第一篇:矿山废水处理
矿山废水的处理
资环学院矿加102班
聂庆民
14号
摘要:对我国目前的矿山废水的产生、危害、分类进行了简要的阐述。重点以矿山废水的pH进行分类阐述不同酸碱性矿山废水的处理方法。列举了石灰中和法处理矿山废水的工艺流程。
关键字:矿山废水、pH、处理方法、石灰中和法
Abstract: produce, harm, classification of our current mine wastewater are briefly described.Focus on the classification of different processing methods of acid mine drainage with mine wastewater by pH.Lists the process of mine wastewater by lime neutralization treatment.Keywords: mine wastewater, pH, processing method, lime neutralization method
(一)、前言
我国是个水资源贫乏的国家,人均水资源仅为世界平均水平的四分之一。水资源短缺已经成为我国经济社会发展的主要制约因素之一。而在矿山开采、矿物富集分离的过程中又会产生大量的矿山废水,其中包括矿坑水、露采厂废水、选厂废水、尾矿库和废石场的淋滤水,这些水不仅白白浪费,而且更重要的是,它们的排放严重污染了地表水和地下水,危害环境。
(二)矿山废水概述
1、概念
矿山废水是在矿山范围内,从采掘地点、选矿厂、尾矿坝、排渣场以及生活区等地点排放的废水的总称,按生产过程可分为矿坑废水和选矿厂废水;按pH又分为酸性和碱性废水。酸性废水主要来源于矿坑水和废石场的淋滤液等,碱性水主要产生于选矿厂作业。
2、矿山废水的来源与危害
矿井水主要由伴随矿井开采而产生的地表渗透水、岩石孔隙水、矿坑水、地下含水层的疏放水、以及井下生产防尘、灌浆、充填污水,选矿厂和洗煤厂污水是矿山废水的主要来源。通常,矿井水pH值在7~8之间,属弱碱性。但是含硫的矿井水,其SO42-较多,大都是酸性水。在含硫矿井,由于矿石或围岩及含硫煤中含有硫化矿物。这些矿物经氧化、分解并溶解在矿井水中,形成酸性水。尤其在开采巷道中,在大量渗入地下水和良好的通风条件下,为硫化矿物的氧化、分解提供了极为有利的环境。
地下开采尤其是水力采煤、水沙充填采矿法排放的污水是不可忽视的。据统计,若不考虑回水利用,每产1t矿石,废水排放量为1m3左右;生产1t原煤约从井下排出废水0.5~10m3不等,最高可达60m3。而且有些矿山关闭后,还会有大量的废水继续污染矿区环境。并且矿山废水引起的影响范围远远超出矿区本身。
矿井水污染可分为矿物污染、有机物污染和细菌污染。在某些矿山中还存在放射性物质污染和热污染。矿物污染有砂、泥颗粒、矿物杂质、粉尘、溶解盐、酸和碱等;有机物污染有煤炭颗粒、油脂、生物生命代谢产物、木材及其它物质的氧化分解产物。以及受开采、运输过程中散落的粉矿、煤粉、岩粉及伴生矿物的污染,水体呈灰黑色、浑浊、水面浮有油膜,并散发少量的腥臭、油腥味。水质分析检验结果,化学耗氧量大,细菌总数和大肠菌群含量大,如未加处理,任其长期外排,对环境会产生一定的不良影响。
3、矿山废水中的主要污染物
一种物质排入水体后是否会造成水体污染,这主要取决于该物质的性质和在废水中的浓度、含这种物质废水的总排放量和受污染水体的特性、以及它吸收污染物质的容量。
矿山废水中的主要污染物:
(1)有机污染物。矿山废水池和尾矿池中植物的腐烂,可能使废水中有机成分含量很高,选矿厂、洗煤厂、分析化验室排放的废水中含有酚、甲酚、萘酚等有机物,它们对水生物极为有害。
(2)油类污染物。油类污染物是矿山中较为普遍的污染物,含油废水浸入孔隙内形成油膜,产生堵塞作用,破坏土壤结构,不利于植物的生长,甚至使农作物枯死。水面存在的油膜阻碍大气中的氧向水体转移,致使水体得不到氧,使水生生物因缺氧而死亡。
(3)酸碱的污染。酸碱污染是水体污染中存在的普遍现象,酸碱废水排入水体后,使水体pH值发生变化,抑制细菌和微生物的生长,妨碍水体自净还可腐蚀船舶和水工建筑物,破坏正常的生态循环。
(4)氧化物。氧化物有剧毒,一般人只要误服0.1g左右的氰化钠或氰化钾就会死亡。敏感的人甚至0.06g就可致死。当水中CN-含量达0.3~0.5mg/L时,便可使鱼致死。
4、我国矿山废水处理现状及存在的问题
我国矿山排放的废水种类主要有酸性废水、含盐废水和选矿废水等。目前存在的问题,一是废水处理装置能力不足,据统计目前还有30%左右的废水未经处理就直接外排;二是废水处理技术开发水平还不高;三是节约用水和废水治理的管理制度还不够完善。
(三)、矿山废水的处理方法
1、预处理
预处理时,分离废水中的悬浮物采用重力分离法和过滤法分离,使水质得到净化。
重力分离法是使废水中的悬浮物在重力作用下与水分离的方法,如选矿厂的尾砂坝。
过滤法是废水通过带孔的过滤介质,悬浮物被阻留在过滤介质上的方法。
2、矿山废水处理方法
由于矿山废水是矿井内的天然溶滤水、选矿废水、选矿废渣堤堰的溢流水以及矿渣堆积场的浸出水等的总称,所以不同的废水有不同的污染物,对环境的污染程度也不同。因此,对于不同种类的矿山废水应运用不同的处理方法。2.1酸性废水的处理方法 2.1.1概述
酸性矿山废水因pH低、酸度大,且含有大量的贵金属,一般都不能循环利用,通常排入矿山附近的河流、湖泊等水体,使水体的pH发生变化,抑制了水体中某些微生物的生长,妨碍水体的净化。酸性水与水体中的矿物质相互作用会产生某些盐类,对淡水生物和植物的生长产生不良影响,导致矿区周围的水体被严重污染。
2.1.2选矿流程技术改造
目前,我国运行的许多含硫化矿物的老矿山,当时在选矿流程设计中,都以提高有用矿物回收率为 目标,而对环保重视不够,使排放的尾矿水呈酸性,现在则需为治理废水支付大量费用。在矿物可选性允许,对回收率影响不大的条件下,建议对原选矿流程进行技术改造,尽可能采用碱性流程,使呈碱性的尾矿水与酸性矿坑水进行自然中和,中和后的水即可循环利用或排放。这是一种最经济、实用的治理方法。2.1.3中和法
该方法是向废水中投人中和剂或碱性废水,使废水中金属离子生成氢氧化物沉淀与水分离,同时使废水达到排放标准。常见的中和剂有石灰、石灰石、苏打、苛性碱等。由于石灰来源广、价格低、操作简便,故石灰为常用中和剂。石灰石与石灰比较,中和时产生的泥渣体积小,占地较少,含水量较低,易于脱水,但中和反应速度不如石灰快。苏打及苛性碱作中和剂虽然效果好,但价格昂贵,一 般不采用。为了提高沉铁效果,中和法一般与将Fe 转变为Fe什的氧化或曝气过程相结合使用。
(1)、利用碱性废水进行中和治理
当矿山附近有造纸、制革、化纤、制碱类企业
时,利用其产生的碱性废水与矿山的酸性废水进行
中和。此法既能治酸又能治碱,以废治废,一举两得。采用该方法需要在酸性废水的各排放地点构筑中和反应池,将碱性废水用管道输送到反应池,并按需要量添加。该治理方法投资小、见效快、适应性强,予以采用。
(2)、添加石灰或石灰乳进行中和
在酸性废水中添加石灰或石灰乳是一种传统的酸性废水治理方法。该方法的优点是对酸性废水的浓度、水量和排放点的适应性较强,但治理成本高,沉渣多且难以处理。因此,该方法适用于废水排放量小、浓度不稳定及要求水循环利用率高的情况。例如,向山硫铁矿将 pH值为3~
4、流量约4000m /d的矿坑酸性水,扬送到选矿厂上部的高位水池,再流人中和池,加入pH值为 12~14的石灰乳,用量0.8~1.5kg/m,可将废水 pH值调整为8~9,直接供选矿厂使用。
(3)、使用碱性滤料进行中和
对于酸性废水排放量大、范围广、地点较分散的废石场、尾矿库等地方,宜使用价格低廉的石灰石、白云石、大理石等物料作缓蚀剂进行过滤中和处理。根据废水含酸浓度不同,构筑普通滤池、升降式滤池或卧式滤筒。此法处理后的废水含酸浓度仅为17g/L_lJ 2.1.4硫化法
硫化法是向废水中投入硫化剂,使废水中的金属离子形成硫化物沉淀而除去的方法。通常使用的硫化剂有硫化氢、硫化钠等。此法的pH值适应范围大,产生的硫化物比氢氧化物溶解度更小,去除效率高,泥渣中金属品位高,便于回收利用。但硫化剂来源有限,价格比较昂贵,产生的硫化氢有恶臭,对人体有危害,使用不当时可造成空气污染。2.1.5置换中和法
在水溶液中,较负电性的金属可置换出较正电性的金属,达到与水分离的目的,此即称之为置换法。铁较铜负电性,利用铁屑置换废水中的铜可得到品位较高的海绵铜。但该法不能将废水酸度降下来,必须与中和法等方法联合使用,以达到废水排放或回收的目的。2.1.6沉淀浮选法
沉淀浮选法是将废水中的金属离子转化为氢氧化物或硫化物沉淀,然后用浮选沉淀物的方法,逐一 回收有价金属。该方法具有处理效率高、适应性广、占地少、产出泥渣少等优点,因而是处理废水常用的方法。2.1.7萃取电积法
废水的萃取处理法,是利用分配定律的原理,用一种与水互不相溶,而对废水中某种污染物溶解度很大的有机溶剂(萃取剂),从废水中分离出污染物的方法。该方法的优点是设备简单、易操作,萃取剂中重金属含量高,反萃取后可送去电解得到金属,是一种极好的处理方法。但这种方法要求废水中的金属含量较高,否则处理效率低、成本高。2.2碱性废水的处理方法 2.2.1概述
碱性污水和酸性污水一样,是所有工业废水中最常见的一种污水。如果不经过处理就直接排放,将腐蚀管道、渠道和水工建筑物;排人水体后将改变水体的pH值,影响水体的自净作用,破坏河流的自然生态,导致水生资源减少或毁灭;渗人土壤则造成土质的盐碱化,破坏土层的松疏状态,影响农作物的生长和增产。另外,含碱污水中一般都含有大量的有机物,会大量消耗水体中的溶解氧,造成鱼类缺氧窒息死亡。人类如果饮用浓度偏高的碱性水,新陈代谢将会受到影响,导致消化系统失调。因此,必须进行适当的处理后,使废水pH值处于6一9之间,方能排放到受纳水体。2.2.1酸碱中和法
采用投加酸性物质处理碱性废水,让两者中和后,加以过滤使碱性废水基本净化。中和处理被认为是废水处理中最低要求之一。同时,对部分和全部澄清以及循环加工来说是必要的环节。很久以来,人们一直使用盐酸和硫酸之类的矿物酸与碱性废水作中和处理。然而,用盐酸中和碱性废水会随之生成自然界河流中所不能容许的大量氯化钠。同时,建筑结构物和加工设备会受到酸性蒸汽的腐蚀。同样,硫酸会导致硫酸盐的生成。由于硫酸盐对混凝土建筑物的侵蚀,许多国家对硫酸盐在废水中的含量规定不超过400 mg/L。为此,尽管硫酸在价格上比盐酸低,但硫酸通常不作为中和剂。近年来,人们一直在寻找妥善处理这些问题的办法。2.2.2絮凝法
碱性废水中往往含有大量的悬浮物质,可以选用投加絮凝剂的方法来处理。自制的具有可调性的镁盐凝聚剂不仅具有良好的处理效果,而且可以大幅度降低治理成本,具有较好的环境和经济效益。2.2.3化学沉淀法
化学沉淀法是在废水中加入适当的沉淀剂,使废水中的有害物质变成难溶物而沉淀除去。采用CuO沉淀剂与含有机硫废碱液进行固液反应,经过滤回收NaOH,碱液中的有机硫由滤渣吸附除去,灼烧滤渣得到的CuO可循环使用,得到副产品亚硫酸钠。2.2.5微生物法
微生物法分为生物氧化法和生物硫化法,具有成本低、适用性强、无二次污染,能吸收或吸附重金属、分解丙生成重金属硫化物沉淀而回收等特点,已得到广泛应用。
2.2.6混凝斜管沉淀法
来自选矿车间的废水,先通过沉砂池进行固液分离,沉砂通过卸砂门排入尾矿砂场,溢流进入上清液,通过投药混合后进入反应器进行混凝反应,然后流入斜管沉淀池,使细粒、有害悬浮物进一步去除,沉泥通过阀门排至尾矿砂场,出水则进入清水池并回用,实现了废水零排放。2.2.7混凝沉淀—活性炭吸附—回收技术
用明矾和PAM混凝沉淀,再用粉末状活性炭净化后,出水水质可达到国家矿山废水排放标准,不仅可以全部回用,不影响选矿指标,而且可以减少选矿过程的药剂用量。该法流程简单,效果好,具有广泛的工业应用前景。
(四)、九龙矿业石灰中和法处理酸性矿山废水工艺流程
1、工艺流程
废水处理工艺采用 “两级药剂中和+空气氧化+混凝沉淀+深度过滤”的水处理工艺,工艺流程框图如下:
工艺流程简述:矿山废水经管道收集后自流进入PH调节池,在PH训节池内投加石灰干粉进行药剂巾和反应,PH控制范围为8-9。废水经中和后自流进人调节池,在凋节池内均匀来水水质水培,调节池底部设置曝气系统埘废水进行空气氧化,将废水中大量的 Fe2~离子氧化成Fe离子,Fe离子与水中氢氧根反应生成氢氧化铁沉淀。废水经调节池空气氧化后 自流进人预沉池进行固液分离,沉淀物通过排泥泵输送至污泥池,上清液自流进入曝气反应池,曝气反应池底部设置曝气系统,对废水进行二次空气氧化反应后通过提升泵输送至斜板沉淀器,通过投』JI1混凝剂(PAC)和絮凝剂(PAM),使悬浮物形成大量矾“花 “,在斜板沉淀器Lfl进行二次周液分离,沉淀物通过重力排人污泥池,上清液自流进入中问水池,通过提升泵输送至石英砂过滤器进行深度过滤处理,进一步去除水中残留胶体及少量悬浮物,废水经过滤后 自流进人排放池,达标排放。
2、处理设施运行情况
经过三个多月的调试运行,对矿山废水处理设施的运行效果进行了验收监测。监测因子:PH、SS、COD、NH3一N,监测结果见表2。
监测结果显示:矿山废水处理设施运行效果良好,各项出水指标均达到国家 《污水综合排放标准》GB8978—1996巾的一级标准中的污染物排放限值,优于设计标准值。
(五)展望
对于矿山废水的处理,我们要持续地发展高效、廉价、安全及操作简便的处理技术,同时,加强对废水的管理,满足当代人的需求,减少排放量,又不对后代满足其需要而构成危害,这是我国矿业发展走可持续发展的必经之路。
参考文献:
【1】 李仕文,周云.矿山废水处理技术的研究进展.科技创新导报,2011(35).【2】 饶俊,张锦瑞,徐辉.酸性矿山废水处理技术及其发展前景【.J】.矿业工程,2005,3(3):47-49.【3】 刘建明,吴叔兵.碱性废水处理及回收利用研究进展.【J】.中国资源综合利用,2008,26(9):20-26.【4】 杨新华,蒋 旺.含SCN一矿山废水处理回用工艺研究.【J】.中国矿山工程,2013,42(1):38-41.【5】 马明晶.石灰中和法在酸性矿山废水治理中的应用.科学论坛,2012(31).【6】 张一敏.二次资源利用【M】.长沙:中南大学出版社,2010:204-210.【7】 陈国山.采矿概论【M】.北京:冶金工业出版社,2007:174-178.【8】 肖丽萍,高小雨.膨润土复合吸附剂中碱性材料筛选及对酸性矿山废水处理【.J】.非金属矿,2013,:36(5):60-64.【9】 万祥云.颗粒状污泥活性炭流化床吸附处理含铜矿山废水【.J】.化工环保,2013,33(4):312-315.【10】 程素春,韦玲,谢芸芸.矿山废水中硫酸盐还原菌的富集分离研究.【J】.广州化工,2013,41(7):78-79.【11】 黄羽飞,陈宇,刘峰彪.HDS工艺及树脂吸附法深度处理酸性矿山废水的试验研究.【J】.有色金属,2012,(6):49-52,64.【12】 陈旭.矿山废水中三价铬的处理实验研究【.J】.煤炭技术,2012,31(10):201-203.【13】 杜新亮,刘长武,刘树新.承压开采技术在地下矿山废水减排中的应用【.J】.2012(2):43-46.【14】 陈隆玉.用天然沸石去除酸性矿山废水中重金属的动力学研究.【J】.铀矿冶,2012,31(1):34-34.【15】 杜平,刘书贤,谭广柱.srb法处理酸性矿山废水的实验研究.水资源与水工程学报.2012(3).【16】 董慧,张瑞雪,吴攀.利用硫酸盐还原菌去除矿山废水中污染物试验研究.【J】.水处理技术,2012,38(15):31-35.【17】 谢越,周立祥.生物成因次生铁矿物对酸性矿山废水中三价砷的吸附.【J】.土壤学报,2012,49(3):481-490.【18】 张武刚,王兆慧,王焕丽.Fenton氧化/高浓度泥浆法处理矿山废水.环境工程学报.2012(6).【19】 黄珊,周立祥.葡聚糖对酸性矿山废水中次生铁矿物形成的影响【.J】.矿物学报,2012,32(1):166-171.【20】 郑雅杰,彭映林,乐红春.酸性矿山废水中锌铁锰的分离及回收.中南大学学报.2011(7).【21】 刘运松.矿山环境存在的主要问题及治理方法研究.【J】.中国科技信息,2011(14):17-17,21.【22】 王超.矿山废水中重金属离子在包气带中的吸附特征.【J】.湖南环境生物职业技术学院学报,2011,17(2):18-21.【23】 郑雅杰,彭映林,李长虹.二段中和法处理酸性矿山废水.【J】.中南大学学报,2011,42(5):1215-1219.【24】 王琪玮.浅谈酸性矿山废水危害及防治.管理观察.2011(11).【25】 张诚,柳建设,付瑾.铜矿矿山废水的物化净化处理研究.【J】.铜业工程,2011(2):73-75.【26】 王选科,王小春,喻德勇.浅论黄金矿山废水处理工艺及其对环境的影响.【J】.科技致富向导,2011(5):318-318,382.【27】 赵志强,魏明安,王方汉.铅锌矿山废水及固体废弃物的环保-资源综合利用集成新技术研究.【J】.中国科技成果,2011(24):54-56.【28】 张诚,柳建设,王兆慧.德兴铜矿矿山废水处理工业试验.【J】.金属矿山,2011(7):146-149.【29】 杨高英.有色金属矿山废水管理研究.【J】.中国矿业,2010(12):39-41.【30】 刘羽,刘红.硫酸盐还原菌处理废水的应用进展.【J】.广州化工,2010,38(9):37-38,66.
第二篇:废水处理流程
废水、液体废物处理流程
检验科
1、检验科废水包括:血细胞分析仪废液、尿沉渣分析仪废液、尿液废液、胸腹水、脑脊液等。
2、血细胞分析仪废液: 2个20L的废液桶,用一个,备一个,当废液达到3/4(15L)左右,换上备用桶,换下的废液桶中废液15L+84消毒液600ml,有效氯浓度为2000mg/L,作用30分钟,倒入医用下水道,由院方统一无害化处理。
3、尿沉渣分析仪废液: 2个5L的废液桶,用一个,备一个,当废液达到4/5(4L)左右,换上备用桶,换下的废液桶中废液4L+84消毒液160ml,有效氯浓度含 2000mg/L,作用30分钟,倒入医用下水道,由院方统一无害化处理。
4、尿液分析仪废液、胸腹水、脑脊液等: 84消毒液40ml+水1000ml,有效氯浓度2000mg/L,把废弃尿液等倒入,每天下班倒入医用下水道,由院方集中无害化处理。
第三篇:选矿厂废水处理
选矿厂废水处理
1.概 述
选矿厂生产排水的成分与原矿矿石的组成、品位及选别方法有关。生产排水可能超过国家工业“三废”排放标准的项目有: pH值、悬浮物、氰化物、氟化物、硫化物、化学耗氧量及重金属离子等。
根据选矿厂废水所含污染物,大体可分为含悬浮物废水、含氰废水及含有机选矿药剂废水三种。但对选矿厂来说,不论重、磁、浮选选厂废水均含有大量悬浮物,而其他污染物质则与选别方法、矿石品种有关,如浮选厂排水含有机选矿药剂、铅、锌、钨、钼,黄金选厂则含氰化物等物质。
选矿厂废水处理,一般原则为:
(1)应充分利用尾矿库进行澄清及自然净化。
(2)如自然沉淀达不到排放要求时,应采用投加絮凝剂、化学药剂或其他方法处理。(3)如需使用化学药剂处理时,宜尽量使用一种药剂。如不可熊,可根据污染情况,采用几种药剂,但药剂种类不宜过多。
(4)所用化学药剂应选用无毒、低毒、高效或污染较轻、价格低廉和易于获得的药剂。选矿厂废水处理最常用的药剂为石灰。
(5)应分析研究废水的组成,利用其不同性质,做到以废治废、综合治理。2.含悬浮物废水的治理 1)自然沉淀
选矿厂含悬浮物废水有尾矿、湿法收尘及冲洗地面水等。尾矿水一般用尾矿库沉淀,湿法收尘及冲洗地面水用沉淀池或浓缩池沉淀。固液分离后的上清液回用于生产或水质符合排放标准时,直接排放。2)投加药剂沉淀
某些选矿厂磨矿粒度过细或投加某些选矿药剂后使细粒尾矿悬浮于尾矿水中,长期不能澄清,需投加化学药剂处理,化学药剂多采用三号絮凝剂或石灰。
实例:桃林选矿厂尾矿水中含有水玻璃和油酸,细粒尾矿悬浮于水中,长期不能澄清。投加石灰后,即取得较好的澄清效果。石灰投加量约为矿浆量的0.3~0.5%。3.含氰废水处理
黄金、钨、钼、铅、锌等选矿厂都有含氰废水排放。黄金选厂含氰废水主要为氰化贫液,含氰量较高,一般在200毫克/升以上,最高达2000毫克/升。钨、钼、铅、锌含氰废水主要为精矿浓缩脱水的排水,氟含量一般较低,为30~100毫克/升。尾矿水中含氰量更低,一般小于20毫克/升。根据废水中含氰量高低进行回收和处理。1)回收法
一般用于含氰量高的废水。
投加硫酸于含氰废水中,使在发生塔中生成氰化氢气体,再将氰化氢气体送至吸收塔,与氢氧化钠溶液接触反应为氰化钠溶液。回用于生产。
发生塔中氯化物回收率一般为90%左右,尚有10%氰化物随发生塔排水排出,需投加石灰乳调节pH值至9~10,经浓缩池沉淀,底流含氢氧化铜,用压滤机压滤脱水后回收铜等金属,上清液再投加漂白粉除氰。当投药比CN:Cl=1:9~13时,含氰量可达到国家工业“三废”排放标准。
实例:山东某金矿氰化贫液pH=12,含氰化物1200~2000毫克/升,铜300~500毫克/升,锌230毫克/升,硫氰化物800毫克/升,采用回收法回收氰化钠用于生产。系统处理能力为50毫克/升,其主要技术经济指标如下:
硫酸用量:6千克/米3废水。
氢氧化钠用量:NaOH:CN=1:l。
漂白粉用量:1.7~3.2千克/米3废水。
每日回收氰化钠:50~90千克。
每日回收铜:13~21千克。
处理每立米贫液回收氰化钠值:9元
处理每立米贫液成本:6元
处理每立米贫液盈利:3元
处理后的排水指标,符合国家工业“三废”排放标准。2)处理法
一般多用于含氰量低的废水。处理方法很多,有碱式氯化法、硫酸亚铁一石灰法、吹脱法、吸附法、电解法等。其中,硫酸亚铁一石灰法、吹脱法处理效率低,处理后的出水,达不到国家工业“三废”排放标准,且易造成二次污染。电解法、吸附法的处理费用昂贵,故碱性氯化法为常用的处理方法。此外,用自然净化对含氰废水处理也有一定的效果。A碱性氯化法
向含氰废水中投加石灰乳,使pH值保持在8.5~11l之间,加漂白粉或液氯,氧化氰化物为二氧化碳和氮气。
药剂耗量一般为CN:Cl:CaO=l:6.83:4.31 实例:某金矿选厂氰化贫液排出量为35米3/日,其成分如表31.4.2所列。采用碱性氯化法处理,每立米废气耗氯气量为6.5千克,石灰耗量为22千克。处理后水中含氰量为0.34毫克/升,pH=8。达到国家工业“三废”排放标准。B 自然净化
自然净化的效果与环境温度、历时长短及与空气接触条件等因素有关。4.有机选矿药剂废水处理
有机选矿药剂废水性质与水中所含药剂种类有关。当水中含有少量黄药、黑药(如:黄药含量0.05毫克/升)、松根油时,可使人嗅到难闻的气味,可在水表面产生令人厌恶的泡沫。1)自然净化
自然净化的处理效果与时间、温度等因素有关。大冶选矿厂尾矿水有机选矿药剂自然净化效果如表31.4.4及表31.4.5所列。2)化学药剂法
投加石灰乳、漂白粉等化学药剂处理,效果如表31.4.6所列。3)吸附法
用铅锌矿石或活性炭吸附: A铅锌矿石吸附
铅锌矿石对黄药、松根油具有良好的净化效果,但对黑药的处理效果则较差。黑药去除率约为80%。
将铅锌矿石破碎至0.10~0.15毫米、与废水混合、处理后的矿石粉末返至球磨机中。每处理1毫克有机药剂需铅锌矿石粉200毫克。B活性炭吸附
利用活性炭吸附黄药、松根油效果
第四篇:造纸废水处理
造纸废水处理
1.造纸废水的来源
造纸的原料主要以木材、非木材植物、废纸为主,其废水的主要来源于制浆废液、中段水(洗浆水和漂白水)和纸机白水。
2.造纸废水的水质特点及处理工艺
造纸工业废水具有水量大、COD含量高、SS多和含有有毒物质等特点。
其处理工艺大体为:
污水——预处理(除砂、过筛)——一级处理(沉淀、澄清或气浮)——二级处理(天然氧化物,曝气氧化塘,活性污泥法,生物滤池,有时采用化学絮凝法)——污泥处理(浓缩机、离心机、真空过滤机等)
其中一级处理中常使用无机絮凝剂与有机絮凝剂复合使用,污泥处理当中需用阳离子型絮凝剂进行污泥脱水。
3.絮凝剂的应用实例
-以废报和木浆为主的造纸厂其汽浮工艺中需使用有机絮凝剂1.5—3.0ppm。例:3万m3/天污水量,有机絮凝剂用量在45—90kg/天。
-以废报和木浆为主的造纸厂其污泥脱水工艺中需使用有机絮凝剂75—150ppm。例:2000吨/天浓缩污泥量,有机絮凝剂用量在150—300kg/天。
-以草浆和木浆为主的造纸厂其汽浮工艺中需使用絮凝剂1.5—3.0ppm。
例:3万m3/天处理量,有机絮凝剂用量在45—90kg/天。
-以草浆和木浆为主的造纸厂其污泥脱水工艺中需使用有机絮凝剂50—100ppm。例:2000吨/天浓缩污泥量,有机絮凝剂用量在100—200kg/天。
絮凝剂的用量是随污水量和质的变化而上下浮动的,操作需随时调节用量。
第五篇:浅析合成氨工业废水处理方法
浅析合成氨工业废水处理方法
摘要:合成氨的发展随着工业的迅速发展而日益增长,但存在的问题也随之而来,如水污染。合成氨废水的最大特点是高氮氨,如果不加处理直接排入水体会造成水体的富营养化,破坏水体的自然状态,所以随着社会的发展、技术的改革,多种方法如常用的高氨氮废水有物化处理法、化学氧化法、化学沉淀法等具有重要的应用推广价值是未来合成氨工业废水资源化处理的重要发展方向。关键词:合成氨工业废水;脱氮工艺;废水处理方法 1.氨的生产意义
氨是生产硫酸铵、硝酸铵、碳酸氢铵、氯化铵、尿素等化学肥料的主要原也是生产硝酸、染料、炸药、医药、有机合成、塑料、合成纤维、石油化工等工业产品的重要原料。因此,合成氨是无机化工的代表,在国民经济中占有十分重要的地位。20世纪70年代以来我国相继引进建成了29套30kt/a的大型合成氨装置,使我国的合成氨生产能力有很大提高。迄今已形成大、中、小氮肥厂并存,合成氨原料兼有煤、油、气,产品以碳铵、尿素为主的特点。2.合成氨的工艺简述 2.1以天然气为原材料
空气压缩→天然气→压缩→脱硫(500℃,38atm)→一段转化→二段转化→高温变换(水蒸气)→低温变换→脱碳(二氧化碳)→甲烷化→压缩→合成→氨 2.2以煤为原料
空气、焦炭或煤蒸汽→造气→除尘→脱硫→CO变换(脱除CO2铜氨液除少量CO、CO2)→压缩→合成→氨 2.3重质油制氨
重质油包括各种深度加工所得的渣油,可用部分氧化法制得合成氨原料气,生产过程比天然气蒸汽转化法简单,但需要有空气分离装置。空气分离装置制得的氧用于重质油气化,氮作为氨合成原料外,液态氮还用作脱除一氧化碳、甲烷及氩的洗涤剂。以天然气为原料合成氨低投资、能耗低、产量高,重质油与煤炭制造合成气成本差不多,重油和渣油制合成气可以使石油资源得到充分的合理作用。3.合成氨工艺产生废水的来源和特点 3.1废水的来源
煤焦造气生产合成氨工艺废水主要来自气化工序产生的脱硫废水;脱硫工序产生脱硫废水;铜洗工序产生的合成氨废水。
油造气生产合成氨的废水主要来自除炭工序产生的碳黑废水及含氰废水;脱硫工序产生的脱硫废水;以及在脱除有机硫过程中产生的低压变换冷凝液及甲烷化冷凝液,即含氨废水。
气制合成氨工艺废水,主要是脱硫工序产生的脱硫废水及铜烧工序产生的合成氨废水,以及在脱除有机硫过程中产生的冷凝液,即合成氨废水。碳酸铵生产中的废水是尾气洗涤塔产生的合成氨废水;尿素生产中的废水主要是蒸馏和蒸发工序,产生的解吸液和真空蒸发工序产生的合成氨废水;硝酸铵生产中的废水主要是真空蒸发工序产生的合成氨废水。3.2废水的特点
①排水量大在合成氨生产过程中,由于高温高压制氨,就需要大量的水来进行高温冷却,而且每个工段的设备换热也需要大量的冷却用水并伴随着大量废水的排放,所以排水量较大。所以很多大型的合成氨企业开始引进先进的设备降低排水量,也取得了较大的成效。
②排放点多由于合成氨的工序较多,每道工序都会有大量的废水产生,包括冷却用水和含有害成分的工业生产废水,水污染的排放点较多,这就给水污染治理带来了很大的难题。和其他工业废水排放相比,合成氨工业的水污染进行统一治理的能力较弱。
③废水成分复杂在合成氨的生产过程中,废水的成分较复杂,造气、脱硫工序中主要的污染物有悬浮物、氨氮、硫化物等;而在合成工序中主要污染物为废稀氨水。产生的水污染若不及时治理,则会对当地的水资源和周围的环境造成严重的影响。4.合成氨工业废水主要处理方法
常用的高氨氮废水有物化处理法、化学氧化法、化学沉淀法等。4.1物化处理技术
①吹脱法吹脱法能够将吹脱出的氨进行有效的回收利用,而且设备简单、易于操作。工业上常通过提高废水pH值,经过吹脱塔将含氨废气吹出,再利用稀硫酸或废酸洗涤吸收,从而回收。缺点是:工业上常采用石灰调整pH值,容器易结垢,当温度低时氨氮去除率低、吹脱时间长、出水氨氮浓度偏高[1],而且吹脱产生的氨气容易造成二次污染。因此吹脱法的应用受到限制。
②折点加氯法折点加氯法的基本原理:将氯气通入废水中产生次氯酸与废水中的氨氮发生反应,当通入氯气量达到折点时废水中氨氮全部转化为氮气,游离氯的含量最低,因此该方法成为折点加氯法[2]。折点加氯法的优点为去除效果稳定,不产生污泥,反应速度快,操作方便等。一般用于给水处理。但该方法运行成本高,且反应过程中会产生氯胺、氯代有机物等副产物容易造成二次污染。白雁冰[3]等用折点加氯法处理焦化废水,当进水氨氮浓度小于60mg/L时能达到最大氨氮去除率为97%。
③膜分离法膜分离法是以化学位差或者外界能量为推动力利用膜特定的渗透作用,选择性分离气体或液体混合物中的某种组分的方法。该方法具有高效节能、工艺简便,不产生二次污染等优点。常见的膜分离技术纳滤、超滤、电渗析、反渗透、电去离子技术等。电渗析是膜分离法的一种,其基本原理为溶液中的离子在外加电场的作用下通过膜而发生迁移的现象。该方法具有操作方便、回收的氨氮可重复利用、无二次污染、处理氨氮废水效果好等优点,但处理过程设备耗电量大。唐艳[4]等采用电渗析法处理高氨氮废水,实验控制电压为55V,进水流量为24L/h,进水氨氮浓度为534.59mg/L,出水室浓水占19%,氨氮浓度为2700mg/L,淡水占81%,氨氮浓度为13mg/L。采用浸没式MBR处理养猪场废水,实验进水氨氮浓度为1502mg/L,出水氨氮浓度可达10mg/L,氨氮总去除率可达到99%。但是膜分离也面临膜污染与稳定性低,以及成本和运行费用较高等问题。
④膜吸收法膜吸收法是一种利用疏水性微孔膜和化学吸收液处理并回收废水中的挥发性污染物的方法。膜吸收法的优点为处理效果好、能耗低、不产生二次污染,而且能够回收利用废水中氨等挥发性物质。王冠平[5]等利用膜吸收法处理高氨氮废水,进水氨氮浓度为2000mg/L,在温度为30℃,吸收液为1mol/LH2SO4溶液条件下,出水氨氮浓度达到15mg/L。郝卓莉[6]等利用膜吸收法对焦化厂剩余氨水中氨氮及苯酚进行处理,废水pH值=11~
12、以H2SO4为吸收剂,进水氨氮浓度为4045mg/L,处理后出水氨氮浓度为14mg/L,氨氮去除率高达99.7%。4.2化学氧化法
①催化湿式氧化法(CWO)催化湿式氧化法基本原理为在高温高压、催化剂存在的条件下,利用溶解氧将水中的氨和有机物氧化最终产生无害的CO2、N2、H2O等物质的一种处理方法。该方法处理效率高,不产生二次污染,而且流程简单占地面积少。付迎春[7]等用催化湿式氧化法处理高氨氮废水,反应温度为255℃、压力为4.2MPa、pH值=10.8、采用自制催化剂,进水氨氮浓度为1023mg/L,反应150min后按氨氮的去除率能够达到98%,经处理后的废水达到国家二级(50mg/L)的排放标准。但该方法对设备要求高,耗能较大,成本高,且催化剂价格昂贵。
②电化学氧化法电化学氧化法分为直接氧化法和间接氧化法,其中直接氧化法是污染物与电极之间直接进行电子传递的方法,间接氧化法为利用电化学反应产生的氧化剂,氧化污染物的方法[8]。该方法优点为:运行成本低、不产生二次污染、操作方便、能够有效地处理高浓度氨氮废水,但是该方法耗电量大,成本较高。鲁剑等[9]利用电化学氧化法处理高氨氮废水,实验在电流强度为9A、投加氯化钠摩尔比(NH3-N/Cl-)为1∶4的条件下对氨氮浓度为2000mg/L的废水进行处理,试验中极板间距为1cm、面体比为40m2/m3,反应进行90min后出水氨氮浓度降至247.51mg/L。
③光催化氧化法光催化氧化利用光敏半导体作为催化剂对氨氮进行氧化的方法。其基本原理为:半导体价带上的电子在紫外光照射时被激发进入导带,导致价带上形成空穴。O2、H2O与空穴共同作用产生具有强氧化性的·OH。·OH进而对氨氮进行氧化。常用的半导体材料有TiO2、ZnO、CdS、WO3、SnO2等[10]。其TiO2由于化学稳定性高、无毒、耐光腐蚀,因此对于TiO2的研究较为活跃。乔世俊[10]等用光催化氧化法处理氨氮废水,实验以(TiO2+A)为催化剂,进水氨氮浓度为1460mg/L,反应进行24h后,出水氨氮浓度下降到72mg/L,氨氮去除率达到95%以上。光催化氧化技术具有反应条件温和、操作方便、能耗低等优点,但氧化氨氮产生的NO2-和NO3-会对人体有害,还需要进一步处理。4.3化学沉淀法
化学沉淀法是一种利用投加化学药剂,使溶解性污染物与氨氮反应生成沉淀来去除水中溶解性污染物的方法。此方法是一种技术可行、经济合理的方法,但要广泛应用于工业废水处理则会面临处理成本较高,容易产生二次污染等问题。徐志高[11]等采用化学沉淀法处理高浓度氨氮废水为,实验在pH值=9.5,n(Mg)∶n(N)∶n(P)=1.2∶0.9条件下反应20min,静置30min。污水中氨氮浓度由3880mg/L下降至172mg/L,其氨氮的去除率大于95%。4.3.1磷酸铵镁沉淀法
磷酸铵镁沉淀法,又称鸟粪石结晶法、MAP法。MAP法主要用于处理高浓度氨氮废水,其沉淀产物的主要物质成分为磷酸铵镁[MgNH4PO4·6H2O],有时含少量磷酸镁[Mg2P2O7]和磷酸氢铵([NH4]2HPO4),其反应原理为:Mg2++NH4++PO43-+6H2O=MgNH4PO4·6H2O。MAP法具有操作简便、节省能耗、反应迅速且不受温度和杂质等因素限制等优势,可以处理各种浓度、尤其是高浓度氨氮废水。MAP法除了能够高效脱氮(通常脱氮率>90%~98%)之外更重要的是能将氨氮转化成有用的MAP作为高效缓释性复合肥料,从而获得更高的经济环保效益。因此MAP法更适合于处理C/N低的合成氨工业废水,从而实现氨氮废水资源化处理的目标。但目前,MAP法仍然有沉淀药剂用量大,处理成本较高等问题。刘国跃[12]等利用化学沉淀法处理高浓度氨氮废水,在pH值为9.0,溶液中沉淀剂配比n(NH)∶n(Mg)∶n(PO-)=1∶1.3∶1.3,采用氯化镁和磷酸氢二钠作为沉淀剂的条件下,氨氮去除率最大,可达98.48%。
由于合成氨工业废水对环境危害大,处理难度大,一直是国内外水污染控制研究的热点之一。在合成氨工业废水处理中,秉持着可持续发展的理念,将高效脱氮与节能减耗、避免二次污染、以及氨资源化回收利用有机结合,追求更高层次的环境经济效益。这将是治理合成氨工业废水较理想的技术发展方向。
磷酸铵镁沉淀法等是当前比较符合可持续发展目标的处理方法,技术优势与环境经济效益明显,通过进一步完善与发展将是未来合成氨工业废水处理的发展方向和优先选择。5.结语
随着现代工业技术的飞速发展,作为重要的国民经济产业,合成氨工业的水污染治理技术面临的挑战也越来越高。通过对合成氨工业水污染治理技术的研究,虽然大中型合成氨企业在治理方面已取得一定的进步,但整体看来仍不理想。我们应科学、有效地进行整治,采用有效的工业废水处理方法,保证污水的达标排放,解决我国当前水污染的严峻态势。参考文献:
[1]奥斯曼·吐尔地,杨令,安迪等吹脱法处理氨氮废水的研究和应用进展[J].石油化工,2014,43(11):1348-1353.
[2]孙锦宜.含氮废水处理技术与应用[M].北京:化学工业出版社,2003.
[3]白雁冰.折点加氯法脱氨氮后余氯的去除[J].环境科学与管理,2008,33(1):102-108. [4]唐艳,凌云.氨氮废水的电渗析处理研究[J].中国资源综合利用,2008,26(3):27-29.
[5]王冠平,方喜玲,施汉昌,等.膜吸收法处理高氨氮废水的研究[J].环境污染治理技术与设备,2002,3(7):56-60.
[6]郝卓莉,王爱军,朱振中,等.膜吸收法处理焦化厂剩余氨水中氨氮及苯酚[J].水处理技术,2006,32(6):16-20.
[7]付迎春,钱仁渊,金鸣林.催化湿式氧化法处理氨氮废水的研究[J].煤炭转化,2004,27(2):72-75. [8]鲁剑,张勇,吴盟盟,等.电化学氧化法处理高氨氮废水的试验研究[J].安全与环境工程,2010,17(2):51-53.
[9]方世杰,徐明霞,张玉珍.二氧化钛光催化降解作用的研究综述[J].材料导报,2001,15(12):32-34. [10]乔世俊,赵爱平,徐小莲,等.二氧化钛光催化降解氨氮废水[J].环境科学研究,2005,18(3):43-45. [11]徐志高,黄 倩,张建东,等. 化学沉淀法处理高浓度氨氮 废水的工艺研究[ J] . 工业水处理,2010,30(6):31 -34.
[12]刘国跃,王昶昊,施云海,等. 化学沉淀法处理高浓度氨氮 废水的实验研究[ J] . 石油化工技术与经济,2013,29(6): 31 -35.