复合材料结构数字化自动化无损检测技术

时间:2019-05-13 12:42:01下载本文作者:会员上传
简介:写写帮文库小编为你整理了多篇相关的《复合材料结构数字化自动化无损检测技术》,但愿对你工作学习有帮助,当然你在写写帮文库还可以找到更多《复合材料结构数字化自动化无损检测技术》。

第一篇:复合材料结构数字化自动化无损检测技术

复合材料结构数字化自动化无损检测技术

现代先进航空武器装备发展的明显特点是性能好、功能强、小批量、多品种、技术含量高、制造成本也高,其设计思想的实现强烈依赖于新材料新工艺的研发水平、制造技术和制造设备能力。为了提升战场和市场竞争力,通常航空武器装备必须在质量(高)、效率(高)、寿命(长)、成本(低)等方面具有综合优势。而质量、效率、寿命、成本的完美结合,需要通过先进的制造工艺和装备技术加以实现。先进的无损检测技术及其检测装备则是实现设计思想和制造理念,增强用户信心,提高竞争力的重要保障。

发展先进的制造工程技术,提升设备数字化、自动化制造能力,是合理解决现代化航空武器装备快速研制和生产的重要发展方向和工程途径。特别是以数字化、自动化为重要特征的快速敏捷制造技术已成为先进航空武器装备研制和生产中的重要工程技术方向。而数字化、自动化无损检测技术是数字化、自动化制造和先进航空制造装备的重要组成部分。随着复合材料等新材料的不断应用,数字化、自动化无损检测技术的发展和成功应用已成为飞机设计和数字化、自动化制造过程的关键技术,特别是在新材料与新工艺研究、新结构与新机研制的过程中,数字化、自动化无损检测技术发挥着越来越重要的作用。

复合材料在飞机上的应用与数字化、自动化无损检测

近年来复合材料的装机应用水平已成为现代航空装备先进性的标志,Joseph F Rakow 预测,在未来10年里,下一代飞机是复合材料的飞机,复合材料从过去非承力结构正不断被用于主承力结构。10年前,Boeing777复合材料用量为结构重量的10%左右,而Boeing787复合材料用量达到结构重量的50%左右。除了Boeing787,Airbus380复合材料用量也达到结构重量的25%左右,与 Boeing787复合材料机身相比,Airbus380一个惊人之举就是设计了全复合材料中央翼盒。复合材料在军机上的应用态势丝毫不逊于民机,例如F/A-18C/D复合材料用量高于20%,而据Joseph F Rakow报道,F-22复合材料用量则猛增至60%左右。复合材料应用结构也由早先非承力的简单结构发展到承力结构、整体结构、大型结构和复杂结构。因此,复合材料结构在现代飞机中具有举足轻重的作用。

(1)复合材料制造工艺优化与成本的控制离不开数字化、自动化无损检测技术。

目前复合材料结构的材料和制造成本居高不下,结构尺寸越来越大,结构件形状越来越复杂,需要采用先进可靠的数字化、自动化复合材料无损检测技术,及时为复合材料工艺优化和结构件制造提供反馈信息,帮助稳定工艺,提高产品的合格率。由于复合材料无损检测贯穿于复合材料结构成型、装配、试验、维护/ 维修、使用全过程,因此,复合材料无损检测成本和效率直接影响复合材料的总成本,而降低检测成本的一个有效技术途径是发展数字化、自动化无损检测技术,提高检测效率。

(2)复合材料结构的批量生产与检测需要采用数字化、自动化无损检测技术。

复合材料结构通常需要进行100%覆盖检测。随着复合材料大量装机应用和飞机批量生产,复合材料结构无损检测的量急剧增加,检测的耗时、效率和进度等直接影响飞机的研制和生产全过程。以F-22复合材料进气道无损检测试验为例,采用超声检测技术,约需24h / 件。复合材料结构尺寸越大,检测耗时越多;结构形状越复杂,检测效率会明显降低,检测耗时也会更多。因此,如此大的检测工作量,仅靠传统的手工检测,显然难以满足要求。

(3)复合材料承力结构的设计应用需要采用数字化、自动化无损检测技术。

目前复合材料应用已经由早先非承力的简单结构发展到次承力结构甚至承力结构、整体结构、大型结构和复杂结构。因此,对复合材料结构无损检测技术的要求更高:不仅需要进行无损检测,更需要得到复合材料内部质量和缺陷的量化信息;不仅要求检出缺陷,还需要建立复合材料缺陷与结构性能的有机联系,建立相应缺陷评估准则;不仅需要能检出分层、疏松等一些影响结构力学性能的宏观缺陷,还需要检出可能影响结构疲劳性能的微观或分布型缺陷。这就需要采用数字化、自动化无损检测技术来满足这些要求。

(4)飞机长寿命设计与复合材料结构可靠性需要采用数字化、自动化无损检测技术。

现代飞机的一个重要技术特点就是要求长寿命,而随着复合材料在机身、机翼等重要部位的设计应用,复合材料结构必须满足预期的设计寿命。由于复合材料结构整体上没有中间材料加工过程,一旦固化过程完成,就意味着复合材料结构整体力学性能固定,除非在制造过程中出现了明显的质量问题,如其内部产生了缺陷。当那些设计上不允许存在的缺陷随复合材料结构带到飞机结构中时,将会影响整机的安全服役和使用寿命。因此,必须通过先进可靠的无损检测技术确保复合材料结构的可靠性和质量。显然,仅靠传统的手工检测不能满足要求,一个有效的技术途径就是采用数字化、自动化无损检测技术。

复合材料数字化、自动化无损检测技术的现状

复合材料数字化、自动化无损检测技术是近年来随着复合材料不断扩大装机应用规模和现代飞机设计制造特点提出来的。针对不同的检测环境、工序阶段、结构形状等,目前复合材料数字化、自动化无损检测在技术上分为两大方向:一是基于仪器的复合材料数字化检测技术;二是基于设备的复合材料数字化、自动化无损检测技术。

基于仪器的复合材料数字化检测技术主要用于解决一些难以实现自动化检测的应用场合和复合材料结构的无损检测,如复合材料修理过程中的无损检测、复合材料复杂结构和复杂结构部位的检测。主要是通过对检测仪器的数字化,来提高对检测信号的数字化处理能力和缺陷量化分析能力,实现一些诸如检测参数、典型检测信号的记录存储等。目前主要是以超声检测仪器技术为主,多采用超声反射法检测。值得指出的是,目前市场上的数字化超声检测仪器和缺陷评估方法大多是针对金属材料设计开发的。由于复合材料结构的自身特点和缺陷特征,通常需要开发专门的数字化检测技术,实现检测信号高保真数字化处理,提高检测分辨率,减少检测盲区,进行缺陷的量化评估。就树脂基复合材料而言,目前主要是采用超声数字化无损检测技术,它包括超声换能器技术、超声技术、信号处理技术、缺陷评估技术和仪器技术。从20世纪80年代初,北京航空制造工程研究所就开展了复合材料数字化无损检测技术的研究,成功研究了高分辨率超声换能器、复合材料RF超声检测方法、缺陷识别与评估方法、复合材料高分辨率超声检测系列仪器等,一直是国内复合材料无损检测的支柱技术和主要手段,在航空、航天、兵器、交通、空军等部门的科研和生产第一线发挥了关键作用,特别是研究建立的高分辨率超声换能器技术和缺陷评估技术,至今在国际上具有明显的技术特点。

基于这些复合材料数字化超声检测仪器和缺陷评估技术,可以对复合材料中的缺陷及其位置(深度)、面积、性质、类型等进行量化评估。采用北京航空制造工程研究所生产的多功能复合材料高分辨率超声检测仪器(MUT-1)和已建立的复合材料孔隙率超声数字化评估技术,可以对典型复合材料孔隙含量进行超声量化评估,从结果中可以看出孔隙在复合材料中不同位置的分布情况。

随着复合材料批量装机应用和批量生产,基于设备的复合材料数字化、自动化检测技术近年来发展迅速,目前NASA、Boeing、LockheedMartin、Airbus 等在复合材料结构制造和生产过程中,都在大力发展数字化、自动化无损检测技术。目前主要基于超声方法,在检测信号数字化处理基础上,针对不同复合材料构件,利用扫查机构设计技术和数控技术,通过专门的技术设计和设备研发,解决复合材料构件的超声数字化、自动化无损检测。目前基于设备的复合材料超声数字化、自动化检测技术主要包括超声换能器技术、超声技术、扫描技术、控制技术和缺陷评估技术,可分为超声穿透法和超声反射法两大类。

(1)基于超声穿透法的复合材料数字化、自动化无损检测技术。

利用入射声波在穿过复合材料时能量的衰减变化进行缺陷识别与检测,西方比较青睐这种检测方法,超声换能器分别安装在2个对称的多轴扫描机构上,在数控系统作用下,通过运动编程控制,使2个探头对被检测复合材料构件进行自动扫描检测。采用穿透法检测时,对超声换能器和仪器的分辨率和检测盲区要求相对较低,但需要有很好的同步与扫描控制技术。

与超声反射法相比,其主要技术特点还有:

·超声换能器需要从两侧接近工件;

·超声换能器同步控制和型面跟踪复杂;

·对于复杂的零件,通常只能采用单通道工作;

·检测效率不高;

·技术成本高。

(2)基于超声反射法的复合材料数字化、自动化无损检测技术。

利用入射声波在复合材料中传播产生的反射信息进行缺陷识别与评估,欧洲比较青睐这种检测方法,超声换能器安装在一多轴扫描机构上,通过运动编程,换能器在数控系统作用下,对被检测复合材料构件进行自动扫描检测。通常复合材料单个铺层厚度约0.13m m,因此采用反射法检测时对超声换能器和仪器的分辨率和检测盲区要求较高,但不需要有同步扫描机构,检测灵敏度比穿透法高。与超声穿透法相比,其主要技术特点还有:

·超声换能器只需要从一侧接近被检测工件;

·超声换能器型面跟踪要求高;

·可实现多通道检测;

·检测效率高;

·技术成本较低。

不论采用哪种数字化、自动化超声检测方法,都需要有很好的型面跟踪技术、信号处理技术和超声系统综合技术。特别是针对大型复合材料结构,目前国际上采用的扫描方法主要有3种:示教、基于零件的CAD模型和测量仿形。但实际检测应用情况都不理想:示教和仿形的方法效率太低,被检测零件的CAD模型到了复合材料检测工序,已经不适用。所以,寻找新的快速适用的扫描方法是解决复合材料构件数字化、自动化检测的当务之急。近年来北京航空制造工程研究所一直在开展这方面的新技术研究,正在研究一种基于被检测复合材料零件自由型面的跟踪扫描技术,以解决7500mm×6000mm以上大型复合材料构件的超声数字化、自动化高效无损检测,目前已完成技术方案试验,进入系统设计制造阶段。

北京航空制造工程研究所是国内最早从事复合材料无损检测的专业 研究 所,早 在 20世纪70年末80年代初,就开始了复合材料无损检测技术研究,针对复合材料特点,先后提出并成功研究了高分辨率RF超声检测技术、缺陷识别方法、检测仪器、微盲区换能器、缺陷成像方法、自动扫描成像检测设备等,形成了独特的复合材料检测技术体系,一直在国内复合材料应用领域发挥主要作用。如研制了FJ系列高分辨率无盲区超声换能器、复合材料系列超声检测仪器、CUS-21复合材料构件复杂部位超声检测系统、CUS-22超声自适应检测设备、MUI-21 大型复合材料结构超声自动检测技术设备、CUS-2F复合材料缠绕超声自动检测技术设备等,为国内复合材料研究和工业应用部门提供了强有力的技术支持和支撑,在航空型号研制和生产中一直在发挥重要作用。特别是正在研制的 UltraScan 9000复合材料数字化、自动化超声自动扫描检测系统,多达20检测通道,采用独特的自动跟踪扫描技术,可以适应7500mm×6000mm以上规格的复合材料构件的自动扫描检测。

采用这种数字化、自动化超声检测技术,可以通过直观的图像方式再现被检测复合材料结构内部缺陷的详细分布和整个结构的内部质量情况,进行缺陷的量化评估。

对复合材料数字化、自动化无损检测发展的思考

复合材料数字化、自动化无损检测是一个与复合材料及其制造工艺密切相关的专业技术,其发展和应用必须紧密结合自身的复合材料、结构设计与制造、应用等特点进行合理规划,例如Boeing 和Airbus公司一直结合自身的复合材料研发计划和生产任务,在开展复合材料数字化、自动化无损检测技术的研究和应用。特别是基于设备的复合材料数字化、自动化无损检测,针对性更强,去过Boeing和Airbus公司参观的人都能感觉到在复合材料数字化、自动化无损检测方面,他们具有明显的不同特点和技术思路。复合材料数字化、自动化无损检测技术的关键是需要有十分强大的技术支持的特殊专业设备,集无损检测、传感器、仪器、信号处理、扫描控制、成像以及计算机、机械、电器、数控等多专业、多学科于一体,专业性极强,属于特殊的个例技术设计应用,必须结合复合材料、工艺和结构设计制造等进行专门的设计。Boeing和 Airbus公司都花费巨资,进行了长时间的持续研发和技术积累,才有今天的技术规模。

我国在这方面几十年的简单引进案例反复表明,要从根本上解决复合材料数字化、自动化无损检测,仅单纯或机械地引进一两台检测设备,远不能从根本上解决复合材料结构数字化、自动化无损检测。

一方面,目前我国每年都要花费大量资金从国外购买一些不太适合自身型号研制和生产特点的检测设备,而且这些检测设备的引进又大多缺乏技术依托和配套技术支持,缺少应用开发和相关技术配套,因此难以形成有效的生产能力。另一方面,在型号研制和生产中又急需无损检测技术设备来确保装机结构件的质量,帮助稳定工艺,为材料研究提供评价手段,为设计应用反馈信息,保证复合材料结构研制和型号生产过程中装机件质量。

因此,今后的发展规划与思路,应立足自我,充分利用国际技术平台,根据自身型号批量生产和复合材料装机应用特点,利用有效的资金,开发复合材料结构数字化、自动化无损检测技术装备,建立适合自身技术特点的复合材料结构数字化、自动化无损检测技术体系和平台,增强可持续发展的技术内涵。

第二篇:复合材料结构的无损检测技术

复合材料结构无损检测技术研究

周广银

1王中青1

童建春2

(1、61255 部队航修厂,山西 侯马 043013

2、陆航学院机械工程系

北京

通州

101123)

Nondestructive Testing Technology for Aviation Composite Component 摘要:本文首先介绍了航空复合材料的结构类型和主要缺陷,研究了现有的复合材料外场无损检测方法的技术特点,最后分析了国内外先进的无损检测技术在应用于外场一线维修检测可行性。

关键词:直升机、复合材料、无损检测 引入语

随着直升机装备的不断发展,复合材料以其高的比强度、比刚度及良好的抗疲劳性和耐腐蚀性获得广泛的应用。由于影响复合材料结构完整性的因素甚多,许多工艺参数的微小差异都会导致其产生缺陷,使得产品质量呈现明显的离散性,这些缺陷严重影响构件的机械性能和完整性,必须通过无损检测来鉴别产品的内部质量状况,以确保产品质量,满足设计和使用要求。无损检测是确保飞行安全的必要手段,对复合材料部件尤为重要。

复合材料部件的检测与生产制造中的检测有较大的差别,其特点为:

(1)在位检测,即检测对象不动,检测围绕检测对象来进行,检测设备都是移动式或者便携式检测设备;

(2)检测对象都是部件,多为中空结构,只能从外部进行单侧检测;(3)外场检测,空中作业多,检测工作实施不便。航空复合材料结构类型及其缺陷

航空结构中常用的复合材料结构主要有纤维增强树脂层板结构和夹芯结构。纤维增强树脂层板结构按照材料的不同又分为碳纤维增强树脂结构(CFRP)和玻璃纤维增强树脂结构(GFRP);夹芯结构主要是蜂窝夹芯结构、泡沫夹芯结构和少量的玻璃微珠夹芯结构。

复合材料构件在使用过程中往往会由于应力或环境因素而产生损伤,以至破坏。复合材料损伤的产生、扩展与金属结构的损伤扩展规律有比较大的差异,往往在损伤扩展到一定的尺度以后,会迅速扩展而导致结构失效,所以复合材料在使用过程中的检测,就显得极为重要,也越来越受到人们的重视。2.1 纤维增强树脂层板结构中存在的主要缺陷

纤维增强树脂层板结构在成型过程中往往会由于工艺原因而产生缺陷,人为操作的随机性会产生夹杂、铺层错误等缺陷;固化程控不好会产生孔隙率超标、分层、脱胶等缺陷;在制孔过程和装配中会形成孔边的分层缺陷;使用中由于受载荷、振动、湿热酸碱等环境因素的综合作用会导致初始缺陷(如分层、脱胶)的扩展和分层、脱胶、断裂等新的损伤和破坏的发生。

2.2 夹芯结构中存在的主要缺陷

夹芯结构在成型过程中也会由于工艺原因而产生某些缺陷;为操作误差等会产生蜂窝芯的变形、节点脱开、因为蜂窝芯过低导致的弱粘接等缺陷,固化程控不好会导致局部的贫胶或富胶、弱粘接、发泡胶空洞等缺陷;使用中会导致初始缺陷(如弱脱胶)的扩展和脱胶、进水、蜂窝芯压塌等新的损伤和破坏的发生。泡沫夹芯结构会产生脱胶、芯子开裂等类型的缺陷。复合材料结构外场无损检测方法

在复合材料结构的生产过程中,为了确定其技术指标是否达到设计要求,在生产的各个环节中,都会通过不同的无损检测手段来检验产品

质量,以确保产品的最终质量。其中有些方法也被移植应用于外场的检测,这些方法包括目视法、敲击法、声阻法、声谐振法、超声检测技术、射线检测技术等。

3.1 目视法

目视检查法是使用最广泛、最直接的无损检测方法。主要借助放大镜和内窥镜观测结构表面和内部可达区域的表面,观察明显的结构变形、变色、断裂、螺钉松动等结构异常。它可以检查表面划伤、裂纹、起泡、起皱、凹痕等缺陷;尤其对透光的玻璃钢产品,可用透射光检查出内部的某些缺陷和定位,如夹杂、气泡、搭接的部位和宽度、蜂窝芯的位置和状态、镶嵌件的位置等。

3.2 敲击法

敲击检测是胶接结构的最快捷和有效的检测方法之一,被广泛地应用于蜂窝夹芯结构、板板胶接结构的外场检测,检测速度快,准确性高。敲击检测分为:硬币敲击(Coin Tapping);专用工具敲击,如空中客车公司推荐的敲击工具PN98A57103013;自动敲击检测工具,如日本三井公司生产的电子敲击检测仪WP-632。3.3 声阻法

声阻仪是专为复合材料板、板胶接结构件与蜂窝结构件的整体性检测发展起来的便携式检测仪器。声阻法就是利用声阻仪,通过蜂窝胶接结构粘接良好区域与粘接缺陷区的表面机械阻抗有明显差异这一特点来实现检测的,主要用于检测铝制单蒙皮和蒙皮加垫板的蜂窝胶接结构的板芯分离缺陷检测。它能检测结构件的脱粘缺陷,不能检测机械贴紧缺陷。声阻法被国内的西飞公司生产中粘接质量检测和美国波音公司飞机蜂窝部件的外场检测广泛采用。此方法操作简单,效果良好,能满足设计和使用要求。

3.4 声谐振法

声谐振法是利用胶接检测仪,通过声波传播特性的测试实现对胶接结构的无损检测。适用于检测曲率半径在500mm以上的金属蜂窝胶接结构,能检测单侧蒙皮和带垫板的金属蜂窝结构的脱粘缺陷。该方法被国内外的多家制造企业和航空公司作为外场检测的手段和规范。

3.5 超声检测技术

超声检测法是无损检测最主要的手段之一,主要包括脉冲反射法、穿透法、反射板法等,它们各有特点,可根据材料结构的不同选用合适的检测方法。

超声检测技术,特别是超声C扫描,由于显示直观、检测速度快,已成为飞行器零件等大型复合材料构件普遍采用的检测技术。由于大型超声C扫描系统需要喷水耦合,且多数为超声穿透法检测,只能在大的检测实验室进行。而使用中的飞机复合材料部件多为中空结构,超声穿透法对其无能为力。因而外场的复合材料超声检测多数为传统的人工超声波A扫描检测。人工超声波A扫描检测可以逐

点覆盖检测结构件的所有检测面,设备简单,实施方便;缺点是检测可靠性低,主要取决于检测者的技术水平和敬业精神。

3.6 射线检测技术

对于复合材料结构而言,射线检测仍然是最直接、最有效的无损检测技术之一,特别适合于检测纤维增强层板结构中的孔隙和夹杂等体积

型缺陷和夹芯结构中的芯子变形、开裂、发泡胶发泡不足以及镶嵌物位置异常等缺陷的检测。射线检测对垂直于材料表面的裂纹也具有较高的检测灵敏度和可靠性,但对复合材料结构中的分层缺陷不敏感。该方法被国内外的军方和多家航空公司作为外场检测的手段和规范。4 复合材料结构无损检测新技术、新方法

4.1 外场在位检测的便携式超声C扫描系统

IUCS-II型便携式智能超声C扫描仪由中国飞机强度研究所研制,是国内研制的唯一可用于外场飞机复合材料结构检测的设备。该设备基于超声脉冲反射法,一代产品以CTS-23A超声探伤仪为平台研制开发,外加定位系统、专用数据采集和处理软件笔记本电脑等部分组成。外接真空吸盘装置,可检测立面、顶面等状态的复合材料。超声探头采用自主研发的聚焦水囊探头,具有很高的检测分辨率,可以定位损伤所处的层;且无需喷水耦合,可用于平面、曲面及装配后结构件的检测。拉线式大位移传感器扫描定位系统可在800mm/s的探头运动速度下实现缺陷的精确定位。针对不同的材料和结构形式,可按需要进行回波距离方式和回波幅度方式成像,检测结果实时按照与实际尺寸1∶1的显示比例显示输出。正研发中的二代升级产品,基于工业控制计算机和数字超声卡的平台,实现数字超声仪和计算机的高度集成,实现产品数字化,缩小产品体积,更便于外场使用。

系统紧凑小巧,能精确定位损伤的水平面位置、大小及埋深,适用于在复杂环境下工作。可检测复合材料加筋板结构的分层、脱胶、疏松、气孔及蜂窝夹层结构的贫胶、富胶、弱粘接等缺陷。主要应用于碳纤维和玻璃纤维的层板、加筋板结构及蜂窝结构的在位检测。

4.2 X射线非胶片成像技术

X射线非胶片成像技术是近年来无损检测技术发展最快的专业之一,超小型、电池供电的X射线机、射线计算机照相(Computer Radiography,CR)成像技术、数字式辐射成像技术(Digital Radiation,DR)等逐渐由实验室走向实际应用。用可以反复使用的CR成像板(IP板)来代替传统的胶片,用CR扫描仪可快捷获取到结构内部信息的数字影像,省去了暗室处理的过程、时间和费用;由于IP板具有高灵敏度,因而只需要很少的曝光时间提高了检测效率。系统由射线机、IP板、PCS扫描设备和计算机系统组成。DR成像系统是一种可以在外场应用的X射线实时成像系统,被美国军方应用于复合材料结构无损检测,尤其是蜂窝结构的进水检测。它可以直接在计算机上成像,没有中间环节。而且系统组成简单轻巧,灵敏度高,曝光时间短,检测效率高,适合外场作业。电池供电的脉冲式射线机是射线照相技术发展的另一个新产品,重量只有12lb,约5.5kg的脉冲式的辐射X射线,辐射总量不大(可满足CR和DR成像所需),但穿透力却足够强(270kV),是外场无损检测X射线数字成像检测的好搭档。

4.3 红外热成像技术

红外热成像是利用热像仪以热图的方式非接触地测定被检工件表

面的温度分布及等温线轮廓的技术。可于检测层板结构中存在的分层、冲击损伤、脱粘和夹芯结构中的板芯脱粘、进水等缺陷。由于其非接触、成片快速检测、可应用于外场和原位检测等优点,近年来受到广泛关注。根据热激励方式的不同,分为脉冲加热法、调制加热法和超声波激励加热法。其中,美国红外热波检测(TWI)公司的脉冲闪光红外热成像检测系统已经被美国军方等应用于飞机的检测,主要检测蜂窝结构的进水、脱粘和层板结构的冲击损伤和分层类损伤。

红外热成像检测技术也被空中客车公司作为其A300系列飞机的检测方法之一,它的热激励不仅包括恒温箱、红外灯、热空气枪、电弧灯等热激发方式,还包括冷空气枪、低温流体、冰箱等冷却方式。检测的损伤类型有层板的分层、脱胶和夹杂,夹芯结构的脱胶和液体渗入,金属胶接件的脱胶和腐蚀等。结束语

复合材料结构在直升机结构中的应用比例越来越高,应用量的增加带来了应用中损伤的增加。在维修过程中要保证快出飞机、出好飞机,这意味着外场的无损检测时间不能太长,最好是在原位进行、不拆卸,检测速度还要快;检测的可靠性要有保证,超标缺陷不能漏检。上述许多先进的检测手段在国外已经应用多年,随着新技术、新装备的不断装备部队,需要进一步学习复合材料无损检测的先进技术,提高部队复合材料结构的无损检测水平。

第三篇:无损检测工作技术总结

无损检测工作技术总结

报考项目: RT 论文题目: 浅谈小径管透照布置的选择

姓 名: 庞 兵

工作单位: 安徽津利能源科技发展有限责任公司

浅谈小径管透照布置的选择

随着近年来电力行业趋势不断上升,射线检测作为无损检测方法的一个重要方法,射线检测在电站安装中具有与其它无损检测方法不可替代的优越性。电站锅炉主要以小口径管对接接头为主,多采用射线检测。笔者近期参与完成了***发电厂(2×1000MW)超超临界燃煤发电机组安装工程的无损检测工作,对射线检测小径管时透照位置的选择有了新的认识和理解。

1.小径管透照在实际应用中暴露的问题:

在某电厂安装项目现场抽查中发现炉管焊缝存在大量的根部裂纹(见附图一、二),而这些焊缝则是已在预制厂检测合格的焊口。为什么会造成这种现象呢?为此笔者分析了产生这种现象原因。该炉管材质为T92规格为Φ51×8mm,检测执行标准JB/T4730.2-2005,技术等级AB级,Ⅱ级合格。在预制阶段由于条件较好,所以按JB/T4730.2-2005标准规定采用椭圆成像法透照,相隔90度透照2次。在这一阶段也发现了少量的根部裂纹,但并未引起检测人员的足够重视。在炉管组装运抵现场后由于现场条件的限制没有采用椭圆成像法透照而是采用垂直透照的方法进行检测,相隔120度透照3次重叠成像,结果发现了大量的根部裂纹。为保证产品质量我们要求对所有运抵现场的炉管按用垂直透照的方法进行100%重新检测,同时要求预制厂在预制阶段也采用同样的方式进行检测。但这一要求似乎并不完全符合JB/T4730.2-2005的规定,检测单位对此也有所顾忌。

2.小径管经常采用倾斜透照椭圆成像的原因 小径管通常是指外直径Do小于或等于100mm的管子,在射线检测中倾斜透照椭圆成像通常是首选。小径管采用倾斜透照椭圆成像可以将源侧和胶片侧焊缝影像分开便于影像的评定及缺陷的定位返修,而且在大多数条件下有较少透照次数,这样既可以减少成本又可以提高检测效率保证工程进度。笔者认为小径管采用倾斜透照椭圆成像检测工艺优化的体现,是质量、费用、进度及返修难易程度相互平衡的共同结果。实践证明此方法确实是一种行之有效地透照方法,在可以实施的情况下也确应采用。垂直透照重叠成像的方法对于根部裂纹、根部未熔、根部未焊透等根部面状缺陷的检出率较高,但发现缺陷后由于分不清是源侧还是胶片侧的缺陷会对缺陷的定位返修造成不便。焊缝表面的不规则也会影像的评定造成一定的影响,此外在检测成本、检测进度上也略逊于倾斜透照,它出常常作为倾斜透照的一种补充方法加以应用。综上原因在射线检测中经常采用倾斜透照椭圆成像。

附图一 3.透照角度对小径管裂纹检出的影响 射线检测中对于缺陷的检出主要是通过裂纹检出角来控制的,它是假想裂纹垂直于工件表面来进行研究的,垂直于工件表面的裂纹也是危害性最大一种缺陷,因此它是射线检测重要控制的缺陷。裂纹检出角分为横向裂纹检出角和纵向裂纹检出角。实验证明,透照角度在10度以下时裂纹的识别情况变化不大,但透照角度超过15度时随着透照角度的增大裂纹不能识别的情况就会增大很多,裂纹的检出率会显著降低。

附图二

在JB/T4730.2-2005中透照方向实际上是对纵向裂纹检出角的控制,但标准并未规定角度的控制范围。而一次透照长度是以透照厚度比K的形式间接的控制横向裂纹检出角的大小。无论是倾斜透照椭圆成像透照2次或3次,还是垂直透照重叠成像透照3次其对横向裂纹检出角的要求是基本相同的,但倾斜透照椭圆成像透照的纵向裂纹检出角要明显大于垂直透照重叠成像透照。按标准规定,椭圆成像时影像开口宽度为1倍焊缝宽度左右,当g(焊缝宽度)≤D0/4时倾斜透照的角度约为25.56度,此时纵向裂纹的检出率将大大下降。此时椭圆成像过大的透照角度可能会导致根部面状缺陷的漏检,因此在可能存在根部面状缺陷时椭圆成像的方法应慎用。

附图三

4.对JB/T4730.2-200

5小径管透照布置的理解

JB/T4730.2-2005标准中射线检测的透照布置分为5条,即透照方式、透照方向、一次透照长度、小径管的透照布置和透照次数。其实后2条仅是针对小径管这一特定检测对象而言的,其含义也包含于前3条之 中:

1)小径管的透照布置无论是倾斜透照还是垂直透照都为双壁双影法。2)小径管的透照方向是通过椭圆的开口度来控制的,倾斜透照时有一定的透照角度,垂直透照时透照就角度为0o。小径管透照布置规定,当同时满足T(壁厚)≤8mm; g(焊缝宽度)≤Do /4时应采用倾斜透照方式椭圆成像,而JB/T4730.2-2005中4.1.2条(透照方向)规定透照时射线束中心一般应垂直指向透照区中心,需要时也可选用有利于发现缺陷的方向透照。因此从这一方面看小径管的透照布置与4.1.2条的 要求是相互矛盾的。3)小径管透照次数是一次透照长度的体现。无论是倾斜透照椭圆成像透照2次或3次,还是垂直透照重叠成像透照3次其透照厚度比K都约为1.7左右。从小径管的K值我们可以看出小径管的K值其实已经不 能够满足标准的要求,标准之所以这样规定只是优化工艺的结果。因此我们对标准的执行也要灵活应用,不能照抄照搬。在检测中如已发现许多根部面状缺陷或对缺陷的检出率存在疑问时应采用垂直透照进行补充检测,在已经发现大量根部面状缺陷时要直接采用垂直透照进行检测。这样才能提高根部面状缺陷检出率来保证产品质量,才能真正做到质量、费用、进度的协调统一,此时的才能算是优化的工艺。

5.通过以上的分析及笔者在实际中的应用,笔者认为不要死执行标准,而要理解标准,从检测的原理出发了解标准制定的原理及目的,这样才能更好的应用标准服务于实际检测工作。同时笔者也认为JB/T4730.2-2005对小径管透照布置的规定过于刚性,使许多检测单位在实际检测中过于拘谨。这是笔者个人的一些观点和看法希望能够得到广大同仁的指教。

第四篇:无损检测工作技术总结

无损检测工作技术总结

总结人:XXX

XXXXXX有限公司

我于2012年7月毕业于XXXXXX,持有中国电力工业无损检测超声、磁粉I级资质和电力工业理化检验光谱、金相I级资质。毕业后一直就职于XXXXXXX有限公司,在公司承接的锅炉、压力管道等特种设备施工过程中承担无损检测工作。在这一年的工作中,积极完成各项探伤任务,寻求新的方法以解决检测中碰到的难题,并且努力提高自己的技术水平,提高工作效率。

随着我国工业化进程不断推进,电站和化工行业也相继增多,按照图纸技术条件及规范要求,对于各种压力管道、压力容器和承压部件焊接焊缝需进行规定比例的超声及X射线探伤,所以无损检测行业也越来越普遍。下面浅谈一下小径管透照方法和技术要求及钢焊缝射线照相底片缺陷影像的识别:

I外径D。≤100mm的管子称为小径管,一般采用双壁双影法透照其对接环缝。按照被检焊缝在底片上的影像特征,又分椭圆成像和重叠成像两种方法。当同时满足下列两条件,a)T(壁厚)≤8mm;

b)g(焊缝宽度)≤D0/

4时采用倾斜透照方式椭圆成像。椭圆成像时,应控制影像的开口宽度(上下焊缝投影最大间距)在1倍焊缝宽度左右。不满足上述条件或椭圆成像有困难时可采用垂直透照方式重叠成像。

透照布置(1)椭圆成像法胶片暗袋平放,射线源焦点偏离焊缝中心平面一定距离(称为偏心距L。),以射线束的中心部分或边缘部分透照被检焊缝。偏心距应适当,可按椭圆开口宽度(q)的大小

算出。

L。=(b+q)L1/L

2式中L1为射线源到近源处环焊缝表面的水平距离,L2为外径加上焊缝余高;

如偏心距太大,椭圆开口宽度过大,窄小的根部缺陷(裂纹、未焊透等)有可能漏检,或者因影像畸变过大,难于判断。偏心距太小,椭圆开口宽度过小,又会使源侧焊缝与片侧焊缝根部缺陷不一分开。

(2)重叠成像法对直径小(D。≤20mm),或壁厚大(T>8mm),或焊缝宽(g>D。/4)的管子,或是为了重点检测根部裂纹和未焊透等特殊情况下,可使射线垂直透照焊缝,此时胶片宜弯曲贴合焊缝表面,以尽量减少缺陷到胶片距离。当发现不合格缺陷后,由于不能分清缺陷是处于射线源测或胶片侧焊缝中,一般多做整圈返修处理。小径管环向对接接头的透照次数

小径管环向对接焊接接头100%检测的透照次数:采用倾斜透照椭圆成像时,当T/Dn≤0.12时,相隔90°透照2次。当T/D0>0.12时,相隔120°或60°透照3次。垂直透照重叠成像时,一般应相隔120°或60°透照3次。

由于结构原因不能进行多次透照时,可采用椭圆成像或重叠成像方式透照一次。鉴于透照一次不能实现焊缝全长的100%检测,此时应采取有效措施扩大缺陷可检出范围,并保证底片评定范围内黑度和灵敏度满足要求。

II钢焊缝射线照相底片缺陷影像的识别

1焊接缺陷影像的显示特征

焊接缺陷的影像特征基本取决于焊缝中缺陷的形态、分布、走向和位置,因射线透照角变化而造成的影像畸变或影像模糊也应予以充分考虑;对缺陷特性和成因的充分了解和经验,有助于缺陷的正确判断。必要时,应改变射线检测方案重新拍片;也可对可疑影像进行解剖分析,这样可以减少误判和漏判。

缺陷影像的判定,应依据三个基本原则:

a影像的黑度(或亮度)分布规律。如气孔的黑度变化不大,属平滑过渡型;而夹渣的黑度变化不确定,属随机型。

b影像的形态和周界。如裂纹的影像为条状,且必有尖端;而未焊透或条状夹渣虽然也是条状的,但一般不可能有尖端。未焊透的两边周界往往是平直的,而夹渣的周围往往是弧形不规则的,而气孔的形态大多是规则的。

c影像所处的部位。如破口边沿未熔合往往产生于焊接坡口的熔合面上,因此大多出现在焊缝轴线的两侧;而未焊透则多出现在焊缝轴线上。

2缺陷影像的识别

2.1气孔在底片上的形貌:

呈暗色斑点,中心黑度较大,边缘较浅平滑过渡,轮廓较清晰。形状:圆形、椭圆形、长条形、虫形等。

形态:单个、分散、密集、链状等。分布在焊缝中任意部位。

2.2非金属夹渣在底片上的形貌

呈暗色斑点,黑度分布无规律,轮廓不圆滑,小点状夹渣轮廓较不清晰。形状较不规测,点状、长条形、块状,有时带尖角。

形态:单个或分散、密集(网状)、长条断续等。分布在焊缝中任意部位。

2.3夹钨(金属夹渣)

呈亮点,轮廓清晰。为圆形、椭圆形、长条形或呈开花状。形态:单个、分散、密集等。氩弧焊打底电弧焊盖面的焊缝分布在根部;全氩焊焊缝在焊缝任意部位。

2.4未焊透在底片上的形貌

大多呈清晰的暗色直线条或带,宽窄取决于对口间隙。无对口间隙的所形成的未焊透呈现一条笔直的暗线。

一般处于焊缝影像的中间,顺焊缝轴线延伸;因透照偏或焊偏,也可能偏向一侧。

2.5未熔合在底片上的形貌:

根部未熔合的典型影象是一条细直黑线,线的一侧轮廓整齐且黑度较大,为坡口钝边痕迹,另一侧轮廓可能较规则也可能不规则,根部未熔合在底片上的位置应是焊缝根部的投影位置,一般在焊缝中间.因坡口形状或投影角度等原因也可能偏向一边。

坡口未熔合的典型影象是连续或断续的黑线,宽度不一,黑度不均匀,一侧轮廓较齐,黑度较大,另一侧轮廓不规则,黑度较小,在底片上的位置一般在焊缝中心至边缘的1/2处,沿焊缝纵向延伸。

层间未熔合的典型影象是黑度不大的块状阴影,形状不规则,如伴有夹渣时,夹渣部位的黑度较大。较小时,底片上不易发现。

对未熔合缺陷评判,要持慎重态度,因为有时与夹渣很难区分,尤其是层间未熔合容易误判。一般与夹渣的区别在于黑度的深浅和外貌形状规则等。

2.6裂纹在底片上的形貌:

呈不直的暗细线,端部尖细。热裂纹走向曲折,有分叉;冷裂纹走向不曲折没有分叉。

形态:单条、断续。在焊缝根部、焊道内、热影响区及弧坑等相应部位均可呈现。

无损检测工作是锅炉压力容器和化工压力管道等特种设备安全运行的重要保障之一,要求从事无损检测工作人员要有高度的责任心,特别是从事X射线探伤工作,不仅要做好个人防护,也要防止他人受到伤害。

第五篇:油气管道无损检测技术

油气储运前言知识讲座

油气管道无损检测技术

管道作为大量输送石油、气体等能源的安全经济的运输手段,在世界各地得到了广泛应用,为了保障油气管道安全运行,延长使用寿命,应对其定期进行检测,以便发现问题,采取措施。

一、管道元件的无损检测

(一)管道用钢管的检测

埋地管道用管材包括无缝钢管和焊接钢管。对于无缝钢管采用液浸法或接触法超声波检测主要来发现纵向缺陷。液浸法使用线聚焦或点聚焦探头,接触法使用与钢管表面吻合良好的斜探头或聚焦斜探头。所有类型的金属管材都可采用涡流方法来检测它们的表面和近表面缺陷。对于焊接钢管,焊缝采用射线抽查或100 %检测,对于100 %检测,通常采用X射线实时成像检测技术。

(二)管道用螺栓件

对于直径> 50 mm 的钢螺栓件需采用超声来检测螺栓杆内存在的冶金缺陷。超声检测采用单晶直探头或双晶直探头的纵波检测方法。

二、管道施工过程中的无损检测

(一)各种无损检测方法在焊管生产中的配置

国外在生产中常规的主要无损检测配置如下图一中的A、B、C、E、F、G、H工序。我国目前生产中的检测配置主要岗位如下图中的A、C、D、E、F、G、H工序。

油气储运前言知识讲座

图一 大口径埋弧焊街钢管生产无损检测岗位配置

(二)超声检测

全自动超声检测技术目前在国外已被大量应用于长输管线的环焊缝检测,与传统手动超声检测和射线检测相比,其在检测速度、缺陷定量准确性、减少环境污染和降低作业强度等方面有着明显的优越性。

全自动相控阵超声检测系统采用区域划分方法,将焊缝分成垂直方向上的若干个区,再由电子系统控制相控阵探头对其进行分区扫查,检测结果以双门带状图的形式显示,再辅以TOFD(衍射时差法)和B扫描功能,对焊缝内部存在的缺陷进行分析和判断。

全自动超声波现场检测时情况复杂,尤其是轨道位置安放的精确度、试块的校准效果、现场扫查温度等因素会对检测结果产生强烈的影响,因此对检测结果的评判需要对多方面情况进行综合考虑,收集各种信息,才能减少失误。

(三)射线检测

射线检测一般使用X 射线周向曝光机或γ射线源,用管道内爬行器将射线源送入管道内部环焊缝的位置,从外部采用胶片一次曝光,但胶片处理和评价需要较长的时间,往往影响管道施工的进度,因此,近年来国内外均开发出专门用于管道环焊缝检测的X 射线实时成像检测设备。

油气储运前言知识讲座

图二 管道环焊缝自动扫描X射线实时成像系统

图二为美国Envision公司生产的管道环焊缝自动扫描X射线实时成像系统,该设备采用目前最先进的CMOS成像技术,用该设备完成Φ 609mm(24 in)管线连接焊缝的整周高精度扫描只需1~2 min,扫描宽度可达75 mm,该设备图像分辨率可达80μm,达到和超过一般的胶片成像系统。

(四)磁粉检测

磁粉检测的基础是缺陷处漏磁场与磁粉的磁相互作用。铁磁性材料或工件被磁化后,由于不连续性的存在,使工件表面或近表面的磁力线发生局部畸变而产生漏磁场,吸附施加在工件表面的磁粉,形成在合适光照下目视可见的磁痕,从而显示出不连续性的位置、形状和大小。

国内很少对焊管坡口面进行磁粉检测。国外使用的自动检测系统,主要采用荧光磁悬液湿法检测。自动磁粉检测设备采用磁化线圈在钢管壁厚方向对坡口面局部磁化,同时在坡口表面喷洒荧光磁悬液,凭借在该部位装置的高分辨率摄像系统,将磁化、磁悬液喷洒区域的影像传输在旁边的监视屏上,操作人员监视屏幕,就可以及时发现磁痕影像,找出缺陷。

磁粉检测适用于检测铁磁性材料表面和近表面的缺陷,因此对于奥氏体不锈钢和有色金属等非铁磁性材料不能用磁粉检测的方法进行探伤。由

油气储运前言知识讲座

于马氏体不锈钢、沉淀硬化不锈钢具有磁性,因此可以进行磁粉检测。磁粉检测可以发现表面和近表面的裂纹、夹杂、气孔、未熔合、未焊透等缺陷,但难以发现表面浅而宽的凹坑、埋藏较深的缺陷及与工件表面夹角极小的分层。

三、钢质管道管体无损检测技术

钢质管道管体的无损检测,主要就是管体的完整性(如剩余壁厚、管道缺陷、表面腐蚀形态、腐蚀产物类型、腐蚀深度等)检测。表一列出了目前常用的管道检测技术及其检测内容。

表一 管道检测技术分类

(一)弹性波检测技术

弹性波检测是利用管道泄漏引起的管道内压力波的变化来进行诊断定位,一般可分为声波、负压力波和压力波三种。其主要工作原理是利用安置好的传感器来检测管道泄漏时产生的弹性波并进行探测定位。这种技术的关键是区分正常操作时和发生泄漏时的弹性波。目前有两种方法,一

油气储运前言知识讲座

种是利用硬件电路的延时来进行信号过滤,另一种是结合结构模式识别和神经网络来区分正常操作时和发生事故时产生的不同波形,从而更好地监测管道的运行。

(二)漏磁通检测技术

漏磁式管道腐蚀检测设备的工作原理是利用自身携带的磁铁,在管壁圆周上产生一个纵向磁回路场。如果管壁没有缺陷,则磁力线封闭于管壁之内,均匀分布。如果管内壁或外壁有缺陷,则磁通路变窄,磁力线发生变形,部分磁力线将穿出管壁产生漏磁。漏磁检测原理图三所示。

图三 漏磁检测原理

漏磁场被位于两磁极之间的紧贴管壁的探头检测到,并产生相应的感应信号。这些信号经滤波、放大、模数转换等处理后被记录到检测器上的存储器中,检测完成后,再通过专用软件对数据进行回放处理、判断识别。

从整个检测过程来说,漏磁检测可分为图四所示的四个部分:

图四 漏磁检测流程图

漏磁检测技术的优点:(1)易于实现自动化;较高的检测可靠性;(2)可以实现缺陷的初步量化;(3)在管道检测中,厚度达到30mm的壁厚范

油气储运前言知识讲座

围内,可同时检测内外壁缺陷;(4)高效,无污染,自动化的检测可以获得很高的检测效率。

漏磁检测技术的局限性:(1)只适用于铁磁材料;(2)检测灵敏度低;(3)缺陷的量化粗略;(4)受被检测工件的形状限制由于采用传感器检测漏磁通,漏磁场方法不适合检测形状复杂的试件;(5)漏磁探伤不适合开裂很窄的裂纹,尤其是闭合型裂纹;(6)不能对缺陷的类型或者缺陷的严重程度直接作定量性的分析。

(三)超声波检测技术

管道超声检测是利用现有的超声波传感器测量超声波信号往返于缺陷之间的时间差来测定缺陷和管壁之间的距离;通过测量反射回波信号的幅值和超声波探头的发射位置来确定缺陷的大小和方位。

图五为超声波检测原理图, 图中Wt代表管道正常壁厚, SO代表超声波探头与管道内表面间的标准位移。

图五 超声波检测原理图

超声波检测技术的优点:(1)检测速度快,检测成本低;(2)检测厚度大,灵敏度高;(3)缺陷定位较准确;(4)对细微的密闭裂纹类缺陷灵

油气储运前言知识讲座

敏度高。

超声波检测的缺点:(1)由于受超声波波长的限制,该检测法对薄管壁的检测精度较低,只适合厚管壁,同时对管内的介质要求较高;(2)当缺陷不规则时,将出现多次反射回波,从而对信号的识别和缺陷的定位提出了较高要求;(3)由于超声波的传导必须依靠液体介质,且容易被蜡吸收,所以超声波检测器不适合在气管线和含蜡高的油管线上进行检测,具有一定局限性。

(四)电磁超声检测

电磁超声技术(EMAT)是20世纪70年代发展起来的无损检测新技术。这一技术是以洛仑兹力、磁致伸缩力、电磁力为基础,用电磁感应涡流原理激发超声波。

电磁超声的发射和接收是基于电磁物理场和机械波振动场之间的相互转化,两个物理场之间通过力场相互联系。从物理学可知,在交变的磁场中,金属导体内将产生涡流,同时该电流在磁场中会受到洛仑兹力的作用,而金属介质在交变应力的作用下将产生应力波,频率在超声波范围内的应力波即为超声波。与之相反,该效应具有可逆性,返回声压使质点的振动在磁场作用下也会使涡流线圈两端的电压发生变化,因此可以通过接收装置进行接收并放大显示。人们把用这种方法激发和接收的超声波称为电磁超声。

与传统压电超声换能器相比,EMA的优点主要有:(1)非接触检测,不需要耦合剂;(2)可产生多种模式的波,适合做表面缺陷检测;(3)适合高温检测;(4)对被探工件表面质量要求不高;(5)在实现同样功能的油气储运前言知识讲座

前提下,EMAT探伤设备所用的通道数和探头数都少于压电超声;(6)发现自然缺陷的能力强,对不同的入射角有明显的端角反射,对表面裂纹检测灵敏度较高。

EMA的缺点:(1)EMAT的换能效率要比传统压电换能器低20—40dB;(2)探头与试件距离应尽可能小;(3)EMAT仅能应用于具有良好导电性能的材料中。

(五)涡流检测技术

涡流检测技术是目前采用较为广泛的管道无损检测技术,其原理为:当一个线圈通交变电时,该线圈将产生一个垂直于电流方向(即平行于线圈轴线方向)的交变磁场,把这个线圈靠近导电体时,线圈产生的交变磁场会在导电体中感应出涡电流(简称涡流),其方向垂直于磁场并与线圈电流方向相反。导电体中的涡流本身也要产生交变磁场,该磁场与线圈的磁场发生作用,使通过线圈的磁通发生变化,这将使线圈的阻抗发生变化,从而使线圈中的电流发生变化。通过监测线圈中电流的变化(激励电流为恒定值),即可探知涡流的变化,从而获得有关试件材质、缺陷、几何尺寸、形状等变化的信息。

涡流检测技术可分为常规涡流检测、透射式涡流检测和远场涡流检测。常规涡流检测受到趋肤效应的影响,只适合于检测管道表面或者亚表面缺陷,而透射式涡流检测和远场涡流检测则克服了这一缺陷,其检测信号对管内外壁具有相同的检测灵敏度。其中远场涡流法具有检测结果便于自动化检测(电信号输出)、检测速度快、适合表面检测、适用范围广、安全方便以及消耗的物品最少等特点,在发达国家得到广泛的重视,广泛用于在油气储运前言知识讲座

用管道的检测。

涡流检测技术的优点:(1)检测速度高,检测成本低,操作简便;(2)探头与被检工件可以不接触,不需要耦合介质;(3)检测时可以同时得到电信号直接输出指示的结果,也可以实现屏幕显示;(4)能实现高速自动化检测,并可实现永久性记录。

涡流检测技术的缺点:(1)只适用于导电材料,难以用于形状复杂的试件;(2)只能检测材料或工件的表面、近表面缺陷;(3)检测结果不直观,还难以判别缺陷的种类、性质以及形状、尺寸等;(4)检测时受干扰影响的因素较多,易产生伪显示。

(六)激光检测技术

激光检测系统主要包括激光扫描探头、运动控制和定位系统、数据采集和分析系统三个部分,利用了光学三角测量的基本原理。与传统的涡流法和超声波法相比,激光检测(或轮廓测量)技术具有检测效率高、检测精度高、采样点密集、空间分辨力高、非接触式检测,以及可提供定量检测结果和提供被检管道任意位置横截面显示图、轴向展开图、三维立体显示图等优点。

但是激光检测方法只能检测物体表面,要全面掌握被测对象的情况,必须结合多种无损检测方法,取长补短。

(七)管道机器人检测技术

管道机器人是一种可在管道内行走的机械,可以携带一种或多种传感器,在操作人员的远端控制下进行一系列的管道检测维修作业,是一种理想的管道自动化检测装置。

油气储运前言知识讲座

一个完整的管道检测机器人应当包括移动载体、视觉系统、信号传送系统、动力系统和控制系统。管道机器人的主要工作方式为: 在视觉、位姿等传感器系统的引导下,对管道环境进行识别,接近检测目标,利用超声波传感器、漏磁通传感器等多种检测传感器进行信息检测和识别,自动完成检测任务。其核心组成为管道环境识别系统(视觉系统)和移动载体。目前国外的管道机器人技术已经发展得比较成熟,它不仅能进行管道检测,还具有管道维护与维修等功能,是一个综合的管道检测维修系统。

四、管道外覆盖层检测技术

(一)PCM检测法

PCM(多频管中电流检测法)评价的核心是遥控地ICI电流信号的张弱来控制发射到管道表ICI的电流,通过检测到的电流变化规律,进而判断外防腐层的破损定位与老化程度。加载到管道上的电流会产生相应的电磁场,磁场张弱与加载电流的大小成正比,同时随着传输距离增大,电流信号逐渐减小。当管道外涂层有破损时,电流通过破损点流向大地,该点处的电流衰减率突然增大,可判定外涂层破损点的位置。

但PCM法对较近的多条管道难以分辨、在管道交叉、拐点处及存在交流电干扰时,测得数据误差大。

(二)DCVG检测技术

DCVG(直流电压梯度测试技术)的原理是对管道上加直流信号时,在管道防腐层破损裸漏点和土壤之间会出现电压梯度。在破损裸漏点附近部位,电流密度将增大,电压梯度也随着增大。普遍情况下,裸漏面积与电

油气储运前言知识讲座

压梯度成正。直流电压梯度检测技术就是基于上述原理的。

在用DCVG测量时,为了便于对信号的观察和解释,需要加一个断流器在阴极保护输出上。测量过程中,沿管线以2m的间隔在管顶上方进行测量。

DCVG的优点为能准确地测出防腐层的破损位置,判断缺陷的严重程度和估计缺陷大小,之后根据检测结果提供合理的维护和改造建议;测量操作简单,准确度高,在测量过程中不受外界干扰,几乎不受地形影响。缺点在于整个过程需沿线步行检测,不能指示管道阴极保护的效果和涂层剥离;环境因素会引起一定误差,如杂散电流、地表土壤的电阻率等。

(三)Pearson检测法

Pearson检测法(皮尔逊检漏法)的原理是对管道施加交流信号,此信号会通过管道防腐层的破损点处流失到土壤中,因此距离破损点越远,电流密度越小,破损点的上方地表形成一个交流电压梯度。检测过程中,两位测试员相距3~6m,脚穿铁钉鞋或手握探针,将各探测的的电压信号发回接收装置,信号经滤波、放大,即能得到检测结果。

Pearson检测法是目前国内最常用的检测技术,其优点是:(1)有较成熟的使用经验,并且检测速度较快,能沿线检测防腐层破损点和金属物体;(2)能识别破损点大小,还能测到微小漏点,长输管道的检测与运行维护中有良好的使用反馈。

Pearson检测法的不足之处在于,(1)整个检测过程需步行;(2)不能指明出缺陷的损坏程度;(3)对操作者的技能求高;(4)在水泥或沥青地面上检测接地困难。

油气储运前言知识讲座

(四)标准管/地(P/S)电位测试法

标准管/地(P/S)电位测试法的原来是采用万用表来测接地Cu/CuS04电极与管道表ICI某监测点之间的电位,通过电位与距离构成的曲线了解电位的分布,把当前电位与以往电位区别开来,可用检测来的阴极保护电位来判定是否对管道外涂层起保护作用。

目前,地面测量管道保护电位的通用方法就是标准管/地电位测试法,其优点是无需开挖管道、现场取得数据容易、检测速度快(每天10~50km)。一般情况,每隔1km左右设一个测试桩,所以这种方法只能总体评估这一管段的防腐层,不能详细地评价防腐层缺陷,不能确定防腐层的缺陷位置以及缺陷的分布情况。故此方法不适合用于无阴极保护或测试桩的管道。

下载复合材料结构数字化自动化无损检测技术word格式文档
下载复合材料结构数字化自动化无损检测技术.doc
将本文档下载到自己电脑,方便修改和收藏,请勿使用迅雷等下载。
点此处下载文档

文档为doc格式


声明:本文内容由互联网用户自发贡献自行上传,本网站不拥有所有权,未作人工编辑处理,也不承担相关法律责任。如果您发现有涉嫌版权的内容,欢迎发送邮件至:645879355@qq.com 进行举报,并提供相关证据,工作人员会在5个工作日内联系你,一经查实,本站将立刻删除涉嫌侵权内容。

相关范文推荐

    复合材料的无损检测技术

    复合材料的无损检测技术 复合材料(composite materials)是指由两种或两种以上不同性能、不同形态的组分通过复合工艺组合而成的一种多相材料,它既保持了原组分材料的主要特点......

    无损检测技术工作总结RT(李海涛)

    无损检测技术工作总结 (RT方法) 李海涛 中国石油吐哈油田公司技术监测中心 二零一零年三月 无损检测技术工作总结 本人1980年出生于宁夏青铜峡,现年31岁,1999年9月-2003年7月在......

    复合材料结构件无损检测技术分析

    复合材料结构件无损检测技术分析 摘 要:本文通过对复合材料结构件缺陷和损伤特点的分析,介绍可应用于复合材料结构缺陷包括目视检查法、声阻法、射线检测技术、超声检测技术、......

    MT无损检测工作技术总结

    无损检测技术工作总结 (MT) 何建红 南京佳业检测工程有限公司 二O一二年六月 技术工作总结 我于2000年毕业于湖南省劳动人事学校无损检测技术与应用专业,毕业后一直坚持自学,在2......

    无损检测技术工作总结(磁粉)

    无损检测技术工作总结 (MT) 北方重工业集团公司:王海岭 2002年8月30日 无损检测技术工作总结 本人于1987年7月毕业于内蒙古大学物理系,被分配到北方重工业集团公司(原内蒙古第二......

    无损检测工作技术总结5篇

    无损检测工作技术总结 (MT)姓名:天津阿斯米工程技术有限公司 二零一四年四月工 作 技 术 总 结本人自2008年毕业后一直在天津阿斯米工程技术有限公司工作,主要从事海洋船舶的无......

    无损检测控制程序

    无损检测控制程序 Q/AZ.G.TSCX-06-2010 A/1 1/5 目 录 1 目的 .................................................................. 2 2 适用范围 ........................

    无损检测合同样本

    项目工程 检 合同编号: 测 合 同 书 第一部分 合同协议书 合同编号: 签定地点: 甲 方: 法定代表人: 地 址: 乙 方: 法定代表人: 地 址: 依据《中华人民共和国合同法》、经双方协商一......