出

2. U形测量管质量流量计

如图8所示,U形管为单、双测量管两种结构,单测量管型工作原理

图8a 单U形管结构

图8b 双U形管结构

如图9所示,电磁驱动系统以固定频率驱动U形测量管振动,当流体被强制接受管子的垂直运动时,在前半个振动周期内,管子向上运动,测量管中流体在驱动点前产生一个向下压的力,阻碍管子的向上运动,二在驱动点后产生向上的力,加速管子向上运动。这两个力的合成,使得测量管发生扭曲;在振动的另外半周期内,扭曲方向则相反。

图9 U形管工作原理

测量管扭曲的程度,与流体流过测量管的值来质量流量成正比,在驱动点两侧的测量管上安装电磁感应器,以测量其运动的相位差,这一相位差直接正比于流过的质量流量。

在双U形测量管结构中,两根测量管的振动方向相反,使得测量管扭曲相位相差180度,如图10所示。相对单测量管型来说,双管型的检测信号有所放大,流通能力也有所提高。

图10 测量管变形示意图

3. 双J形管质量流量计

如图11所示,两根J形管以管道为中心,对称分布;安装在J形部分的驱动器使管子以某一固定的频率振动。

图11 J形管质量流量计结构

其工作原理如图12所示,当测量管中的流体以一定速度流动时,由于振动的存在使得测量管中的流体产生一个科氏力效应。此科氏力作用在测量管上,但在上下两支管上所产生的科氏力的方向不同,管的直管部分产生不同的附加运动,即产生一个相对位移的相位差。

图12 J形管工作原理

在双J形管测量系统中,两根管在同一时刻的振动方向相反,加大了其上部与下部两直管间的相对位移的相位差。如图13 所示,在流体不流动时,从A、B两传感器测得的位移信号的相位差为零。

图13 无流动时测量管振动状态

当测量管内的流体流动时,在驱动其振动的某一方向上,科氏力产生的反作用力在测量管上的影响结果如图14所示,管1分开和管2靠近时,管1上部运动加快,下部减慢,管2则在相反的方向上同样上部加快,下部减慢;结果在上部和下部安装的传感器测得的信号之间存在一个相位差,如图15所示。这个信号的大小直接反映了质量流量。

图14 有流动时测量管振动状态

图15 传感器输出信号

4. B形管质量流量计

如图16所示,流量测量系统由两个相互平行的B形管组成。被测流体经过分流器被均匀送入两根B形测量管中,驱动装置安装在两管之间的中心位置,以某一稳定的谐波频率驱动测量管振动。在测量管产生向外运动时,如图17a所示,直管部分被相互推离开,在驱动器的作用下回路L1'和L1''相互靠近,同样回路L2'和L2''也相互靠近。由于每个回路都由一端固定在流量计主体上,旋转运动在端区被抑制因而集中在节点附近。

图16 B形管质量流量计结构

而回路中的流体在科氏力作用下示的回路L1'和L1''相互靠近的速度减慢,而另一端L2'和L2''两回路相互靠近速度增加。

图17 B形管工作时的受力状态

在测量管产生向内运动时,如图17b所示,则相反的情况发生。直管段部分在驱动力的作用下相互靠近,而两断面上的两回路朝相互离开的方向运动。管道内流体产生的科氏力叠加在这个基本运动上会使L1'和L1''两回路的分离速度加快,而使L2'和L2''两回路的分离速度减小。

通过在端面两回路之间合理的安装传感器,这些由科氏力引入的运动就可用来精确测定流体的质量流量。

5. 单直管形质量流量计

这种流量计的结构如图18所示,测量系统由一两端固定(法兰)的直管及其上的振动驱动器组成。

图18 单直管质量流量计结构

在管中流体不流动时,驱动器使管子振动,管中流体不产生科氏力,A、B两点受力相等,变化速度相同,如图19b所示。

图19 单直管质量流量计工作原理

当测量管中流体以速度V在管中流动时,由于受到C点振动力的影响(此时的振动力是向上的),流体质点从A点运动到C点时被加速,质点产生反作用力F1,使管子向上运动速度减慢;而在C点到B点之间,流体质点被减速,使管子向上的运动速度加快。结果在C点两边的这两个方向相反的力使管子产生一个变形,这个变形的相位差与测管中流体流过的质量流量成正比。

6. 双直管形质量流量计

图20 双直管质量流量计结构

图20 双直管质量流量计结构

相对单直管来说双直管形可减少压力损失,增大传感器感受信号,其实际中的结构如图20所示,驱动器安放与中心位置,两个光电传感器只与中心两侧对称位置上,其中图20a所示结构测量管受轴向力的影响很小。双直管形质量流量计的工作原理如图21所示,当流体不流动时,光电传感器受到的管子所产生的位移的相位是相同的;当流体介质流过两根振动的测量管时,便产生了科里奥利力,这个力使测量管的振点两边发生相反的位移,振点之前的测管中流体介质使管子振荡衰减,即管子位移速度减慢;振点之后的测管中流体介质使振荡加强,即管子位移速度加快。通过光电传感器,测得两端的相位差,这个相位差在振荡频率一定时正比与测管中的质量流量。

图21 双直管测量原理

7. Ω形测量管质量流量计

这种流量计的结构如图22所示,驱动器放在直管部分的中间位置,当管中流体以一定速度流动时,由于驱动器的振动作用,使管子分开或靠近。

图22 Ω形测量管质量流量计结构

如图23a,当管子分开时,在振点前的流体中产生的科里奥利力与振动力方向相反,减慢管子的运动速度;而在振点之后管中流体产生的科氏力与振动方向相同,加快管子的运动速度。当驱动器使管子靠近时,如图23b,则产生相反的结果。在A、B两点的传感器可测的两处管字运动的相位差,由此可得到流过测管中流体的质量流量。

图23Ω形管质量流量计测量原理

8. 双环形测量管质量流量计

这种流量计有一对平行的带有短直管的螺旋管组成,如图24所示。在管子的中间位置D装有驱动器,使两根测量管受到周期性的相反的振动,在椭圆螺旋管的两端,与中间点D等距离位置上,设置两个传感器,测量这两点的管子间相对运动速度,这两个相对运动速度的相位差与流过测量管中的流体质量流量成正比。

图24 双环形质量流量计

其工作原理简述如下:当测管中流体不流动时,振动力使管子产生的变形,在中间点两边是一样的,传感器处的两测点上,测得的振动位移的相位差为零,当测管中流体流动时,在振幅最大点之前,流体质点由于受到科氏力的作用产生一个与振动方向相反的作用力,而在这点之后产生一个与振动方向相同的作用力,由于在同一时刻两根测量管所受到的作用力大小相等,方向相反,因此反映在两传感器处测点上管子的运动速度得到增大或减小,测量这两点的相位差就可得到通过测量管流体的质量流量。

三、质量流量计结构特性

在一个测量系统中,流体质点作用在测量管上的科氏力是很小的,这给精确的测量带来很大的困难。为使测量管产生足够强的信号,就应加大科氏力对测量管的作用或在同样的科氏力的作用下增大测量管的变形。ω从原理上讲Fc=2ωVM,在被测流体一定时,只有加大ω或V,才能提高Fc。实际中ω的增加,在仪表上就需要提高振动频率和振动的振幅。振动频率的提高,严重地影响测量管的寿命,而振幅的提高就需提供较大的动力。V的增加就是增加流速,这样即增加了测量管上的静压,也增大流量计对整个系统的压力损失。这些对流量计本身和整个系统都是不利的。

另一方面从结构设计上,就要考虑提高科氏力作用在振动管上的效率及提高传感器的检测能力,对后者性能的提高在此不讨论。要想提高科氏力作用在测量管上的效率,必须在结构形状上提高测量管整体的系统弹性,减少钢性,选用弹性好、性能稳定的材料,并准确选择系统的振荡频率。以达到同样的科氏力作用下,测量管的变形量增加。一般来说,测量管的管壁越薄,长度越长,结构形状的系统弹性越好,作用在管上的科氏力就越明显。这样可使测量管的变形加大,信噪比增加,还可减少外界带来的干扰。测量管上所受的应力不要过于集中在一点上,以免造成机械疲劳。应力作用的形式不同,也对管子的疲劳和测量灵敏度造成一定的影响。对于不同的结构,由于其设计思路不同,各有特色,但也存在着一些问题,每一种形式均不可能达到尽善尽美。针对这些问题,制造厂商也不断地对其产品进行改善,以提高其产品的性能,增强其竞争能力。下面就具体的结构对性能的影响进行简单分析。

1. 测量管的形状:

测量系统弹性的增加,增大了作用于振动管系统的科氏力的效应,但也增大外界机械噪声的干扰和仪表体积。测量管应尽量减少急剧弯曲,最大可能的增大测量管内径,这样可以减少压力损失。双测量管型的信噪比得到增加,流通能力也增加,别普遍采用。

2. 管壁

壁厚增加使管子更具有刚性,也增加了流动时管子的固定质量,减少了流体中夹杂气体时,由于其分布的不均匀引起比重变化对管子振动的影响,同时提高测量管耐压、耐磨性,但会降低系统弹性,影响测量的灵敏性。

3. 制造和安装

测量管的形状在制作过程应保证其对称性,在双测量管结构中应保证两根管的一致性,传感器的定位要准确,以减少测量中由于密度或粘度变化对测量结果的影响。流量质量分配的不稳定性,给测量结果的准确性带来影响。

从原理上讲,测量管所受科氏力的大小只与流体的质量流量有关,与流体密度、粘度无关。但密度的变化会带来附加的惯性力;而粘度的变化时测量管的内壁附着层不同,产生不同的边界层效应。结果引起测量管的质量分配不稳定,对测量结果的准确度带来影响。

第二篇:科氏力质量流量计的工作原理和典型结构特性

科氏力质量流量计的工作原理和典型结构特性

科氏力质量流量计的工作原理和典型结构特性

作者:中国计量研究院流量室 李旭

一、工作原理

如图一所示,截取一根支管,流体在其内以速度V从A流向B,将此管置于以角速度ω旋转的系统中。设旋转轴为X,与管的交点为O,由于管内流体质点在轴向以速度V、在径向以角速度ω运动,此时流体质点受到一个切向科氏力Fc。这个力作用在丈量管上,在O点两边方向相反,大小相同,为:

δFc = 2ωVδm

因此,直接或间接丈量在旋转管道中活动的流体所产生的科氏力就可以测得质量流量。这就是科里奥利质量流量计的基本原理。

图1 科里奥利力的形成 图2 早期科氏力质量流量计

二、结构

早期设计的科氏力质量流量计的结构如图2所示。将在由活动流体的管道送进一旋转系统中,由安装在转轴上的扭矩传感器,来完成质量流量的丈量。这种流量计只是在试验室中进行了试制。

在商品化产品设计中,通过丈量系统旋转产生科氏力是不切合实际的,因而均采用使丈量管振动的方式替换旋转运动。以此同样实现科氏力对丈量管的作用,并使得丈量管在科氏力的作用下产生位移。由于丈量管的两端是固定的,而作用在丈量管上各点的力是不同的,所引起的位移也各不相同,因此在丈量管上形成一个附加的扭曲。丈量这个扭曲的过程在不同点上的相位差,就可得到流过丈量管的流体的质量流量。

我们常见的丈量管的形式有以下几种:S形丈量管、U形丈量管、双J形丈量管、B形丈量管、单直管形丈量管、双直管形丈量管、Ω形丈量管、双环形丈量管等,下面我们分别对其结构作一简单介绍。

1. S形丈量管质量流量计

如图3所示,这种流量计的丈量系统由两根平行的S形丈量管、驱动器和传感器组成。管的两端固定,管的中心部位装有驱动器,使管子振动。在丈量管对称位置上装有传感器,在这两点上丈量振动管之间的相对位移。质量流量与这两点测得的振荡频率的相位差成正比。

图3 S形质量流量计结构

这种质量流量计的工作原理及工作过程,如图4所示。

图4 无活动时位移传感器的输出

当丈量管中流体不活动时,两根丈量管在驱动力作用下(作用在每根管子上的力大小相等、方向相反)作对称的等振幅运动。由于管子两端是固定的,在管子中间振幅最大,到两端逐渐减为零。这时在两个传感器上测得的相位如图4B所示,由图中可以看出,两传感器测得的相位差为零。当丈量管内流体以速度V活动时,流体中任意值点的流速,可以为是两个分流速的合成:水平方向Vx及垂直方向Vy(与振动方向相同)。在恒定流条件下,流体沿水平方向的流速Vx保持恒定。从图5中可以看出,管子的进、出口处振幅为零,流体质点垂直移动速度Vx为零;

图5 振动管受力分析

当流体质点有进口流进图示振动方向的丈量管时,流体质点的垂直活动速度为+Vy,同样在流体质点流向出口时,其垂直活动速度为-Vy。由此可以推出,流体质点在通过振动的丈量管时,垂直方向的速度是一个从零逐渐加大,直到中间最大,再逐渐减小到零的过程。由力学原理可知,速度的变化是由加速度引起的,而加速度是力作用于其上的结果。根据这个原理,称这个垂直速度变化为科氏加速度Ac,因此作用于流体质量M上的科氏力为Fc=Mac。在丈量管上与中心间隔相等的两点上,作用的科氏力大小相等,方向相反。

此科氏力作用在丈量管上,就产生了如图5所示的结果,即在中间点上产生一对力,引起丈量管稍微的扭曲或变形。而实际上在振荡运动时是两根S管同时所受的振荡,其运动方向相反,受力相等,如图6所示。

图6 作用在丈量管上的科氏力

随着振荡运动的进行,丈量管被周期性地分开、靠拢,科氏力也周期性地作用在两根丈量管上,通过安装在丈量管上的位移创按其A、B,测出由科氏力引起的丈量管相对位置的变化,通常转化为测两点的相位差,如图7所示。这个相位差的大小与质量流量成正比。

图7 位移传感器的输出

2. U形丈量管质量流量计

如图8所示,U形管为单、双丈量管两种结构,单丈量管型工作原理

图8a 单U形管结构

图8b 双U形管结构

如图9所示,电磁驱动系统以固定频率驱动U形丈量管振动,当流体被强制接受管子的垂直运动时,在前半个振动周期内,管子向上运动,丈量管中流体在驱动点前产生一个向下压的力,阻碍管子的向上运动,二在驱动点后产生向上的力,加速管子向上运动。这两个力的合成,使得丈量管发生扭曲;在振动的另外半周期内,扭曲方向则相反。

图9 U形管工作原理

丈量管扭曲的程度,与流体流过丈量管的值来质量流量成正比,在驱动点两侧的丈量管上安装电磁感应器,以丈量其运动的相位差,这一相位差直接正比于流过的质量流量。

在双U形丈量管结构中,两根丈量管的振动方向相反,使得丈量管扭曲相位相差180度,如图10所示。相对单丈量管型来说,双管型的检测信号有所放大,流通能力也有所进步。

图10 丈量管变形示意图

3. 双J形管质量流量计

如图11所示,两根J形管以管道为中心,对称分布;安装在J形部分的驱动器使管子以某一固定的频率振动。

图11 J形管质量流量计结构

其工作原理如图12所示,当丈量管中的流体以一定速度活动时,由于振动的存在使得丈量管中的流体产生一个科氏力效应。此科氏力作用在丈量管上,但在上下两支管上所产生的科氏力的方向不同,管的直管部分产生不同的附加运动,即产生一个相对位移的相位差。

图12 J形管工作原理

在双J形管丈量系统中,两根管在同一时刻的振动方向相反,加大了其上部与下部两直管间的相对位移的相位差。如图13 所示,在流体不活动时,从A、B两传感器测得的位移信号的相位差为零。

图13 无活动时丈量管振动状态

当丈量管内的流体活动时,在驱动其振动的某一方向上,科氏力产生的反作用力在丈量管上的影响结果如图14所示,管1分开和管2靠近时,管1上部运动加快,下部减慢,管2则在相反的方向上同样上部加快,下部减慢;结果在上部和下部安装的传感器测得的信号之间存在一个相位差,如图15所示。这个信号的大小直接反映了质量流量。

图14 有活动时丈量管振动状态

图15 传感器输出信号

4. B形管质量流量计

如图16所示,流量丈量系统由两个相互平行的B形管组成。被测流体经过分流器被均匀送进两根B形丈量管中,驱动装置安装在两管之间的中心位置,以某一稳定的谐波频率驱动丈量管振动。在丈量管产生向外运动时,如图17a所示,直管部分被相互推离开,在驱动器的作用下回路L1'和L1''相互靠近,同样回路L2'和L2''也相互靠近。由于每个回路都由一端固定在流量计主体上,旋转运动在端区被抑制因而集中在节点四周。

图16 B形管质量流量计结构

而回路中的流体在科氏力作用下示的回路L1'和L1''相互靠近的速度减慢,而另一端L2'和L2''两回路相互靠近速度增加。

图17 B形管工作时的受力状态

在丈量管产生向内运动时,如图17b所示,则相反的情况发生。直管段部分在驱动力的作用下相互靠近,而两断面上的两回路朝相互离开的方向运动。管道内流体产生的科氏力叠加在这个基本运动上会使L1'和L1''两回路的分离速度加快,而使L2'和L2''两回路的分离速度减小。

通过在端面两回路之间公道的安装传感器,这些由科氏力引进的运动就可用来精确测定流体的质量流量。

5. 单直管形质量流量计

这种流量计的结构如图18所示,丈量系统由一两端固定(法兰)的直管及其上的振动驱动器组成。

图18 单直管质量流量计结构

在管中流体不活动时,驱动器使管子振动,管中流体不产生科氏力,A、B两点受力相等,变化速度相同,如图19b所示。

图19 单直管质量流量计工作原理

当丈量管中流体以速度V在管中活动时,由于受到C点振动力的影响(此时的振动力是向上的),流体质点从A点运动到C点时被加速,质点产生反作用力F1,使管子向上运动速度减慢;而在C点到B点之间,流体质点被减速,使管子向上的运动速度加快。结果在C点两边的这两个方向相反的力使管子产生一个变形,这个变形的相位差与测管中流体流过的质量流量成正比。

6. 双直管形质量流量计

图20 双直管质量流量计结构

图20 双直管质量流量计结构 相对单直管来说双直管形可减少压力损失,增大传感器感受信号,实在际中的结构如图20所示,驱动器安放与中心位置,两个光电传感器只与中心两侧对称位置上,其中图20a所示结构丈量管受轴向力的影响很小。双直管形质量流量计的工作原理如图21所示,当流体不活动时,光电传感器受到的管子所产生的位移的相位是相同的;当流体介质流过两根振动的丈量管时,便产生了科里奥利力,这个力使丈量管的振点两边发生相反的位移,振点之前的测管中流体介质使管子振荡衰减,即管子位移速度减慢;振点之后的测管中流体介质使振荡加强,即管子位移速度加快。通过光电传感器,测得两真个相位差,这个相位差在振荡频率一定时正比与测管中的质量流量。

图21 双直管丈量原理

7. Ω形丈量管质量流量计

这种流量计的结构如图22所示,驱动器放在直管部分的中间位置,当管中流体以一定速度活动时,由于驱动器的振动作用,使管子分开或靠近。

图22 Ω形丈量管质量流量计结构 如图23a,当管子分开时,在振点前的流体中产生的科里奥利力与振动力方向相反,减慢管子的运动速度;而在振点之后管中流体产生的科氏力与振动方向相同,加快管子的运动速度。当驱动器使管子靠近时,如图23b,则产生相反的结果。在A、B两点的传感器可测的两处管字运动的相位差,由此可得到流过测管中流体的质量流量。

图23Ω形管质量流量计丈量原理

8. 双环形丈量管质量流量计

这种流量计有一对平行的带有短直管的螺旋管组成,如图24所示。在管子的中间位置D装有驱动器,使两根丈量管受到周期性的相反的振动,在椭圆螺旋管的两端,与中间点D等间隔位置上,设置两个传感器,丈量这两点的管子间相对运动速度,这两个相对运动速度的相位差与流过丈量管中的流体质量流量成正比。

图24 双环形质量流量计

其工作原理简述如下:当测管中流体不活动时,振动力使管子产生的变形,在中间点两边是一样的,传感器处的两测点上,测得的振动位移的相位差为零,当测管中流体活动时,在振幅最大点之前,流体质点由于受到科氏力的作用产生一个与振动方向相反的作用力,而在这点之后产生一个与振动方向相同的作用力,由于在同一时刻两根丈量管所受到的作用力大小相等,方向相反,因此反映在两传感器处测点上管子的运动速度得到增大或减小,丈量这两点的相位差就可得到通过丈量管流体的质量流量。

三、质量流量计结构特性

在一个丈量系统中,流体质点作用在丈量管上的科氏力是很小的,这给精确的丈量带来很大的困难。为使丈量管产生足够强的信号,就应加大科氏力对丈量管的作用或在同样的科氏力的作用下增大丈量管的变形。ω从原理上讲Fc=2ωVM,在被测流体一定时,只有加大ω或V,才能进步Fc。实际中ω的增加,在仪表上就需要进步振动频率和振动的振幅。振动频率的进步,严重地影响丈量管的寿命,而振幅的进步就需提供较大的动力。V的增加就是增加流速,这样即增加了丈量管上的静压,也增大流量计对整个系统的压力损失。这些对流量计本身和整个系统都是不利的。

另一方面从结构设计上,就要考虑进步科氏力作用在振动管上的效率及进步传感器的检测能力,对后者性能的进步在此不讨论。要想进步科氏力作用在丈量管上的效率,必须在结构外形上进步丈量管整体的系统弹性,减少钢性,选用弹性好、性能稳定的材料,并正确选择系统的振荡频率。以达到同样的科氏力作用下,丈量管的变形量增加。一般来说,丈量管的管壁越薄,长度越长,结构外形的系统弹性越好,作用在管上的科氏力就越明显。这样可使丈量管的变形加大,信噪比增加,还可减少外界带来的干扰。丈量管上所受的应力不要过于集中在一点上,以免造成机械疲惫。应力作用的形式不同,也对管子的疲惫和丈量灵敏度造成一定的影响。对于不同的结构,由于其设计思路不同,各有特色,但也存在着一些题目,每一种形式均不可能达到尽善尽美。针对这些题目,制造厂商也不断地对其产品进行改善,以进步其产品的性能,增强其竞争能力。下面就具体的结构对性能的影响进行简单分析。

1. 丈量管的外形:

丈量系统弹性的增加,增大了作用于振动管系统的科氏力的效应,但也增大外界机械噪声的干扰和仪表体积。丈量管应尽量减少急剧弯曲,最大可能的增大丈量管内径,这样可以减少压力损失。双丈量管型的信噪比得到增加,流通能力也增加,别普遍采用。

2. 管壁

壁厚增加使管子更具有刚性,也增加了活动时管子的固定质量,减少了流体中夹杂气体时,由于其分布的不均匀引起比重变化对管子振动的影响,同时进步丈量管耐压、耐磨性,但会降低系统弹性,影响丈量的灵敏性。

3. 制造和安装

丈量管的外形在制作过程应保证其对称性,在双丈量管结构中应保证两根管的一致性,传感器的定位要正确,以减少丈量中由于密度或粘度变化对丈量结果的影响。流量质量分配的不稳定性,给丈量结果的正确性带来影响。

从原理上讲,丈量管所受科氏力的大小只与流体的质量流量有关,与流体密度、粘度无关。但密度的变化会带来附加的惯性力;而粘度的变化时丈量管的内壁附着层不同,产生不同的边界层效应。结果引起丈量管的质量分配不稳定,对丈量结果的正确度带来影响。(end)

第三篇:钠硫电池工作原理及特性

钠硫电池工作原理及特性

就像江河中奔腾的流水,电流通过电网奔向千家万户时,也会不时掀起“波涛”,冲击用电设备,甚至引起事故。最近,上海科学家成功组装起了一套聪明的电能“蓄水池”,它能像水库蓄洪一样,将过多、过猛的电流储存起来,当电网需要的时候,再帄稳地释放出来。

10月14日,中科院上海硅酸盐研究所与上海电力公司宣布:经过多年攻关,他们成功完成了大容量城网储能钠硫电池的中试研发,并建成了一条2兆瓦的中试生产示范线和一套10千瓦的储能系统示范装置。明年5月,储能电站将出现在世博会上。

在上硅所的嘉定中试园区,记者见到了这条示范线。一个个直径9.4厘米、长53厘米的不锈钢圆筒整齐地竖立在80厘米见方的不锈钢箱子里——这就是用来为电网“蓄洪”的钠硫电池。打开这些不锈钢圆筒,特制的氧化铝陶瓷薄膜将作为正极的硫与作为负极的钠隔开——当电流通过时,钠与硫就会通过化学反应,将电能储存起来,当电网需要更多电能时,它又会将化学能转化成电能,释放出去。

项目技术负责人之

一、上硅所研究员刘孙告诉记者,钠硫电池的“蓄洪”性能非常优异,即使输入的电流突然超过额定功率5-10倍,它也能泰然承受,再以稳定的功率释放到电网中——这对于大型城市电网的帄稳运行尤其有用。

太阳能、风能等新能源虽然洁净,但发电功率很不稳定。这会给整个电网带来不期而至的“洪峰”。储能电站会将这些“绿电”先照单全收,再根据电网需求输出。

其实,钠硫电池储能电站更大的作用在于为整个电网“削峰填谷”。众所周知,电网必须按照满足最大用电负荷来修建。2008年,上海最高用电负荷持续小时数只有104.5小时,而为满足这短暂的高峰负荷,却需要投资200亿元。

刘孙为记者算了一笔账:1千瓦功率的储能电池可节省电网投资1.3万元,通过“削峰填谷”,可使每吨标准煤所发的电多利用100度,可带来经济效益480元。预计到2015年,上海电网峰谷差可达16000兆瓦,即使只将20%的“谷电”存储起来,用于高峰时段,其经济效益就超过70亿元——而建设储能电站的投资,仅需20亿元左右。

在研发大容量电力储能系统的同时,科研人员还同步研发了生产线等关键设备100多台,积累了多项专利。目前,他们已建成2兆瓦中试生产线,每月可生产钠硫电池200-250个。“下一步,我们将联合更多企业力量,探索更大规模生产的工艺。”上硅所所地合作处处长夏天然告诉记者,仅上海一地可预见的市场规模就可达400亿元。

在文中关于电池放电机理的描述存在原则错误,不过我想这大概只是记者的失误。由于自己当年曾经投入不少时间在钠硫电池上,自然对此会有些想法。

当年放弃对钠硫电池的研究,主要是因为投入资金的几个协作单位,包括北京大学、北京玻璃研究所和北京电池厂都不愿意继续下去了。但即使他们愿意继续研究,其实也已经不太可能。这是因为虽然当时我们研究的电池功率密度已经比较高,甚至也开过一辆实验车,但其再充电寿命只有30周左右,远远达不到实用要求。况且几个单位的财力拮据,也根本不可能继续支持研究,提供根本改变研究途径的必要条件。

钠硫充电电池的寿命主要取决于两个因素,其一是正极与负极物质的反应导致电介质产生不可逆变化,从而在经过数十周的再充电以后容量和功率会逐渐减小;其二是由于电介质的变质或者其物质结构的破坏,最终在电池内部形成钠和硫的短路而烧毁。

解决这两个问题的中心问题是制造出长寿命的陶瓷固体电介质,比较可靠的方法是在高压下压铸高密度β氧化铝管坯,然后烧制成陶瓷。然而我们当时只能在常压下用注浆方法制备。按照我那会的看法,这种常压注浆会导致晶体的定向排列,对于所烧制的管件成品的强度、耐蚀性和导电性均有不利影响。但配备一台大型超高压制备系统谈何容易?估计就是卖了整个电池厂也未必够用。

从上面的文章和其他材料提供的信息看来,如今电池的再充电寿命问题大概是解决了。不过要想使钠硫电池得到真正的推广,还要解决几个十分重要的问题,在目前网上提供的材料中。我还没有看到足以说明问题答案: 安全问题:钠硫电池仅只在达到320度左右的温度,即仅当钠和硫都是处于液态的高温下才能运行。而如果陶瓷电介质一旦破损形成短路,高温的液态钠和硫就会直接接触,发生剧烈的放热反应。这种反应虽然不会产生气体发生爆炸,但会产生高达2000度的高温,相当危险。我在一次连接一组已经加热到300度的钠硫电池时,由于一个电池单体中电介质管破裂,高达2000度的硫化钠烧熔了不锈钢电池壳,火焰冲到3米之高。我因为刚好回头去拿工具,躲过了这两秒钟,从而捡了一条命。

资料上说,钠硫电池的安全问题也已经解决。但我想,除非能在任何情况下将钠和硫完全隔绝,否则是谈不上安全的。作为车用电池,出现这种事故更意味着车毁人亡。因为作为两极的液态钠硫之间只能有用来导电的陶瓷电介质,而不可能以任何其他惰性、绝缘的高强度物质将其完全隔绝,所以解决这个问题很不容易。当初美国福特公司采用了毛细电介质管来避免钠硫的大面积接触,但造价极高,商业推广是不现实的。保温与耗能问题:在高温下运行的另一个问题是保温耗能的问题。钠硫电池在300度下才能启动,用不着进行什么分析就可以想到,这对于将其用作车用电池是一个颠覆性的缺点。用外电源保温当然十分不便,如用自身电力保温,则将大大影响最大行车里程; 环境影响与庖电池处置问题:损坏的电池难于处置,这也是钠硫电池的软肋之一。无论在何种情况下损坏,不外需要处理下述几种物质:

1)金属钠:在空气中将立即自行燃烧,生成氧化钠,随后在空气中吸收水分,形成高腐蚀性氢氧化钠。如果遇到大量水,则还会立即引起爆炸。

2)混在导电纤维中的游离硫:如果在高温下,则生成腐蚀性二氧化硫气体,如果在低温下,则需要设法将导电纤维和硫分离,加以回收;

3)硫化钠:具有恶臭和腐蚀性的化合物,需要作为危险庖物处理和处置。如果打算作为资源回收,则需要经过十分复杂的化学工艺和设备;

如果上述问题没有得到根本解决,恐怕钠硫电池作为车用电池大规模上市和应用是不可能的。

但如果如前文所说作为固定的大型储能电池来用,因为保温比较容易、设施远离工作人员,应用条件相对宽松,也许实用的可能性要大一些,不过如果一旦损坏,会危害电网运行、其环境影响,尤其是对大气和人员健康的影响程度比车用也更要大得多,投放市场仍需万分谨慎。

总之,我对于钠硫电池的推广和应用问题,如果还不是完全否定的话,也还是持比较悲观的态度。由于始终没有看到究竟现在钠硫电池的再充电寿命究竟是多少,对于上述问题究竟是如何处理和解决的。我觉得以现在的水帄能不能称之为“成功”,还有待商榷。最好是等等,看看国外推广应用(如果有的话)的后果为好。千万不可急功近利,一哄而上。储能技术促钠硫电池产业发展

智能电网是目前国家电网的重点建设方向,储能技术是智能电网的核心技术之一。而钠硫电池因其容量大、体积小、能量储存和转换效率高、寿命长、不受地域限制等优点,非常适合电力储能使用。

7月25日,上海市政府与国家电网公司在沪正式签署《智能电网建设战略合作协议》。上海电气集团公司、上海市电力公司和中科院上海硅酸盐研究所共同签署了《关于推进钠硫电池产业化的合作意向书》。中共中央政治局委员、上海市委书记俞正声出席签约仪式。上海市委副书记、市长韩正,国家电网公司党组书记、总经理刘振亚,中国科学院副院长阴和俊分别致辞。

韩正在致辞时说,发展智能电网等战略性新兴产业,建设坚强智能电网,是加快转变经济发展方式的必然选择,是实施国家能源战略的重要举措。上海将努力成为智能电网功能应用示范基地、关键技术研发基地和主要装备制造基地。上海已将发展智能电网作为高新技术产业化的重要方面,对智能电网应用、研发和产业化给予全面支持。上海将全力配合国家电网公司开展的建设坚强智能电网各项工作,充分依托中国科学院的科技支撑作用,推动上海智能电网在关键技术研发和产业化方面实现突破。

阴和俊指出,中国科学院与上海市人民政府和国家电网公司有着长期的友好合作历史,并已分别签署战略合作协议,开展了良好的合作。面对国家能源安全,中科院积极发挥科技国家队的优势,在多个领域主动部署。在智能电网方面,针对技术和发展涉及领域广泛,需要材料、器件、信息、通讯、控制和管理等多学科参与的特点,中科院发挥多学科的综合优势,前瞻部署并在大容量储能电池与系统、电动汽车、物联网及传感器、半导体照明等领域取得了一些重要成果。加强在智能电网关键技术方面的研发,共同推进我国智能电网建设与技术发展,对于推进我国产业结构调整、加快经济发展方式转变和培育战略新兴产业具有重要意义。

“采用电力储能技术,可以提高电网经济性、安全性和供电可靠性,支持新能源发展。”中科院上海硅酸盐研究所所长罗宏杰教授告诉记者。

“采用大规模储能装置,可以减少和延缓用于发、输、变、配电设备的投资,提高现有电力设备的利用率和供电可靠性,降低发电煤耗。”中科院上海硅酸盐所能源材料研究中心主任、上海钠硫电池研制基地技术总工程师温兆银研究员介绍说。据了解,中国科学院上海硅酸盐研究所积极响应国家战略,通过与国家电网上海市电力公司先期合作,在上海市科委等部门的支持下,在大容量钠硫储能电池研制方面获得重要突破,成功研制出具有自主知识产权的容量为650Ah的钠硫储能单体电池,使我国成为继日本之后世界上第二个掌握大容量钠硫单体电池核心技术的国家。据悉,现已建成2兆瓦大容量钠硫单体电池中试生产示范线,800千瓦时的钠硫储能示范电站已成功运行,标志着钠硫储能电池已基本具备产业化条件。在向产业应用的转移阶段,上海电气(集团)总公司参与合作,从研发、生产到应用,三家单位强强联合,集成社会优质资源,创新管理模式,有力地推进了钠硫储能电池向产品化、实用化发展。

阴和俊表示,中科院上海硅酸盐研究所提供技术源头,国家电网上海市电力公司继续发挥应用牵引,上海电气具备强大的制造和生产管理能力,相信“通过三方合作,一定能切实发挥科技对产业的引领与支撑作用,为我国智能电网的发展作出重要贡献”。

据悉,上海将重点发展新能源接入与控制、电力储能、电力电子应用及核心器件、智能变电站系统及智能设备、智能配电网与智能用户端、高温超导、相关的IT通信及软件信息服务业等方面产业和技术。到2012年,上海将力争培育3~5家智能电网行业龙头企业,形成有竞争力的智能电网产业集群,产业规模达到500亿元左右。钠硫电池是美国福特(Ford)公司于1967年首先发明公布的,其比能量高、可大电流、高功率放电。日本东京电力公司(TEPCO)和NGK公司合作开发钠硫电池作为储能电池,其应用目标瞄准电站负荷调帄、UPS应急电源及瞬间补偿电源等,并于2002年开始进入商品化实施阶段,截止2007统计,日本年产钠硫电池电池量已超过100MW,同时开始向海外输出。

1、基本原理

钠硫电池以钠和硫分别用作阳极和阴极〃Beta-氧化铝陶瓷同时起隔膜和电解质的双重作用。它的电池形式如下:

(一)Na(1)/beta一氧化铝/Na2Sx(1)/C(+)基本的电池反应是:2N a + xS= Na2Sx

2、钠硫电池特性

⑴ 钠硫电池的理论比能量高达760Wh/kg,且没有自放电现象。放电效率几乎可达100%。

⑵ 钠硫电池的基本单元为单体电池,用于储能的单体电池最大容量达到650安时,功率120W 以上。将多个单体电池组合后形成模块。模块的功率通常为数十kW,可直接用于储能。

⑶ 钠硫电池在国外已是发展相对成熟的储能电池。其寿命可以达到使用10~15年。

3、钠硫电池的缺点

• 不能处理部分循环e.g.风能,SOC只能用帄均值计量,所以需要周期性的离线度量;

• 过度充电时很危险;

• 高温350ºC熔解硫和钠,因此需要附加供热设备来维持温度。

编辑本段

简介及原理

钠硫电池是美国福特(Ford)公司于1967年首先发明公布的,至今才40年左右的历史。电池通常是由正极、负极、电解质、隔膜和外壳等几部分组成。一般常规二次电池如铅酸电池、镉镍电池等都是由固体电极和液体电解质构成,而钠硫电池则与之相反,它是由熔融液态电极和固体电解质组成的,构成其负极的活性物质是熔融金属钠,正极的活性物质是硫和多硫化钠熔盐,由于硫是绝缘体,所以硫一般是填充在导电的多孔的炭或石墨毡里,固体电解质兼隔膜的是一种专门传导钠离子被称为Al2O3的陶瓷材料,外壳则一般用不锈钢等金属材料。

编辑本段

特点

钠硫电池具有许多特色之处:一个是比能量(即电池单位质量或单位体积所具有的有效电能量)高。其理论比能量为760Wh/Kg,实际已大于100Wh/Kg,是铅酸电池的3-4倍;另一个是可大电流、高功率放电。其放电电流密度一般可达200-300mA/cm2,并瞬时间可放出其3倍的固有能量;再一个是充放电效率高。由于采用固体电解质,所以没有通常采用液体电解质二次电池的那种自放电及副反应,充放电电流效率几乎100%。当然,事物总是一分为二的,钠硫电池也有不足之处,其工作温度在300-350℃,所以,电池工作时需要一定的加热保温。但采用高性能的真空绝热保温技术,可有效地解决这一问题。

编辑本段

意义

钠硫电池作为新型化学电源家族中的一个新成员出现后,已在世界上许多国家受到极大的重视和发展。由于钠硫电池具有高能电池的一系列诱人特点,所以一开始不少国家就首先纷纷致力于发展其作为电动汽车用的动力电池,也曾取得了不少令人鼓舞的成果,但随着时间的推移表明,钠硫电池在移动场合下(如电动汽车)使用条件比较苛刻,无论从使用可提供的空间、电池本身的安全等方面均有一定的局限性。所以在80年代末和90年代初开始,国外重点发展钠硫电池作为固定场合下(如电站储能)应用,并越来越显示其优越性。如日本东京电力公司(TEPCO)和NGK公司合作开发钠硫电池作为储能电池,其应用目标瞄准电站负荷调帄(即起削峰帄谷作用,将夜晚多余的电存储在电池里,到白天用电高峰时再从电池中释放出来)、UPS应急电源及瞬间补偿电源等,并于2002年开始进入商品化实施阶段,已建成世界上最大规模(8MW)的储能钠硫电池装置,截止2005年10月统计,年产钠硫电池电池量已超过100MW,同时开始向海外输出。请教马兰凤老师:钠硫电池充放电时钠离子事怎样通过β-NaAl11O17电解质实行传递的呢?钠硫电池为什么不能过充和过放呢?

相对锂离子电池,钠硫电池的实际能量密度和功率密度也不是很大,而且其安全性差,且成本高,那么用钠硫电池做储能电站的优势在哪里呢?谢谢!

1、Na—S蓄电池作用原理 Na-S电池是当前开发的一种高能蓄电池,它所贮存的能量为常用铅蓄电池的5倍(按相同质量计),它具有运行无声、无污染、价廉、安全、使用寿命长以及维修费低廉等优点。常用的电池是由一个液体电解质将两个固体电极隔开,而Na-S电池正相反,它是由固体电解质将两个液体电极隔开:一个由Na-β-Al2O3固体电解质做成的中心管,将内室的熔融钠(熔点98℃)和外室的熔融硫(熔点119℃)隔开,并允许Na+离子通过。整个装置密封于不锈钢容器内,此容器又兼作硫电极的集流器。在电池内部,Na+离子穿过固体电解质和硫反应从而传递电流。350℃时,Na-S电池的断路电压为2.08 V。已知硫的化学式为S8,在外电路中被还原成多硫离子。

钠硫电池的理论比容量可达760 W?h/kg,实际已达到300 W?h/kg,且充电持续里程长,循环寿命长。

负极的反应物质是熔融的钠在负极腔内,正极的反应物质是熔融的硫在正极腔内。正极和负极之间用α―Al2O3电绝缘体密封。正极腔和负极腔之间有β―NaAl11O17陶瓷管电解质。电解质只能自由传导离子,而对电子是绝缘体。当外电路接通时,负极不断产生钠离子并放出电子,电子通过外电路移向正极,而钠离子通过β―NaAl11O17电解质和正极的反应物质生成钠的硫化物 电池过充将破坏正极结构而影响性能和寿命;同时过充电使电解质分解,内部压力过高等问题;过放会导致活性物质的恢复困难

2、钠硫电池作为电化学能源家族中的新成员,它的产生一方面弥补了因能源不足而引发的危机,另一方面,由于它不排放任何有害物质,使用或报庖后也不会对环境造成二次污染,是一种真正意义上的环保型新能源。钠硫电池用于储能具有独到的优势,主要体现在原材料储量大、能量和功率密度大、充放电效率高、不受场地限制、维护方便等特点。钠硫电池在国外已经成功的用于削峰填谷、应急电源、风力发电等可再生能源的稳定输出以及提高电力质量等方面。涉及工业、商业、交通、电力等多个行业,是各种先进二次电池中最具有潜力的一种储能电池。而在我国,钠硫电池的开发和应用则基本上处于空白状态。主要优点钠硫电池可以通过削峰填谷的方式解决日益突出的供电紧张现象;可以节省现有发电能源近乎50%。在未来的15年中,我国电力需求的年增长率预计达到每年5.8~7.2%,2005年电力消耗为2469TWh,到2010年预计达到3000TWh,2020年则将达到5000TWh。与此同时,电力消耗的昼夜峰谷差也在日益扩大,以上海市为例,2006年的最高用电负荷近2000万千瓦,峰谷差高达40%。在低谷电力帄衡时,上海电网内的大型火电机组低谷出力大多要减至最低,小型机组更是需要视情况而日开夜停,为此需要付出巨大的代价。要解决这种电力使用严重不对称而造成的电力紧张现象,利用钠硫电池储能是最有效的途径,它在用电需求小于发电量时将多余的电能储存起来,在需要大于供给时补充电能。而且利用分布式的储能系统可以在关键时刻辅助供电或者传输电能,将对供电负荷需求从峰值时刻转移到负荷低谷时刻或者在强制停电、供电中断的情况下提供电能。根据美国相关机构统计,如果通过储能手段进行削峰填谷,那么每年可以节省全球用于发电的能源近50%;也就是说钠硫储能电站相当于一个巨大的节能器,能够使得现有发电站的资源消耗量减少一半,相应地这些有限的不可再生资源的使用年限可以增加一倍。这无论对于社会还是政府而言,都是一项具有重要意义的能源工程。钠硫电池作为一种先进的储能电池,可以从根本上解决风能太阳能输出电力不稳定的问题;是风能产业推广的重要配套产品。大力发展可再生能源是全球未来电力生产的大方向。目前,我国的可再生能源仅占电力生产总量的0.25%,但到2010年预计将达到8.63%,2020年则将增长到15%~20%。风力发电和太阳能发电是近几年发展和增长最快的两种可再生能源,全球风电装机容量已达25000MW以上;太阳能发电总量已达9100MW。我国近几年风力发电和太阳能发电都增长很快,且发展潜力巨大。由于可再生能源的电力输出随着风、光照等资源的强度同步变化和波动,因此无法直接向电网输出或向用户出售,需要经过稳定后方可和电网安全对接输出。而且,随着社会的发展,对于用电质量的要求日益提高,这也使得储能电池质量的高低直接决定了风能太阳能等可再生能源的应用前景。钠硫电池的长寿命和快速充电等特性使得它成为与风能太阳能等发电方式配套的一种最理想的储能电池。因此,随着风能太阳能产业的不断发展,钠硫电池产业必将迎来一个崭新的发展机遇。钠硫电池的诸多远胜于传统电池的优点使其完全可以取代传统电池而成为潜艇、军用武器等的储能电源,对于国防有着重要的意义。钠硫电池具有能量密度大、充电速度快、使用寿命长等特点,因此它便可以在潜艇、军舰等领域取代现有的锂离子电池和铅酸电池,大大提高续航里程、降低维护成本。以U32潜艇为例:该舰现行配置动力电池为2000千瓦时铅酸电池,重量约为160吨,由5万小块电池组成,且潜行时间短。惊人的电池重量占据着艇内的有限空间,潜艇自身负荷增大,不但影响速度、下潜时间,也局限了战备、供给物质的容量。高性能的钠硫动力电池在同等电容量的情况下,重量最多只有25吨,体积也只有它的1/5~1/6。Na/S电池的使用将大大减轻艇的自身载重量,提高体速度和机动性,同时节省出大量的空间,保证艇员的生活供给物品、武器、弹药的储存,大大提高潜艇的作战能力。而其特有的瞬间大电流特点更可以应用到导弹、火箭、大炮等的发射装置上,它能使弹头出膛速度达到每秒3—50公里超高速运行,且性能稳定,可控性好。这样的发射装置不但后坐力小,发射时无烟雾、不喷火及光,也无冲击波和辐射,稳定性好,隐蔽性好,对大气空间也无污染,其成本只是化学燃料的1%—10%。同样该项技术,也可用于航天领域,比如地对空的定向发射等。钠硫电池项目在未来的储能调峰、稳定风能输出、特种领域应用等方面有着极其重要的作用;以上海电网为例作简单估算:截止2005年底,上海电网(含崇明岛、长兴岛)总调装机容量为13368.4MW,其中火力发电机组13344MW,风力发电机组24.4MW。上海年最高负荷19543MW,最低负荷~7799MW(2006年9月11日),但上海6,7,8三个月的月帄均负荷为~85%。那么剩余的功率为,13368.4MW×15%=2005.26MW=2005260KW,每月剩余的电能为:2005260KW×24h×30day=1443787200KWh=14.44亿度。如果将这些电能用钠/硫电池储能系统储存起来,考虑到AC-to-DC及DC-to-AC的转化效率为0.8,上海居民峰谷电价0.3元/KWh,峰时电价1.7元/KWh,则差价为1.4元/KWh。故每月可利用的电能为14.44亿度×0.8=11.552,节约的电费为11.552×1.4=16.17亿元。如果考虑全年仅上海就可以节约40~50亿度电。可想而知,如果将该储能系统应用到北京、应用到全国各主要电网,则每年节约的能源是个底大的数字。建立节约型社会是我国的一项基本国策,节约能源是我国走持续发展道路的必然选择,而能量储存是实施节约能源战略的重要技术措施。大功率钠硫动力电池具有高功率密度、长循环寿命、无自放电现象、100%的库仑效率以及维护简单等突出优点,使得它在大规模能量储存方面有难以匹敌的优势和广阔的应用前景。此外,中小型的钠/硫电池储能系统可以与太阳能电池发电站、风能发电站匹配,解决我国老、少、边、穷的不发达地区居民及边防哨所供电质量和供电安全性。同时,中小型的钠/硫电池储能系统还可以用于城市居民小区的应急电源。国外大力(尤其是日本)发展钠硫电池储能除钠硫电池本身的高性能特点外,一个主要的原因是从资源和环境考虑,铅酸电池不仅比能量低,其制造过程和庖旧电池对环境都会造成严重污染,锂离子电池中的Li和Co(目前其正极材料LiCoO2)的地球储量都不丰富(尤其是Co),此外Co有毒性,其制造过程和庖旧电池对环境和人体都有伤害。与此相反,Na和S几乎用之不竭。单质Na和S元素本身对人体是没有毒性,而且庖旧电池中的Na和S几乎可以100%的回收。因此,无论是从发展新型能源、节约能源、环境保护的角度看,还是从可持续发展的战略高度去衡量和思考,我国发展钠硫电池储能系统是完全有必要的,使该项技术转化为生产力已刻不容缓。

3、钠硫电池用于储能具有独到的优势,主要体现在原材料和制备成本低、能量和功率密度大、效率高、不受场地限制、维护方便等方面。钠硫电池已经成功的用于削峰填谷、应急电源、风力发电等可再生能源的稳定输出以及提高电力质量等方面。目前在国外已有100余座钠硫电池储能电站在运行中,涉及工业、商业、交通、电力等多个行业,是各种先进二次电池中最为成熟的一种,也是最具有潜力的一种先进储能电池。

可参考:《钠硫电池及其储能应用》一文 作 者: 温兆银 Wen Zhaoyin

作者单位: 中国科学院上海硅酸盐所 钠硫电池

简介

钠硫电池作为化学能源家族中的新成员,它的产生一方面弥补了因能源不足而引发的危机,另一方面由于他不排放有害物质,使用获报庖后也不会对环境造成二次污染,是一种真正意义上的环保型新能源。钠硫电池用于储能具有独到的优势,主要体现在原材料储量大、能量和功率密度大、充放电效率高、不受产地限制、维护方便等特点。钠硫电池在国外已经成功的用于削峰填谷、应急电源、风力发电等可再生能源的稳定输出以及提高电力质量等方面。涉及工业、商业、交通电力等多个行业。是各种先进二次电池中最具有潜力的储能电池。而在我国钠硫电池的开发和应用则基本上处于空白状态。

市场前景:

1钠硫电池可以通过削峰填谷的方式解决日益突出的供电紧张现象;可以节省现有发电能源近乎50%.在未来的15年中,我国电力需求的年增长率预计达到每年5.8~7.2%,到2010年预计达到3000TW,2020年则将达到5000TW。与此同时,电力消耗的昼夜谷差也在日益扩大,以上海市为例,2006年的最高用电负荷近2000万千瓦,峰谷差高达40%。在低谷电力帄衡时,上海电网内的大型火电机组低谷出力大多要减至最低,小型机组更是要视情况而日开业停,为止需要付出巨大的代价。

要解决这种电力使用严重不对称而造成的电力紧张现象,利用钠硫电池村储能是最有效的途径。它在用电需求小于发电量时将多余的电能储存起来,在需要大于供给时补充电能。而且利用分布式的储能系统可以在关键时刻辅助供电或者传输电能,将对供电负荷需求从峰值时刻转移到负荷低谷时刻或者在强制停电,供电中断的情况下提供电能。

根据美国相关机构统计,如果通过储能手段进行削峰填谷,那么每年可以节省全球用于发电的能源近50%;也就是说钠硫储能电站相当于一个巨大的节能器,能够使得现有发电站的资源消耗量减少一半,相应地这些有限的不可再生资源的使用年限可以增加一倍。这无论对于会还是府而言,都是一项具有重大意义的能源工程。

2,钠硫电池作为一种先进的储能电池,可以从根本上解决风能太阳能输出电力不稳定的问题;是风能产业推广的重要配套产品。

大力发展可再生能源是全球未来电力生产的大方向。目前,我国的可再生能源仅占电力生产总量的0.25%,但到2010年预计将达到8.63%,2020年则将增长到15%~20%。风力和太阳能发电是近近几年发展和增长最快的两种可再生资源,全球风电装机容量已达25000MW以上,我国近几年风力发电发电都增长很快,且发展潜力巨大。由于可再生能源的电力输出随着风、光照等资源的强度同步变化和波动,因此无法直接向电网输出或向用户出售,需要经过稳定后方可和电网安全对接输出。而且随着会的发展对于电质量的要求日益提高,这也使得储能电池质量的高低直接决定了风能等可再生能源的应用前景。

钠硫电池的长寿命和快速充电等特性使得它成为与风能等发电方式配套的一种最理想的储能电池。因此随着风能产业的不断发展,钠硫电池产业必将迎来一个崭新的发展机遇。

3、钠硫电池的诸多远胜于传统电池的优点使其完全可以取代传统电池而成为潜艇、军用武器等的储能电源,对于国防有着重要的意义。

钠硫电池具有能量密度大、充电速度快、使用寿命长等特点,因此它便可以在潜艇、军舰等领域取代现有的锂离子电池和铅酸电池,大大提高续行里程、降低维护成本。

经济效益

钠硫电池项目在未来的储能调峰、稳定风能输出、特种领域应用等方面有着极其重要的作用。以上海电网为例做简单估算: 截止2005年底上海电网(含崇明岛、长兴岛)总调装机容量为13368.4MW,其中火力发电机组13344MW,风力发电机组24.4MW。上海年最高负荷19543MW,最低负荷7799MW,考虑峰谷差,每月剩余的电能为14.44亿度。如果将这些电能用钠硫电池储能系统储存起来,考虑到AC-to-DC及DC-to-AC的转化效率为0.8,上海居民峰谷电价0.3元/KWh,峰时电价1.7元/KWh,则差价为1.4元/KWh。故每月可利用的电能为14.44亿度×0.8=11.552,节约的电费为11.552×1.4=16.17亿元。如果考虑全年仅上海就可以节约40~50亿度电。可想而知,如果将该储能系统应用到北京、应用到全国各主要电网,则每年可节约的能源是个底大的数字。

建立节约型会是我国的一项基本国策,节约能源是我国走持续发展道路的必须选择,而能量储存是实施节约能源战略的重要技术措施。大功率钠硫动力电池具有高功率密度、长循环寿命、无自放电现象、100%的库仑效率以及维护简单等突出优点,使得它在大规模能量储存方面有难以匹敌的优势和广阔的应用前景。

此外,中小型的钠硫电池储能系统可以与太阳能电池发电站、风能发电站匹配,解决我国老、少、边、穷的不发达地区居民及边防哨所供电质量和供电安全性。同时中小型的钠硫电池储能系统还可以用于城市居民小区的应急电源。

会效率

国外大力(尤其是日本)发展钠硫电池储能除钠硫电池本身的高性能特点外,一个主要的原因是从资源和环境考虑,铅酸电池不仅比能量低其制造过程和庖旧电池对环境都会造成严重污染,锂离子电池中的Li何Co(目前其正极材料LiCoO2)的地球储量都不丰富(尤其是Co),此外Co有毒性,其制造过程和庖旧电池对环境和人体都有伤害。于此相反,Na和S几乎用之不竭,单质Na和S元素本身对人体是没有毒性,而且庖旧电池中的Na和S几乎可以100%的回收。因此,无论是从发展新型能源、节约能源、环境保护的角度看,还是从可持续发展的战略高度去衡量和思考,我国发展钠硫电池储能系统是完全有必要的,使该项技术转化为生产力已刻不容缓。

第四篇:气动马达特性及工作原理

气动马达特性及工作原理

气动马达特性:

1、使用压缩空气为动力,安全防爆,不产生静电、火花。

2、可以无级调速,马达的转速通过供气的压力,流量调节。

3、无超载危险,马达负载过大,不会对马达本身产生损毁,本体温度也不会上升。

4、可以长时间满载连续工作。

5、双向旋转,可实现正逆转功能

6、操作方便,维护检修简单 工作流体:压缩空气

使用压力: 6 kg /cm2(85 PSI)

最大使用压力: 8 kg /cm2(115 PSI)

环境适温度:-10 ~ +120C

国内品牌有德斯威

气动马达是一种作连续旋转运动的气动执行元件,是一种把压缩空气的压力能转换成回转机械能的能量转换装置,其作用相当于电动机或液压马达,它输出转矩,驱动执行机构作旋转运动。在气压传动中使用广泛的是叶片式、活塞式和齿轮式气动马达。可广泛应用于小型搅拌输料系统,200L以内非常合适。※活塞式气动马达的工作原理

主要由:马达壳体、连杆、曲轴、活塞、气缸、配气阀等组成。压缩空气进入配气阀芯使其转动,同时借配气阀芯转动,将压缩空气依次分别送入周围各气缸中,由于气缸内压缩空气的膨胀,从而推动活塞连杆和曲轴转动,当活塞被推至“下死点”时,配气阀芯同进也转至第一排气位置。经膨胀后的气体即自行从气缸经过阀的排气孔道直接排出。同时活塞缸内的剩余气体全部自配气阀芯分配阀的排气孔道排出,经过这样往复循环作用,就能使曲轴不断旋转。其功主要来自于气体膨胀功。

Piston pneumatic motor principle of work Mainly consists of: motor shell, connecting rod, crankshaft, piston and cylinder, valve, etc.Compressed air into the air with its core, with rotation by air, will be the core of compressed air into the surrounding air cylinder respectively, due to the expansion of compressed air in cylinder, so as to promote the piston and crankshaft connecting, when the piston is pushed down dead spots ", with the core with air exhaust to first place.The expansion of the gas automatically from the exhaust duct cylinder valve directly after discharge.While the residual gas piston cylinder valve core with all the vent duct, corundum, through such reciprocating cycle can make the crankshaft constantly rotating.Its function mainly comes from the gas expanding power.※叶片式气动马达的工作原理

如图所示是双向叶片式气动马达的工作原理。压缩空气由A孔输入,小部分经定子两端的密封盖的槽进入叶片底部(图中未表示),将叶片推出,使叶片贴紧在定子内壁上,大部分压缩空气进入相应的密封空间而作用在两个叶片上。由于两叶片伸出长度不等,因此,就产生了转矩差,使叶片与转子按逆时针方向旋转,作功后的气体由定子上的孔B排出。

若改变压缩空气的输入方向(即压缩空气由B孔进入,从孔A孔排出)则可改变转子的转向。

图-1双向旋转的叶片式马达

(a)结构;(b)职能符号

Vane pneumatic motor principle of work

As shown is two-way vane pneumatic motor principle of work.Compressed air from A small hole, the input of the stator slots on both ends of the hermetic seal(FIG leaf base into not), will adhere to leaf blade on the wall of the stator, compressed air into the corresponding seal space and function in two blades.Because the two blades, therefore, stretch produced the torque, according to the rotor blades and reactive counter-clockwise after gas holes in the stator by B.If the change of compressed air input direction(i.e.by compressed air into the hole hole, B)is A hole can be changed from the rotor turning.※叶片式气动马达的工作原理

气动马达是以压缩空气为工作介质的原动机,它是采用压缩气体的膨胀作用,把压力能转换为机械能的动力装置。

各类型式的气马达尽管结构不同,工作原理有区别,但大多数气马达具有以下特点:

1.可以无级调速。只要控制进气阀或排气阀的开度,即控制压缩空气的流量,就能调节马达的输出功率和转速。便可达到调节转速和功率的目的。

2.能够正转也能反转。大多数气马达只要简单地用操纵阀来改变马达进、排气方向,即能实现气马达输出轴的正转和反转,并且可以瞬时换向。在正反向转换时,冲击很小。气马达换向工作的一个主要优点是它具有几乎在瞬时可升到全速的能力。叶片式气马达可在一转半的时间内升至全速;活塞式气马达可以在不到一秒的时间内升至全速。利用操纵阀改变进气方向,便可实现正反转。实现正反转的时间短,速度快,冲击性小,而且不需卸负荷。

3.工作安全,不受振动、高温、电磁、辐射等影响,适用于恶劣的工作环境,在易燃、易爆、高温、振动、潮湿、粉尘等不利条件下均能正常工作。

4.有过载保护作用,不会因过载而发生故障。过载时,马达只是转速降低或停止,当过载解除,立即可以重新正常运转,并不产生机件损坏等故障。可以长时间满载连续运转,温升较小。

5.具有较高的起动力矩,可以直接带载荷起动。起动、停止均迅速。可以带负荷启动。启动、停止迅速。

6.功率范围及转速范围较宽。功率小至几百瓦,大至几万瓦;转速可从零一直到每分钟万转。

7.操纵方便,维护检修较容易 气马达具有结构简单,体积小,重量轻,马力大,操纵容易,维修方便。

8.使用空气作为介质,无供应上的困难,用过的空气不需处理,放到大气中无污染 压缩空气可以集中供应,远距离输送

由于气马达具有以上诸多特点,故它可在潮湿、高温、高粉尘等恶劣的环境下工作。除被用于矿山机械中的凿岩、钻采、装载等设备中作动力外,船舶、冶金、化工、造纸等行业也广泛地采用。

气动马达air motor是防爆电机的最佳代替品除了标准型号, 我们还有配备减速机的气动减速马达型号, 减速比从10:1至60:1。

特点包括:

1)可变转速;

2)防爆选型指导

功率-P, 扭矩-M, 转速-n,P-M-n三者的近似关系:

扭矩-转速曲线:负直线(系数近似恒定);功率-转速曲线:抛物线(开口向下);略...选择欧博气压马达的一般方法:

1、近似选择接近要求参数的欧博马达系列、型号;

2、查看所选气压马达的特征图(曲线图),进一步核对所选马达型号是否合适,选择最优工作点;

3、考虑假如调节气源,所选马达是否能输出需求的参数;

4、核对马达尺寸,选择安装形式,输出轴形式;

5、核算输出轴的受力是否合适;

6、考虑其他方面(根据具体情况个别考虑):...。

对于工作过程扭矩、转速基本稳定的应用: 略...对于工作过程负载(扭力)或转速发生较大变化的应用: ●

气动马达选型参考:

选择气马达的主要参数是:功率-P 扭矩-M 转速-n 实际工作状态下:P(瓦)= M(牛米)X n(转/分钟)X 0.105

选择TSA气压马达的一般方法是:(适用于:工作过程扭矩、转速基本稳定的应用)对于工作过程负载(扭力)或转速发生较大变化的应用(比如,拧紧机用马达),按以下方法选择: 解释:

P-M-n三者的近似关系:

扭矩-转速曲线:负直线(系数近似恒定),功率-转速曲线: 抛物线(开口向下);

转速n = 0 时(开始启动),功率P急剧上升,扭矩

M = 启动扭矩(约等于最大扭矩的80%);

转速n = 大约是最大转速一半时(最大功率转速),功率P = 最大值(最大功率),扭矩M下降到 = 最大扭矩的50%-70% = 最大功率扭矩;

转速n = 若转速继续升高(负载比较小,接近空载),扭力下降,到最大转速(此时是空载转速),功率P很小,扭力M很小;

若负载扭矩比较大,则马达转速下降,当负载扭力大于或等于马达的停转扭力(即最大扭力),马达失速停转。

气动马达分为单向及双向两种形式。对于单向气动马达只需开闭进气口即可控制马达的转动和停止。

双向气动马达有两个进气口,一个主排气口。马达工作时从一个进气口进气,则另一进气口为副排气口,若需马达旋转方向改变时,只需将进气口与副排气口交换位置即可,所以选用的控制阀必须具备上述功能才能使马达正常工作。建议选用三位四通阀或三位五通阀。在进行管道布置时,气源与气马达之间的管道通径(包括管道附件、控制阀、油雾器等)均不得小于与马达相适应的最小内径,且管道不得有严重的节流现象。管道接头处应牢固、密封、不得有泄漏现象,否则气动马达达不到应有的工作性能。

如图所示为叶片式气动马达结构原理图。主要由定子、转子、、叶片及壳体构成。在定子上有进一排气用的配气槽孔。转子上铣有长槽。槽内装有叶片。定子两端盖有密封盖。转子与定子偏心安装。这样,沿径向滑动的叶片与壳体内腔构成气动马达工作腔室。

气动马达工作原理同液压马达相似。压缩空气从输人口A进入。作用在工作室两侧的叶片上。由于转子偏心安装,气压作用在两侧叶片上产生的转矩差,使转子按逆时针方向旋转。当偏心转子转动时,工作室容积发生变化,在相邻工作室的叶片上产生压力差,利用该压力差推动转子转动。作功后的气体从输出口排出。若改变压缩空气输入方向,即可改变转子的转向。

图a所示叶片式气动马达采用了不使压缩空气膨胀的结构形式,即非膨胀式,工作原理如上所述。图b所示叶片式气动马达采用了保持压缩空气膨胀行程的结构形式。当转子转到排气口C位置时,工作室内的压缩空气进行一次排气,随后其余压缩空气继续膨胀直至转子转到输出口B位置进行二次排气。气动马达采用这种结构能有效地利用部分压缩空气膨胀时的能量,提高输出功率。非膨胀式气动马达与膨胀式气马达相比,其耗气量大,效率低;单位容积的输出功率大,体积小,重量轻。

叶片式气动马达一般在中、小容量及高速回转的范围使用,其耗气量比活塞式大,体积小,重量轻,结构简单。其输出功率为0.1—20kW,转速为500~25000r/min。另外,叶片式气马达启动及低速运转时的特性不好,在转速500r/min以下场合使用,必需要配用减速机构。叶片式气动马达主要用于矿山机械和气动工具中。

※气动马达的应用

目前,气动马达主要应用于矿山机械、专业性的机械制造业、油田、化工、造纸、炼钢、船舶、航空、工程机械等行业,许多气动工具如风钻、风扳手、风砂轮等均装有气动马达。随着气压传动的发展,气动马达的应用将更趋广泛。如图所示为气动马达的几个应用实例.气动马达的工作适应性较强,可用于无级调速、启动频繁、经常换向、高温潮湿、易燃易爆、负载启动、不便人工操纵及有过载可能的场合。GASTON产品被广泛应用到:矿山机械,动力传动、提升气动绞车、食品饮料机械、汽车零部件拧紧装配、拧盖(旋盖)机、灌装机、各种气动工具的动力、多功能机床、管道疏通机、高压清洗机、石油机械、造纸机械、船舶机械、印刷类机械、搅拌类机械、包装机械、汽车配件厂、金属加工、钻孔攻丝、化工机械、木工机械、卷扬机、炼钢、喷涂设备机械、坡口机、气动式管道内对口机、气动链锯、气动打包机、易燃易爆、粉尘、重载、潮湿等工作场所。

第五篇:减速机结构工作原理

一、减速机的结构:

减速机一般由箱体、轴系部件和附件三大部分组成(一)箱体

箱体是减速机中所有零件的基座,是支承和固定轴系部件、保证传动零件的正确相对位置并承受作用在减速机上的荷载的重要零件。箱体一般还兼作润滑油的油箱,具有充分润滑和很好的密封箱体零件的作用。

箱体大多做剖分式,由箱座和箱盖组成(取轴的中心线为剖分面)(二)附件

为保证减速机正常工作和具有完善的性能,减速机箱体上常设置某些必要的装置和零件,这些装置和零件及箱体上相应的局部结构统称为附件。

1、窥视孔和视孔盖(窥视孔:用于检查传动件的啮合情况和润滑情况等,并由该孔向箱内注入润滑油。)

2、通气器(减速机工作时,箱体内的温度和气压都很高,通气器能使热膨胀气体及时排出,保证箱体内外压平衡,以免润滑油沿箱体结合面、轴外伸处及其他缝隙渗漏出来。)

3、轴承端盖(用以固定轴承外圈及调整轴承间隙,承受轴向力)

4、定位销(箱盖和箱座需要两个圆锥销定位)

5、油面指示装置(指示减速机内油面的高度是否符合要求)

6、油塞(排油孔,更换减速机箱体内污油)

7、启盖螺钉(为了方便开启箱盖,对抗密封胶或水玻璃的粘结作用)

8、起吊装置(方便搬运)(三)轴系部件

分为:阶梯轴和齿轮轴两种 阶梯轴:常用

齿轮轴:当齿轮直径较小,齿轮与轴做成一体

二、减速机工作原理

减速机一般用于低转速大扭矩的传动设备,把电动机、内燃机或其它高速运转的动力通过减速机的输入轴上的齿数少的齿轮啮合输出轴上的大齿轮来达到减速的目的,普通的减速机也会有几对相同原理齿轮达到理想的减速效果,大小齿轮的齿数之比,就是传动比。减速机是通过机械传动装置来降低电机(马达)转速,而变频器是通过改变交流电频率以达到电机(马达)速度调节的目的。通过变频器降低电机转速时,可以达到节能的目的。国内比较有名气的变频器生产企业有三晶、英威腾等等。

减速机是一种相对精密的机械,使用它的目的是降低转速,增加转矩。它的种类繁多,型号各异,不同种类有不同的用途。减速机的种类繁多,按照传动类型可分为齿轮减速器、蜗杆减速机和行星齿轮减速机;按照传动级数不同可分为单级和多级减速器;按照齿轮形状可分为圆柱齿轮减速器、圆锥齿轮减速器和圆锥-圆柱齿轮减速器;按照传动的布置形式又可分为展开式、分流式和同轴式减速机。

通用减速机和专用减速机设计选型方法的最大不同在于,前者适用于各个行业,但减速只能按一种特定的工况条件设计,故选用时用户需

根据各自的要求考虑不同的修正系数,工厂应该按实际选用的电动机功率(不是减速器的额定功率)打铭牌;后者按用户的专用条件设计,该考虑的系数,设计时一般已作考虑,选用时只要满足使用功率小于等于减速器的额定功率即可,方法相对简单。

下载科氏力质量流量计的工作原理和典型结构特性word格式文档
下载科氏力质量流量计的工作原理和典型结构特性.doc
将本文档下载到自己电脑,方便修改和收藏,请勿使用迅雷等下载。
点此处下载文档

文档为doc格式


声明:本文内容由互联网用户自发贡献自行上传,本网站不拥有所有权,未作人工编辑处理,也不承担相关法律责任。如果您发现有涉嫌版权的内容,欢迎发送邮件至:645879355@qq.com 进行举报,并提供相关证据,工作人员会在5个工作日内联系你,一经查实,本站将立刻删除涉嫌侵权内容。

相关范文推荐

    电容器的工作原理及结构

    电容器工作原理这得从电容器的结构上说起。最简单的电容器是由两端的极板和中间的绝缘电介质(包括空气)构成的。通电后,极板带电,形成电压(电势差),但是由于中间的绝缘物质,所以整个......

    避雷器SPD工作原理和结构

    避雷器SPD工作原理和结构 电涌保护器(Surge protection Device)是电子设备雷电防护中不可缺少的一种装置,过去常称为“避雷器”或“过电压保护器”英文简写为SPD。电涌保护器......

    电焊机工作原理及电焊机组成结构(合集)

    焊接人 www.xiexiebang.com 免费下载 1 电焊机工作原理及电焊机组成结构 电焊机工作原理介绍 电焊机electric welding machine实际上就是具有下降外特性的变压器将22......

    计量泵的结构及工作原理

    计量泵的结构及工作原理 计量泵由动力端和液力端两部份组成。动力端通过曲柄连杆机构促使柱塞作往复运动,通过N形轴调节机构来改变行程流量大小;液力端通过吸入、排出阀组起到......

    计量泵的结构及工作原理

    计量泵的结构及工作原理: 众所周知计量泵由动力端和液力端两部份组成。动力端通过曲柄连杆机构促使柱塞作往复运动,通过N形轴调节机构来改变行程流量大小;液力端通过吸入、排出......

    钻井泥浆泵结构工作原理

    长沙多级泵厂家宏力泵业整理http://www.honglipump.net 钻井泥浆泵结构工作原理 泥浆泵原理 泥浆泵是在钻探过程中,向钻孔输送泥浆或水等冲洗液的机械。泥浆泵是钻探机械设......

    激光焊接机的主要特性及工作原理(精)

    激光焊接机的主要特性及工作原理 激光焊接是激光材料加工技术应用的重要方面之一,又常称为激光焊机、镭射焊机,按其工作方式常可分为激光模具烧焊机(手动焊接机)、自动激光焊接......

    热继电器的结构及工作原理

    热继电器是一种应用比较广泛的保护继电器,具有反时限的保护特性。 热继电器是依靠电流通过发热元件时所产生的热量,使双金属片受热弯曲而推动机构动作的一种电器。主要用于电......