第一篇:工程化学论文
纳米材料的发展与前景
[摘 要]随着人类科技的飞速发展,人类世界的视角已不再局限在地球上。人类目前观测到的最远宇宙距离约为137亿光年,在这个距离上就连太阳也显得那么渺小,然而人类的步伐永远不会停下,在宏观世界上取得重大成果的情况下,人类在微观世界取得的成就也不能忽视,曾经连观测都显得那么困难的纳米级的世界到现在也逐渐向我们展开了它的怀抱。作为材料化学中的顶尖领域,纳米材料的发展还未达到顶峰,我们有必要对其投以一定的关注,并对其未来的研究方向进行预测。
[关键词] 纳米材料 材料化学 发展 未来
一. 纳米材料简介
二. 纳米材料的发展历程 三. 纳米材料的分类 四. 纳米材料的前景 五. 结语
一.纳米材料简介
化学和物理是以一种混合交叉的方式发展变化的两个科学领域,而且实际上仍然是密不可分的。然而,如果我们把化学看作研究原子和分子,物质尺寸范围通常小于1nm,而固体物理学主要涉及本质上大于100nm的原子或者分子团簇的固体,在这个范围内之间存在一个有重要意义的间隙,这就是纳米材料所在的纳米级的世界。这个世界既不遵守量子化学也不遵守经典的物理定律,它是一个未知的,全新的世界,等待着勇敢者的闯入揭开它神秘的面纱。
二.纳米材料的发展历程
1861年,随着胶体化学的建立,科学家们开始了对直径为1~100nm的粒子体系的研究工作。
1959年12月29日理查德•费曼(Richard Feynman)在美国物理学会会议上做了题为“在底部有很多空间”的演讲。虽然没有使用“”纳米这个词,但他实际上介绍了纳米技术的基本概念。
1963年,Uyeda用气体蒸发冷凝法制的了金属纳米微粒,并对其进行了电镜和电子衍射研究。
1974年,日本教授谷口纪男(Norio Taniguchi)在一篇题为:“论纳米技术的基本概念“的科技论文中给出了新的名词——纳米(Nano)。1981年格尔德•宾宁(Gerd Binnig)和海因里希•罗雷尔Heinrich Rohrer发明了扫描隧道显微镜,它使科学家第一次可以观察并操纵单个原子。
1986年在苏黎世的IBM研究实验室中,卡尔文•夸特(Calvin Quate)和克里斯托•格柏(Christoph Gerber)与德国物理学家宾尼(Binnig)协作,发明了原子力显微镜。它成为在纳米尺度成像,测量和操作的最重要的工具之一,这是纳米技术最核心的部分。
1989年在加州圣何塞的IBM阿尔马登研究中心,公司的科学家唐艾•格勒(Don Eigler)和埃哈德•施魏策尔(Erhard Schweizer)使用35个氙原子拼出了IBM公司的标志,进一步表明了纳米颗粒的可操作性。
1984年德国萨尔兰大学(Saarland University)的Gleiter以及美国阿贡实验室的Siegal相继成功地制得了纯物质的纳米细粉。Gleiter在高真空的条件下将粒子直径为6nm的铁粒子原位加压成形,烧结得到了纳米微晶体块,从而使得纳米材料的研究进入了一个新阶段。
1985年赖斯大学的研究人员发现了富勒烯(fullerenes)(更为人熟知的名称是“布基球(buckyballs),由著名未来学家,多面网格球顶的发明人巴克明斯特•富勒(R.Buckminster Fuller)命名,它可以被用来制造碳纳米管,是如今使 用最广泛的纳米材料之一。
1990年7月在美国巴尔的摩召开了第一届国际纳米科学技术会议,正式将纳米材料科学作为材料科学的一个新分支公布于众。
1991年NEC公司的饭岛澄男(Sumio Iijima)制造出了碳纳米管,它是一种二维材料,直径只有几个纳米,而强度比钢高100倍;密度仅为钢的1/6.是很有前途的增强剂,因其导电性超过铜,有可能成为纳米级电子线路材料。
1998年白宫的国家科学技术理事会成立了纳米技术的机构间工作组。它的任务是:赞助研讨会和研究,以界定纳米科学技术和预测其发展前景。
1999年使用纳米技术的消费类产品开始出现在全球市场。
2001年美国总统克林顿建立了国家纳米技术计划,协调联邦研究和开发工作,提高美国在纳米技术上的竞争力。
2002年欧盟以纳米论坛的形式,向公众普及纳米技术知识。
2003年美国国会制定21世纪纳米技术研究和发展条例。为美国纳米技术计划提供了法律基础,建立项目,分配机构的责任,授权筹资水平,以及启动研究以解决关键问题。
2008年12月10日国家研究委员会批评纳米技术计划的环境,健康和安全研究战略;纳米技术计划回顾后,称它对国家研究委员会的结论持有异议。
2009年9 月29日美国环保局陈述了新的研究策略,以更好地了解如何纳米材料对人体健康和环境的潜在危害。它还宣布,某些纳米材料的制造商和使用者必须告知环保局它们的使用计划。
2010年1月8日在英国,上议院的科学和技术委员会就纳米技术问题发表了有关纳米技术和食品问题的长篇报告,警告本国的食品工业不要隐瞒纳米技术的使用情况。
2010年3月美国参议院环境和公共工程委员会继续为修订有30年历史的有毒物质控制法收集证据。美国环保局称,这将有助于规范纳米材料的商业应用。
2013年3月22日亚利桑那州立大学颜颢教授在Science发表文章:在一项最新成果中,获得了解决一种关键设计难题的新办法,这将能令研究人员生成各种各样的2维和3维结构,从而推动DNA纳米技术新兴领域的发展。
三.纳米材料的分类 纳米材料从广义上讲是指在三维空间中至少有一维处于纳米尺度范围或由它们作为基本单元构成的材料。按维数分,纳米材料的基本单元可分为三类:(1)零维。指在空间的三维方向均为纳米尺度的颗粒,原子团簇等;(2)一维,指在空间有两维处于纳米尺度,如纳米丝,纳米棒,纳米管等;(3)二维,指在空间中有一维在纳米尺度,如超薄膜,多层膜等。
总的来说纳米材料有许多种,包括纳米丝,,纳米管,超薄膜等,以下将对其中3种展开具体介绍:
1.碳纳米管
1991年一种新的针状的碳管被合成出来,直径为1~30nm,人们称之为碳纳米管,有时也被叫做巴基管。这种碳针由一些柱形的碳管同轴套而构成的,每根碳针所包含的碳管为2~50层,但是较粗的碳针容易偏离柱形而成为多角形。碳纳米管具有独特的电学性质,电子只能在单层石墨片中沿纳米管的轴向运动,径向运动受到限制,因此,它们的波矢是沿轴向的。同时其具有与金刚石相同的热导和独特的力学性质,理论计算指出,碳纳米管的抗张强度比钢高100倍;延伸率达百分之几,并具有好的可弯曲性;压力不会导致碳纳米管的断裂。由于其良好的力学性质以及作为在介观领域和纳米器件研制方面有着重要应用前景的准一维纳米材料,他可以用作复合材料的增强剂,微电子学方面的微型钻头以及纳米器件和超大集成电路(ULSIC)中的连线等。
2.碳纳米网
碳纳米网是有碳纳米管组成的随机网络。把碳纳米管溶解在液体中,然后将溶液喷涂在柔性塑料板的表面上,可以形成一层薄膜;或把这类材料涂在或者印在具有不同电子性质的其他物质上,可以得到碳纳米网。作为其基本组成部件的碳纳米管管具有良好的力学性质以及独特的电学性质,由于同时使用多根纳米管可以抵消彼此间的差异,部分纳米管中存在的缺陷也可以通过其他性能更好的纳米管来弥补,所以碳纳米网起到的作用更多的是让碳纳米管的特性发挥1+1>2的效果。但是由于单根碳纳米管的制作工艺难度极大,且各纳米管的形状和构型总是略有差异,因此不能保证电子器件的性能,在现有科技无法克服这些难题的情况下,碳纳米网的普及仍有一段路要走。
3.同轴纳米电缆
同轴纳米电缆是指芯部为半导体或导体的纳米丝,外包裹异质纳米壳体(导体或半导体),外部的壳体和芯部丝是共轴的。1997年,法国科学家Colliex等人在分析电弧放电获得的产物中。发现了三明治几何结构的C-BN-C管,由于它的几何结构类似于同轴电缆,直径又为纳米级,所以称其为同轴纳米电缆。目前对于纳米电缆的应用虽然还只停留在实验阶段,但可以预期的是,纳米电缆未来必将在纳米电子器材,生物医学,测试技术等领域大放异彩。而事实上,在生物医学领域,一个由美日科学家组成的研究小组已踏出尝试性的一步,他们研究出一种办法将比人类发丝还细100倍的铂金属纳米电缆植入人体血管中,这些纳米电缆不但可以用来接收神经细胞的讯号,还可以向这些细胞发出讯号,有望在治疗一些神经性疾病上提供帮助,如帕金森综合症。
四.纳米材料的前景
自1861年科学家们开始对直径为1~100nm的粒子体系的研究以来,纳米材料领域虽未达到顶峰,但也有了不少科研成果,如果将这些应用成果分类。那么可以发现这些成果主要集中在生物医学,光化学催化,信息能源等方面。纳米二氧化钛具有光催化特性,将其制成光催化剂后催化能力比普通光催化剂要强的多,而要想使其催化能力真正应用,还要依赖于科学家们对其机理的深入研究,比如彭定坤,孟广耀的《TiO2光催化研究》论文就进行探寻。所以如果想要纳米材料真正应用在各个领域内,那么对其基本性质的研究必不可少,掌握了规律,应用就不成问题。接下来我们会对未来纳米材料的发展方向做一些小小的预测。
1.计算机
计算机的发展迅速,从诞生之初的晶体管数字机到现在的大规模集成电路机,最明显的变化便是芯片容纳晶体管的能力,如果能将芯片的材料改为纳米材料,让芯片容纳晶体管的能力进一步提高,可以想象的是计算机的体积必然又会发生翻天覆地的变化,真正的掌上电脑或许并非那么遥不可及。2.太阳能电池
半导体纳米颗粒具有可用于对于光电转换(生产电)和水分解(生产氢)两者都适用的更有效的太阳能电池潜力,如果能将这种潜力真正应用于实际,加上纳米材料可以缩小电池体积的优势,我们有相当大的可能得到一种微型高能可持续电池,很明显这种电池若能诞生对许多电器都将产生极大的影响。3.吸附剂
固有的表面反应性与高表面积耦合在一起使得纳米颗粒金属氧化物成为新一类新的吸附剂,它们常常通过分解过程强烈吸附进入的物质。这种特性它的拥有作为焚化有毒物质的一种替代物的潜力,例如四氯化碳、PCBs、军用试剂其他有毒化学物质。其与焚化的优势在于温度远低于焚化温度,具有巨大的热体积,不需要流动气体。
五.结语
纳米材料作为材料化学中的高精尖领域毫无疑问是一个值得人们重点关注的领域,它是一个理论与实践并重的领域,也是一个物理和化学交叉的领域,它与其他科学领域的结合也是非常紧密的。所以要想发展纳米材料必须得到其他领域的支持,反过来其他领域也可以从纳米技术的成果中受益这是一个双赢的过程,因此在对纳米材料的未来预测时必须要考虑到其他科学领域对它的影响,否则得到的结果必然是脱离实际需求的,而我们做出的预测正是基于这样的前提。纳米材料的发展必将带动其他领域的发展,谁又能说纳米材料不会带来下一次科技大革命呢?
参考文献:1.李奇 陈炬 《材料力学》2010
2.张双虎 徐淑芝 董相廷 王进贤 《同轴纳米电缆的最新研究进展》2008
3.孟广耀 彭定坤 《材料化学的若干前沿研究》2013
4.主编 Leonard V Interrante
Mark J Hampden-Smith
翻译 郭兴伍 赵斌元 胡晓斌 冯传良 窦红静 仵亚婷 邓意达 刘庆雷
《先进材料化学》 2013
作者:刘
宇 05313118
黄周皓 05313133 林良哲 05313139
韦皓元 05313150
第二篇:工程化学论文
工程化学论文
绿色化学与食品安全
学号:1111541114 姓名:刘霏霏
绿色化学与食品安全
11115411 刘霏霏 1111541114 化学的发展在不断促进人类进步的同时,在客观上造成了环境污染,因此提倡绿色化学是刻不容缓的。绿色化学与现代生活息息相关,最近食品安全是我们生活中的最大问题,广大消费者人心惶惶,大呼:现在,我们还能吃什么?
什么是绿色化学
绿色化学又称环境无害化学、环境友好化学或清洁化学,是指化学反应和过程以“原子经济性”为基本原则,即在获取新物质的化学反应中充分利用参与反应的每个原料原子,在始端就采用实现污染预防的科学手段,因而过程和终端均为零排放和零污染,是一门从源头阻止污染的化学。绿色化学是主动的防止化学污染,从而在根本上切断污染源。
绿色化学的主要特点
1.充分利用资源和能源,采用无毒、无害的原料;
2.在无毒、无害的条件下进行反应,以减少向环境排放废物;
3.提高原子的利用率,力图使所有作为原料的原子都被产品所消纳,实现“零排放”; 4.生产出有利于环境保护、社区安全和人体健康的环境友好的产品。我的看法
随着经济与科技的日益发展,人们的生活水平和生活质量得到了空前的提高,但是人们在享受经济与科技进步带来的诸多益处的同时,也正遭受着它带来的一切。像三聚氰胺毒奶粉、地沟油事件、还有最近的蒙牛牛奶及胶囊频频出问题,许多商家厂家,为了追求高效益,从而制造出了这些“黑心”食品,造成一幕幕的惨剧发生。比如说双汇瘦肉精事件,瘦肉精又称盐酸克伦特罗;是一种平喘药。分子式:C12-H18-Cl2-N2-O性状:白色或类白色的结晶粉末,无臭、味苦,熔点161℃,溶于水、乙醇,微溶于丙酮,不溶于乙醚。瘦肉精使用后会在猪体组织中形成残留,食用后直接危害人体健康。
随着人类生态环境的恶化,食品的化学污染问题不容忽视,人们期盼着能得到安全、优质、营养的食品。我们需要发展绿色食品食品工程,将食品的化学污染遏制在源头,杜绝商家违法加工食品的行为。由于人口数量的迅速增加,人类肆意的活动,造成了许多的污染,许多资源被浪费,人类的衣食住行都离不开化学。作为新世纪的一代,我们需要树立环保意识,明确开发绿色食品工程的意义。不但要有能力去发展新的、环境更友好的化学,防止化学污染,而且要让更多人去了解绿色化学、为绿色化学做出应有的贡献。在未来的发展中,我们交通工程在环境及能源等与交通有关的几个方面综合在道路交通这一统一体中进行研究中也需要绿色化学,随着社会环保意识的增强,绿色化学的前景将一片光明!
第三篇:工程化学论文
化学与生活
【摘要】化学在生活中的应用越来越多,本文主要介绍了化学与材料,生命,坏境,以及更深层的物质结构的关系。
【关键词】化学材料生命环境及污染防治
化学与人们的生活息息相关,从日常的生活中可以积累很多的化学知识,而要真正的了解化学还要从物质结构来说起。毫无疑问,生命科学与化学有着密不可分的联系,我甚至认为生命科学就是用化学来解释生命。然而,仅仅知道一种物质的化学成分是远远不够的,结构才是其功能的基础。我们知道,原子是由带正电荷的原子核和绕核运动的带负电荷的电子所组成,电子的运动与一般的物体运动状态不同,它具有自己特殊的运动规律,原子光谱与原子核外电子运动状态有着密切的联系。近代原子结构理论的建立,正是从氢原子光谱得到的。
但是,我们不能孤立地来阐述生命科学与结构化学的关系,也就是说不能把生命科学看成一块,再把结构化学看成另一块,然后再说明他们间千丝万缕的联系;我认为,结构化学与生命科学是揉合在一起的,很多结构化学家在生命科学领域就有不凡的建树。然而我认为,最能体现结构化学与生命科学揉合一体的历史故事,就是鲍林与沃森和克里克关于DNA结构之争。在这个过程中,我们无法定义他们到底是化学家还是生物学家。而且,结构化学的知识不仅为他们建立模型提供了理论支持,而且在帮助他们判别真理与谬误、为他们的结论提供事实支持等方面起到了至关重要的作用。从这个故事中我们不仅可以看出,解决DNA结构这个世界性的生命科学课题,是许多化学家、物理学家、晶体学家、生化学家共同努力的结果,而且能受到许多在科学研究上的启发。在多学科交叉渗透的今天,我们更不能仅仅只重视专业课的学习,必须同时汲取其他学科的知识,为将来的研究打下基础。结构化学与生命科学的融合已无需多说,我相信这种融合将在将来会愈演愈烈。
第四篇:化学论文
在1977年劳动节之后的上午9:14,一个新的博士学位。渴望在科里组开始博士后研究 到达准备为总的合成贡献美登木素生物碱。它也碰巧是A.V.Rama Rao的最后一天在集团。他的技术转让详细的程序为临界cuprate耦合,其中将芳香部分与其健康部分连接“南区”,成为我的第一份工作。虽然实验挑战,初学者运气在空气中并且事情根据脚本明显地虽然,这种“新”的化学(至少对我)是享受能够。不久之后,在预备的过程中 “东区”从碳水化合物前体etr途径(N-甲基黄嘌呤,它也是一个杯形开口确立了必需的立体化学的环氧化物该反应涉及一种不寻常的组合使用氰基配体或可能是炔属的能力组,作为不可转移或“假”配体(Rr)目的是减少等效数量的潜在有价值的RLi(即,代替3RLi +Cul + R3CuLi2 + Lil,使用RLi + 2RrLi + Cul一R(Rr)2CuL12 + LiI)。由于美登素试试在普林斯顿。一年左右后,成功使用锂化乙炔显然不在卡中,单环内酰胺 要求所有弗洛伊德的时间,从而离开CuC,N选项未触及。在讨论的同时房间一起在1980年美国化工社会会议在拉斯维加斯,我们同意试验基于CuC,N必须在加利福尼亚州完成。一个星期六早上不久,我去寻找CuCN最终发现在后架上的旧瓶子在汤姆·布鲁斯的实验室。我从来没有回来。两个月后,之后的Robert Wilhelm(Syntex,然后第二年毕业学生)不知疲倦地创造条件在仲碳上与“R2Cu(CN)Li2”进行取代反应卤化物,“高级”(H.O.)氰基氰。Wilhelm的初步成功,1981年末公开,证明2 RLi:CuCN比可以有效地替代二级卤化物。但其他替代,包括特别是环氧化物和甚至主要中心(例如,磺酸盐和卤化物),仍未得到解决。关于这些过程的立体化学结果(碳)? 我们很高兴地欢迎来自Tufariello的实验室的一个新的研究生,在计划实验的想法和认识的1,4加法的领域仍然在投机的阶段
在SUNY水牛城,Joe Kozlowski(先灵犁)。一年之内,这些“铜人男孩”为H.O.奠定了基础。氰基酸酯成为合成有机化学胂的一部分。
环氧化物开口被发现是相当高产量和立体定向的(进行干净反转),单和通常三取代的情况提供优异的产率(方案1)。研究cuprate指导迈克尔的冲动添加到a,b-不饱和酮中太大,考虑它们在合成化学(例如,方案1)。因为只是大约是工作,我觉得不得不放弃我的个人项目,这是无处不在,并获得第一手基于CuCN的技术的经验。我专注于eno-ates,但我的实验室进展率(尴尬)没有任何地方接近Wilhelm或Kozlowski。因此,我害怕不得不谈论我的研究自己的小组会议!然而,在时间上,研究是完成,并且对于未封闭的烯醇。氰基特戊酸耦合很好(方案1)。虽然建立了立体化学结果环氧乙烷偶联是直接的,8这样做次要恒定卤化物是一个远没有吸引力的建议。在时间这个任务给了威廉,有白人工作的次要溴化物和约翰逊纸上相应的甲苯磺酸盐,两者都是显示与在碳处的干净反转耦合。至于
碘化物,已经假定它们遵循,和因此我们选择非二次碘化物(1)用EtzCu(CN)Li 2置换产物(3-甲基壬烷)从其具有已知的旋转用于比较目的(方案2)。在置换碘化物和小心的烃的气相色谱收集保证纯度,旋转对应不是约100%反转,而是大约1%113听到这个结果从威廉一个星期天夏天早晨割草我的草坪,我们都被数据困惑;毕竟,这些观察挑战了已经成为教科书的信息。我们阻止了通知年轻人Kozlowski,因为我们不想要他的交换顾问,或者明年的新生研究生忽略我们的新生程序。随后的辩论(和a几杯雪利酒),我说服了威廉姆斯如此令人沮丧的结果有时具有隐藏的意义。
毕竟...我还能说什么? 因此,我们决定“检查”碘化物反应的常见观点使用R2CuLi反演,发现这里,也是,产品缺乏光学活性,碎片开始走到一起。执行相同的协议 1,X = Br。和低级(L.O.)试剂给出了预期的结果(方案2)。因此,看似坏消息迫使我们测试并最终调整错误的观念,一个//卤化物与cuprate反应的反演。第二代试剂:RtR,Cu(CN)Li 2 用词在部门H.O.cuprates仍然“OK”,我们能够说服大卫·帕克(斯克里普斯学院),有机化学在他的未来。到这个时候,我们看到了这些试剂到他们的进化发展的下一个阶段;那是,以确定第二“假”配体(即,除了氰基外)可以被发现使得仅仅需要在成形中投入一个等价的RtLi RtRrCu(CN)Li2。后来,电缆不仅用于共轭添加,而且用于替代预计反应是非平凡的,因为它是早期就认识到简单的烷基如甲基(例如)其允许大多数的选择性配体转移其它基团(包括乙烯基)在1,4-加成中,得到不可接受的产物混合物。此外,我们要求前体RrH是廉价的,容易用丁基锂(无添加剂)金属化,并且它没有显着牺牲的反应性混合H.O.cuprate它将成为一部分。所以帕克开始搜索;是比较新的化学,他没有被现有技术过度偏倚,因此 看着文学的化合物可能以高产率锂化,优选不存在活化剂(例如TMEDA)。好吧,他试了一下一切:乙炔,芳烃,二噻烷,杂原子,烯醇化物,大体积烷基,全氟烷基。事实上,从一些锂化化合物形成铜酸盐试图让tlus天我仍然不会承认有尝试。然后,我们终于公开了一份报告最近的葡萄酒从瑞典Nilsson / Ullenius集团指在此上下文中使用2-噻吩基L.O.cuprates。答对了!用2-锂三氟化硼。
在完成这项研究后不久,埃德蒙·埃尔斯沃斯到达圣巴巴拉和作为一个新的招聘,被给予调查引入Na +的影响的工作H.O.铜酸盐代替一个锂离子(即RtRrCu(CN)LiNa)。还没有正式在他的第一年的研究生学习,他迅速开发了一个简化的原型,基于早先的报告制备BuNa的多肽,和适当的滴定方法。噻吩的金属化这种强碱非常容易地形成sodio类似物2,1.0。铜酸盐5.加入RtLi完成序列t0 6(方案6)。
6的反应性,与卤化镁类似物3一样低于其对应物。产量也倾向于相对于Rt(2-Th)Cu(CN)Li 2降低,在方案7中,并支持的基本概念锂作为“gegenion”优于其他'mono-或diva-就试剂反应性和所述反应而言通常与烯酮和环氧化物的硫代铜酸盐电化学驱动过程。跨金属游戏
混合金属铜化学在我们的头脑中仍然新鲜,来自G.D.Searle的Jim Behling的电话来了一个专业对我们在这一领域的计划的影响。阅读我们的论文对R2Cu(CN)Li光谱的影响对他应该有任何平衡相关联H.O.形式(等式3)的铜酸盐:那么,游离RLi的分量可能被虹吸掉另一种有机金属存在,职业。1 H-NMR光谱,在THF中至少,表明不能检测到这样的平衡尽管如此,令人兴奋的可能性存在有机金属化合物的热选择,namics可能决定和促进重组,无论如何机械。Behling,作为Archie Campbell的成员研究小组(与Kevin Babiak和John Ng合作)建议的1-链烯基锡烷作为反应伙伴,处理这些否则稳定,可隔离的物种与R2Cu(CN)Lii2所需形成的混合物H.O.铜酸盐R(1-烯基)Cu(CN)Li 2借鉴先前的锂化(方程4)。
在评估各种R2Cu(CN)Li2后,最简单,Me2Cu(CN)Li2,被选为最有效的。各种的模型1-链烯基锡烷由Koerner和Robert Moretti(Syntex),进一步证明了通用性这种新的原位过程不会发生Gilman cuprate Me2CuLi(Scheme8)。
从工业的角度来看,这样一个简单,一锅路线t0 1-烯基油酸酯允许产生千克量的有效抗分泌剂米索前列醇(商品名,Cytotec),最近批准由美国使用联邦药物滥用(eq.5)。金属过程,代表了唯一其他用于硫酸铜盐形成的载体,由Gilman提出的荣誉组合(2RLi + CuX)接近四十年前,已经引发了相当大的利用其他类型的新合成方法的数量有机锡化合物。一个例子涉及BU3SnH,在那里我们想知道Bu2Cu(CN)Liz是否会ex-将“H”改变为“H”(方案9)。新试剂7可能表现为倾向于的氢化物的高反应性源1,4-加成。事实证明,当埃尔斯沃斯第一次这样做实验,将两种组分在-78℃下混合在10分钟内变为明亮的颜色变化
伴有剧烈的气体逸出。我们第一个想法是发生了酸碱反应产生丁烷和混合的锡酸锡8(路径a)。条件。虽然GC分析明确表明存在BU4Sn,气体的身份最终确定(通过Debbie Reuter,见路径b)通过收集和随后氢化a葡萄糖。相信留下的含铜物种(至少在很大程度上)8因为它表现为a其选择性地递送BU 3 Sn部分到几种不同类型的底物(方案10)。Appa-最初的金属化t0 7后面是一个偶数更快的双分子耦合(可能是激进样的自然)直接产生有用的新试剂。因此,a微小的非常温和的途径到锡香酯绕过先前形成的R3SnLi,已被揭露,在巴顿的意义上,“误解”。
BU3SnH与H.O.反应的容易程度。cuprate没有被忽视。此外,我们还没有解决方案的原始目标,找到一个新的hydrido铜酸盐。幸运的是,我们的有机反应章节的所有作者有机铜化学1975基础化合物是众所周知的挥发性和毒性的。文学的使用说服我们,没有简单,廉价的方式来获得含Me3Sn的材料:Me 3 SnCl和(Me 3 Sn)2是昂贵的和/或浪费的Me 3 SnH的发生需要操作。Wcwcrc自信,然而,Me3SnH会回应R2Cu(CN)Li2,如BU3SnH(见上文),因此为决定如果一个安全,简单的程序可以开发用于形成和处理Me3SnH,然后其立即进入铜盐形成应最终提供化合物如1-链烯基三甲基锡烷。
本研究的原料是Me 3 SnCl,能力的数量是必要的,因为许多计划实验以达到最佳条件用于还原。不是买这种氯化物,我们追踪其制备回发给Argus化学公司的专利公司描述了一个惊人的转换Me2SnCl2Me 3 SnCl,使用Fe屑,Ph 3 P,H 2 O和SnCl 4,> 90%产量!通过各种沟通渠道,盟友到达迈克·费施,谁让我们联系奥托Loeffler在新泽西网站,谁慷ously地供应我们与大量的Me2SnCl3。从这个工业添加剂,使用它们的程序的轻微修改我们现在能够制备> 50g批次的Me 3 SnCl 6 将Me 3 SnCl转化为的实验设计Me3SnH可以通过罗伊思素完成,正火,粉末状LiAlH 4用作还原剂。重要的是,发现三甘醇二甲醚选择的溶剂基于沸点和成本(如与二甘醇二甲醚或四甘醇二甲醚相反)。锅温度应理想地保持在60-68℃之间,以便维持a稳定蒸馏生成的Me 3 SnH,随后在干冰/丙酮温度下冷凝。通过这种方式,Me3SnH可直接转移(通过注射器或套管)转化成预形成的Bu 2 Cu(CN)L12,于是产生推定的混合锡烷基铜酸盐很少有人没有机会接触锡氢化物。所得试剂递送所需的配体例如,通过乙炔形成1-烯基三甲基速率,其随后相当地转移Me 3 Sn部分容易。虽然起始的二锡烷是非常昂贵的,这种转移金属工艺由于商业可得性而具有用于小规模反应的优点锡源和看似平凡但有效的性质的试剂制备。
由于三烷基甲硅烷基偶尔被认为是a“大质子”,指导cuprate攻击的概念向三甲基甲锡烷基硅烷中的锡是另一个有趣的方面。通过用Mc3SnH处理二异丙基氨基锂(LDA),然后加入 t-BuMe2SiCl或(叔)Me2SiCl,Reuter形成相应的甲硅烷基锡烷10a,b作为可蒸馏的,白色液体。这些大体积硅烷的暴露BuzCu(CN)Liz诱导transmetalation到甲硅烷基。不令人惊奇的是,试剂11以类似的方式表现那些被弗莱明广泛使用的,因此更喜欢将三烷基甲硅烷基转移到多种类型的偶合许多金属的化学化学,例如B,Cr,Si,Sn,Ti,Zn,Zr...,但不是Cu。我们的解释很简单;有很多文件,我们遇到的地方,与烯丙基铜酸盐的门添加失败凄惨,和这种连续的坏消息“必然已经产生了影响社区。
与Behling刚刚到达UCSB一个简短“工业休假”,我们决定开始研究通过金属转移形成烯丙基铜酸盐的前景方案基于烯丙基锡烷。早期的雪橇是艰难,在有限的时间内花费了我们很快开发出来的更好地了解锡的化学性质和易用性这种金属可以重新分配自己。约翰K.Stille,他的工作为US39提供了早期指导他的个人鼓励和洞察力是非常缺席;描述的配料:作为“纸袋反应”。换句话说,把所有的好东西放在那里,摇动它们,并希望他们出来...该项目搁置了一段时间,直到Robin A.J.史密斯(lhuversity的奥塔哥,新西兰)到达花了一个夏天在我们的实验室规范解决的问题发展条件。烯丙醇铜形成。成功终于实现了,再次雇用MezCu(CN)Liz(eq.7)。
有了这个障碍在背后,史密斯,EWsworth,Stuart Dimock和Robert Crow被组织起来,我的替代和共轭范围这些新发明的化学12.不久以前它们显着的反应活性明显。代换卤化物的反应需要谨慎选择离去组,氯化物在-78℃下反应(烯丙基)zCu(CN)Li2 <15分钟!环氧环己烯,众所周知地易于发生路易斯酸诱导的重排到环己酮在硫酸铜的影响下;得到所需的反式二恶烷产物优异产率(方案16)也已经进行了乙烯基spz中心的偶联,尽管合适的离去基团是关键的这里也是如此。Elworthy通过准备开始搜索乙烯基碘化物,其在-78℃确实产生1,4-二烯。然而,重要的副产品在形式的还原产物(方案17)。因此,碘化物太反应(如饱和情况),和下一个逻辑底物是溴乙烯。
一个惊喜等待着我们,虽然发生了耦合具有最小的还原,立体化学完整性的烯烃完全受损(方案17)。
一旦知道了这一点;结果,我觉得是时候与Elworthy的有机作业和Alexakis对基于cuprate的信息素论文以及的基石这取决于烯烃几何形状的严格维护。他的数据,但是,是无可辩驳的,并进一步说服我们这些铜矿不是典型的。寻找路线 1,4-二烯是出土的从卤化物到三氟甲磺酸盐的瘙痒团体能力,如果有的话,增加了,有只有偶尔竞争减少而没有损失立体化学。这种观察遵循的趋势磺酸盐一般不参与什么可能(除其他因素外)自由基型机制,与铜酸盐特别容易受到高度敏感的功能。
试剂,开始他们的任务conbrio在反应堆的顶部,烯丙基)2 Cu(CN)Li 2并使用环己烯加入“烯丙基金属化,从而达到高度官能化的铜酸盐。不幸的是,正如Emiliano Garcia,高度碱性的H.O.cuprates干扰了这一点目标,至少在三丁基锡烷方面。的相应的三甲基甲锡烷基系列,实现这一目标的巨大希望。我们拿股票,因此,在这些和许多其他类型的可能性的有机金属化合物可参与铜酸盐类似于卤化铜制剂(即,2RLi + CuX“R2CuLi LiX”),建议治疗的CuCN与2RLi的反应,得到“R2CuLi.LiCN”。组合对CuX和CuCN之间的化学/ Ca /差异-derivedcl种类是压倒性的,不管位置的介质中的氰基。这种审查,对科学无疑是非常健康的。但它也是相当讽刺,它应该现在就在这一点的脚跟帐户跟踪到多年的“高阶”比率化学!
注意:在提交此帐户后不久,我们收到Bertz提交的数据的手稿副本表明氰基磷酸酯不是“真实的”,但吉尔曼包含在铜酸盐球体内的LiCN试剂(即,R2CuLi-LiCN,其中氰基配体不与铜结合)。自然wc感到compcllcd设计cxpcrimcnts会明确地确定H0的存在(或缺乏)。氰基。由于ncw 1H和13C NMR数据,以及extcnsivc IR研究,我们确实证实了氰基配体与铜结合,并且不形成LiCN在将第二当量RLi添加到初始形式时(即RCu(CN)Li + RLi + RzCuLi-LiCN)。事实上,不仅由CuCN制备的铜酸盐保留氰基配体,但氰基铜是RzCuLi的动力学下沉向其中加入LiCN·HMPA或BU4NCN / THFlS6确认。我很高兴能表达我最温暖的感谢在文本中提到其姓名的同事以及他们的智力和实验贡献的参考我们的计划。来自多个来源的资金支持,包括NSF,PRF,Sloan和Dreyfus基金会,UCSB是感谢。
第五篇:化学论文
化学论文
——还地球家园一抹绿色
关键词:雾霾,PM2.5,低碳,绿色,环保,大气,污染,治理 摘要:
本文探究了雾霾天气的成因以及危害,在雾都伦敦的改变的借鉴下,对治理雾霾天气提出了意见和建议,倡导大家保护环境,低碳生活。正文:
在过去的这一年里,雾霾天气、PM2.5、PM10已经成了热词。雾霾天气是一种空气质量严重恶化的产物,在大气空间内造成能见度模糊的一种天气现象。其中属PM2.5(入肺颗粒物)对我们人类的影响最大,人在呼吸的时候会将有毒有害的细小颗粒物吸入气管和肺部,引起气管炎、肺炎甚至更加严重的疾病。
如此困扰我们的雾霾天气究竟是如何产生的呢?
首先,大气气压低,空气不流动,这是主要因素。由于空气的不流动,使空气中的微小颗粒聚集,漂浮在空气中。
第二,地面“灰尘”大,空气湿度低,地面的人和车流使灰尘搅动起来。而这样的“灰尘”主要是指汽车尾气,它是主要的污染物排放,近年来城市的汽车越来越多,排放的汽车尾气是雾霾的一个因素。
第三,工厂是工厂污染物的排放以及冬季和夏季空调等电器的碳排放。
造成如今大气污染的严重局面并不是一蹴而就的,是许多种不利因素结合的产物,要想治理大气污染,保卫蓝天,就必须从这些不同的因素着手,这是一个漫长而严峻的过程。
当年客居伦敦的老舍先生曾以 “乌黑的、浑黄的、绛紫的,以致辛辣的、呛人的”来形容雾都伦敦,严重的空气污染困扰着伦敦的每一个市民。有4700多人因呼吸道疾病而死亡,大雾之后几个月,又有8000多人死于非命。这样惊人的数据对英国人的震动很大,他们痛定思痛,下决心要摘掉伦敦“雾都”的帽子,这一切花了整整50多年。再看如今的伦敦,见到更多的是蓝天白云,偶尔在冬季或初春的早晨才能看到一层薄薄的白色雾霭。
能够顺利解决令很多国家头疼的空气污染,英国动用的利器有四招:一是立法提高监测标准,改善空气质量;二是科学规划公共交通,减少道路上行驶的车辆;三是控制汽车尾气、减少污染物排放;四是科学地建设城市绿化带。
几十年后,我国也面临着如此严重的大气污染问题,就拿上海来说,城市大气污染问题既与燃料结构有关,也是人口、交通、工业、建筑高度集聚的结果。我们也可以学习和效仿伦敦对于大气严重污染的治理。
首先,减少污染物的排放是至关重要的。减少污染物是遏制大气污染的源头。而在减少污染物上,第一要减少的是工业排放:燃料的充分燃烧;能源的充分利用;对排放的尾气进行无毒化处理„„同时,作为市民,我们也应该尽量少开私家车,减少汽车尾气的排放。
第二,多植树造林。绿色植物对于环境的保护作用是众所周知的,植物具有美化环境、调节气候、截留粉尘、吸收大气中有害气体等功能,可以在大面积的范围内,长时间地、连续地净化大气。尤其是大气中污染物影响范围广、浓度比较低的情况下,植物净化是行之有效的方法。
第三,大力开发新能源。加快发展水能、核能、风能、太阳能等的新能源,控制煤炭消费量,也可以减少污染的排放。
最后,积极呼吁绿色环保、低碳生活,鼓励公众积极参与环保活动也是必要的。只有大家积极配合,我们才能更加有效地控制大气污染,防治污染,还地球家园一抹绿色!