典型含铬废水处理方案[优秀范文5篇]

时间:2019-05-13 13:40:13下载本文作者:会员上传
简介:写写帮文库小编为你整理了多篇相关的《典型含铬废水处理方案》,但愿对你工作学习有帮助,当然你在写写帮文库还可以找到更多《典型含铬废水处理方案》。

第一篇:典型含铬废水处理方案

典型含铬废水处理方案 概述

铝型材加工过程中,会产生各种有害废水,主要污染物质是酸、碱和各种金属离子。这三种废水的水质差异较大,废水中主要污染物质的种类大不相同,相应的处理方法也不同。其中,喷涂车间排出的废水中,含有国家《污水综合排放标准》(GB8978-l996)中从严控制的污染物质——重金属离子铬,必须单独处理。

本文主要介绍我们为国内某铝材厂喷涂车间设计的含铬废水处理系统,处理后的废水水质达到了国家规定的一级排放标准,经厂区排水管网直接排人附近河流。2 废水处理工艺

2.1 废水水量、水质和排放标准

喷涂车间的总排水量为12m/h。为减少投资降低含铬废水的处理规模,对喷涂车间排出的性质不同的废水分别进行治理,即将生产线前段化学处理排出的酸碱废水与氧化车间酸碱废水合并处理,对铬化槽以后排出的含铬废水单独处理。这样一来,须处理的含铬废水水量减少为5m/h。该工程的含铬废水水质及需要达到的排放标准如表1所示。2.2废水处理工艺

含铬废水中的主要污染物是铬离子,适合采用物理化学方法处理。由于重金属离子铬对水体和鱼类养殖危害极大,国家环保部门对此类污染物从严控制,因此含铬废水的处理原则是确保稳定达标。在含铬废水的处理过程中,溶解态的六价铬离子会转变成固体物质从水中沉淀分离出来,产生的含铬污泥属于危险废弃物,需要运到危险废弃物处置中心单独处理,不能随便填埋。因此,应当尽量减少含铬污泥的产量并避免含铬污泥污染其它污泥,以降低污泥处理的费用,减少运行成本。废水处理工艺流程如图1所示。

因为含铬废水的处理水量较小,而对处理后的水质稳定达标要求很高,故本设计采用序批的间歇方式进行处理。采用三座含铬废水综合处理槽,每座槽都具有储存、调节、还原、中和、絮凝、沉淀的作用。从喷涂车间来的含铬废水进入吸水池,由提升泵依次送入三座综合处理槽,在槽中均和水质、水量之后,与加入的还原剂进行充分的还原反应,然后向槽中投人中和剂进行中和,中和后的废水再与加入的絮凝剂进行絮凝混合、反应,静止沉淀。理想的沉淀条件保证了固、液的有效分离。

综合处理槽排泥后,清水由过滤泵送入机械过滤器、活性炭吸附塔,过滤和吸附之后的出水可回用于生产或排入厂区排水管网。

沉淀之后的污泥定期排入含铬污泥池,然后由污泥泵送入厢式压滤机压成泥饼,泥饼作为含重金属的危险废弃物送往专门的处置场所。厢式压滤机排出的滤液和机械过滤器、活性炭吸附塔排出的反冲洗废水都返回含铬废水吸水池进行再次处理。

以下对各主要处理工序进行详细说明。2.2.1 储存调节、还原反应工序

储存调节的作用,一是临时存放喷涂车间送来的含铬废水,二是均和水质、调节水量。

六价铬与还原剂的反应效果是影响铬去除的关键因素之一。稳定而适当的pH值和充足的反应时间是反应顺利进行的必要保障。本设计采用间歇处理方式,对控制还原反应稳定进行是有利的。在综合处理槽中设有pH在线自动监测系统和酸投加系统,以保证废水的pH值满足设计要求。

为减少污泥量,采用亚硫酸钠作为还原剂,并利用硫酸调节废水的pH值。2.2.2 中和处理工序

充分还原之后,在综合处理槽中投入碱性中和剂。根据pH在线自动监测系统调整并显示废水的pH值,以保证水中的重金属离子形成沉淀的最佳pH值,使废水中的三价铬转化为固体氢氧化物析出,同时还需要保证出水的pH值达标和废水絮凝反应的最佳pH值范围。

为减少含铬污泥量,本设计采用工业烧碱作为碱性中和剂。2.2.3絮凝沉淀处理工序

中和反应生成的金属氢氧化物颗粒细小,单纯依靠重力沉淀很困难,必须投加混凝剂和絮凝剂。在絮凝沉淀处理工序,经中和处理之后的废水与投入的混凝剂和絮凝剂进行充分的混合、反应,使废水中的悬浮物形成粗大的矾花之后,进行沉淀处理。在完全静止的情况下沉淀,具有处理效果好、生产效率高、药剂用量少等优点。

沉淀之后的综合处理槽中泥水分离,上部是清澈的废水,下部是沉淀的污泥。此时首先将槽中的污泥排入污泥池,然后用过滤泵将槽中清水送往过滤吸附处理单元。腾空的综合处理槽进入下一个处理周期。2.2.4过滤吸附处理

过滤吸附处理单元由机械过滤器和活性炭吸附塔两部分组成,是含铬废水处理的把关环节,用来进一步降低废水中铬含量,确保处理后的水质符合要求。针对该工程待处理的含铬废水而言,活性炭对六价铬具有十分优异的优先吸附能力,去除六价铬的能力很强,并且可以同时去除三价铬;活性炭免去了离子交换树脂再生和再生废液处理的诸多麻烦。因此,设计中采用活性炭吸附塔作为含铬废水处理的把关工艺;机械过滤器用来保护活性炭吸附塔免受悬浮物的堵塞。

过滤器和吸附塔的反冲洗排水含有大量的悬浮物,可返回含铬废水调节反应池进行再次处理。

2.3 废水处理设施

主要处理设施及其规格数量见表2 处理效果

该工程2002年底投产,至今已经过一年半的运行。实测数据表明,废水水量为4-8m/h,初始废水中Cr含量为100-180mg/L(平均150 mg/L);经过上述处理,沉淀后的出水中Cr

6+6+

6+3的含量为0.5~1.5mg/L,Cr的总含量为1.0~2.5mg/L;过滤吸附后的出水中Cr的含量为0.05~0.2mg/L,Cr的总含量为0.5~1.0mg/L,出水水质满足国家排放标准的要求。

实际操作表明,还原反应的效果对出水中的Cr含量和Cr的总含量影响较大。pH值的控制和充足的反应时间可以确保将六价铬充分地还原成三价铬,从而给下一步的处理打下基础。4 结语

① 采用本文所述的处理工艺可以保证含铬废水的稳定达标排放;

② 实践表明,充分而完善的还原反应是六价铬达标排放的必要条件,在设计时应予重视; ③ 过滤和吸附处理是整套系统的把关工序,对减小水质、保证废水的稳定达标排放十分关键;

④ 应重视含重金属污泥的二次污染。设计中应充分考虑特殊污泥的处置问题,确定合理的处理工艺,避免实际远行时给业主造成困扰

一、含铬废水的来源 1.金属生产中:

铬渣是重铬酸钠,金属铬生产中排出的废渣。铬渣外观有黄、黑、赭等颜色,大多呈粉末状。渣中含有镁、钙、硅、铁、铝和没有反应的三氧化二铬。2.水泥中:

水泥作为基础工业的“食粮”应用于各个领域,其中的六价铬也就随着扩散至自来水的处理池、我们居住的房屋等各个地方。铬元素在水泥中的存在状态不同,其中,六价铬逐渐向外浸出,对水质有影响。3.生活饮用水:

生活饮用水含有少量的铬,主要来自于工业废水,冶金,耐火材料,化工,电镀,制革等工废料,6+水中以六价铬和三价铬良种价态形式出现,六价铬的毒性较强,约为三价铬的100倍,六价铬又主要以铬酸盐的形式存在。

二、含铬废水处理常用方法 1.药剂还原沉淀法

还原沉淀法是目前应用较为广泛的含铬废水处理方法。基本原理是在酸性条件下向废水中加入还原剂,将Cr6+还原成Cr3+,然后再加入石灰或氢氧化钠,使其在碱性条件下生成氢氧化铬沉淀,从而去除铬离子。可作为还原剂的有:SO2、FeSO4、Na2SO3、NaHSO3、Fe等。还原沉淀法具有一次性投资小、运行费用低、处理效果好、操作管理简便的优点,因而得到广泛应用,但在采用此方法时,还原剂的选择是至关重要的一个问题。2.SO2还原法

2.1 二氧化硫还原法设备简单、效果较好,处理后六价铬含量可达到0.l mg/L。但二氧化硫是有害气体,对操作人员有影响,处理池需用通风没备,另外对设备腐蚀性较大,不能直接回收铬酸。烟道气中的二氧化硫处理含铬(VI)废水,充分利用资源,以废治废,节约了处理成本,但也同样存在以上的问题。其反应原理为: 3SO2 + Cr2O72-+ 2H+ = Cr3+ + 3SO42-+ H20 Cr3+ + 30H-= Cr(OH)3↓ 2.2 工艺流程图如图所示:

2.3 二氧化硫法处理含铬废水的步骤

1)将硫磺燃烧产生的二氧化硫通入废水中,与水作用生成亚硫酸,废水中六价铬被亚硫酸还原为三价铬,生成硫酸铬。

2)用碱中和废水,使其pH值为8,使三价铬以氢氧化铬的形式沉淀下来;过量的亚硫酸被中和生成亚硫酸钠,并逐渐被氧化成硫酸钠。

3)将废水送入平流式沉淀池中进行分离,上部澄清水排放,下部沉淀经干化场脱水,泥饼的主要成分为氢氧化铬,此外还含有少量其他金属氢氧化物。用二氧化硫作还原剂,处理含铬废水,除铬效果好,进水中六价铬含量为81~430.08 mg/L时,出水中六价铬含量均能达到排放标准。该工艺基本上实现了二氧化硫的闭路循环,排放尾气中二氧化硫的含量小于15mg/L。该工艺设备简单、操作方便、性能稳定、一次投资省、占地面积小、容易上马,处理费用低、技术经济等条件约束小。所以一般小型的企业(如乡镇企业)可以采用二氧化硫法处理含铬废水。3.铁氧体法

铁氧体法实际上是硫酸亚铁法的发展,向含铬废水中投加废铁粉或硫酸亚铁时,Cr6+ 可被还原成Cr3+。再加热、加碱、通过空气搅拌,便成为铁氧体的组成部分,Cr3+转化成类似尖晶石结构的铁氧体晶体而沉淀。铁氧体是指具有铁离子、氧离子及其他金属离子所组成的氧化物。其具体反应为:

Cr2O72-+ 6Fe2+ + 14H+ = 2Cr3+ + 6Fe3+ + 7H20 Fe2+ + Fe3+ + Cr3+ + O2 = Fe3+[Fe2+ Crx3+ Fe2+1-x]O4 铁氧体法不仅具有还原法的一般优点,还有其特点,即铬污泥可制作磁体和半导体,这样不但使铬得以回收利用,又减少了二次污染的发生,出水水质好,能达到排放标准。但是,铁氧体法也有试剂投量大,能耗较高,不能单独回收有用金属,处理成本较高的缺点。4.铁屑铁粉处理法

铁屑铁粉由于原料易得,价格便宜,处理含铬(VI)等重金属废水效果较好,但该法要消耗较多的酸(电镀厂可用车间生产的废酸),同时污泥量较大,铁屑处理含铬废水有多种作用:(1)还原作用,由于铁屑中含有杂质,它们与铁的电位不同,铁作为阳极溶解,给出电子成为二价铁离子,电子转移到阴极被Cr2O72-和H+接受成为Cr3+和H2 ,阴极生成的二价铁离子叉将Cr2O72-还原;(2)置换作用,废水中电位比铁正的金属离子与金属铁屑粉末发生置换作用;(3)凝聚作用,反应生成的氢氧化铁本身就是一种凝聚剂,有利于最后氢氧化铬等的沉降;(4)中和作用,由于反应中要消耗太量的酸,随着反应进行PH值不断升高,使Fe呈氢氧化铁析出;(5)吸附作用,经X射线微量分析,在铁粉表面可见到吸附的金属,因此认为铁粉具有吸附作用。5.钡盐法

利用溶解积原理,向含铬废水中投加溶度积比铬酸钡大的钡盐或钡的易溶化合物,使铬酸根与钡离子形成溶度积很小的铬酸钡沉淀而将铬酸根除去。废水中残余Ba2+再通过石膏过滤,形成硫酸钡沉淀,再利用微孔过滤器分离沉淀物[9]。反应式是: BaCO3 + H2Cr04→ BaCrO4↓+ CO2 + H2O Ba2+ +CaSO4 → BaSO4↓ + Ca2+

钡盐法优点是工艺简单,效果好,处理后的水可用于电镀车间水洗工序,还可回收铬酸,复生BaCO3;其缺点是过滤用的微孔塑料管加工比较复杂,容易阻塞,清洗不便,处理工艺流程较为复杂。6.电解还原法

电解还原法是铁阳极在直流电作用下,不断溶解产生亚铁离子,在酸性条件下,将Cr6+还原为Cr3+。

用电解法处理含铬废水,优点是效果稳定可靠,操作管理简单,设备占地面积小,废水中的重金属离子也能通过电解有所降低。缺点是耗电量较大,消耗钢板,运行费用较高,沉渣综合利用等问题有待进一步解决。7.离子交换法

离子交换法是借助于离子交换剂上的离子和水中的离子进行交换反应除去水中有害离子。目前在水处理中广泛使用的是离子交换树脂。对含铬废水先调pH值,沉淀一部分Cr3+后再行处理。将废水通过H型阳离子交换树脂层,使废水中的阳离子交换成H+而变成相应的酸,然后再通过OH型阴离子交换成OH-,与留下的H+结合生成水。吸附饱和后的离子交换树脂,用NaOH进行再生。

离子交换法的优点是处理效果好,废水可回用,并可回收铬酸。尤其适用于处理污染物浓度低、水量小、出水要求高的废水。缺点是工艺较为复杂,且使用的树脂不同,工艺也不同;一次投资较大,占地面积大,运行费用高,材料成本高,因此对于水量很大的工业废水,该法在经济上不适用。

三、含铬废水其他处理方法 1.生物法

生物法治理含铬废水,国内外都是近年来开始的。生物法是治理电镀废水的高新生物技术,适用于大、中、小型电镀厂的废水处理,具有重大的实用价值,易于推广。国内外对SRB菌(硫酸盐还原菌)、SR系列复合功能菌、SR复合能菌、脱硫孤菌、脱色杆菌(Bac.Dechromaticans)、生枝动胶菌(Zoolocaramiger a)、酵母菌、含糊假单胞菌、荧光假单胞菌、乳链球菌、阴沟肠杆菌、铬酸盐还原菌等进行研究,从过去的单一菌种到现在多菌种的联合使用,使废水的处理从此走向清洁、无污染的处理道路。将电镀废水与其它工业废弃物及人类粪便一起混合,用石灰作为凝结剂,然后进行化学—凝结—沉积处理。研究表明,与活性的淤泥混合的生物处理方法,能除去Cr6+和Cr3+,NO3氧化成NO3-.已用于埃及轻型车辆公司的含铬废水的处理.生物法处理电镀废水技术,是依靠人工培养的功能菌,它具有静电吸附作用、酶的催化转化作用、络合作用、絮凝作用、包藏共沉淀作用和对pH值的缓冲作用。该法操作简单,设备安全可靠,排放水用于培菌及其它使用;并且污泥量少,污泥中金属回收利用;实现了清洁生产、无污水和废渣排放。投资少,能耗低,运行费用少。2.膜分离法

膜分离法以选择性透过膜为分离介质,当膜两侧存在某种推动力(如压力差、浓度差、电位差等)时,原料侧组分选择性透过膜,以达到分离、除去有害组分的目的。目前,工业上应用的较为成熟的工艺为电渗析、反渗透、超滤、液膜。别的方法如膜生物反应器、微滤等尚处于基础理论研究阶段,尚未进行工业应用。电渗析法是在直流电场作用下,以电位差为推动力,利用离子交换膜的选择透过性,从而使废水得到净化。反渗透法是在一定的外加压力下,通过溶剂的扩散,从而实现分离。超滤法也是在静压差推动下进行溶质分离的膜过程。液膜包括无载体液膜、有载体液膜、含浸型液膜等。液膜分散于电镀废水时,流动载体在膜外相界面有选择地络合重金属离子,然后在液膜内扩散,在膜内界面上解络,重金属离子进入膜内相得到富集,流动载体返回膜外相界面,如此过程不断进行,废水得到净化。膜分离法的优点:能量转化率高,装置简单,操作容易,易控制、分离效率高。但投资大,运行费用高,薄膜的寿命短。主要用于回收附加值高的物质,如金等。电镀工业漂洗水的回收是电渗析在废液处理方面的主要应用,水和金属离子可达到全部循环利用,整个过程可在高温和更广的pH值条件下运行,且回收液浓度可大大提高,缺点为仅能用于回收离子组分。液膜法处理含铬废水,离子载体为TBP(磷酸三丁酯),Span80为膜稳定剂,工艺操作方便,设备简单,原料价廉易得。也有选用非离子载体,如中性胺,常用Alanmine336(三辛胺),用2%Span80作表面活性剂,选用六氯代1,3-丁二烯(19%)和聚丁二烯(74%)的混合物作溶剂,分离过程分为:萃取、反萃等步骤.近来,微滤也有用于处理含重金属废水,可去除金属电镀等工业废水中有毒的重金属如镉、铬等。3.黄原酸酯法

70年代,美国研制成新型不溶重金属离子去除剂ISX,使用方便,水处理费用低。ISX不仅能脱除多种重金属离子,而且在酸性条件下能将Cr6+还原为Cr3+,但稳定性差。不溶性淀粉黄原酸酯脱除铬的效果好,脱除率>99%,残渣稳定,不会引起二次污染。钟长庚等人用稻草代替淀粉制成稻草黄原酸酯,处理含铬废水,铬的脱除率高,很容易达到排放标准。研究者认为稻草黄原酸酯脱除铬是黄原酸铬盐、氢氧化铬通过沉淀、吸附几种过程共同起作用,但黄原酸铬盐起主要作用。此法成本低,反应迅速,操作简单,无二次污染。具体参见http://www.xiexiebang.com更多相关技术文档。4.光催化法

光催化法是近年来在处理水中污染物方面迅速发展起来的新方法,特别是利用半导体作催化剂处理水中有机污染物方面已有许多报道。以半导体氧化物(ZnO/TiO2)为催化剂,利用太阳光光源对电镀含铬废水加以处理,经90min太阳光照(1182.5W/m2),使六价铬还原成三价铬,再以氢氧化铬形式除去三价铬,铬的去除率达99%以上。5.槽边循环化学漂洗

这一技术由美国ERG/Lancy公司和英国的Ef fluentTreatmentLancy公司开发,故也叫Lancy法。它是在电镀生产线后设回收槽、化学循环漂洗槽及水循环漂洗槽各一个,处理槽设在车间外面。镀件在化学循环漂洗槽中经低浓度的还原剂(亚硫酸氢钠或水合肼)漂洗,使90%的带出液被还原,然后镀件进入水漂洗槽,而化学漂洗后的溶液则连续流回处理槽,不断循环。加碱沉淀系在处理槽中进行,它的排泥周期很长.广州电器科学研究所开发了分别适用于各种电镀废水的三大类体系的槽边循环化学漂洗处理工艺,水回用率高达95%、具有投药少、污泥少且纯度高等优点。有时,用槽边循环和车间循环相结合。6.水泥基固化法处理中和废渣

对于暂时无法处理的有毒废物,可以采用固化技术,将有害的危险物转变为非危险物的最终处置办法。这样,可避免废渣的有毒离子在自然条件下再次进入水体或土壤中,造成二次污染。当然,这样处理后的水泥固化块中的六价铬的浸出率是很低的。

第二篇:电镀含铬废水处理资料总结

电镀含铬废水处理资料总结

一.还原沉淀法

化学还原法是利用硫酸亚铁、亚硫酸盐、二氧化硫等还原剂将废水中六价铬还原成三价铬离子,加碱调整pH值,使三价铬形成氢氧化铬沉淀除去。这种方法设备投资和运行费用低,主要用于间歇处理。

常用处理工艺为在第一反应池中先将废水用硫酸调pH值至2~3,再加入还原剂,在下一个反应池中用NaOH或Ca(OH)2调pH值至7~8,生成Cr(OH)3沉淀,再加混凝剂,使Cr(OH)3沉淀除去。改良的工艺为在第一反应池中直接投加硫酸亚铁,用NaOH或Ca(OH)2调pH值至7~8,生成Cr(OH)3沉淀,再加混凝剂,使Cr(OH)3沉淀除去。使用该技术后,含铬废水日处理量为1000M3,废水中铬含量为10mg/l。该技术适用于含铬工业废水处理。

在一些报道中也有提到利用聚合氯化铝铁处理电镀含铬废水。聚合氯化铝铁兼有传统絮凝剂PAC ,PFC的优点,形成的絮凝体大而重,沉降速度快。其出水色度比聚合氯化铁好,除浊效果和絮凝体沉降性能又优于聚合氯化铝。具体报道内容附于文后。

二.电解法沉淀过滤

1.工艺流程概况

电镀含铬废水首先经过格栅去除较大颗粒的悬浮物后自流至调节池, 均衡水量水质, 然后由泵提升至电解槽电解, 在电解过程中阳极铁板溶解成亚铁离子, 在酸性条件下亚铁离子将六价铬离子还原成三价铬离子, 同时由于阴极板上析出氢气, 使废水pH 值逐步上升, 最后呈中性。此时Cr3+、Fe3+ 都以氢氧化物沉淀析出, 电解后的出水首先经过初沉池,然后连续通过(废水自上而下)两级沉淀过滤池。一级过滤池内有填料: 木炭、焦炭、炉渣;二级过滤池内有填料: 无烟煤、石英砂。污水中沉淀物由过滤池填料过滤、吸附, 出水流入排水检查井。而后通过泵进入循环水池作为冷却用水。过滤用的木炭、焦炭、无烟煤、炉渣定期收集在锅炉房掺烧。

2.主要设备

调节池1 座;初沉池1 座、沉淀过滤池2 座;循环水池1 座;电源控制柜、电解槽、电解电源、电解电压1 套;水泵5 台。

3.结果与分析

某电镀厂电镀废水处理设备在正常工况条件下, 间隔不同的时间多次取样,。

电镀含铬废水采用电解法沉淀过滤工艺处理后全部回用, 过滤池内填料定期集中于锅炉房掺烧, 达到了综合治理电镀含铬废水的目的。

该处理技术虽然运行可靠, 操作简单, 但应注意几个方面: a)需要定期更换极板;b)在一定的酸性介质中, 氢氧化铬有被重新溶解的可能;c)沉淀过滤池内的填料必须定期处理, 焚烧彻底, 否则会引起二次污染。由此可见, 对处理设施加强管理非常重要。

4.结论

1)该处理工艺对电镀含铬废水治理彻底, 过滤池内填料定期统一处理, 不会引起二次污染;处理后清水全部回用, 可节省水资源, 具有明显的经济效益。

2)该工艺投资较小, 技术成熟, 运行稳定可靠,操作方便, 易于管理, 适应于不同规

模的电镀生产企业。

三.其他国内外含铬废水处理方法的研究进展

1.1 生物法

生物法治理含铬废水,国内外都是近年来开始的。生物法是治理电镀废水的高新生物技术,适用于大、中、小型电镀厂的废水处理,具有重大的实用价值,易于推广。国内外对SRB菌(硫酸盐还原菌)[1]、SR系列复合功能菌[2]、SR复合能菌[3]、脱硫孤菌[4]、脱色杆菌(Bac.Dechromaticans)、生枝动胶菌(Zoolocaramiger a)[5]、酵母菌[6]、含糊假单胞菌、荧光假单胞菌[7]、乳链球菌、阴沟肠杆菌、铬酸盐还原菌[8]等进行研究,从过去的单一菌种到现在多菌种的联合使用,使废水的处理从此走向清洁、无污染的处理道路。将电镀废水与其它工业废弃物及人类粪便一起混合,用石灰作为凝结剂,然后进行化学—凝结—沉积处理。研究表明,与活性的淤泥混合的生物处理方法,能除去Cr6+和Cr3+,NO3氧化成NO3-。已用于埃及轻型车辆公司的含铬废水的处理

[9]。

生物法处理电镀废水技术,是依靠人工培养的功能菌,它具有静电吸附作用、酶的催化转化作用、络合作用、絮凝作用、包藏共沉淀作用和对pH值的缓冲作用。该法操作简单,设备安全可靠,排放水用于培菌及其它使用;并且污泥量少,污泥中金属回收利用;实现了清洁生产、无污水和废渣排放。投资少,能耗低,运行费用少。

1.2 膜分离法

膜分离法以选择性透过膜为分离介质,当膜两侧存在某种推动力(如压力差、浓度差、电位差等)时,原料侧组分选择性透过膜,以达到分离、除去有害组分的目的。目前,工业上应用的较为成熟的工艺为电渗析、反渗透、超滤、液膜。别的方法如膜生物反应器、微滤等尚处于基础理论研究阶段,尚未进行工业应用。电渗析法是在直流电场作用下,以电位差为推动力,利用离子交换膜的选择透过性,从而使废水得到净化。反渗透法是在一定的外加压力下,通过溶剂的扩散,从而实现分离。超滤法也是在静压差推动下进行溶质分离的膜过程。液膜包括无载体液膜、有载体液膜、含浸型液膜等。液膜分散于电镀废水时,流动载体在膜外相界面有选择地络合重金属离子,然后在液膜内扩散,在膜内界面上解络,重金属离子进入膜内相得到富集,流动载体返回膜外相界面,如此过程不断进行,废水得到净化。膜分离法的优点:能量转化率高,装置简单,操作容易,易控制、分离效率高。但投资大,运行费用高,薄膜的寿命短。

主要用于回收附加值高的物质,如金等。

电镀工业漂洗水的回收是电渗析在废液处理方面的主要应用,水和金属离子可达到全部循环利用,整个过程可在高温和更广的pH值条件下运行,且回收液浓度可大大提高,缺点为仅能用于回收离子组分。液膜法处理含铬废水,离子载体为TBP(磷酸三丁酯),Span80为膜稳定剂,工艺操作方便,设备简单,原料价廉易得。也有选用非离子载体,如中性胺,常用Alanmine336(三辛胺),用2%Span80作表面活性剂,选用六氯代1,3-丁二烯(19%)和聚丁二烯(74%)的混合物作溶剂,分离过程分为:萃取、反萃等步骤[10,11]。近来,微滤也有用于处理含重金属废水,可去除金属电镀等工业废水中有毒的重金属如镉、铬等

[12,13]。

1.3 黄原酸酯法

70年代,美国研制成新型不溶重金属离子去除剂ISX[14~16],使用方便,水处理费用低。ISX不仅能脱除多种重金属离子,而且在酸性条件下能将Cr6+还原为Cr3+,但稳定性差。不溶性淀粉黄原酸酯[17]脱除铬的效果好,脱除率>99%,残渣稳定,不会引起二次污染。钟长庚[18,19]等人用稻草代替淀粉制成稻草黄原酸酯,处理含铬废水,铬的脱除率高,很容易达到排放标准。研究者认为稻草黄原酸酯脱除铬是黄原酸铬盐、氢氧化铬通过沉淀、吸附几种过程共同起作用,但黄原酸铬盐起主要作用。此法成本低,反应迅速,操作简单,无二

次污染。

1.4 光催化法[20,21]

光催化法是近年来在处理水中污染物方面迅速发展起来的新方法,特别是利用半导体作催化剂处理水中有机污染物方面已有许多报道。以半导体氧化物(ZnO/TiO2)为催化剂,利用太阳光光源对电镀含铬废水加以处理,经90min太阳光照(1182.5W/m2),使六价铬还原成三价铬,再以氢氧化铬形式除去三价铬,铬的去除率达99%以上。

1.5 槽边循环化学漂洗

这一技术由美国ERG/Lancy公司和英国的Ef fluentTreatmentLancy公司开发,故也叫Lancy法。它是在电镀生产线后设回收槽、化学循环漂洗槽及水循环漂洗槽各一个,处理槽设在车间外面。镀件在化学循环漂洗槽中经低浓度的还原剂(亚硫酸氢钠或水合肼)漂洗,使90%的带出液被还原,然后镀件进入水漂洗槽,而化学漂洗后的溶液则连续流回处理槽,不断循环。加碱沉淀系在处理槽中进行,它的排泥周期很长[22]。广州电器科学研究所开发了分别适用于各种电镀废水的三大类体系的槽边循环化学漂洗处理工艺,水回用率高达95%、具有投药少、污泥少且纯度高等优点。有时,用槽边循环和

车间循环相结合[23]。

1.6 水泥基固化法处理中和废渣[24]

对于暂时无法处理的有毒废物,可以采用固化技术,将有害的危险物转变为非危险物的最终处置办法。这样,可避免废渣的有毒离子在自然条件下再次进入水体或土壤中,造成二次污染。当然,这样处理后的水泥固化块中的六价铬的浸出率是很低的。

电镀含铬废液及污泥的综合利用

由于电镀含铬老化废液有害物质含量高,成分复杂,在综合利用之前应对各种废液进行单独和分类处理。对于镀锌钝化液、铜钝化液及含磷酸的铝电解抛光液均用酸碱调节pH;对于阴离子交换树脂,只需将它变为Na2CrO4即可。

2.1 利用铬污泥生产红矾钠[25]

在高温碱性条件介质Na2CrO4中三价铬可被空气氧化为Na2Cr2O7,同时污泥中所含的铁、锌等转化为相应的可溶盐NaFeO

2、Na2ZnO2。用水浸取碱熔体时,大部分铁分解为Fe(OH)3沉淀而除去。将滤液酸化至pH<4,Na2CrO4即转变为Na2Cr2O7,利用Na2SO4与Na2Cr2O7溶解度差异,分别结晶析出。采用高温碱性氧化铬污泥制红矾钠的条件是n(Na2CO3)∶n(Cr2O3)=3.0∶1.0,温度780℃,时间

2.5h,铬的转化率在85%以上。

2.2 生产铬黄[26]

利用纯碱作沉淀剂去除电镀废液中的杂质金属离子,再利用净化后的电镀废液替代部分红矾钠生产铅铬黄。电镀液加入Na2CO3饱和液后,调整pH至8.5~9.5。进行过滤,滤液备用。在碱性条件下将滤渣中的Cr3+用H2O2氧化为Cr6+,再经过滤,滤液与上述滤液混合。将滤液与硝酸铅溶液和助剂,在50~60℃反应1h,然后经过滤、水洗,洗去氯根、硫酸根以及其它部分可溶性杂质,再经干燥粉碎即得成品铅铬黄。利用电镀废液生产铅铬黄,不仅解决了污染问题,而且使电镀废液中的铬得到了回收利用。据估算,按年处理电镀废液200t,年平均回收18t红矾钠,可实现年创收4万余元。效益可观。

2.3 生产液体铬鞣剂及皮革鞣剂碱式硫酸铬[27,28]

含铬废液先用氢氧化钠去除金属离子杂质,控制pH=5.5~6.0,然后过滤,滤液待用,污泥用铁氧体无害化处理。然后,在滤液中投加还原剂葡萄糖,使Na2Cr2O7还原为Cr(OH)SO4,在100℃条件下,进一步聚合,当碱度为40%时,分子式为4Cr(OH)3·3Cr2(SO4)3,即为铬鞣剂。河北省无极县某皮革厂就是利用电镀含铬废水生产液体铬鞣剂。按每天生产5t液体铬鞣剂,每天可得利润为6000余元。可见利用含铬废液生产铬鞣剂的经济效益是十分显著的。另外,可将含铬的污泥与碳粉混合,在高温下煅烧,从而可制得金属铬[29]。因为含铬污泥是电镀车间污泥的主要品种,根据电镀处理方法不同,污泥的回收利用也不同[30]。电解法污泥污泥

1)做中温变换催化剂的原料;(2)做铁铬红颜料的原料。化学法的1)回收氢氧化铬;(2)回收三氧化二铬抛光膏。铁氧体污泥做磁性材料的原料等等。

第三篇:废水处理工程典型解决方案

废水处理工程典型解决方案

一. 生活污水(小区域)处理工程 二. 医院污水处理 三. 食品废水 四. 印染废水

印染废水种类较多,主要分为棉布染正,化纤织物染整,印花、毛纺染整(含羊毛染色)等。棉布染整煮炼废水含有大量PVC化学浆料,化纤织物碱减量废水含有大量对苯二甲酸二乙酯水解产物,两种废水浓度高,碱度大,且不易生物降解,处理难度极大。五. 制药污水

(一).水质水量及处理要求:

1、设计处理水量:

Q=200m/d(其中引入生活污水50 m/d)

2、设计原工业废水水质: CODcr=4000mg/L BOD5=2000mg/L NH3-N=500mg/L SS=250mg/L TP=100mg/L PH= 5~7

3、处理要求:

处理后水质达到《污水综合排放标准》,二级排放标准。

(二).设计依据

1、《污水综合排放标准》GB8978-1996,2、《建筑给水排水设计规范》,GBJ15-88;

3、工程建设的有关文件于设计资料及说明。

(三).废水处理工艺流程设计

1、工艺流程选择:

该废水属高浓度废水,且废水中含有较高浓度的氨氮和有机磷,为了调节废水中BOD5与N、P含量的比例,废水与厂区生活污水(50m/h)混合后进入处理系统。该废水利用传统处理工艺很难达到预期的处理效果。这里选用A+A/O处理工艺。

A/O处理工艺是Anaerobic-Anoxic-Oxic的英文缩写,它是厌氧-缺氧-好氧生物脱氮除磷工艺的简称,A/O工艺是在厌氧-好氧除磷工艺的基础上开发出来的,该工艺同时具有脱氮除磷的功能。A+A/O处理工艺由污泥负荷率很高的A段和污泥负荷率较低的B段(A/O段)

二级活性污泥系统串联组成,并分别有独立的污泥回流系统。该工艺于80年代初应用于工程实践,现在越来越广泛地得到了应用。1〕A+A/O工艺原理:

A+A/O生物处理工艺图如下所示: 22

222223

1

该工艺主要特点是不设初沉池,由A-B二段活性污泥系统串联运行,并各自有独立的污泥回流系统。原水经格栅进入A段,该段充分利用原污水中的微生物,并不断地繁殖,形成一个开放性生物动力学系统。A段污泥负荷率高达2~6kgBOD5/(kgMLSS.d),水力停留时间短(一般为30min),污泥龄短(0.3~0.5d)。A段中污泥以吸附为主,生物降解为辅,对污水中BOD的去除率可达40%~70%,SS的去除率达60%~80%,正是A段对悬浮物和有机物较彻底的去除,使整个工艺中以非生物降解的途径去除的BOD量大大提高,降低了运行和投资费用。

B段中,厌氧池主要是进行磷的释放,使污水中P的浓度升高,溶解性有机物被细胞吸收而使污水中BOD浓度下降;另外NH3-N因细胞的合成而被去除一部分,使污水中NH3-N浓度下降。但含量没有变化。在缺氧池中,反硝化菌利用污水中的有机物作碳源,将回流混合液中带入的大量NO3-N和 NO2-N还原为N2释放至空气,因此BOD浓度继续下降,NO3-N浓度大幅度下降,而磷的变化很小。

在好氧池中,有机物被微生物生化降解,而继续下降;有机氮被氨化继而被硝化,使NH3-N浓度显著下降,但随着硝化过程使NO3-N的浓度增加,而P随着聚磷菌的过量摄取,也以较快的速率下降。

所以,A/O工艺它可以同时完成有机物的去除、硝化脱氮、磷的过量摄取而被去除等功能,脱氮的前提是NH3-N应完全硝化,好氧池能完成这一功能。缺氧池则完成脱氮功能。厌氧池和好氧池联合完成除磷功能。2〕A+A/O工艺的特点:

A、该工艺中A段负荷高达2~6kgBOD5/(kgMLSS.d),因此具有很强的抗冲击负荷能力和具有对PH、毒物影响的缓冲能力,活性污泥中全部是繁殖速度很快的细菌。

B、A段活性污泥吸附能力强,能吸附污水中某些重金属、难降解有机物以及氮、磷等植物性营养物质,这些物质通过剩余污泥的排放得到去除。

C、B段中,厌氧、缺氧、好氧三种不同的环境条件和不同种类微生物菌群的有机配合,能同时具有去除有机物、脱氮除磷的功能。

D、在同时脱氮除磷去除有机物的工艺中,该工艺流程最为简单,总的水力停留时间也少于同类其它工艺。E、在厌氧-缺氧-好氧交替运行下,丝状菌不会大量繁殖,SVI一般小于100,不会发生污泥膨胀。F、污泥中含磷量高,一般为2.5%以上。

G、厌氧-缺氧池只需轻缓搅拌,使之混合,而以不增加溶解氧为度。

H、沉淀池要防止发生厌氧、缺氧状态,以避免聚磷菌释放磷而降低出水水质和反硝化产生N2而干扰沉淀。I、脱氮效果受混合液回流比大小的影响,除磷效果受回流污泥中挟带DO和硝酸态氧的影响。

六. 洗毛废水处理

单纯洗毛厂的污水浓度CODcr比较高,可达20000~60000mg/l左右,是废水处理中的难点。大型毛纺厂有洗毛线和染色线,如果直接把洗毛废水染色废水混合处理,亦会给达标增加难度。七. 钢铁废水

冶金行业中小钢铁废水污染,一般主要有酸碱废水,含油废水,乳化液废水,循环冷却水处理和脱盐水处理及部分生活污水。八. 涂装废水

涂装工艺在金属表面处理中运用极其广泛,在生产过程中基本上都有废水产生,废水中呈酸性且含有多种22-

- 2

金属离子和非金属离子,其中有些为一类毒物,必须经处理后达标后排放。

电镀和金属加工业废水中锌的主要来源是电镀或酸洗的拖带液。污染物经金属漂洗过程又转移到漂洗水中。酸洗工序包括将金属(锌或铜)先浸在强酸中以去除表面的氧化物,随后再浸入含强铬酸的光亮剂中进行增光处理。该废水中含有大量的盐酸和锌、铜等重金属离子及有机光亮剂等,毒性较大,有些还含致癌、致畸、致突变的剧毒物质,对人类危害极大。因此,对电镀废水必须认真进行回收处理,做到消除或减少其对环境的污染。注册香港公司

电镀废水处理设备由调节池、加药箱、还原池、中和反应池、pH调节池、絮凝池、斜管沉淀池、厢式压滤机、清水池、气浮反应,活性炭过滤器等组成。典型电镀废水处理工艺流程图

工艺流程说明:钝化浓缩液用提升泵将浓缩液输入到还原池内,通过计量泵将硫酸液加入还原池内,使还原池pH值达到2-3,然后通过计量泵将还原剂亚硫酸加入还原池内,将六价铬还原为三价铬。经过还原处理的钝化液和前处理,镀锌、镀镍水洗水进入大调节池中,各种废水在调节池中经过充分的均化后经提升泵提升至反应池1中,通过计量泵进入CaCl2,以破坏Zn2+的络合物,在反应池2中通过计量泵进入NaOH,调节pH值在9-11范围内,然后废水流入反应池3中,通过计量泵进入助凝剂PAM后进入斜板沉淀池中,金属氢氧化物形成污泥沉入污泥斗中,上清液自流进入中和池进行酸碱调节,调回pH值在6-9范围内,然后排放。斜板沉淀池中污泥定期排放至污泥池,用厢式压滤机处理成泥饼后外运深埋,污泥水返回调节池。

九. 造纸废水工程

纸浆造纸过程排放的主要污染物有: a、悬浮物:主要是纤维和纤维细料。

b、易生物降解有机物:半纤维素、甲醇、醋酸、糖类等。c、难生物降解有机物:木素和大分子碳水化合物。

d、毒性物质:硫化氢、甲基硫、甲硫醚及多种氯化有机化合物。e、酸碱物质 f、色度

废水经处理后可达到《污水综合排放标准》GB8978-1996,二级排放标准。

十.高浓度有机废水

高浓度有机污水是目前环保处理中的一道难题:常见的产业中味精污水,柠檬酸生产,蒸糖生产以及洗毛业都有这类污水,以及某些制药化工生产行业都有这类污水。

第四篇:含氟废水处理方案

综述了近年来国内外含氟水化学沉淀、絮凝沉淀、吸附三种处理工艺的研究进展,并对其除氟机理进行了讨论。认为三种处理工艺各有其特点及应用场合;在处理含氟水过程中,三种处理机理可能同时发生。

氟是人体必需的微量元素之一,饮用水适宜的氟质量浓度为0.5~1 mg/L。当饮用水中氟含量不足时,易患龋齿病;但若长期饮用氟质量浓度高于1 mg/L的水,则会引起氟斑牙病[1];长期饮用氟质量浓度为3~6 mg/L的水会引起氟骨病[2]。我国含氟地下水分布广泛,尤其是在西北干旱地区,约有7000万人饮用含氟量超标的水,导致不同程度的氟中毒。工业上,含氟矿石开采、金属冶炼、铝加工、焦炭、玻璃、电子、电镀、化肥、农药等行业排放的废水中常含有高浓度的氟化物,造成环境污染。

对于这些含氟废水,目前国内大多数生产厂尚无完善的处理没施,所排放的废水中氟含量指标尚未达到国家排放标准,严重污染着人类赖以生存的环境。按照国家工业废水排放标准,氟离子浓度应小于10 mg/L;对于饮用水,氟离子浓度要求在1 mg/L以下[3]。含氟废水的处理方法有多种,国内外常用的方法大致分为两类,即沉淀法和吸附法。除这两类工艺外,还有冷冻法、离子交换树脂除氟法[4]、活性炭除氟法、超滤除氟法、电渗析[5],至今很少推广应用于除氟工艺,主要是因为成本高、除氟率低。本文对近年来国内外含氟水化学沉淀、絮凝沉淀、吸附三种处理工艺的研究现状及工程应用进行综述。

化学沉淀法

对于高浓度含氟工业废水,一般采用钙盐沉淀法,即向废水中投加石灰,使氟离子与钙离子生成CaF2沉淀而除去。该工艺具有方法简单、处理方便、费用低等优点,但存在处理后出水很难达标、泥渣沉降缓慢且脱水困难等缺点。

氟化钙在18 ℃时于水中的溶解度为16.3 mg/L,按氟离子计为7.9 mg/L,在此溶解度的氟化钙会形成沉淀物。氟的残留量为10~20 mg/L时形成沉淀物的速度会减慢。当水中含有一定数量的盐类,如氯化钠、硫酸钠、氯化铵时,将会增大氟化钙的溶解度。因此用石灰处理后的废水中氟含量一般不会低于20~30 mg/L[6]。石灰的价格便宜,但溶解度低,只能以乳状液投加,由于生产的CaF2沉淀包裹在Ca(OH)2颗粒的表面,使之不能被充分利用,因而用量大。投加石灰乳时,即使其用量使废水pH达到12,也只能使废水中氟离子浓度下降到15 mg/L左右,且水中悬浮物含量很高[7]。当水中含有氯化钙、硫酸钙等可溶性的钙盐时,由于同离子效应而降低氟化钙的溶解度。含氟废水中加入石灰与氯化钙的混合物,经中和澄清和过滤后,pH为7~8时,废水中的总氟含量可降到10 mg/L左右。为使生成的沉淀物快速聚凝沉淀,可在废水中单独或并用添加常用的无机盐混凝剂(如三氯化铁)或高分子混凝剂(如聚丙烯酰胺)。为不破坏这种已形成的絮凝物,搅拌操作宜缓慢进行,生成的沉淀物可用静止分离法进行固液分离。在任何pH下[8],氟离子的浓度随钙离子浓度的增大而减小。在钙离子过剩量小于40 mg/L时,氟离子浓度随钙离子浓度的增大而迅速降低,而钙离子浓度大于100 mg/L时氟离子浓度随钙离子浓度变化缓慢。因此,在用石灰沉淀法处理含氟废水时不能用单纯提高石灰过剩量的方法来提高除氟效果,而应在除氟效率与经济性二者之间进行协调考虑,使之既有较好的除氟效果又尽可能少地投加石灰。这也有利于减少处理后排放的污泥量。

由于氟化物不是废水中唯一要被除去的污染物,因此要根据实际情况选择合适的处理方法。例如含氟废水中溶有碳酸钠、重碳酸钠时,直接投加石灰或氯化钙,除氟效果会降低。这是因为废水中存在着一定量的强电解质,产生盐效应,增加了氟化钙的溶解度,降低除氟效果。其有效的处理方法是先用无机酸将废水pH调到6~8之间,再与氯化钙等反应就可有效地除去氟离子。若废水中含有磷酸根离子,则先用石灰处理至pH大于7,再将沉淀物分离出来。对于成分复杂的含氟废水,可用加酸反调pH法[9],即首先在废水中加入过量的石灰,使pH=11,当钙离子不足时补加氯化钙,搅拌20 min,然后加盐酸使废水pH反调到 7.5~8,搅拌20 min,加入絮凝剂,搅拌后放置30 min,然后底部排泥,上清液排放。

近年来有些研究者提出在投加钙盐的基础上联合使用镁盐、铝盐、磷酸盐等工艺,处理效果比单纯加钙盐效果好。如阎秀芝[10]提出氯化钙与磷酸盐除氟法,其工艺过程是:先在废水中加入氯化钙,调pH至9.8~11.8,反应0.5 h,然后加入磷酸盐,再调pH为6.3~7.3,反应4~5 h,最后静止澄清4~5 h,出水氟质量浓度为5 mg/L左右。钙盐、磷酸盐、氟三者的摩尔比大约为(15~20)∶2∶1。文献中[11]报道了一种用氯化钙和三氯化铝联合处理含氟水的方法,其工艺过程是:先在废水中投加氯化钙,搅溶后再加入三氯化铝,混合均匀,然后用氢氧化钠调pH至7~8。沉降15 min后砂滤,出水氟离子浓度为4 mg/L。氯化钙、三氯化铝和氟的摩尔比为(0.8~1)∶(2~2.5)∶1。钙盐联合使用镁盐、铝盐、磷酸盐后,除氟效果增加[12],残氟浓度降低,主要是因为形成了新的更难溶的含氟化合物,剩余污泥和运行费用仅为原来的1/10。如钙盐与磷酸盐合用时,会生成Ca5(PO4)3F沉淀[10];氯化钙与三氯化铝合用时形成有钙、铝、氟组成的络合物沉淀,其具体组成和结构尚待进一步研究[12]。

絮凝沉淀法

氟离子废水的絮凝沉淀法常用的絮凝剂为铝盐。铝盐投加到水中后,利用Al3+与F-的络合以及铝盐水解中间产物和最后生成的Al(OH)3(am)矾花对氟离子的配体交换、物理吸附、卷扫作用去除水中的氟离子。与钙盐沉淀法相比,铝盐絮凝沉淀法具有药剂投加量少、处理量大、一次处理后可达国家排放标准的优点。硫酸铝、聚合铝等铝盐对氟离子都具有较好的混凝去除效果。使用铝盐时,混凝最佳pH为6.4~7.2[23~14],但投加量大,根据不同情况每 m3水需投加150~1000 g,这会使出水中含有一定量的对人体健康有害的溶解铝。使用聚铝后,投加量可减少一半左右,絮凝沉淀的pH范围扩大到5~8。聚铝的除氟效果与聚铝本身的性质有关,碱化度为75%的聚铝除氟最佳,投加量以水中F与 Al的摩尔比为0.7左右时最佳[15]。铝盐絮凝沉淀法也存在着明显的缺点,即使用范围小,若含氟量大,混凝剂使用量多,处理费用较大,产生污泥量多;氟离子去除效果受搅拌条件、沉降时间等操作因素及水中SO42-,Cl-等阴离子的影响较大,出水水质不够稳定,这与目前对混凝除氟机理认识还很不够有关,研究絮凝除氟机理具有明显的现实意义。

铝盐絮凝去除氟离子机理比较复杂,主要有吸附、离子交换、络合沉降三种作用机理。

(1)吸附。铝盐絮凝沉淀除氟过程为静电吸附,最直接的证据是AC或PAC含氟絮体由于吸附了带电荷的氟离子,正电荷被部分中和,相同pH条件下ζ电位要比其本身絮体要低。另一证据是当水中SO42-,Cl-等阴离子的浓度较高时,由于存在竞争,会使絮凝过程中形成的Al(OH)3(am)矾花对氟离子的吸附容量显著减少。

铝盐絮凝除氟过程中生成的具有很大表面积的无定性的Al(OH)3(am)絮体,对氟离子产生氢键吸附。氟离子半径小,电负性强,这一吸附方式很容易发生,这已在铝盐除氟絮体红外光谱中得到证实[16]。不管是化学吸附还是物理上的静电吸附,只要是离子吸附方式,就会使铝盐水解阳离子所带的正电荷降低,从而使絮体的ζ电位值下降。AC和 PAC含氟絮体的ζ电位都比本身絮体的ζ电位低,说明铝盐除氟过程中离子吸附是一重要的作用方式。

XPS试验表明[17],絮体Al(OH)3(am)对NaF和HF的吸附为分子吸附。这两种吸附的具体方式尚有待于进一步研究,最有可能的是氟离子先以氢键或静电作用方式吸附到絮体上,然后钠离子和氢离子作为电荷平衡离子吸附到上面而构成分子吸附。

(2)离子交换。氟离子与氢氧根的半径及电荷都相近,铝盐絮凝除氟过程中,投加到水中的 Al13O4(OH)147+等聚羟阳离子及其水解后形成的无定性Al(OH)3(am)沉淀,其中的OH-与F-发生交换,这一交换过程是在等电荷条件下进行的,交换后絮体所带电荷不变,絮体的ζ电位也不会因此升高或降低,但这一过程中释放出的OH-,会使体系的pH升高,说明离子交换也是铝盐除氟的一个重要的作用方式[18]。

(3)络合沉淀。F-能与Al3+等形成从AlF2+,AlF2+,AlF3到 AlF63-共6种络合物,溶液化学平衡的计算表明,在F-浓度为1×10-4~1×10-2 mol/L的铝盐混凝除氟体系中,pH为5~6的情况下,主要以AlF2+,AlF3,AlF4-和AlF52-等形态存在,这些铝氟络合离子在絮凝过程中会形成铝氟络合物(AlFx(OH)(3-x)和Na(x-3)AlFx)或夹杂在新形成的 Al(OH)3(am)絮体中沉降下来,絮体的IR和XPS谱图最终观察到的铝氟络离子AlFx(3-x)+一部分是络合沉降作用的结果,另一部分则可能是离子交换的产物[19]。

吸附方式

用于除氟的常用吸附剂主要有活性氧化铝、斜发沸石、活性氧化镁,近年来还报道了氟吸附容量较高的羟基磷灰石、氧化锆等。利用这些吸附剂可将氟浓度为10 mg/L的废水处理到1 mg/L以下,达到饮用水的标准。这些吸附剂的基本情况总结于表1。表1列出的为原水氟质量浓度为10 mg/L左右和最佳运行条件下的常用氟吸附剂吸附容量变化范围。

表1 常用氟吸附剂的吸附容量变化范围 吸附剂种类 吸附容量(mg/g)最佳吸附pH 斜发沸石[20] 0.06~0.3 7.3~7.9 活性氧化铝[21~22] 0.8~2.0 4.5~6 活性氧化镁[23] 6~14 6~7 粉煤灰[24] 0.01~0.03 3~5 羟基磷酸钙[25] 2~3.5 6~7 氧化锆树脂[26] 30 3.5~7

吸附法一般将吸附剂装入填充柱,采用动态吸附方式进行,操作简便,除氟效果稳定,但存在如下缺点:

(1)吸附容量低。由表1可见,常用的吸附剂如斜发沸石和活性氧化铝吸附容量都不大,在0.06~2 mg/g之间。新近报道的羟基磷酸钙的氟吸附量可达3.5 mg/g,活性氧化镁的氟吸附为6~14 mg/g,但使用过程中易流失。以稀土氧化锆为主制成的氟吸附剂的吸附量可高达30 mg/g。这些新型的吸附剂虽价格比较贵,但处理后,吸附容量下降缓慢,可反复使用,是一个发展方向。粉煤灰中含有活性氧化铝,也可用于处理含氟废水,可直接往废水中投加,以废治废,成本低廉,缺点是氟吸附量小,投加量大,通常需投加40~100 mg/L才能使出水氟含量达到排放标准[24]。

2)处理水量小。当水中氟离子浓度为5 mg/L时,每kg吸附剂一般只能处理10~1000 L 水,且吸附时间一般在0.5 h以上。吸附法只适用于处理水量较小的场合,如饮用水处理。

活性氧化铝是氢氧化铝在一定的温度(400~600℃)下焙烧而成的一种r型氧化铝,与氟离子的交换反应如下:

Al2O3·Al2(SO4)3·nH2O+6F-

Al2O3·2AlF3·nH2O+3SO42-

若原水中氟浓度过高,活性氧化铝吸附处理效果急剧下降;若水中含有磷酸根和硫酸根时,影响脱氟效果。活性氧化铝吸附容量随pH的升高而降低,脱氟效果较好的pH为5~6.5[25];使用粒径一般采用0.3~0.6 mm为宜。使用后的活性氧化铝常用硫酸铝或氢氧化钠和硫酸再生。

对活性氧化铝除氟机理研究较多,但存在着不同的看法。主要观点有二:一种认为活性氧化铝除氟是吸附过程;另一种则认为活性氧化铝除氟是水中氟离子与除氟剂中的阴离子的交换过程。刘裴文等人[27]提出了吸附交换的过程,X光光电子能谱解析表明,初次用于水处理的活性氧化铝(包括再生后表面组成与其相同者)除氟本质上是分子吸附。化学分析表明,用硫酸铝再生的活性氧化铝除氟是吸附交换。

小结及讨论

(1)利用化学沉淀法可以处理高浓度的含氟废水,氟离子初始浓度为1000~3000mg/L 时,石灰法处理后的最终浓度可达20~30 mg/L,该法操作简便,处理费用低。但由于泥渣沉降速度慢,需要添加氯化钙或其它絮凝剂,使沉淀加速。设法提高钙离子浓度及保持高的 pH而使氟化钙沉降是降低氟离子浓度的主要途径。另外,联合使用磷酸盐、镁盐、铝盐等,比单纯用钙盐除氟效果好。

(2)絮凝沉淀法对高浓度含氟水除氟效果差,处理后水中硫酸根浓度偏高。

(3)吸附法适用于水量较小的饮用水深度处理,吸附剂大多起阴离子交换作用,因此除氟效果十分明显,但都要加特殊的处理剂和设置特定设备,处理费用往往高于沉淀法,且操作复杂。使用羟基磷灰石活性氧化镁稀土金属氧化物等新型吸附剂可提高处理效果。

(4)对于高浓度的含氟废水往往需进行两步处理,先用石灰进行沉淀,使氟含量降低到20 ~30 mg/L,继而用吸附剂处理使氟含量降到10 mg/L以下。

(5)鉴于含氟废水在种类、数量、氟含量及其它的污染物等方面差异甚大,因此在选择处理方法时,要根据实际,因地制宜。尤其注重以废治废的综合治理。

(6)含氟水处理过程中,各种除氟机理有可能同时发生。开展除氟机理的研究工作,有助于现有除氟工艺的改善和除氟新方法的开发。

第五篇:污废水处理方案

污废水处理方案

一、项目概况及编制依据

1.项目概况:

2.编制依据

1)、项目的施工合同及施工补充协议。

2)、发包人提供的信息和本工程的设计施工图及有关的资料。3)、工程施工现场的勘察情况。

4)、根据《建筑施工组织设计规范》GB/T50502-2014的要求。5)、我司质量、环境和职业健康安全一体管理手册及有关的规章制度。6)、施工企业的生产能力、机具设备状况、技术水平及与工程有关的资源供应情况;

7)、根据国家环境保护法、安全生产法、建筑法和地方有关的规定。8)、《中华人民共和国水污染防治法》、《污水综合排放标准》 9)、《中华人民共和国固体废物环境污染防治法》 10)、《职业病防治法》

11)、《福建省建筑施工安全文明标准示范图集》 12)、《重大危险源辨识》(GB18218-2009)

二、污水排放管理目标

目前,项目现场布置办公区、作业区、生活区。生产、生活用水排放控制在国家规定范围内,项目部根据施工组织设计、现场平面布置图等要求,在施工前对办公区、生产区、生活区认真选址,以方便、安全、达标为目标布置。在施工过程中现场设置集水井及沉淀池,沉淀后排放建设单位指定的排污管网。项目部还确定:由技术负责人组织、编制污水排放管理方案、管理目标,对现场管理人员进行职责分配,明确岗位。

污水排放标准:

生活污水:经过沉淀池及过滤池处理,达到国家规定排放标准。生产污水:排放前无明显悬浮物,达到国家规定排放标准。

组织排放、外溢、堵塞城市下水道等污染事故发生的排水应急响应工作方案,并在需要时实施。

4.7 施工现场设置料库,库房地面做防渗漏处理,储存、使用、保管专人负责,防止油料跑、冒、滴、漏污染土壤、水体。

五.施工现场排水管线布置

5.1 雨水排放:

排水沟设计为沿基坑坡顶周边设置环形截水沟,硬化场地道路。因场地整体呈现山坡状(西高东低),雨水通过场地内的硬化道路,实现自然排水到东侧的二环快速雨水篦子,流入二环快速市政雨水管网。项目部计划在东侧根据现场场地内的雨水井位置,布置雨水篦子,实现场地内的雨水排入市政管网。雨水井一侧进行硬化路面放坡,坡向雨水篦子,坡度为1%。

部分雨水经排水沟排向雨水井内,我项目部在基坑坡顶将约50m布置沉淀池,部分雨水排入排水沟流经沉淀池后经沉淀过滤后排入市政管网。

5.2 车辆冲洗排放

出入口大门处设专用洗车台,洗车台下口连接三级沉淀池,并与场区排水系统连通。大门口内设车辆冲洗系统,并指派专人负责,对出入车辆轮胎、底盘进行冲刷,冲刷水通过承重篦子汇入沉淀池,经沉淀后排入现场排水系统。我项目部对沉淀池指派专人进行清理,防止污染周边环境。

5.3 施工现场的生产污水经沉淀池澄清后排入地下污水井内,一般生活用水和砼养护用水直接排入现场排水沟内。

六.施工现场主要排水点

施工现场主要排水点有雨水、冲洗车辆排水、现场卫生间排污水,故排水量分析如下表:

坑(砖砌240mm厚,规格:1m×1m×1m深),经集水坑沉淀后通过双壁波纹管PVC管DN300排入场地东侧的的市政雨水井。

按照规定,污水排入市政污水井的处理设施为化粪池。施工场地内办公区北侧设置了3m³全自动机械缠绕化粪池。污水经化粪池处理达标后排入市政排污井,洗车台废水经过沉淀池后排入市政污水井。

八.施工顺序

排水管道暗敷施工顺序为:管沟及管井定位放线→管沟开挖及坡度控制→垫层施工→排水管道敷设→管井砌筑→管道土方回填→井盖安装→道路恢复及校正井盖标高。

排水明沟施工顺序为:明沟清淤→沟槽边坡修整→定位放线→排水管道接入明沟→明沟护坡施工。

九.主要施工方法及技术措施

9.1 管沟开挖

9.1.1 应先按施工方案规定的坡度粗略开挖,再分层按坡度要求做出坡度线,每隔3m左右做出一条,以此为准进行铲坡。

9.2 垫层施工

9.2.1 管沟开挖完毕后进行管道垫层的施工,管道垫层为素混凝土垫层,垫层厚度不得低于10cm,垫层施工前将槽底找平夯实,并钉短钢筋头以控制垫层标高。

9.2.2 混凝土在现场搅拌,用翻斗车运至工作面,对于较浅管沟直接用铁锹将混凝土传递至工作面,对于较深的检查井底垫层混凝土用溜槽溜送至工作面。

9.2.3 混凝土摊铺好后要抹平压实,严格按照所钉钢筋头标高控制垫层上表面高度。

9.3 排水管敷设

10.2.3 工程完建后,施工人员在退场前,将拆除一切必须拆除的临时设施和其它设施,做好施工区周遍环境的清理,给周围居民创造良好的生活环境。

10.2.4 工程项目部与进场人员订立治安有关制度:遵守操作规程,禁止野蛮施工;爱护现场设施和设备,保持现场整洁;施工操作人员都要按规定佩戴劳保用品。

10.3 雨期施工措施

10.3.1 土方雨季施工:进入雨季的土方工程,要根据天气情况及工程特点合理安排机具和劳力,组织快速施工,做到随挖、随填、随压。沟槽、路基要深挖纵向或横向排水沟,使雨水及时排入已有排水系统。如遇大雨,需增加抽水设备,提高抽排能力,防止基础被雨水浸泡。雨前要选择遇雨易翻浆处或低洼处等不利地段先行施工。雨后要重点检查路拱及边沟等排水设施的排水情况,路床渍水情况。

10.3.2 砼工程雨季施工:未凝固的砼雨前需进行覆盖保护,防止被大雨冲刷,使水泥浆流失。砼抹面需在无雨干燥条件下进行,严禁雨中作业。

十一.水污染发生后的处理措施

施工期间,一旦发生水污染,必须采取有效措施及时治理。

11.1 生活产生污水污染时,各级单位必须采取措施阶段污水水源,将污水分流至指定的排放地点,防止人误用污水,对人身造成伤害,必要时要指定应急预案。

11.2 生产产生污水污染时,各级单位积极组织人力物力完善排水设施,做好污水的疏导治理工作,将损失危害控制在最小,以免造成更大的伤害。

下载典型含铬废水处理方案[优秀范文5篇]word格式文档
下载典型含铬废水处理方案[优秀范文5篇].doc
将本文档下载到自己电脑,方便修改和收藏,请勿使用迅雷等下载。
点此处下载文档

文档为doc格式


声明:本文内容由互联网用户自发贡献自行上传,本网站不拥有所有权,未作人工编辑处理,也不承担相关法律责任。如果您发现有涉嫌版权的内容,欢迎发送邮件至:645879355@qq.com 进行举报,并提供相关证据,工作人员会在5个工作日内联系你,一经查实,本站将立刻删除涉嫌侵权内容。

相关范文推荐

    几种典型工业废水处理流程

    几种典型工业废水处理流程 企业的工业废水,主要分布在电子、塑胶、电镀、五金、印刷、食品、印染等行业。从工业废水的排放量和对环境污染的危害程度来看,电镀、线路板、表面......

    62种污水、废水处理典型工艺和工艺流程图(最终定稿)

    导读:列举了62种常见污水、废水处理典型工艺及工艺流程图,如城市污水回用、工业废水处理 ,以供参考。 一、生物转盘二级处理流程 二、生物吸附法 三、氧化渠的典型布置 四、完......

    矿山废水处理(优秀范文5篇)

    矿山废水的处理 资环学院矿加102班聂庆民14号 摘要:对我国目前的矿山废水的产生、危害、分类进行了简要的阐述。重点以矿山废水的pH进行分类阐述不同酸碱性矿山废水的处理方......

    生活污水和施工废水处理方案

    菏泽屯西220kV变电站新建工程生活污水和施工废水处理方案 菏泽屯西220kV变电站工程施工项目部 2014年06 一、 编制依据 编制依据如下: 一、《中华人民共和国环境保护法》 二......

    电镀废水处理工艺方案1

    电镀废水处理工艺方案 1、电镀行业废水污染特征 电镀行业废水水质较复杂,废水中含有铬、锌、铜、镍、镉等重金属离子以及酸、碱、氰化物等具有很大毒性的杂物。该行业废水具......

    某化工项目含氟废水处理方案

    某化工工程含氟废水处理方案(1)2021-06-1811:39:45  来源:转载  浏览次数:854·废水的主要来源为车间在生产过程中产生一局部含氟化物的废水,在生产过程中所产生的废水中主要......

    浅析合成氨工业废水处理方法(优秀范文五篇)

    浅析合成氨工业废水处理方法 摘要:合成氨的发展随着工业的迅速发展而日益增长,但存在的问题也随之而来,如水污染。合成氨废水的最大特点是高氮氨,如果不加处理直接排入水体会造......

    优秀典型

    离开二炮的日子(本文来源:中国青年报 ) 编者按: 高明,2003年以甘肃省正宁县文科第一名的成绩考入北京大学光华管理学院。2005年,正读大三的高明报名参军,成为北京大学自新中国成......