第一篇:110kV变电站初步设计典型方案
二.A方案
2.4.1 发电机参数(一)工程建设规模
a)主变压器:终期2×31.5MVA,本期1×31.5MVA; b)电压等级:110/35/10kV三级; c)出线回路数: 1)110kV出线: 终期4回,本期2回;2)35kV出线: 终期8回,本期4回;3)10kV出线: 终期12回,本期6回;4)无功功率补偿: 终期4×3Mvar,本期2×3Mvar;
(二)设计范围
1)本典型设计范围包括变电所内下列部分:
a)电力变压器及各级电压配电装置,所用电系
统设备,过电压保护及接地装置,直流操作电源系统设备;相应的继电保护及自动装置,就地测量及控制操作设备,自动化系统设备以及电缆设施等。
b)与电气设备相关的建筑物、构筑物,给水排水设施,通风设施,消防设施,安全防范及环境保护措施。
2)系统通信设施、所外道路、所外上下水系统、场地平整和特殊基础处理、大件设备运输措施等不纳入本典型设计范围。其中由于通信设施需根据外部通信系统条件确定,本典型设计中仅留布置安装条件,不作具体设计。
3)设计分界点
a)变电所与线路的分界点为:110kV、35kV配电装置以架空进线耐张线夹(不含)为界。10kV配电装置以开关柜内电缆头(不含)为界。
b)进所道路设计以变电所大门为界,大门外不属本典型设计范围。
(三)设计条件
2.4.1 发电机参数
1)所址自然条件
环境温度:-10℃~40℃最热月平均最高温度: 35℃
设计风速: 30m/s 覆冰厚度: 5mm 海拔高度: <1000m 地震烈度: 6度
污秽等级: II级
设计所址高程: >频率为2%洪水位
凡所址自然条件较以上条件恶劣时,工程设计应作调整。2)系统条件
按照系统的情况,设定110kV系统短路电流为25kA,要求10kV母线的短路电流不超过20kA
(四)主要技术经济指标
2.4.1 发电机参数
1)投资: 静态投资: 1367.45 万元,单位投资: 434 元/kVA; 动态投资: 1398.96 万元,单位投资: 444 元/kVA;2)占地面积
所区围墙内占地面积:7695.96m 所区围墙内建筑面积: 560m
2主控制楼面积: 422.5m2
(五)电气主接线
变电所主接线110kV、35kV及10kV终期均为单母线分段接线,初期为单母线接线。详见图“W851A02-A02-001”。
(六)电气设备布置
35kV 及110kV配电装置采用户外中型软母线布置方式,35kV配电装置与110kV配电装置成垂直布置。
两台主变位于110kV配电装置和10kV配电装置室之间。10kV配电装置采用户内成套高压开关柜,单列布置,采用架空或电缆出线。
10kV电容补偿装置为户外型,布置在10kV配电装置室左侧户外空地上,本期布置二组。变电所纵向长度为108.7m,横向宽度为70.8m,占地面积为7695.96m2。
电气总平面布置详见图“W951A02-A02-002”。
(七)Ö÷ÒªÉ豸ѡÔñ
1)35kV及 110kV配电装置
35kV及110kV断路器选用单断口瓷柱SF6断路器。
35kV及110kV隔离开关选用GW4型隔离开关,110kV隔离开关配电动操作机构。35kV隔离开关配手动操作机构。
110kV电流互感器选用油浸式电流互感器。
110kV电压互感器选用电容式电压互感器。
110kV避雷器选用氧化锌避雷器。
2£©10kV配电装置
选用XGN2-12型固定式高压开关柜,配真空断路器, 真空断路器配一体化弹簧操作机构,采用架空或电缆出线¡£ÎªÏû³ýгÕñÓ°Ïì,10kV电压互感器选用抗铁磁谐振三相电压互感器,型号为JSXNGF-10¡£
3)无功补偿装置
无功补偿容量及分组按就地补偿,便于调节及不产生谐振的原则配置,本典型设计无功补偿容量按主变容量20%左右考虑,本期工程装设2组3000kvar无功补偿装置成套装置。
4)35kV中性点消弧线圈
35kV电网中性点不接地系统单相接地电容电流按规程要求不超过10A,本典型设计对单相接地电容电流补偿暂按选用智能型油浸式消弧线圈,容量为550kVA考虑,调节范围为9挡,具体工程设置按系统情况而定。
(°Ë)ϵͳ¼Ìµç±£»¤ºÍ°²È«Îȶ¨¿ØÖÆ×°ÖÃ
变电所根据《继电保护和安全自动装置技术规程》的要求,及广西电网运行情况进行系统继电保护和安全稳定控制装置的配置。
1)110kVÏß·±£»¤
每回线应装设反应相间短路和接地短路的保护。配置三段式相间距离、接地距离、零序电流方向保护,三相一次重合闸,带电压切换回路及断路器操作回路。后备保护采用远后备方式。组屏采用2回线路保护合用一面屏的方式。
2)110kVĸÏß±£»¤
110kV²à³õÆÚÖ»ÓÐ2»Ø³öÏß,Ôݲ»¿¼ÂÇ×°ÉèĸÏß±£»¤£»ÖÕÆÚ4»Ø110kV³öÏߣ¬µ¥Ä¸Ï߷ֶνÓÏߣ¬°´¹æ³Ì¹æ¶¨×°ÉèÒ»Ì×110kVĸÏß±£»¤¡£
(九)系统通信
本变电所由所在网区地调调度管理,为满足综合自动化的要求,变电所应具有光纤或其他形式可靠的通信通道,并设一门邮电公网电话。由于各地区通信条件差异较大,在典型设计中难以统一,由相应工程设计时根据具体情况而定,本典型设计仅预留通信设备装设位置,不作具体设计。
(Ê®)微机监控装置
控制功能由微机监控系统实现,取消常规的控制屏和中央音响信号系统,声光报警由微机监控系统实现。
微机监控系统采用分层分布式,分为变电所层和现地设备层。现地设备层按所内一次设备布置间隔来划分配置。各间隔的监控设备相对独立,这些设备通过现地局域网实现数据链路的连接,可完成他们之间的信息传送。
所内局域网按单网考虑,通信介质采用光纤,变电所层可采用总线型结构或星型结构;现地设备层宜采用总线型结构。
(十一)土建部分
地基和抗震
建(构)筑物按天然地基承载力特征值fa=150kPa设计,场地和地基条件简单,地基基础设计等级为丙级。初期基础工程量未考虑有软弱下卧层估算,具体工程应根据其地质报告复核基础设计,必要时应修改基础设计或结合当地经验采用人工地基。
根据《建筑抗震设计规范(GB50011-2001)》广西大部分地区抗震设防烈度为6度,设计基本地震加速度值为0.05g,本标准设计的建(构)筑物设防标准按一般变电所,即丙类建筑物设防,其地震作用和抗震措施均按6度抗震设防烈度设计。
三、B方案
(一)工程建设规模
a)主变压器:终期2×31.5MVA,本期1×31.5MVA; b)电压等级:110/35/10kV三级; c)出线回路数: 1)110kV出线: 终期2回,本期1回;2)35kV出线: 终期8回,本期4回;3)10kV出线: 终期12回,本期6回;4)无功功率补偿: 终期4×3Mvar,本期2×3Mvar;
(一)工程建设规模
a)主变压器:终期2×31.5MVA,本期1×31.5MVA;b)电压等级:110/35/10kV三级;c)出线回路数: 1)110kV出线: 终期2回,本期1回;2)35kV出线: 终期8回,本期4回;3)10kV出线: 终期12回,本期6回;4)无功功率补偿: 终期4×3Mvar,本期2×3Mvar;(二)设计范围及设计条件
设计范围及设计条件与A方案相同。
(三)主要技术经济指标
1)投资: 方 案 一 方 案 二 静态投资: 1194.5 万元 1204.81 万元 静态单位投资: 379 元/kVA 382 元/kVA 动态投资: 1222.03 万元 1232.57 万元 静态单位投资: 388 元/kVA 391 元/kVA
2)占地面积
方 案 一
方
案 二
所区围墙内占地面积:
5618.3m
25961.06m2 所区围墙内建筑面积:
454.3m2
454.3m2
主控制楼面积:
316.8m2
316.8m2
(五)电气主接线
方案一
本方案变电所主接线110kV终期为内桥接线, 初期为线路变压器组接线;35kV及10kV终期均为单母线分段接线,初期为单母线接线。详见图“W851B02-A02-001”。考虑在110kV侧计费, 110kV出线安装三相电压互感器。
方案二 本方案变电所主接线110kV终期为单母线接线, 初期为线路变压器组接线;35kV及10kV终期均为单母线分段接线,初期为单母线接线。详见图“W851B02-A02-002”。
(六)电气设备布置
35kV 及110kV配电装置采用户外中型软母线布置方式,35kV配电装置与110kV配电装置成垂直布置。
两台主变位于110kV配电装置和10kV配电装置室之间。10kV配电装置采用户内成套高压开关柜,单列布置,采用架空或电缆出线。
10kV电容补偿装置为户外型,布置在10kV配电室左侧主控制楼前户外空地上,本期布置二组。
变电所电气总平面布置详见图“W951B02-A02-003、004”;
方案一占地面积为5618.3m2, 方案二占地面积为5961.06m2。
配置、系统通信要求、基本与
(七)Ö÷ÒªÉ豸ѡÔñ
主要设备选型、系统继电保护和安全稳定控制装置的A方案相同。
第二篇:关于对220KV变电站初步设计的感受
关于对220KV变电站初步设计的论述
由于我国经济的高速发展,电网容量的增大,电压等级的提高,综合自动化水平的需求,使变电站的设计变得越来越复杂。除了常规变电站之外,还出现了微机变电站、综合自动化变电站和无人值班变电站等。
随着电力系统的发展和负荷的增长,电压等级和综合自动化水平也不断提高,新技术、新电力设备不断涌现,该地原有变电站设备陈旧,占地较大,自动化程度不高,为满足地区经济的持续发展和人民生活的需要,电网正在进行大规模的改造,对地区变电站的设计提出了更高的要求。
目前变电站的设计思路是紧跟国内外变电站综合自动化技术的发展趋势,根据最新的设计标准和规范,采用先进、成熟的技术,摒弃落后和即将淘汰的技术,确定科学的模式和结构,选择质量优良和性能可靠的产品,因此,在学习借鉴国外先进技术的同时,结合我国的实际情况,全面系统地研究探讨符合国情的变电站系统设计模式。
典型设计的主要原则:
变电站典型设计遵循的原则是:安全可靠、技术先进、投资合理、标准统一、运行高效。努力做到统一性与可靠性、先进性、经济性、适应性、灵活性、时效性和和谐性的协调统一。
统一性:建设标准统一,基建和生产运行的标准统一,外部形象风格要体现国家电网公司企业文化特征。
可靠性:主接线方案安全可靠,典型设计模块组合后的方案仍能保证安全可靠。
经济性:按照企业利益最大化原则,综合考虑工程初期投资和长期运行费用,追求设备寿命期内最优的企业经济效益。
先进性:设备选型先进、合理,占地而积小、注重环保,各项技术经济可比指标先进。适应性:综合考虑不同地区的实际情况,要在国家电网公司系统中具有广泛的适用性,并能在一定的时间内,对不同规模、不同形式、不同外部条件均能适用。
灵活性:模块划分合理,接口灵活,组合方案多样,规模增减方便;编制基本模块和子模块的概算,便于在实际工程中根据需要调整概算。
时效性:建立典型设计滚动修订机制,随着电网发展和技术进步不断更新、补充和完善典型设计。
和谐性:变电站整体状况与变电站周边人文地理环境协调统一。
电气主接线设计:
电气主接线设计的合理性直接影响电力系统运行的可靠性、灵活性,对电气设备的选择、配电装置、继电保护、自动控制装置和控制方式的确定都有决定性的关系。一般电气主接线的 设计应当从以卜几方面考虑:
(1)节省投资。电气主接线应简单清晰,以节省开关数量,降低投资成木;要适当采用限制短路电流的措施,以便选用性价比高的电气设备;二次控制与保护方式不应过于复杂,以节约二次设备及电缆的投资。
(2)减少占地面积。主接线设计要为配电设备的布置创造节约上地的条件,尽可能使占地面积减少。同时注意节约搬迁费用、安装费用和调试费用。对大容量变电站,在允许条件下,应采取一次设计,分期投资、建设,尽快发挥投资的经济效益。
(3)减小电能损耗。在发电厂或变电站中,正常运行时,电能损耗主要来自变压器,应经济合理地选择变压器的型式、容量和台数,尽量避免两次变压而增加电能损耗。电气设备的选择:
电气设备的选择是变电站设计的重要内容之一,正确地选择设备是使电气主接线和配电装置达到安全、经济的重要条件。在进行设备选择时,应根据工程的实际情况,在保证安全、可靠的前提下适当采用新技术并注意节约投资选择合适的电气设备。互感器的选择:
互感器包括电压互感器和电流互感器,是一次系统和二次系统间的联络元件,用于向测量仪表、继电器的电压线圈和电流线圈供电,正确反映电气设备的运行状态,各电压等级均采 用电容式电压互感器。
主变台数的考虑原则及台数的选择
(1)对大城市的一次变,在中、低压侧构成环网情况卜,装两台主变为宜。
(2)对地区性孤立的一次变或大型的工业专用变电站,设计时应考虑装三台的可能性。
(3)对规划只装两台主变的变电站,其主变基础宜大于变压器容量的1~2级设计以便负荷增容时更换主变。
变压器各侧电压的选择
作为电源侧,为保证向线路末端供电的电压质量,即保证 在10%电压损耗的情况卜,线路末端的电压应在额定值附近,电源侧的主变电压按10%额定电压选择,而降压变压器作为末端可按照额定电压选择。所以,对于220kV的变电站,考虑到要选择节能新型变压器,220kV侧应该选220kV,110kV侧选115k、10kV侧选10.5kV。配电装置和总平面布置设计
选择配电装置应考虑所在地区的地理情况及环境条件,因地制宜,节约上地并保证运行和检修的要求,通过技术经济比较,35kV及以下配电装置宜采用屋内型。当采用管型母线的配电装置时,管型母线选用单管或分裂结构,固定方式宜采用支撑式或悬挂式,当地震烈度为姗度及以上宜选用悬挂式。
220kV变电站典型设计推荐方案与实施方案:
220kV变电站典型设计分为两个层而。第一为国家电网公司推荐方案;第二为在上述设计原则和推荐方案的指导下,通过推荐方案模块拼接和结合各网省公司的特色方案形成的各自的实施方案。由于典型设计尚处于起步阶段,为提高典型设计的适用性,各网省公司的实施方案较多,随着时间的推移,典型设计推荐方案将不断优化充实,因此,网省公司的实施方案也将逐步减少。
90年代后期,220kV变电站设计方案普遍为220kV采用双母线带旁路母线,户外管形母线中型配电装置;110kV采用单(双)母线分段带旁路母线,户外管形母线中型配电装置;35 kV采用真空开关柜。此模式变电站占地而积一般在40亩左右。
2000年以后,随着国内设备制造能力的提高,尤其是开关设备合资生产厂的不断出现,以及山东电网结构的逐渐加强,我院220kV变电站的设计在上述方案的基础上逐步取消了高中电压等级的旁路母线。2000年前后设计的220kV桓台变电站,占地27亩。
2001年以后,山东电力集团公司对运行的220kV及以下电压等级的变电站实施了无人值班改造,并对新建工程提出了按无人值班设计以达到减人增效的目的。同时,各市供电公司针对国产隔离开关运行问题较多的情况,普遍要求采用合资厂生产的隔离开关。此外,随着各生产厂制造成本的降低,国产GIS设备价格有较大幅度下降,使得合资厂AIS方案与国产GIS方案综合造价基本相当。在此情况下,我院经过经济技术比较,提出了全GIS变电站设计方案,并在集团公司有关部门的指导和支持下不断优化,形成了近几年相对固定的设计模式。
当前,我国建筑工程业仍在不断发展,其市场前景较为良好。质量监督是保障建筑工程质量安全性和实用性的重要保障,也是实现各个工程参与者经济效益最大化的重要途径。只 有重视建筑工程中质量监督工作,通过完善质量监督机构的内部管理、建立科学合理的监督体系、增强质量监督的执法力度、应用先进科学技术和设立质量评优机制,提升建设工程质量,方可真正实现工程质量监督的价值。
第三篇:10 kV配电柜典型设备风险及防范措施
kV配电柜典型设备风险及防范措施
摘 要:针对10 kV配电柜(下面简称“配电柜”)的运行需求,结合其结构组成、运行和管理环境对其生命周期中的风险进行了分析,并提出了一些故障防范措施。通过对配电柜关键危害因素的控制,达到预防设备故障,提高运行过程中的安全稳定性,并在发生故障时,能够快速查找并修复的目的。最后提出了设备智能运行和管理的新方向。
关键词:10 kV配电柜;生命周期;设备风险;防范措施
中图分类号:TM642 文献标识码:A DOI:10.15913/j.cnki.kjycx.2015.03.077
现状
随着城市用地紧张,承包商成本、负荷的逐年递增和人们安全用电需求等客观因素的影响,10 kV配电线路设备的运行环境逐步由开放向封闭环境转变。在设备生产环节,配电设备逐步向大容量、高分断、小型化、精密化、拓展功能多样化发展。在运行环节,配电设备的运行环境劣化,突发问题与安全可靠运行需求之间的矛盾日益突出。配电柜作为10 kV线路的重要组成部分,承担着正常线路的投入、退出以及故障的排除等功能,对线路起着保护作用,目前也面临着类似的处境,所以要综合控制关键因素,加强对设备风险的分析,提高故障排查和防范能力。10 kV配电柜常见危害与风险 kV配电柜主要由柜体(包括柜体、母排、接地)、开关操作机构、二次线路和监控机构三大部分构成。配电柜种类分为固定式和抽出式两种。根据设备生命周期的定义,配电柜的生命周期主要经历设计、制造、运输、安装、运行、报废六个阶段。造成配电柜危害主要有设计安装不当、绝缘损坏、操作机构失灵、安全净距离不足、散热不足、过负荷、二次线路损坏、雷击或者过电压、人为操作不当等原因。以下就设备本身、外环境造成的较为典型的几类故障进行风险分析。
2.1 柜体结构风险
目前,配电柜柜体普遍由冷轧钢板制成,厚度在1.5 mm以上。有效保障配电柜的强度,在柜体表面进行喷漆处理,有助于保护配电柜不被腐蚀。内部利用导轨来安装电气元件,保证接线端子与金属外壳之间有足够的距离。安装母排时,应用阻燃液等绝缘材料对其进行固定,以满足耐火耐热要求。在设计和制造阶段,设计和制造商出于降低制造成本和节约空间考虑,柜内空间往往偏小,限制了电气元件安装、运行的空间,安全净距离小,所以柜体本身存在的故障风险相对较低,但也留下了较大的安全隐患。
2.2 操作机构和电气元件风险
在配电柜中,各级真空断路器是进出线的主开关,起着分合负荷的作用。一些小型的断路器具有短路或保护其他用电器的作用,漏电断路器可以对漏电设备进行保护,配电柜中的内装元件一般选用符合国家相关规定的元件,以尽量减少故障的发生。操作机构和电气元件风险主要有:①在配电柜运行的初期阶段,最容易发生故障的就是前后级保护特性协调环节。其次,在制造阶段,配电柜大多是中置式,但在安装以后,箱体处于密封状态,散热性不是很好。另外,如果安装电气元件时采用的是并排模式,那么就与正常情况下所要求的条件不符。②在运行阶段,由于运行时间过长、操作频繁等原因,操作机构失效、元件和绝缘老化(例如开关失灵、触点松脱、开关等元件老化)往往是造成配电柜故障的主要原因。③在运行阶段,由于积尘、潮湿、腐蚀等原因,也会造成故障。④避雷器、电缆头等附件,由于制作质量、施工质量问题,造成故障的概率也非常大,所以操作机构和电气元件存在的故障风险较高。
2.3 导体连接风险
一方面,配电柜内部的一次和二次连接导体本身要有足够的机械和电气强度、绝缘性;另一方面,设置接地的导体对每一个回路中的保护接地线来说,都要连接到汇流排中,并做好相应的标志。断路器的发热与导体之间有着紧密联系,由于配电柜中的封闭性较高,导致散热性能不好,所以在工作过程中温升就比较快,从而难以确保导体正常的工作环境。在运行阶段,长期受高温运行环境和电冲击等因素的影响,容易造成绝缘损坏,最终造成故障,所以导体连接存在的故障风险也不容忽视。
2.4 外环境风险
对于配电柜,外环境存在着雷击和操作过电压(内部过电压)危害,操作过电压一般是由电气事故或者电气误操作所引起的,其中,操作过电压可升高到正常相电压的2~5倍,雷击或其感应电压可达上百万伏,虽然有接地保护,但一旦配电柜中绝缘性能较差的部位遭受瞬间过电压,也很容易造成故障。配电柜接地系统一般是固定的,很少出现损坏并引发故障。配电网系统中经常会出现人为的电气误操作事故,所以预防电气误操作,需要系统性地规范配电柜的安装设置、运行、操作管理。10 kV配电柜故障防范措施
3.1 提高10 kV配电柜绝缘性能
首先,配电柜必须进行电气试验,在竣工验收合格后,才能正式投运。其次,有时候配电柜中所安装的电气元件与电网中需要的参数不相符,既不利于组合,还有可能降低绝缘性能,因此在各级开关的选用上,要注意其过流能力,防止过流跳闸或者长期工作烧毁。另外,对于绝缘体的设计,除了要满足工作过程中应承受的强度要求之外,还需要承受得住工作过程中的电压。
3.2 优化运行环境
在设计阶段,考虑到空间小、散热不足等环境危害因素的影响,要在条件允许的情况下,优先选用空间足够大的配电柜。虽然柜体、元件都是耐火耐热材料,但在长期高温、高电压的工作环境下,材料容易发生疲劳和老化,所以及时散热非常重要,尽量优先选用具备散热功能的配电柜。在运行阶段,由于积尘会影响设备散热、造成绝缘层腐蚀,所以在线路停电检修期间,要及时对配电柜进行除尘,使用酒精重点将母排、操作机构等部位擦拭干净。
3.3 实施风险评估与利用工程改造
由于在配电网设备中,配电柜的造价、维护成本相对较高,更新换代也相对较慢,所以目前配电网中不同厂家、不同类型的配电柜都有,质量参差不齐,这是配电网安全运行的薄弱环节之一。在运行阶段,除对旧配电柜每年开展常态设备状态评价外,在高温高负荷、保供电等特殊时期,有必要对其开展有针对性的风险评估工作,配套开展测温、测负荷、局部放电测试等检查工作。对于设备风险级别较高的,要采取适当的临时措施,并制订更换计划。另外,定检预试工作往往容易被忽略,根据规定,配电柜试验周期为母线联络断路器柜、主变低压侧断路器柜、电容器组断路器柜每3年1次,其余每6年1次。
3.4 完善防误操作装置
为防止电气误操作,现在所使用的配电柜中安装了各种各样的防误装置,防误操作装置的设置与管理要始终贯穿配电柜的整个生命周期。对规范防止电气误操作闭锁装置的现场运行管理,防误操作装置的管理措施包括:防误装置维护,防误装置验收、投运和停运,防误装置台账及技术档案,现场运行的巡视管理,正常操作解锁、特殊情况下解除防误闭锁装置的报告和许可。
3.5 实现设备与操作的规范化
配电柜作为配电网的重要组成部分,在设备设置、管理与操作上有着严格的要求。一方面,在设备的安装、运行阶段,要满足安全、健康与环境的规范化要求,实现设备安装位置、接线方式、标识、档案资料、巡视、维护、消缺、改造的规范化;另一方面,在运行阶段,电气操作要严格遵守规章制度,完善防止误操作的各项规章制,提高操作人员的敬业精神、技术能力和心理素质。结束语
随着智能配电网的建设,10 kV配电柜在制造材料、结构、功能、运行环境、管理水平方面日益得到完善,有效降低了配电柜设备风险,但预防设备故障和快速排查故障依然是降低配电柜故障损失的一种重要手段。
参考文献
[1]刘理.关于配电房高低压配电柜的优化选择[J].科技风,2011(19):84-85.〔编辑:王霞〕
第四篇:变电站典型案例分析
典型案例分析
一起220kV线路保护异常跳闸的分析
一、事故简述:
XXXX年XX月XX日500kV某变电站(以下简称甲站)至220kV某变电站(以下简称乙站)的一条环网运行的220kV线路,因乙站侧TV断线异常,在重负荷情况下引起TV断线相过流保护动作,两侧断路器三相跳闸。该220kV线路两侧保护配置为:
第一套保护包括:国电南自PSL602(允许式光纤纵联保护、三段式距离、四段式零序保护、)+GXC-01(光纤信号收发装置);国电南自PSL631A(断路器失灵保护)。
第二套保护包括:南瑞继保RCS931(分相电流差动保护,具备远跳功能、三段式距离、二段式零序保护);南瑞继保CZX-12R断路器操作箱。
甲站侧220kV该线路保护TA变比2500/1,乙站侧220kV该线路保护TA变比1200/5,TV断线相过流定值950A(一次值),线路全长9.14KM。931保护重合闸停用,使用602保护重合闸(单重方式)。
XX月XX日2时03分,甲站220kV线路断路器三相跳闸,602保护装置报文显示:
XXXX年XX月XX日 02时03分14秒553毫秒 000000ms距离零序保护启动 000000ms综重电流启动 000001ms纵联保护启动 000027ms 综重沟通三跳
000038ms 故障类型和测距
CA相间接地 401.40Km 000039ms 测距阻抗值
136.529+j136.529 Ω RCS931保护装置报文如下:
启动绝对时间 XXXX年XX月XX日 02:03:14:560 动作相
ABC 动作相对时间 00001MS 动作元件
远方起动跳闸 故障测距结果 0000.0kM 602保护装置“保护动作”指示灯亮、保护出口。931保护装置“TA、TB、TC”灯亮、保护出口。断路器操作箱上第一组“TA、TB、TC”灯亮。录波图显示断路器跳闸前线路负荷电流约1040A、峰值约1470A。(见甲站侧931保护故障录波图)
此次异常跳闸情况甲站侧主要有几个疑点是:
(一)为什么负荷电流情况下,甲站侧保护就地判别条件成立,保护会远跳出口?
(二)为什么602保护装置有测距且不正确,而931保护装置没有测距?
(三)为什么602和931两套保护都动作,而断路器操作箱上只有一组跳闸灯亮。
(四)为什么602保护综重沟通三跳出口?
二、事故原因分析 甲站220
kV线路931保护收到远跳信号的原因为:乙站 220kV付母电压回路,因TV端子箱内电压切换回路二次线腐蚀断落,造成TV二次失压,乙站602保护TV断线相过流保护动作,后备三相跳闸。TV断线失压相过流保护定值整定950A,当时负荷电流约1040A、峰值约1470A,TV断线相过流保护动作行为正确。
乙站保护三跳后启动操作箱内三跳继电器TJQ,该继电器一接点跳乙站线路断路器;另一接点开入回602保护装置,602保护装置即通过GXC-01装置向甲站侧602保护装置发允许跳闸信号;还有一接点开入931保护装置,931装置远跳开入有信号后即向甲站侧931保护装置发远跳令。
根据调度定值控制字设置要求,甲站侧931保护装置收到远跳令后需进行就地判别。判据为:保护是否启动,如果保护启动同时有远跳信号则出口跳闸。乙站侧断路器跳闸为负荷电流情况的TV断线过流保护动作所致,系统无实际故障,正常情况下甲站侧保护不应启动,远跳不会出口。
但根据甲站侧保护录波图显示,在三相负荷电流消失的瞬间有短时零序电流,有效值495A左右(峰值700A左右),线路电压在三相电流消失后继续存在25mS,说明此零序电流系乙站侧断路器跳闸不同期所致。
也就是说乙站侧断路器在TV断线过流保护动作后,断路器三相跳闸时存在非同期,造成短时间线路非全相运行,在负荷电流下使得甲站侧保护装置感受到了零流突变,而931保护电流变化量启动定值为200A(一次值)、零序启动电流定值200A,符合保护启动条件,所以甲站侧931保护远方跳闸出口,跳开甲站侧三相断路器。
931保护装置三跳动作同时通过本屏上“至重合闸”压板向602保护发三跳启动信号。602保护重合闸正常投单重方式,收到外部三跳启动信号后即闭锁重合,同时沟通本保护三跳回路,综重直接发三相跳闸令即为“综重沟通三跳”。甲站侧虽然两套保护都三跳出口,但录波图显示931保护先于602保护动作27ms,故虽然两套保护都动作,操作箱上只有931第一套保护出口时作用于第一组跳闸线圈的“TA、TB、TC”信号。602保护再动作时断路器已基本跳开,故操作箱上第二组跳闸线圈无跳闸信号。
由于此次保护动作为非全相引起的零序启动后的远跳,931保护装置因母线电压没有突变,距离保护未动作,故无测距。
又由于不同保护的软件差异,602保护装置显示“距离零序保护启动,故障类型CA相间接地”,根据故障分析,负荷线路B相断线有CA相间接地故障性质,可初步判断B相为乙站断路器不同期较前相。测距401.4kM反应的是C、A相负载阻抗测量值。由于此次602纵联保护中距离正方向元件只启动而未动作,所以602纵联保护虽然在本侧启动前27ms就收到允许信号但本侧正方向元件未动作,故602纵联保护未出口。
通过上述分析,乙站侧TV断线过流动作只跳乙站侧断路器比较合适,远跳原因为重负荷情况下乙站断路器三相分闸不同期引起。
三、经验教训和措施、建议
1)可考虑远跳回路中就地判别适当增加延时,躲过开关分闸不同期所导致的保护误启动。
2)目前较多220kV线路保护中“分相电流差动保护的远跳”和“光纤纵联保护的其它保护允许发信”都由操作箱中的TJQ和TJR(永跳继电器)继电器接点并联后启动。建议改为只有TJR启动,以减少断路器在事故中不必要的多动或误动,对事故的判别和处理都是有利的。3)应提高对分相断路器的同期性要求。
附:
RCS931和PSL602保护装置故障录波图,该继电器一接点跳乙站线路断路器;另一接点开入回602保护装置,602保护装置即通过GXC-01装置向甲站侧602保护装置发允许跳闸信号;还有一接点开入931保护装置,931装置远跳开入有信号后即向甲站侧931保护装置发远跳令。
------------意思是不是继电器有两接点?(一接点跳乙站线路断路器;另一接点开入回602保护装置)
如果是的话:还有一接点开入931保护装置,931装置远跳开入有信号后即向甲站侧931保护装置发远跳令(这个“还有一接点”是不是指602保护装置即通过GXC-01装置向甲站侧602保护装置发允许跳闸信号以后,602另外开入931的接点呢?怎么接的那么多环节呀?我们站好像都没有主保护发远跳令呢,都是主保护判差流后动作本侧而已。这个配置合理吗?)
你们站都没有主保护发远跳令,都是主保护判差流后动作本侧而已。这个配置合理
福建省超高压输变电局500kV福州变1号联变的零序保护动作跳三侧开关。2006年1月13日11时11分,500kV福州变1号联变RCS-978保护的220kV侧零序过流保护动作跳开1号联变三侧开关。经检查一次设备正常,1号联变于当日17时41分恢复运行。
经检查分析,主变跳闸时,继保人员正在检查1号联变ABB保护过负荷继电器告警缺陷,过负荷回路所在CT二次回路后级尚接有RCS-978保护的220kV侧零序过流保护,试验前将该CT进过负荷保护的电流回路(X211:30与X211:30A,X211:31与X211:31A,X211:32与X211:32A之间)短接,并将其经过负荷回路的试验连接片(X211:30A,X211:31A, X211:32A)断开。试验从A过负荷继电器(RAVK3)背板加入试验电流。因B相电流试验联片中间固定螺杆断裂,连接片X211:31A外层联片目测已断开,但内层没有脱开,造成此端子上的B472与X211:31A上下端子间未完全隔离。试验电流通过连接片内层导通而引入到B472后级的RCS-978保护回路,造成#1联变RCS-978保护的220kV侧零序过流保护动作。
暴露问题:ABB保护屏内电流端子中间连接片联动固定螺杆存在机械故障隐患,联接片设计不合理,未能形成明显的开断点。
安徽省合肥供电公司220kV东北郊变电站2号主变110kV侧零序过流保护动作跳开主变三侧开关。
东北郊变运行方式:220kV1号主变空载运行,101开关热备用;2号主变运行,102开关运行于110kV Ⅱ母线;100开关并列110kV双母线运行,141、142、143、144、145、146运行110kVⅡ母线。
事故经过:2006年10月12日17点50分,东北郊变220kV2号主变110KV侧零序过流保护动作,跳开2号主变三侧开关,220kV2号主变保护盘 跳A 跳B 跳C灯均亮。检查#2主变本体及三侧开关无异常。因110kV系统环网运行,141、142、144、145线路所带的110kV变电站备自投正确动作,35kV侧仅带站用变及电容器运行,143、146线路少送电量1.5万千瓦时。18点10分,恢复东北郊变正常运行方式。
跳闸原因:10月12日下午,220kV东北郊变电站110kVⅡPT更换后,自动化所保护二班进行2号主变带负荷测110kV侧零序方向保护、复合电压方向向量工作。由于2号主变110kV侧零序过流保护未停用,且它与零序方向保护接于同一绕组,17时50分,保护二班在测零序方向向量,短接电流回路时,由于当时负荷电流较大(二次电流达到2.72A),而零序过流保护定值为1.5A,2S,因此造成110kV侧零序过流保护动作跳开三侧开关。
暴露问题:
1、生产管理不规范,工作申请把关不严,自动化所在报2号主变带负荷测向量工作前,未认真组织对工作内容进行分析讨论,不清楚2号主变110kV侧零序过流保护与零序方向过流保护接于CT同一电流绕组。
2、现场工作前准备不充分,在工作前没有对要检验的2号主变保护设备运行状况及保护图纸进行核对,危险点分析不认真,对测向量工作中引起设备安全运行的关键环节危险点,没能分析到位并采取控制措施。
3、现场作业指导书不规范,作业指导书工作流程简单,关键步骤没有制定详细的工作流程。
4、现场二次工作安全措施票执行不严,安全措施未按操作步骤详细填写。
5、自动化所对员工的安全技能培训不够,近几年保护人员流动性大,现场工作负责人上岗时间不长,现场工作经验缺乏。
福建省南平电业局测控装置故障造成220kV九越变马越线223开关跳闸
故障前运行方式:220kV马越线223开关、1号主变22A开关接220kVⅠ段运行,水越Ⅰ线229开关接220kVⅡ段运行,220kV母联22K开关运行。
事故经过:2006年7月12日10时32分,九越变220kV马越线223开关跳闸,保护未发任何信号,运行人员到保护小室和开关场地进行巡视检查均未发现异常情况,10时45分汇报中调,于10时48分恢复九越变220kV马越线223开关运行。因220kV系统环网运行未造成少送电。
故障原因检查:11时继电保护人员到现场检查保护设备、测控设备、开关设备运行情况,13时打开220kV马越线223开关测控装置面板,闻到焦味,随后向调度申请退出测控装置进行检查,发现220kV马越线223开关测控装置内部开出板S3继电器(跳闸出口)的印刷电路有烧焦痕迹,用手触摸印刷电路板温度较高,判断为测控装置内部开出板在运行过程中温度过高,造成S3继电器损坏。同时对外回路进行检查,发现S4继电器(跳闸出口)背板接线端子6、8处因多股铜导线压接工艺不良造成金属丝短路。暴露问题:经综合分析确认本次220kV马越线223开关跳闸的原因是测控装置在运行过程中温度过高,使得装置内部开邮板S3继电器损坏造成接点接通,且测控装置S4继电器接点在背板接线端子6、8原已短接,造成跳闸回路连通,直接将开关跳闸。事后继电保护班利用备用开出板更换已损坏的插件,并对其他背板端子进行全面检查,未发现其他异常情况,测控装置已正常运行。
花石线光纤纵差保护误动
事故分析
事故经过
2006年12月1日12时21分,因现场施工吊车误碰青海330kV湟源变330kV I母C相致其故障,母差保护正确动作跳闸。与此同时,330kV花石线CSC-103A纵差保护发生区外故障误动,线路C相开关跳闸,重合闸动作并且
重合成功。事故分析
经查,保护误动原因是因330kV花石线花园变侧户外端子箱内3331开关LH与3330开关LH的N回路间短接线断裂(见附图1),3330开关LH的N回路与CSC-103A保护电流N回路脱离,造成电流回路缺陷,当花石线区外故障时,差流增大,引起光纤差动保护误动作。
而导致“和电流”两组LH二次N线间短接线断裂的原因是设备安装施工剥线时造成该线损伤,在长期的户外运行条件下,损伤处经长时间氧化和多次运行检修检查,造成连接面越来越小,最后导致短接线损伤处断裂。I母发生故障时,对于线路保护来说是属于区外故障,不考虑负荷电流,IC1和IC2大小相等,方向相反。流过线路保护的电流ILC=IC1+IC2,由于3330CT的N相短接线断线,IC2=0,因此ILC=IC1,线路保护因此误动。
结论
CSC-103A纵差保护属区外故障误动。不正确动作责任为运行部门继电保
护运行维护不良。
整改措施
1、提高工程施工质量,尤其应重视工程遗留问题的处理。
2、加强人员责任心,提高运行维护水平。花石线跳闸后,检查发现花石线LH端子箱内其“和电流”的两组LH的N回路间短接线明显已断裂,但是在最近一次保护检验及年内的春季和秋季安全大检查中均未被发现,这就充
分说明了人员的责任心亟待加强。
3、改变在继电保护验收、定期检验中存在“重装置、轻回路”的意识。不能把大部分时间花于检查装置的功能试验上,而对继电保护二次回路检验粗枝大叶,造成二次回路缺陷无法及时发现。
评分人数
渭北Ⅰ线路PSL-602A高频保护误动
1.经过: 2007年8月19日9时9分,330千伏北蒲Ⅰ线故障跳闸。同时,北渭Ⅰ线渭南变侧PSL-602A高频保护动作,开关重合闸成功。
2.原因
经检查,误动原因为北郊变侧北渭Ⅰ线PSL-602A装置软件使用错误,应使用3/2接线方式的软件,实际使用双母接线方式的软件。由于两种软件对开入量端子定义不同,在北蒲Ⅰ线故障开关跳闸后,该开关位置开入量被北渭Ⅰ线PSL-602A装置错误地识别为“跳闸反馈”,使北郊侧高频保护误停信,导致对侧高频保护误动。
江苏省常州供电公司因保护闭锁原理设计性缺陷,500千伏武南站220千伏PT电压失去,引起2号主变后备保护误动,开关跳闸。
事故经过:2006年3月1日11时39分,500千伏武南站因220千伏Ⅲ、Ⅳ段母线压变控制直流消失,造成3号主变220千伏侧后备距离保护动作,3号主变三侧5011开关、5012开关、4503开关、3530开关跳闸。经回路分析和现场实物查勘,发现220千伏Ⅲ、Ⅳ段母线压变直流控制回路熔断器为螺旋式RL1-15(6A),运行过程中氧化,引起接触不良,使220千伏Ⅲ、Ⅳ段母线交流电压各次级同时失去。3号主变220千伏侧距离保护为ABB公司的REL511(1.2版本)装置,保护动作闭锁原理存在设计性缺陷,当母线交流电压均失去时,该装置无法实现距离保护的可靠闭锁,以致跳闸。12时07分,总调发令停用3号主变220千伏侧距离保护,12时20分,总调发令3号主变送电,14时30分,总调发令启用3号主变220千伏侧距离保护。
暴露问题:ABB公司3号主变REL511保护(1.2版本)220千伏侧后备距离保护在正常电流下,母线交流电压失去时,防误功能缺损,无法实现距离保护的可靠闭锁,会造成误动作。
继电保护动作的一个案例分析
本来打算把它放在继电保护“典型案例分析”贴中,不过不能上传压缩文件,比较郁闷!
图片也截不下来!唉!
XXXX年X月X日XX分,XXX变220kV甲线和乙线开关跳闸,乙线开关B相跳闸后重合成功,甲线开关三相跳闸不重合。故障前乙线的潮流为38.6万千瓦,甲线线路为本侧向对侧充电状态。甲线和乙线开关保护配置均为南瑞的RCS931和南自的PSL602数字式线路保护。当时,甲线开关保护的主保护和重合闸停用,其余保护投入运行,乙线开关保护均在投入状态。故障发生后,保护信号统计如下:(1)甲线
保护装置
动作信息
PSL602保护
接地距离Ⅰ段动作,B相故障保护三跳出口,故障测距8.61km PSL631A失灵保护
失灵重跳B相,失灵重跳三相 CZX操作箱
“TA”,“TB”,“TC”灯亮 GXC-01光纤信号传输装置
无 RCS931保护
无
SCADA系统光字牌
PSL602装置保护动作,PSL631A装置失灵重跳,第一组出口跳闸,第二组出口跳闸(2)乙线
保护装置
动作信息
PSL602保护
纵联保护B跳出口,重合闸动作,B相跳闸重合成功,故障测距-290.54km, PSL631A失灵保护
失灵重跳B相 CZX操作箱
“TB”,“CH”灯亮
GXC-01光纤信号传输装置
发信“KA”,收信“KA”灯亮 RCS931保护
无
SCADA系统光字牌
PSL602装置保护动作,GXC-01装置动作,PSL602重合闸动作,PSL631A装置失灵重跳,第一组出口跳闸,第二组出口跳闸 所有故障录波器启动,所有220kV线路收发信机启动。现场一次设备检查正常。
甲线:故障时,B相电压由正常的57V下降为19V,A,C相电压正常,3U0在B相电压下降的同时产生,大小为33V,方向与B相电压相反。B相电流由充电电流0.1A左右突变为48A,一次故障电流约为24kA左右,A,C相电流没有过大的变化。
乙线,正常负荷电流是1.5A左右,故障时,A相电压为55.8V,B相电压59V,C相电压56V左右,3U0电压10V、相角-141°,A相电流0.8A、相角174°, B相电流1.98A、相角6.5°,C相电流1.55A、相角-64°,3I0电流为2.45A、相角-60°,此时,3I0超前3U0为77°。
经确认,甲线保护动作正确,为区内B相接地故障,乙线区内无故障,试分析乙线误动作原因。
附件中包括波形图以及乙线误动原因分析,不看后悔哦!
第五篇:变电站典型设计情况介绍
本文由我爱继保贡献
pdf文档可能在WAP端浏览体验不佳。建议您优先选择TXT,或下载源文件到本机查看。
变电站典型设计情况介绍
江苏省电力设计院 褚农
摘要:本文介绍了 220(110)kV 变电站典型设计在江苏省电力系统的推广应用情况,并重 点介绍了国家电网公司 500(330)kV 变电站典型设计情况。1 概述 开展典型设计工作,是贯彻落实国家电网公司“一强三优”战略的一项工作,是统一公 司工程建设标准、规范管理的重要手段。国网公司典型设计从变电站入手,全面推行。计划 2005 年上半年完成 500kV 及 330kV 变电 站的典型设计,下半年开始试行;年内要完成 220kV 及 110kV 变电站的典型设计。并在公司 系统新建工程中全部推广应用。江苏省电力公司为了适应地方经济发展需要,并实现电网效益的最大化,从 2001 年开始开 展 220kV 及 110kV 变电站的典型设计,并着力于推广应用工作。两年多来的应用实践证明,这一举措是成功的。本文先就江苏省推广应用 220kV 及 110kV 变电站的典型设计的情况作简要介绍,然后介绍国 网公司 500kV(330)kV 变电站典型设计的情况。2 江苏省公司 220kV 及 110kV 变电站的典型设计 2.1 编制过程 220kV(110kV)变电站典型设计的编制工作分三个阶段进行。第一阶段:搜资调研,确定典设主要设计原则。我院在对江苏变电站设计进行统计梳理的同时,还赴与江苏经济同样发达的省市学习调 研,取长补短;对一些争议较大的技术问题进行专题调研分析。共完成调研报告和专题报告 8 篇,有《广东地区搜资调查报告》、《上海地区搜资调查报告》、《取消旁路母线专题报 告》、《变电站计算机监控系统与“五防”装置设计专题报告》、《直流系统额定电压选取 专题报告》、《PASS 及 COMPASS 调研报告》、《110kV 自冷和风冷变压器选型》、《环保型 自动灭火系统调研报告》。通过搜资调研为典型设计提供真实可靠的依据。原则主要包括编制深度、应用范围、规模区间、短路电流控制水平、设备水平以及运行管理 模式等。《典型设计主要设计原则(初稿)》完成后,省公司组织了公司本部有关部门、我 院典设组成员和 13 个地市供电公司总工程师以及生技、基建、调度部门负责人进行了座谈,广泛听取意见、了解需求。第二阶段:编制和审定典设的设计方案和技术条件书。根据第一阶段确定的主要设计原则,我们编制了专题报告,进行了分析论证,提出了典 设方案的推荐意见及相应的技术条件书。技术条件书主要包括各电压等级的电气主接线形 式、配电装置形式、出线回路数及引出方式、主变压器形式、无功补偿配置方式、监控及保 护配置方式、所用交流及直流电源配置方式和主变压器消防措施等。第三阶段:编制完成变电站典型设计。根据确定的编制方案及技术条件书,对技术方案进行全面的论述和定量计算,选定主要 设备参数。各方案的初步设计文件包括设计说明书、设计图纸、主要设备清册及概算书等。省公司先后对典型设计的送审版和批准版进行评审,通过评审确定了今后新建变电站的接 线、配电装置、监控方案、控制楼面积及概算指标等主要原则和典设中的基本模块。典型设 计的批准版由省公司总经理作序出版,并印发执行。2.2 变电站主要设计原则和方案 变电站典型设计总体设计原则为:(1)典型设计贯彻“安全、可靠、经济、适用”的设计原则。(2)考虑到江苏在经济、技术等方面处于国内领先位置,设计上将体现先进性,技术上 适度超前。(3)除遵循部标 SDJ2-88 《220kV~500kV 变电站设计规程》 DL/T 5103-1999、《35kV~110kV 无人值班变电所设计规程》及其它有关规程规范外,还应符合省电力公司编制的《江苏省 35kV~220kV 变电站设计技术导则》等有关规定。根据江苏地区的特点,变电站设计类型既可按照负荷密集程度进行划分,也可按照变电站所在地 区划分。为使典设各方案具有广泛的代表性,我们针对本省特点,220kV 变电站提出 A(负荷密集 地区)、B(一般地区)、C(城市地区)三大类共计 8 个变电站设计方案、11 个建筑方案。110kV 变电站提出了 A(主变及高压配电装置户外布置、中压配电装置户内布置)、B(主变户外布置、配电装置户内布置)、C(全户内布置)三大类共计 8 个方案。各方案组合及其主要技术条件见附 表 1~2。2.3 设计特点和应用情况 变电站典型设计适用于江苏省大部分 220kV 和 110kV 变电站,并且作为变电站的设计规范,被纳入省公司的企业标准。典设自 2002 年底执行以来,在电网建设工作中发挥了较大效益,江苏 省 2004 年投运的 27 个新建 220kV 变电站,2005 年和 2006 年即将投运的 73 个新建 220kV 变电站,均采用了典型设计。110kV 变电站典型设计应用范围更为广泛。(1)典型设计具有模块化设计的特点,配电装置、控制楼、概算等都具有一定的独立性,对 不同规模的变电站的初步设计,可以根据工程建设规模,以典型设计作为修正模块进行调整。(2)典型设计中的概算模块比较全面、客观,成为省公司编制上报项目建议书时的依据。(3)典型设计中无法统一的个性化的方面,如主变调相调压计算、系统保护通信方案、短路 电流核算、地基处理、各级电压出线方向以及总平面布置方案等仍需单独设计。(4)典型设计的编制过程是统一标准和统一认知的过程。广泛听取设计、建设、生产及调度 各方面的意见的基础上,领导参与指导和决策,有利于统一意见,把典型设计提升为企业标准。(5)典型设计提高了工作效率,保证了工作质量。典型设计不是设计的参考,而是设计的标 准。因此,典型设计的推广应用减少了专业协调的工作量,使设计专业之间的协调流畅,工作效 率大大提高。(6)典型设计的应用提高了初步设计审查效率。审查会上主要讨论具体设计方案与典设方案 的不同之处。减少了大量重复的讨论和无谓的扯皮。初设修改和批文下达时间也大大缩短,也为 设备招投标创造了良好条件。(7)以典设为基础的初设方案,其工程造价与典设方案出入不大,更易于控制工程造价的总 投资,避免了工程造价出现大起大落的现象。(8)为使各设计院会用或愿意用典型设计,省公司组织多次典型设计宣贯活动,请典设编制 人员介绍设计原则、方案组合、适时条件和使用方法。(9)典型设计需要不断优化和完善。随着我国经济体制改革的不断深化,电力技术的不断进 步,典型设计也应随之进行滚动修改,进一步优化。3 国家电网公司 500(330)kV 变电站典型设计的情况 3.1 任务的提出及工作过程 刘振亚总经理在国家电网公司 2005 年工作报告中提出:推行电网标准化建设。各级电网工程 建设要统一技术标准,推广应用典型优化设计,节省投资,提高效益。郑宝森副总经理在国家电网公司 2005 年基建工作报告中提出:以典型设计为导向,促进技术 进步和提高集约化管理水平。2005 年 1 月 28 日由国网公司基建部提出典型设计工作大纲; 2 月 5 日由基建部和顾问集团公司共同完成典型设计招标文件; 2 月 6 日在北京招标文件发布,共邀请 13 家设计院参加投标; 2 月 28 日前各投标设计院完成典型设计标书,28 日在北京开标; 3 月 4 日完成评标及定标工作,4 日在北京召开中标发布会,共有 5 家设计院中标,分别是华 东电力设计院、江苏省电力设计院、中南电力设计院、西北电力设计院、华北电力设计院。相继成立了“国家电网公司 500(330)kV 变电站典型设计工作组”,组长单位为国家电网 公司基建部;副组长单位为中国电力工程顾问集团公司;成员单位有华东院、江苏院、中南院、西北院、华北院。根据各院特点,工作组进行了设计分工: 华东院负责主设备为 GIS 方案的设计,并负责华东地区 500kV 变电站情况的调研工作; 江苏院负责主设备为 HGIS 方案的设计,并负责南方电网公司 500kV 变电站情况的调研工作;
中南院负责主设备为瓷柱式方案的设计,并负责华中地区 500kV 变电站情况的调研工作; 华北院负责主设备为落地罐式方案的设计,并负责华北地区 500kV 变电站情况的调研工作; 西北院负责 330kV 变电站方案的设计,并负责西北地区 330kV 变电站情况的调研工作。面对典设工作面广量大、情况复杂、时间紧,国网公司基建部很抓落实,及时组织召开了多 次设计协调会,基本上两星期开一次协调会。3 月 4 日中标发布会上明确分工,布置任务。3 月 18 日于苏州召开第一次协调会,会议就典型设计目的、原则、技术条件、工作进度、调 研分工等有关问题,一次、二次、土建、水工、暖通、技经等专业的设计原则和深度要求进行了 认真的讨论,并形成初步意见。4 月 5 日于北京召开第二次协调会,会议就对前阶段典设工作进展情况、典设中间成果进行检 查和评审,并对需解决的有关技术问题进行了讨论,形成了一致性意见。紧接着 4 月 6 日于北京召开典设工作研讨会,邀请电网公司策划部、生产技术部、安全监察部、建设运营部、国调中心、国网建设公司,各大区电网公司、各省电力公司、各大区电力设计院的 代表参加会议。会议听取了典设中间成果的介绍,通过深入并热烈地讨论,达成共识,统一思想,避免了设计闭门造车,以便下阶段典设工作的顺利开展。4 月 20 日于武汉召开第三次协调会,会议对典型设计的工作进度,主控通信楼、大门和围墙 的设计方案,模块的拼接,典型设计送审稿的章节编制和格式,以及存在的问题进行了讨论,并 形成结论意见。5 月 18 日~19 日于北京召开典设成果评审会,国家电网公司郑宝森副总经理、中国电力顾问 集团公司于刚副总经理出席会议并分别作了重要讲话。国网公司各部门,各网省公司,各设计院 代表对典型设计送审稿进行了认真负责的讨论,充分发表了意见,使典型设计更贴近实际,更符 合生产运行的要求。典型设计分为 6 个阶段: 编制方案组合及技术条件阶段:根据目前实际情况,并适当考虑发展裕度,变电站典型设计 综合考虑电压等级、主变容量、无功补偿、出线回路和方向、电气主接线、短路电流、设备选型、配电装置,控制及远动、建筑面积等条件,提出设计方案和设计技术条件。搜资调研及专题研究阶段:各设计院分头开展搜资调研工作,编写地区调研报告,对于分歧 意见较大的技术问题,进行重点调研,并写出专题报告。典型设计编制阶段:经讨论审定设计方案和技术条件后,各院开展变电站典型设计实质性设 计编制阶段,完成设计图纸、说明书、设备清册、概算书初稿;经评审后进一步优化和细化,编 制典型设计使用说明,完成典型设计成品(报批稿)。评审及修改阶段:由国家电网公司组织生产、基建、设计单位的设计人员,对典型设计成品 进行评审。形成评审意见后各设计院进行设计修改,形成典型设计报批稿。批准颁发阶段:典型设计报批稿提交国家电网公司,由公司领导写序,作为企业标准出版发 行。推广应用阶段:(略)。3.2 开展 500(330)kV 变电站变电站典型设计的目的 输变电工程典型设计是贯彻国家电网公司集约化管理的基础,开展变电站典型设计工作的目 的是:统一建设标准,统一设备规范,减少设备型式,以便于集中规模招标,方便运行维护,降 低变电站建设和运营成本;采用模块化设计,方便方案的拼接和扩展,加快设计、评审和批复进 度,提高工作效率。3.3 500(330)kV 变电站典型设计的主要原则 变电站典型设计的原则是:安全可靠、技术先进、投资合理、标准统一、运行高效。为此,在典型设计中,要注意处理和解决典型设计方案的先进性、经济性、适应性,灵活性和统一性及 其相互关系。先进性:典型设计方案,设备选型先进,合理,占地少、注重环保,变电站可比指标先进; 经济性:综合考虑工程初期投资和长期运行费用,追求设备寿命期内最优的经济效益; 适应性:典型设计要综合考虑各地区的实际情况,要在整个国家电网公司系统中具有广泛的 适用性:并能在较长的时间内,对不同规模,型式、外部条件均能适用; 灵活性:典型设计模块间接口灵活,增减方便,组合型式多样,概算调整方便;
可靠性:保证设备、各个模块和模块拼接后系统的安全可靠性; 统一性:建设标准统一,基建和生产运行的标准统一,外部形象风格统一。3.4 典型设计方案组合及主要内容 3.4.1 总体方案设计 典型设计方案分 500kV 变电站和 330kV 变电站两大部分。500kV 变电站典型设计按主设备不同分为 A(GIS 设备)、B(HGIS 设备)、C(敞开式设备)、D(落地罐式设备)4 类方案,各类方案又根据主变容量和最终台数的不同再分子方案。各方案组 合及主要技术条件详见附表 3~附表 6。330kV 变电站典型设计按主设备不同分为 A(GIS 设备)、C(敞开式设备)、D(落地罐式设 备)3 类方案,各类方案又根据主变容量和最终台数的不同再分子方案。各方案组合及主要技术条 件详见附表 7。3.4.2 电气二次设计 变电站初期按有人值班设计,留有远期实现无人值班的接口和功能配置。不含系统保护、调度自动化和系统通信专业的具体内容。提出了监控系统主要设计原则。包括监控范围、系统硬件设备配置原则,对系统软件工作平台、防误操作闭锁、GPS 对时、保护信息采集方式及通信规约等方面进行了重点论述,提出推荐方 案。提出了元件保护、直流系统及交流不停电电源的主要设计原则。提出了二次设备组屏原则,对监控系统测控装置、线路保护、主变压器及高压电抗器保护、故障录波等主要二次设备的组屏提出推荐方案。根据工程规模进行主控室、计算机室、继电器小室、直流电源室等的具体布置。3.4.3 土建部分设计 变电站大门、围墙要能体现国网公司“内质外形”建设,树立“国家电网”的品牌形象,设 计简洁、明快、大方、实用,具备现代工业建筑气息,建筑造型和立面色调与变电站整体状况以 及所在区域周围环境协调、统一。大门围墙采用标志统一、风格统一、色彩统一,字体统一等要 求,变电站大门入口处一侧统一设置“标志墙”。其上为球形标志,下有“国家电网”四字,右 侧为“国家电网公司 500(330)kV XX 变电站”。变电站围墙采用实体围墙,高度统一采用 2.5m,另加远红外探测器。站区道路采用混凝土路面,统一采用公路(郊区)型设计。经过设计优化后,330kV GIS 方案占地面积 1.7ha,330kV 敞开式方案 3-3.5ha.;500kV GIS 方案占地面积 3.0~3.8ha,HGIS 方案占地面积 3.5~4.5ha;敞开式方案 5.8-7.3ha。统一了站区主要生产建筑和房间的设置,建设有主控通信楼、继电器小室、站用电室等建筑 物。建筑面积,500kV 变电站控制在 1100~1300平米,330kV 变电站控制在 1000~1100平米。主控通信楼内房间的设置统一为:生产用房设有主控室、计算机室、通信机房(当通信电源组屏 布置时,电源室和通信机房合并布置),辅助及附属房间设有交接班室、值班休息室 2-3 间、办 公室 2 间(含资料室)、会议室、备餐室、检修工器具间等。主控通信楼采用框架结构。继电器小室当布置在串中时,跨度采用 5.1m,采用室内电缆沟敷 设电缆。继电器小室采用砖混结构,加设钢板网屏蔽,普通钢门。所有构架、设备支架均推荐采用钢管结构,热镀锌防腐。变电站主要生产用房及办公、值休等用房和保护小室需安装空调机,其余生产用房采用轴流 风机机械通风,电缆层采用自然通风。主控通信楼采用小集中空调,继电器小室采用分体空调。位于采暖区的变电站可采用分散供暖方式。主变压器消防优先考虑采用泡沫喷淋、排油充氮方式。继电器室全集中布置时主控通信楼建筑体积不大于 5000 m3,不设室内建筑水消防系统,但应设室 外建筑水消防系统。继电器小室分散布置时,主控通信楼建筑面积控制在建筑体积不大于 3000 m3,全站不设室外 水消防系统,采用移动式化学灭火装置。3.4.4 技经部分 为使典型设计的各方案、模块的投资在同一价格水平上,便于进行对比分析,在典型设计概 算编制时采用统一的取费标准、统一的定额、统一的设备材料价格和统一的其他费用标准。为适应实际工程和典型设计的各基本组合方案的投资水平对比分析的需要,对不在本次典型
设计范围内的有关工程费用进行了统一规定,包括水源、站外电源、站外通信、进站道路、地基 处理、站外排水、护坡挡墙等,保证了典型设计的各基本组合方案的概算投资的完整性。使用时需根据工程规模和实际情况选用基本组合方案或模块方案参考造价进行分析、合理调 整。联系方式:褚农,教高,江苏省电力设计院,025-85081300,chunong@jspdi.com.cn 附表 1: 方案 A1 主变
江苏省 220kV 变电站典型设计主要工程技术条件
适用规模 220kV 出 线 6 回,110kV 出线 8 回,35kV 出线 10 回 接线 220kV、110kV 采 用双母线接线,35kV 采用单母线 分段接线 配电装置 220kV、110kV 配 电装置采用软母线 改进半高型,35kV 配电装置采用户内 开关柜 布置格局 220kV 出 线 与 110kV 出 线 构 180o布置 220kV 出 线 与 110kV 出 线 构 90o布置 220kV 出 线 与 110kV 出 线 构 180o布置 220kV 出 线 与 110kV 出 线 构 90o布置 220kV 出 线 与 110kV 出 线 构 180o布置 220kV 出 线 与 110kV 出 线 构 90o布置 主变露天,建 筑物两列式布 置 主变半户内,整体建筑式布 置 主变露天,建 筑物两列式布 置 A2 本期 2 台 120MVA 主变 远景 3 台 B1-1 B2-1 B1-2 本期 2 台 180MVA 主变 远景 3 台
220kV 出 线 6 回,110kV 出线 8 回,35kV 出线 10 回
220kV、110kV 采 用双母线接线,35kV 采用单母线 分段接线
220kV、110kV 配 电装置采用管母线 中型,35kV 配电装 置采用户内开关柜 B2-2 220kV 出 线 6 回,110kV 出线 8 回,10kV 出线 24 回 220kV 出线本期 2 回远期 3 回,110kV 出 线 12 回,10kV 出线 24 回 220kV 出线本期 2 回远期 3 回,110kV 出 线 8 回,10kV 出线 24 回
220kV、110kV 采 用双母线接线,10kV 采用单母线 分段接线
220kV、110kV 配 电装置采用管母线 中型,10kV 采用户 内开关柜 C1 C3 本期 2 台 180MVA 主变 远景 3 台
220kV 采 用 单 元 接线,110kV 采用 双母线接线,10kV 单母线分段 接线 220kV、110kV 采 用户内 GIS,10kV 采用户内开关柜,全电缆出线 220kV、110kV 采 用户内装配式配电 装置,架空出线; 10kV 采用户内开 关柜电缆出线 C2 所有方案 直流系统:2 组 220V 阀控式密封铅酸蓄电池,2 组充电装置(高频开关电源),配置 DC/DC 变换 器供-48V 系统通信电源,不设蓄电池室。交流所用:所用电系统 380/220V 中性点接地,采用三相四线制,单母线分段接线,两台所变分列 运行。继电保护:220kV、110kV 线路、主变设微机保护,保护测控相对独立;35kV 设微机保护(含低 周减载和接地检测功能),保护测控合一,分散布置。自动装置:电容器组投切;35kV 消弧线圈跟踪补偿。对时装置:全所共用 1 台 GPS。防误操作:不专设微机五防装置,由计算机监控系统统一考虑。电能计量:主变中低压侧设关口表,其余按规程配置。电气测量:利用监控系统完成。信息采集:模拟量和开关量。控制方式:远方调度,监控系统,就地三级操作。通信方式:变电站接入地区光纤环网,通信容量及可靠性按照变电站无人值班要求设计。
附表 2: 方案 主变 远景: 2× 50MVA 本期: 2× 50MVA 远景: 2× 50MVA 本期: 2× 50MVA 江苏 110kV 变电所典型设计主要工程技术条件
适用规模 110kV 进线 2 回,35kV 出线 4 回架 空,4 回电缆,10kV 出线 16 回电 缆 110kV 进线 4 回,35kV 出线 4 回架 空,回电缆,4 10kV 出线 16 回电缆 接线 110kV 采用线变 组接线 35kV、10kV 采用 单母线分段接线 配电装置 布置格局 主变及 110kV 配 电装置户外布 置,35kV、10kV 配电装置户内 布置 A1 110kV 采用单母 线分段接线 A2 35kV、10kV 采用 单母线分段接线 110kV 采用内桥 110kV 配电装置 主变及 110kV 配 远景: 110kV 进线 3 回,采用户外敞开式 电 装 置 户 外 布 或线变组接线 3× 50MVA A3 10kV 出线 36 回电 10kV 采用单母线 设备,10kV 采用 置,10kV 配电 本期: 缆 2× 50MVA 装置户内布置 户内开关柜 分段接线 110kV 采用内桥 远景: 110kV 进线 2 回,接线 2× 50MVA B3 10kV 出线 24 回电 110kV 配电装置 主变户外布置,10kV 采用单母线 本期: 缆 采用户内敞开式 110kV 配电装置 2× 50MVA 分段接线 设备,10kV 采用 及 10kV 配电装 110kV 采用线变 远景: 置户内布置 户内开关柜 110kV 进线 3 回,组接线 3× 50MVA B4 10kV 出线 36 回电 10kV 采用单母线 本期: 缆 2× 50MVA 分段接线 远 景 : 2× 110kV 进线 2 回,110kV 采用内桥 接线 50MVA 10kV 出线 24 回电 C2 10kV 采用单母线 本 期 : 2× 缆 50MVA 分段接线 110kV 采用户内 110kV 采用双内 远景: GIS,10kV 采用 桥或双外侨接线 全户内 3× 50MVA 户内开关柜,全 C3 本期: 110kV 进线 3 回,10kV 采用单母线 电缆出线 2× 50MVA 10kV 出线 36 回电 分段接线 缆 110kV 采用线变 远景: 组接线 3× 50MVA C4 10kV 采用单母线 本期: 2× 50MVA 分段接线 所有方案 直流系统:2 组 220V 阀控式密封铅酸蓄电池,2 组充电装置(高频开关电源),设蓄电池室。交流所用:电系统 380/220V 中性点接地,采用三相四线制,单母线分段接线,两台所变分列运行。继电保护:220kV、110kV 线路、主变设微机保护,保护测控相对独立;35/10kV 设微机保护,保护 测控合一,分散布置。自动装置:电容器组投切;35/10kV 消弧线圈跟踪补偿;35/10kV 接地检测。对时装置:全所共用 1 台 GPS。防误操作:闭锁不专设微机五防装置,由计算机监控系统统一考虑。电能考核:计量主变中低压侧设关口表,其余按规程配置。就地电气:测量利用监控系统完成电气测量。信息采集:类型模拟量和开关量。控制操作:方式远方调度,监控系统,就地三级操作。通信方式:变电所接入地区的光纤环网,光纤网络与继电保护统一考虑,通信容量及可靠性按照变 电所无人值班要求设计。
110kV 配电装置 采用户外敞开式 设备,35kV、10kV 采用户内开关柜
附表 3: 序 号 项目 名称
500kV 变电站(GIS)典型设计主要技术条件
方案编号 A-1-1 A-1-2 4 台主变 本期 1 组 1000MVA,最终 4 组 1000MVA,单相自耦,无载调压。本期 1 组 750MVA,最终 4 组 750MVA,单 相 自 耦,无载 调压。本期 1 组 750MVA,最终 4 组 750MVA,本期 1 组 最终 3 组 A-1-3 A-2-1 A-2-2 3 台主变 本期 1 组 最终 3 组 本期 1 组 750MVA,最终 3 组 750MVA,A-2-3 1000MVA,750MVA,1000MVA,750MVA,1 主变压器
三相自耦,单相自耦,单相自耦,三相自耦,无载调压。无载调压。无载调压。无载调压。500kV 并联电抗器: 本期 1 组 150Mvar,最终 2 组,为线路高抗,均装中性点小 电抗,不考虑母线高抗。最终 6 组;35kV 并联电容器:本期 2 组 60Mvar,最终 6 组。2 台主变进串,第 3 台主变经单断路器 接二段母线;本期设 9 台断路器(1 台 远景设备本期上),串内 GIS 设备。500kV 高抗经隔离开关接入线路。220kV 双母线双分段接线,本期双母线 接线,GIS 设备。35kV 单母线接线,不设总断路器。500kV 本期 4 回,最终 8 回架空,一个 220kV 本期 8 回,最终 14 回架空出线(一个或两个方向出线),2 回电缆出 线。
500kV 并 联 电 抗 器 : 本 期 1 组 150Mvar,最终 2 组,为线路高抗,均 无功补偿 2 装置 装中性点小电抗,不考虑母线高抗。最终 8 组;35kV 并联电容器:本期 2 组 60Mvar,最终 8 组。对 4 台主变,主变均进串;对 3 台主 变,2 台主变进串,1 台主变经断路器 电气主接 4 线 接 2 段母线。本期设 8 台断路器。500kV 高抗经隔离开关接入线路。220kV 双母线双分段接线,本期双母 线接线。35kV 单母线接线,不设总断路器。500kV 本期 4 回,最终 8 回架空,一 出线回路 3 数和出线 方向 5 6 7 8 9 10 短路电流 主要设备 选型 配电装置 保护及 自动化 建筑面积 站址基本 条件 最终 16 回架空出线,一个或两个方向 出线(3 台主变方案其中 2 回电缆出线)。单相/三相自耦变压器; 500kV、220kV 采用户外 GIS;
35kV 并联电抗器:本期 2 组 60Mvar,35kV 并联电抗器:本期 2 组 60Mvar,500kV 一个半断路器接线,远景 6 串,500kV 一个半断路器接线,远景 6 串;
个或两个方向出线;220kV 本期 8 回,或两个方向出线; 500、220、35kV 短路电流水平分别为:63(50)、50、40kA 35kV 采用户外 AIS,断路器采用柱式,电容器采用组装式,电抗器采用干式。500kV、220kV 户外 GIS。计算机监控系统,不设常规控制屏,监控和远动统一考虑,可满足无人值班要 求,保护集中布置。全站总建筑面积 2000m2以内,非采暖区。主变采用水喷雾消防系统。海拔高度<1000m,地震动峰加速度 0.1g,风荷载 30m/s,地耐力 R=150kPa,地 下水无影响,非采暖区,场地同一标高,污秽等级 III 级。
附表 4 序 号 1 500kV 变电站(HGIS)典型设计主要技术条件
方案编号 项目名称 B-1 主变压器 主变电气 接线 远景串数 本期 1 组、最终 4 B-2 本期 1 组、最终 4 B-3 本期 1 组、最终 3 组 750MVA 主变。第三台主变经断路器接 母线 5 垂直 2个 不设平行
组 1000MVA 主变。组 750MVA 主变。主变全部进串 6平行 1个 不设 垂直 主变全部进串 6 垂直 2个 设置 垂直 2 500kV 母线与主 变梁 主要出线 方向 总断路器 3 35kV 母线与主 变梁
项目 无功 4 补偿
相同的主要工程技术条件 500kV 并联电抗器:本期 1 组 150Mvar,最终 2 组,经隔离开关接入线路,均装 设中性点电抗,不考虑母线高抗;35kV 电容器、并联电抗器按每台主变各配置 2 组 60Mvar 设计。500kV:本期 4 回,最终 8 回;220kV:本期 8 回,最终 16 回,1 个主要出线方 向。500kV 一个半断路器接线,本期设 1 个不完整串和 2 个完整串共 8 台断路器; 220kV 双母线双分段接线,本期双母线接线;35kV 单母线单元制接线。500kV 部分 63 或 50kA,220kV 部分 50kA,35kV 部分 40kA。单相自耦变压器;500kV 采用户外 HGIS,220kV 采用户外 GIS,35kV 采用户外 AIS,断路器采用柱式,35kV 并抗采用干式或油式,电容器采用组装式,站变采 用油浸式。500kV 户外悬吊管母线中型布置,高架横穿进出线,间隔宽度 28m;220kV 间隔 宽度 13m;35kV 采用支持管母线中型布置。计算机监控系统,不设常规控制屏,监控和远动统一考虑,可以满足无人值班要 求;保护就地布置。全站总建筑面积 1400m2以内,主控通信楼建筑面积 650—750 m2;主变消防采用 SP泡沫喷淋灭火或排油充氮方式。5 出线 电气主 6 接线 短路 7 电流 主要 8 设备 配电 9 装置 保护 10 自动化 土建 11 站址 12 条件
按地震动峰值加速度 0.10g,风荷载 30m/s,地耐力 R=150kPa,地下水无影响,非采暖区设计,假设场地为同一标高。按海拔 1000 米以下,国标Ⅲ级污秽区设 计
附表 5 序 号 1 项目名称
500kV 变电站(瓷柱式)典型设计主要技术条件表 500kV 变电站(瓷柱式断路器)典型设计工程技术条件
主变压器 本期 1 组 750MVA,最终 2/3/4 组 750MVA 500kV 并联电抗器,本期 1 组 150Mvar,最终 2 组,为线路高抗,均装设中性点小 抗,不考虑母线高抗。2 无功补偿 3 组和 4 组主变方案,每组主变压器 35kV 侧无功配置:2 组 60Mvar 并联电感器,装 置 2 组 60Mvar 并联电容器。2 组主变方案,每组主变方案 35kV 侧无功配置:3 组 60Mvar 并联电感器,3 组 60Mvar 并联电容器。本期 35kV 侧无功配置:2 组 60Mvar 并联电抗器,2 组 60Mvar 并联电容器。出线回路 500kV 本期 4 回,最终 10 回,两个方向出线。数和出线 220kV 本期 6 回,最终 16 回(3 组或 4 组主变)或 12 回(2 组主变),一个方向出线或 方向 两个方向出线。500kV 一个半断路器接线,远期 6 串,2 组主变进串,后 2 组或 1 组主变经断路器 接母线。本期设 8 组断路器。500kV 高压电抗器均为经隔离开关接入线路。3 4 电气主接 线 220kV 双母线双分段接线或双母线单分段,本期双母线接线。35kV 单母线接线,不装设总断路器。5 6 短路电流 500、220、35kV 短路电流水平分别为 63(50)、50、40kA 主要设备 单相自耦变压器。500kV、220kV、35kV 采用户外瓷柱式断路器。选型 35kV 电容器采用组装式、电抗器采用干式。500kV 屋外悬吊管母线中型布置,主变高架横穿和低架横穿进串。7 配电装置 220kV 屋外支持管母线中型布置(3 组或 4 组主变)或悬吊母线中型布置(2 组主变)。35kV 支持管母线中型布置。保护及 计算机监控系统,不设常规控制屏,监控和远动统一考虑,可以满足无人值班要 自动化 求。保护就地布置。土 站 建 全站总建筑面积 1400m2以内,主控通信楼建筑面积 650-750m2(小于 3000m3),非 采暖区。主变消防采用水喷雾消防系统。8 9 10 址 海拔 1000m 以下,地震动峰值加速度 0.10g,设计风速 30m/s,地耐力 R=150kPa,基本条件 地下水无影响,假设场地为同一标高。国标 III 级污秽区。附表 6 序号 1 500kV 变电站(落地罐式)典型设计主要技术条件表
项目名称 500kV 变电站工程技术条件 本期 1 组 750MVA,最终 2/3/4 组 1000MVA(750MVA)500kV 并联电抗器,本期 1 组 150Mvar,最终 2 组,为线路高抗,装设中性点 小电抗,不考虑母线高抗。
主变压器
无 功 补 偿 装 3 台和 4 台主变方案,每台主变压器 66kV 侧无功配置:2 组 60Mvar 并联电抗 2 置 器,2 组 60Mvar 并联电容器。2 台主变方案,每台主变方案 66V 侧无功配置: 3 组 60Mvar 并联电抗器,3 组 60Mvar 并联电容器。本期 66kV 侧无功配置:2 组 60Mvar 并联电抗器,2 组 60Mvar 并联电容器。出线回路数 3 和出线方向 500kV 本期 4 回,最终 10 回,两个方向出线。220kV 本期 6 回,最终 16 回(3 台或 4 台主变)或 12 回(2 台主变),一个方 向出线。500kV 一个半断路器接线,远期 6 串,2 台主变进串,后 2 台或 1 台主变经断 4 电气主接线 路器接母线。本期设 8 台断路器。500kV 高压电抗器均为经隔离开关接入线路。220kV 双母线双分段接线或双母线单分段,本期双母线接线。66kV 单母线接线,装设总断路器。5 6 短路电流 500、220、66kV 短路电流水平分别为 63(50)、50、31.5kA 主 要 设 备 选 单相自耦变压器 型 500kV、220kV 采用户外罐式断路器,66kV 采用户外柱式断路器。500kV 屋外悬吊管母线中型布置,主变高架横穿和低架横穿进串。7 配电装置 220kV 屋外悬吊管母线中型布置。66kV 支持管母线中型布置。保 护 及 自 动 计算机监控系统,不设常规控制屏,监控和远动统一考虑,可以满足无人值班 8 化 土建 要求。保护就地布置。
全站总建筑面积 1500m2以内,主控通信楼建筑面积 650-750m(小于 3000 m3),9 采暖区。主变消防采用SP泡沫喷淋灭火。站 址 基 本 条 海拔 1000 米以下,地震动峰值加速度 0.10g,设计风速 30m/s,地耐力 R=150kPa,10 件
地下水无影响,假设场地为同一标高。国标 III 级污秽区。
附表 7 序 项目名称 号 1 主变压器
330kV 变电站典型设计主要技术条件表
330kV 变电站工程技术条件 本期 1 台 240MVA(360MVA),最终 2/3 台 240MVA(360MVA)。330kV 并联电抗器,本期 1 组 90Mvar,最终 2 组,GIS 方案最终为 1 组,均
无功补偿装置
为线路高抗,并装设中性点小抗,不考虑母线高抗。35kV 侧无功按主变配置:1 组 30Mvar 并联电抗器,3 组 20Mvar 并联电容器。本期 35kV 侧无功配置:1 组 30Mvar 并联电抗器,3 组 20Mvar 并联电容器。
出 线 回 路 数 和 330kV 本期 4 回,最终 6 回,两个方向出线。3 出线方向 110kV 本期 6 回,最终 14 回,一个方向出线或两个方向出线。330kV 一个半断路器接线。330kV 高压电抗器均为经隔离开关接入线路。4 电气主接线 330kVGIS 方案为双母线接线。110kV 双母线接线单分段,本期双母线接线。35kV 单母线接线,设总断路器。5 短路电流 330、110、35kV 短路电流水平分别为 50、40、31.5kA 三相自耦有载调压 6 主要设备选型 330kV 采用罐式、柱式断路器和 GIS。110kV 采用柱式断路器和 GIS。35kV 电容器采用框架组合式和集合式,电抗器采用干式 330kV 屋外软母线和悬吊管母线中型布置,主变高架横穿和低架横穿进串。330kVGIS 采用屋外配电装置。7 配电装置 110kV 屋外软母线半高型、中型布置和支持管母线中型布置。110kVGIS 屋外 配电装置。35kV 采用屋外和屋内布置。8 保护及自动化 计算机监控系统,不设常规控制屏,监控和远动统一考虑,可以满足无人值班 要求。保护就地布置。GIS方案全站总建筑面积 1100m2以内,敞开式方案主控通信楼建筑面积 600m2 9 土建(小于 3000m3),全站总建筑面积 1050m2以内,采暖区。当 35kV采用屋内配 电装置时,其配电装置室不计入全站总建筑面积。主变消防采用SP泡沫喷淋灭 火或排油注氮灭火。10 站址基本条件 海拔 1000 米以下,地震动峰值加速度 0.10g,设计风速 30m/s,地耐力 R=150kPa,地下水无影响,假设场地为同一标高。国标 III 级污秽区。1本文由我爱继保贡献
pdf文档可能在WAP端浏览体验不佳。建议您优先选择TXT,或下载源文件到本机查看。
变电站典型设计情况介绍
江苏省电力设计院 褚农
摘要:本文介绍了 220(110)kV 变电站典型设计在江苏省电力系统的推广应用情况,并重 点介绍了国家电网公司 500(330)kV 变电站典型设计情况。1 概述 开展典型设计工作,是贯彻落实国家电网公司“一强三优”战略的一项工作,是统一公 司工程建设标准、规范管理的重要手段。国网公司典型设计从变电站入手,全面推行。计划 2005 年上半年完成 500kV 及 330kV 变电 站的典型设计,下半年开始试行;年内要完成 220kV 及 110kV 变电站的典型设计。并在公司 系统新建工程中全部推广应用。江苏省电力公司为了适应地方经济发展需要,并实现电网效益的最大化,从 2001 年开始开 展 220kV 及 110kV 变电站的典型设计,并着力于推广应用工作。两年多来的应用实践证明,这一举措是成功的。本文先就江苏省推广应用 220kV 及 110kV 变电站的典型设计的情况作简要介绍,然后介绍国 网公司 500kV(330)kV 变电站典型设计的情况。2 江苏省公司 220kV 及 110kV 变电站的典型设计 2.1 编制过程 220kV(110kV)变电站典型设计的编制工作分三个阶段进行。第一阶段:搜资调研,确定典设主要设计原则。我院在对江苏变电站设计进行统计梳理的同时,还赴与江苏经济同样发达的省市学习调 研,取长补短;对一些争议较大的技术问题进行专题调研分析。共完成调研报告和专题报告 8 篇,有《广东地区搜资调查报告》、《上海地区搜资调查报告》、《取消旁路母线专题报 告》、《变电站计算机监控系统与“五防”装置设计专题报告》、《直流系统额定电压选取 专题报告》、《PASS 及 COMPASS 调研报告》、《110kV 自冷和风冷变压器选型》、《环保型 自动灭火系统调研报告》。通过搜资调研为典型设计提供真实可靠的依据。原则主要包括编制深度、应用范围、规模区间、短路电流控制水平、设备水平以及运行管理 模式等。《典型设计主要设计原则(初稿)》完成后,省公司组织了公司本部有关部门、我 院典设组成员和 13 个地市供电公司总工程师以及生技、基建、调度部门负责人进行了座谈,广泛听取意见、了解需求。第二阶段:编制和审定典设的设计方案和技术条件书。根据第一阶段确定的主要设计原则,我们编制了专题报告,进行了分析论证,提出了典 设方案的推荐意见及相应的技术条件书。技术条件书主要包括各电压等级的电气主接线形 式、配电装置形式、出线回路数及引出方式、主变压器形式、无功补偿配置方式、监控及保 护配置方式、所用交流及直流电源配置方式和主变压器消防措施等。第三阶段:编制完成变电站典型设计。根据确定的编制方案及技术条件书,对技术方案进行全面的论述和定量计算,选定主要 设备参数。各方案的初步设计文件包括设计说明书、设计图纸、主要设备清册及概算书等。省公司先后对典型设计的送审版和批准版进行评审,通过评审确定了今后新建变电站的接 线、配电装置、监控方案、控制楼面积及概算指标等主要原则和典设中的基本模块。典型设 计的批准版由省公司总经理作序出版,并印发执行。2.2 变电站主要设计原则和方案 变电站典型设计总体设计原则为:(1)典型设计贯彻“安全、可靠、经济、适用”的设计原则。(2)考虑到江苏在经济、技术等方面处于国内领先位置,设计上将体现先进性,技术上 适度超前。(3)除遵循部标 SDJ2-88 《220kV~500kV 变电站设计规程》 DL/T 5103-1999、《35kV~110kV 无人值班变电所设计规程》及其它有关规程规范外,还应符合省电力公司编制的《江苏省 35kV~220kV 变电站设计技术导则》等有关规定。根据江苏地区的特点,变电站设计类型既可按照负荷密集程度进行划分,也可按照变电站所在地 区划分。为使典设各方案具有广泛的代表性,我们针对本省特点,220kV 变电站提出 A(负荷密集 地区)、B(一般地区)、C(城市地区)三大类共计 8 个变电站设计方案、11 个建筑方案。110kV 变电站提出了 A(主变及高压配电装置户外布置、中压配电装置户内布置)、B(主变户外布置、配电装置户内布置)、C(全户内布置)三大类共计 8 个方案。各方案组合及其主要技术条件见附 表 1~2。2.3 设计特点和应用情况 变电站典型设计适用于江苏省大部分 220kV 和 110kV 变电站,并且作为变电站的设计规范,被纳入省公司的企业标准。典设自 2002 年底执行以来,在电网建设工作中发挥了较大效益,江苏 省 2004 年投运的 27 个新建 220kV 变电站,2005 年和 2006 年即将投运的 73 个新建 220kV 变电站,均采用了典型设计。110kV 变电站典型设计应用范围更为广泛。(1)典型设计具有模块化设计的特点,配电装置、控制楼、概算等都具有一定的独立性,对 不同规模的变电站的初步设计,可以根据工程建设规模,以典型设计作为修正模块进行调整。(2)典型设计中的概算模块比较全面、客观,成为省公司编制上报项目建议书时的依据。(3)典型设计中无法统一的个性化的方面,如主变调相调压计算、系统保护通信方案、短路 电流核算、地基处理、各级电压出线方向以及总平面布置方案等仍需单独设计。(4)典型设计的编制过程是统一标准和统一认知的过程。广泛听取设计、建设、生产及调度 各方面的意见的基础上,领导参与指导和决策,有利于统一意见,把典型设计提升为企业标准。(5)典型设计提高了工作效率,保证了工作质量。典型设计不是设计的参考,而是设计的标 准。因此,典型设计的推广应用减少了专业协调的工作量,使设计专业之间的协调流畅,工作效 率大大提高。(6)典型设计的应用提高了初步设计审查效率。审查会上主要讨论具体设计方案与典设方案 的不同之处。减少了大量重复的讨论和无谓的扯皮。初设修改和批文下达时间也大大缩短,也为 设备招投标创造了良好条件。(7)以典设为基础的初设方案,其工程造价与典设方案出入不大,更易于控制工程造价的总 投资,避免了工程造价出现大起大落的现象。(8)为使各设计院会用或愿意用典型设计,省公司组织多次典型设计宣贯活动,请典设编制 人员介绍设计原则、方案组合、适时条件和使用方法。(9)典型设计需要不断优化和完善。随着我国经济体制改革的不断深化,电力技术的不断进 步,典型设计也应随之进行滚动修改,进一步优化。3 国家电网公司 500(330)kV 变电站典型设计的情况 3.1 任务的提出及工作过程 刘振亚总经理在国家电网公司 2005 年工作报告中提出:推行电网标准化建设。各级电网工程 建设要统一技术标准,推广应用典型优化设计,节省投资,提高效益。郑宝森副总经理在国家电网公司 2005 年基建工作报告中提出:以典型设计为导向,促进技术 进步和提高集约化管理水平。2005 年 1 月 28 日由国网公司基建部提出典型设计工作大纲; 2 月 5 日由基建部和顾问集团公司共同完成典型设计招标文件; 2 月 6 日在北京招标文件发布,共邀请 13 家设计院参加投标; 2 月 28 日前各投标设计院完成典型设计标书,28 日在北京开标; 3 月 4 日完成评标及定标工作,4 日在北京召开中标发布会,共有 5 家设计院中标,分别是华 东电力设计院、江苏省电力设计院、中南电力设计院、西北电力设计院、华北电力设计院。相继成立了“国家电网公司 500(330)kV 变电站典型设计工作组”,组长单位为国家电网 公司基建部;副组长单位为中国电力工程顾问集团公司;成员单位有华东院、江苏院、中南院、西北院、华北院。根据各院特点,工作组进行了设计分工: 华东院负责主设备为 GIS 方案的设计,并负责华东地区 500kV 变电站情况的调研工作; 江苏院负责主设备为 HGIS 方案的设计,并负责南方电网公司 500kV 变电站情况的调研工作;
中南院负责主设备为瓷柱式方案的设计,并负责华中地区 500kV 变电站情况的调研工作; 华北院负责主设备为落地罐式方案的设计,并负责华北地区 500kV 变电站情况的调研工作; 西北院负责 330kV 变电站方案的设计,并负责西北地区 330kV 变电站情况的调研工作。面对典设工作面广量大、情况复杂、时间紧,国网公司基建部很抓落实,及时组织召开了多 次设计协调会,基本上两星期开一次协调会。3 月 4 日中标发布会上明确分工,布置任务。3 月 18 日于苏州召开第一次协调会,会议就典型设计目的、原则、技术条件、工作进度、调 研分工等有关问题,一次、二次、土建、水工、暖通、技经等专业的设计原则和深度要求进行了 认真的讨论,并形成初步意见。4 月 5 日于北京召开第二次协调会,会议就对前阶段典设工作进展情况、典设中间成果进行检 查和评审,并对需解决的有关技术问题进行了讨论,形成了一致性意见。紧接着 4 月 6 日于北京召开典设工作研讨会,邀请电网公司策划部、生产技术部、安全监察部、建设运营部、国调中心、国网建设公司,各大区电网公司、各省电力公司、各大区电力设计院的 代表参加会议。会议听取了典设中间成果的介绍,通过深入并热烈地讨论,达成共识,统一思想,避免了设计闭门造车,以便下阶段典设工作的顺利开展。4 月 20 日于武汉召开第三次协调会,会议对典型设计的工作进度,主控通信楼、大门和围墙 的设计方案,模块的拼接,典型设计送审稿的章节编制和格式,以及存在的问题进行了讨论,并 形成结论意见。5 月 18 日~19 日于北京召开典设成果评审会,国家电网公司郑宝森副总经理、中国电力顾问 集团公司于刚副总经理出席会议并分别作了重要讲话。国网公司各部门,各网省公司,各设计院 代表对典型设计送审稿进行了认真负责的讨论,充分发表了意见,使典型设计更贴近实际,更符 合生产运行的要求。典型设计分为 6 个阶段: 编制方案组合及技术条件阶段:根据目前实际情况,并适当考虑发展裕度,变电站典型设计 综合考虑电压等级、主变容量、无功补偿、出线回路和方向、电气主接线、短路电流、设备选型、配电装置,控制及远动、建筑面积等条件,提出设计方案和设计技术条件。搜资调研及专题研究阶段:各设计院分头开展搜资调研工作,编写地区调研报告,对于分歧 意见较大的技术问题,进行重点调研,并写出专题报告。典型设计编制阶段:经讨论审定设计方案和技术条件后,各院开展变电站典型设计实质性设 计编制阶段,完成设计图纸、说明书、设备清册、概算书初稿;经评审后进一步优化和细化,编 制典型设计使用说明,完成典型设计成品(报批稿)。评审及修改阶段:由国家电网公司组织生产、基建、设计单位的设计人员,对典型设计成品 进行评审。形成评审意见后各设计院进行设计修改,形成典型设计报批稿。批准颁发阶段:典型设计报批稿提交国家电网公司,由公司领导写序,作为企业标准出版发 行。推广应用阶段:(略)。3.2 开展 500(330)kV 变电站变电站典型设计的目的 输变电工程典型设计是贯彻国家电网公司集约化管理的基础,开展变电站典型设计工作的目 的是:统一建设标准,统一设备规范,减少设备型式,以便于集中规模招标,方便运行维护,降 低变电站建设和运营成本;采用模块化设计,方便方案的拼接和扩展,加快设计、评审和批复进 度,提高工作效率。3.3 500(330)kV 变电站典型设计的主要原则 变电站典型设计的原则是:安全可靠、技术先进、投资合理、标准统一、运行高效。为此,在典型设计中,要注意处理和解决典型设计方案的先进性、经济性、适应性,灵活性和统一性及 其相互关系。先进性:典型设计方案,设备选型先进,合理,占地少、注重环保,变电站可比指标先进; 经济性:综合考虑工程初期投资和长期运行费用,追求设备寿命期内最优的经济效益; 适应性:典型设计要综合考虑各地区的实际情况,要在整个国家电网公司系统中具有广泛的 适用性:并能在较长的时间内,对不同规模,型式、外部条件均能适用; 灵活性:典型设计模块间接口灵活,增减方便,组合型式多样,概算调整方便;
可靠性:保证设备、各个模块和模块拼接后系统的安全可靠性; 统一性:建设标准统一,基建和生产运行的标准统一,外部形象风格统一。3.4 典型设计方案组合及主要内容 3.4.1 总体方案设计 典型设计方案分 500kV 变电站和 330kV 变电站两大部分。500kV 变电站典型设计按主设备不同分为 A(GIS 设备)、B(HGIS 设备)、C(敞开式设备)、D(落地罐式设备)4 类方案,各类方案又根据主变容量和最终台数的不同再分子方案。各方案组 合及主要技术条件详见附表 3~附表 6。330kV 变电站典型设计按主设备不同分为 A(GIS 设备)、C(敞开式设备)、D(落地罐式设 备)3 类方案,各类方案又根据主变容量和最终台数的不同再分子方案。各方案组合及主要技术条 件详见附表 7。3.4.2 电气二次设计 变电站初期按有人值班设计,留有远期实现无人值班的接口和功能配置。不含系统保护、调度自动化和系统通信专业的具体内容。提出了监控系统主要设计原则。包括监控范围、系统硬件设备配置原则,对系统软件工作平台、防误操作闭锁、GPS 对时、保护信息采集方式及通信规约等方面进行了重点论述,提出推荐方 案。提出了元件保护、直流系统及交流不停电电源的主要设计原则。提出了二次设备组屏原则,对监控系统测控装置、线路保护、主变压器及高压电抗器保护、故障录波等主要二次设备的组屏提出推荐方案。根据工程规模进行主控室、计算机室、继电器小室、直流电源室等的具体布置。3.4.3 土建部分设计 变电站大门、围墙要能体现国网公司“内质外形”建设,树立“国家电网”的品牌形象,设 计简洁、明快、大方、实用,具备现代工业建筑气息,建筑造型和立面色调与变电站整体状况以 及所在区域周围环境协调、统一。大门围墙采用标志统一、风格统一、色彩统一,字体统一等要 求,变电站大门入口处一侧统一设置“标志墙”。其上为球形标志,下有“国家电网”四字,右 侧为“国家电网公司 500(330)kV XX 变电站”。变电站围墙采用实体围墙,高度统一采用 2.5m,另加远红外探测器。站区道路采用混凝土路面,统一采用公路(郊区)型设计。经过设计优化后,330kV GIS 方案占地面积 1.7ha,330kV 敞开式方案 3-3.5ha.;500kV GIS 方案占地面积 3.0~3.8ha,HGIS 方案占地面积 3.5~4.5ha;敞开式方案 5.8-7.3ha。统一了站区主要生产建筑和房间的设置,建设有主控通信楼、继电器小室、站用电室等建筑 物。建筑面积,500kV 变电站控制在 1100~1300平米,330kV 变电站控制在 1000~1100平米。主控通信楼内房间的设置统一为:生产用房设有主控室、计算机室、通信机房(当通信电源组屏 布置时,电源室和通信机房合并布置),辅助及附属房间设有交接班室、值班休息室 2-3 间、办 公室 2 间(含资料室)、会议室、备餐室、检修工器具间等。主控通信楼采用框架结构。继电器小室当布置在串中时,跨度采用 5.1m,采用室内电缆沟敷 设电缆。继电器小室采用砖混结构,加设钢板网屏蔽,普通钢门。所有构架、设备支架均推荐采用钢管结构,热镀锌防腐。变电站主要生产用房及办公、值休等用房和保护小室需安装空调机,其余生产用房采用轴流 风机机械通风,电缆层采用自然通风。主控通信楼采用小集中空调,继电器小室采用分体空调。位于采暖区的变电站可采用分散供暖方式。主变压器消防优先考虑采用泡沫喷淋、排油充氮方式。继电器室全集中布置时主控通信楼建筑体积不大于 5000 m3,不设室内建筑水消防系统,但应设室 外建筑水消防系统。继电器小室分散布置时,主控通信楼建筑面积控制在建筑体积不大于 3000 m3,全站不设室外 水消防系统,采用移动式化学灭火装置。3.4.4 技经部分 为使典型设计的各方案、模块的投资在同一价格水平上,便于进行对比分析,在典型设计概 算编制时采用统一的取费标准、统一的定额、统一的设备材料价格和统一的其他费用标准。为适应实际工程和典型设计的各基本组合方案的投资水平对比分析的需要,对不在本次典型
设计范围内的有关工程费用进行了统一规定,包括水源、站外电源、站外通信、进站道路、地基 处理、站外排水、护坡挡墙等,保证了典型设计的各基本组合方案的概算投资的完整性。使用时需根据工程规模和实际情况选用基本组合方案或模块方案参考造价进行分析、合理调 整。联系方式:褚农,教高,江苏省电力设计院,025-85081300,chunong@jspdi.com.cn 附表 1: 方案 A1 主变
江苏省 220kV 变电站典型设计主要工程技术条件
适用规模 220kV 出 线 6 回,110kV 出线 8 回,35kV 出线 10 回 接线 220kV、110kV 采 用双母线接线,35kV 采用单母线 分段接线 配电装置 220kV、110kV 配 电装置采用软母线 改进半高型,35kV 配电装置采用户内 开关柜 布置格局 220kV 出 线 与 110kV 出 线 构 180o布置 220kV 出 线 与 110kV 出 线 构 90o布置 220kV 出 线 与 110kV 出 线 构 180o布置 220kV 出 线 与 110kV 出 线 构 90o布置 220kV 出 线 与 110kV 出 线 构 180o布置 220kV 出 线 与 110kV 出 线 构 90o布置 主变露天,建 筑物两列式布 置 主变半户内,整体建筑式布 置 主变露天,建 筑物两列式布 置 A2 本期 2 台 120MVA 主变 远景 3 台 B1-1 B2-1 B1-2 本期 2 台 180MVA 主变 远景 3 台
220kV 出 线 6 回,110kV 出线 8 回,35kV 出线 10 回
220kV、110kV 采 用双母线接线,35kV 采用单母线 分段接线
220kV、110kV 配 电装置采用管母线 中型,35kV 配电装 置采用户内开关柜 B2-2 220kV 出 线 6 回,110kV 出线 8 回,10kV 出线 24 回 220kV 出线本期 2 回远期 3 回,110kV 出 线 12 回,10kV 出线 24 回 220kV 出线本期 2 回远期 3 回,110kV 出 线 8 回,10kV 出线 24 回
220kV、110kV 采 用双母线接线,10kV 采用单母线 分段接线
220kV、110kV 配 电装置采用管母线 中型,10kV 采用户 内开关柜 C1 C3 本期 2 台 180MVA 主变 远景 3 台
220kV 采 用 单 元 接线,110kV 采用 双母线接线,10kV 单母线分段 接线 220kV、110kV 采 用户内 GIS,10kV 采用户内开关柜,全电缆出线 220kV、110kV 采 用户内装配式配电 装置,架空出线; 10kV 采用户内开 关柜电缆出线 C2 所有方案 直流系统:2 组 220V 阀控式密封铅酸蓄电池,2 组充电装置(高频开关电源),配置 DC/DC 变换 器供-48V 系统通信电源,不设蓄电池室。交流所用:所用电系统 380/220V 中性点接地,采用三相四线制,单母线分段接线,两台所变分列 运行。继电保护:220kV、110kV 线路、主变设微机保护,保护测控相对独立;35kV 设微机保护(含低 周减载和接地检测功能),保护测控合一,分散布置。自动装置:电容器组投切;35kV 消弧线圈跟踪补偿。对时装置:全所共用 1 台 GPS。防误操作:不专设微机五防装置,由计算机监控系统统一考虑。电能计量:主变中低压侧设关口表,其余按规程配置。电气测量:利用监控系统完成。信息采集:模拟量和开关量。控制方式:远方调度,监控系统,就地三级操作。通信方式:变电站接入地区光纤环网,通信容量及可靠性按照变电站无人值班要求设计。
附表 2: 方案 主变 远景: 2× 50MVA 本期: 2× 50MVA 远景: 2× 50MVA 本期: 2× 50MVA 江苏 110kV 变电所典型设计主要工程技术条件 适用规模 110kV 进线 2 回,35kV 出线 4 回架 空,4 回电缆,10kV 出线 16 回电 缆 110kV 进线 4 回,35kV 出线 4 回架 空,回电缆,4 10kV 出线 16 回电缆 接线 110kV 采用线变 组接线 35kV、10kV 采用 单母线分段接线 配电装置 布置格局 主变及 110kV 配 电装置户外布 置,35kV、10kV 配电装置户内 布置 A1 110kV 采用单母 线分段接线 A2 35kV、10kV 采用 单母线分段接线 110kV 采用内桥 110kV 配电装置 主变及 110kV 配 远景: 110kV 进线 3 回,采用户外敞开式 电 装 置 户 外 布 或线变组接线 3× 50MVA A3 10kV 出线 36 回电 10kV 采用单母线 设备,10kV 采用 置,10kV 配电 本期: 缆 2× 50MVA 装置户内布置 户内开关柜 分段接线 110kV 采用内桥 远景: 110kV 进线 2 回,接线 2× 50MVA B3 10kV 出线 24 回电 110kV 配电装置 主变户外布置,10kV 采用单母线 本期: 缆 采用户内敞开式 110kV 配电装置 2× 50MVA 分段接线 设备,10kV 采用 及 10kV 配电装 110kV 采用线变 远景: 置户内布置 户内开关柜 110kV 进线 3 回,组接线 3× 50MVA B4 10kV 出线 36 回电 10kV 采用单母线 本期: 缆 2× 50MVA 分段接线 远 景 : 2× 110kV 进线 2 回,110kV 采用内桥 接线 50MVA 10kV 出线 24 回电 C2 10kV 采用单母线 本 期 : 2× 缆 50MVA 分段接线 110kV 采用户内 110kV 采用双内 远景: GIS,10kV 采用 桥或双外侨接线 全户内 3× 50MVA 户内开关柜,全 C3 本期: 110kV 进线 3 回,10kV 采用单母线 电缆出线 2× 50MVA 10kV 出线 36 回电 分段接线 缆 110kV 采用线变 远景: 组接线 3× 50MVA C4 10kV 采用单母线 本期: 2× 50MVA 分段接线 所有方案 直流系统:2 组 220V 阀控式密封铅酸蓄电池,2 组充电装置(高频开关电源),设蓄电池室。交流所用:电系统 380/220V 中性点接地,采用三相四线制,单母线分段接线,两台所变分列运行。继电保护:220kV、110kV 线路、主变设微机保护,保护测控相对独立;35/10kV 设微机保护,保护 测控合一,分散布置。自动装置:电容器组投切;35/10kV 消弧线圈跟踪补偿;35/10kV 接地检测。对时装置:全所共用 1 台 GPS。防误操作:闭锁不专设微机五防装置,由计算机监控系统统一考虑。电能考核:计量主变中低压侧设关口表,其余按规程配置。就地电气:测量利用监控系统完成电气测量。信息采集:类型模拟量和开关量。控制操作:方式远方调度,监控系统,就地三级操作。通信方式:变电所接入地区的光纤环网,光纤网络与继电保护统一考虑,通信容量及可靠性按照变 电所无人值班要求设计。
110kV 配电装置 采用户外敞开式 设备,35kV、10kV 采用户内开关柜
附表 3: 序 号 项目 名称
500kV 变电站(GIS)典型设计主要技术条件
方案编号 A-1-1 A-1-2 4 台主变 本期 1 组 1000MVA,最终 4 组 1000MVA,单相自耦,无载调压。本期 1 组 750MVA,最终 4 组 750MVA,单 相 自 耦,无载 调压。本期 1 组 750MVA,最终 4 组 750MVA,本期 1 组 最终 3 组 A-1-3 A-2-1 A-2-2 3 台主变 本期 1 组 最终 3 组 本期 1 组 750MVA,最终 3 组 750MVA,A-2-3 1000MVA,750MVA,1000MVA,750MVA,1 主变压器
三相自耦,单相自耦,单相自耦,三相自耦,无载调压。无载调压。无载调压。无载调压。500kV 并联电抗器: 本期 1 组 150Mvar,最终 2 组,为线路高抗,均装中性点小 电抗,不考虑母线高抗。最终 6 组;35kV 并联电容器:本期 2 组 60Mvar,最终 6 组。2 台主变进串,第 3 台主变经单断路器 接二段母线;本期设 9 台断路器(1 台 远景设备本期上),串内 GIS 设备。500kV 高抗经隔离开关接入线路。220kV 双母线双分段接线,本期双母线 接线,GIS 设备。35kV 单母线接线,不设总断路器。500kV 本期 4 回,最终 8 回架空,一个 220kV 本期 8 回,最终 14 回架空出线(一个或两个方向出线),2 回电缆出 线。
500kV 并 联 电 抗 器 : 本 期 1 组 150Mvar,最终 2 组,为线路高抗,均 无功补偿 2 装置 装中性点小电抗,不考虑母线高抗。最终 8 组;35kV 并联电容器:本期 2 组 60Mvar,最终 8 组。对 4 台主变,主变均进串;对 3 台主 变,2 台主变进串,1 台主变经断路器 电气主接 4 线 接 2 段母线。本期设 8 台断路器。500kV 高抗经隔离开关接入线路。220kV 双母线双分段接线,本期双母 线接线。35kV 单母线接线,不设总断路器。500kV 本期 4 回,最终 8 回架空,一 出线回路 3 数和出线 方向 5 6 7 8 9 10 短路电流 主要设备 选型 配电装置 保护及 自动化 建筑面积 站址基本 条件 最终 16 回架空出线,一个或两个方向 出线(3 台主变方案其中 2 回电缆出线)。单相/三相自耦变压器; 500kV、220kV 采用户外 GIS;
35kV 并联电抗器:本期 2 组 60Mvar,35kV 并联电抗器:本期 2 组 60Mvar,500kV 一个半断路器接线,远景 6 串,500kV 一个半断路器接线,远景 6 串;
个或两个方向出线;220kV 本期 8 回,或两个方向出线; 500、220、35kV 短路电流水平分别为:63(50)、50、40kA 35kV 采用户外 AIS,断路器采用柱式,电容器采用组装式,电抗器采用干式。500kV、220kV 户外 GIS。计算机监控系统,不设常规控制屏,监控和远动统一考虑,可满足无人值班要 求,保护集中布置。全站总建筑面积 2000m2以内,非采暖区。主变采用水喷雾消防系统。海拔高度<1000m,地震动峰加速度 0.1g,风荷载 30m/s,地耐力 R=150kPa,地 下水无影响,非采暖区,场地同一标高,污秽等级 III 级。
附表 4 序 号 1 500kV 变电站(HGIS)典型设计主要技术条件
方案编号 项目名称 B-1 主变压器 主变电气 接线 远景串数 本期 1 组、最终 4 B-2 本期 1 组、最终 4 B-3 本期 1 组、最终 3 组 750MVA 主变。第三台主变经断路器接 母线 5 垂直 2个 不设平行
组 1000MVA 主变。组 750MVA 主变。主变全部进串 6平行 1个 不设 垂直 主变全部进串 6 垂直 2个 设置 垂直 2 500kV 母线与主 变梁 主要出线 方向 总断路器 3 35kV 母线与主 变梁
项目 无功 4 补偿
相同的主要工程技术条件 500kV 并联电抗器:本期 1 组 150Mvar,最终 2 组,经隔离开关接入线路,均装 设中性点电抗,不考虑母线高抗;35kV 电容器、并联电抗器按每台主变各配置 2 组 60Mvar 设计。500kV:本期 4 回,最终 8 回;220kV:本期 8 回,最终 16 回,1 个主要出线方 向。500kV 一个半断路器接线,本期设 1 个不完整串和 2 个完整串共 8 台断路器; 220kV 双母线双分段接线,本期双母线接线;35kV 单母线单元制接线。500kV 部分 63 或 50kA,220kV 部分 50kA,35kV 部分 40kA。单相自耦变压器;500kV 采用户外 HGIS,220kV 采用户外 GIS,35kV 采用户外 AIS,断路器采用柱式,35kV 并抗采用干式或油式,电容器采用组装式,站变采 用油浸式。500kV 户外悬吊管母线中型布置,高架横穿进出线,间隔宽度 28m;220kV 间隔 宽度 13m;35kV 采用支持管母线中型布置。计算机监控系统,不设常规控制屏,监控和远动统一考虑,可以满足无人值班要 求;保护就地布置。全站总建筑面积 1400m2以内,主控通信楼建筑面积 650—750 m2;主变消防采用 SP泡沫喷淋灭火或排油充氮方式。5 出线 电气主 6 接线 短路 7 电流 主要 8 设备 配电 9 装置 保护 10 自动化 土建 11 站址 12 条件
按地震动峰值加速度 0.10g,风荷载 30m/s,地耐力 R=150kPa,地下水无影响,非采暖区设计,假设场地为同一标高。按海拔 1000 米以下,国标Ⅲ级污秽区设 计
附表 5 序 号 1 项目名称
500kV 变电站(瓷柱式)典型设计主要技术条件表 500kV 变电站(瓷柱式断路器)典型设计工程技术条件
主变压器 本期 1 组 750MVA,最终 2/3/4 组 750MVA 500kV 并联电抗器,本期 1 组 150Mvar,最终 2 组,为线路高抗,均装设中性点小 抗,不考虑母线高抗。2 无功补偿 3 组和 4 组主变方案,每组主变压器 35kV 侧无功配置:2 组 60Mvar 并联电感器,装 置 2 组 60Mvar 并联电容器。2 组主变方案,每组主变方案 35kV 侧无功配置:3 组 60Mvar 并联电感器,3 组 60Mvar 并联电容器。本期 35kV 侧无功配置:2 组 60Mvar 并联电抗器,2 组 60Mvar 并联电容器。出线回路 500kV 本期 4 回,最终 10 回,两个方向出线。数和出线 220kV 本期 6 回,最终 16 回(3 组或 4 组主变)或 12 回(2 组主变),一个方向出线或 方向 两个方向出线。500kV 一个半断路器接线,远期 6 串,2 组主变进串,后 2 组或 1 组主变经断路器 接母线。本期设 8 组断路器。500kV 高压电抗器均为经隔离开关接入线路。3 4 电气主接 线 220kV 双母线双分段接线或双母线单分段,本期双母线接线。35kV 单母线接线,不装设总断路器。5 6 短路电流 500、220、35kV 短路电流水平分别为 63(50)、50、40kA 主要设备 单相自耦变压器。500kV、220kV、35kV 采用户外瓷柱式断路器。选型 35kV 电容器采用组装式、电抗器采用干式。500kV 屋外悬吊管母线中型布置,主变高架横穿和低架横穿进串。7 配电装置 220kV 屋外支持管母线中型布置(3 组或 4 组主变)或悬吊母线中型布置(2 组主变)。35kV 支持管母线中型布置。保护及 计算机监控系统,不设常规控制屏,监控和远动统一考虑,可以满足无人值班要 自动化 求。保护就地布置。土 站 建 全站总建筑面积 1400m2以内,主控通信楼建筑面积 650-750m2(小于 3000m3),非 采暖区。主变消防采用水喷雾消防系统。8 9 10 址 海拔 1000m 以下,地震动峰值加速度 0.10g,设计风速 30m/s,地耐力 R=150kPa,基本条件 地下水无影响,假设场地为同一标高。国标 III 级污秽区。
附表 6 序号 1 500kV 变电站(落地罐式)典型设计主要技术条件表
项目名称 500kV 变电站工程技术条件 本期 1 组 750MVA,最终 2/3/4 组 1000MVA(750MVA)500kV 并联电抗器,本期 1 组 150Mvar,最终 2 组,为线路高抗,装设中性点 小电抗,不考虑母线高抗。
主变压器
无 功 补 偿 装 3 台和 4 台主变方案,每台主变压器 66kV 侧无功配置:2 组 60Mvar 并联电抗 2 置 器,2 组 60Mvar 并联电容器。2 台主变方案,每台主变方案 66V 侧无功配置: 3 组 60Mvar 并联电抗器,3 组 60Mvar 并联电容器。本期 66kV 侧无功配置:2 组 60Mvar 并联电抗器,2 组 60Mvar 并联电容器。出线回路数 3 和出线方向 500kV 本期 4 回,最终 10 回,两个方向出线。220kV 本期 6 回,最终 16 回(3 台或 4 台主变)或 12 回(2 台主变),一个方 向出线。500kV 一个半断路器接线,远期 6 串,2 台主变进串,后 2 台或 1 台主变经断 4 电气主接线 路器接母线。本期设 8 台断路器。500kV 高压电抗器均为经隔离开关接入线路。220kV 双母线双分段接线或双母线单分段,本期双母线接线。66kV 单母线接线,装设总断路器。5 6 短路电流 500、220、66kV 短路电流水平分别为 63(50)、50、31.5kA 主 要 设 备 选 单相自耦变压器 型 500kV、220kV 采用户外罐式断路器,66kV 采用户外柱式断路器。500kV 屋外悬吊管母线中型布置,主变高架横穿和低架横穿进串。7 配电装置 220kV 屋外悬吊管母线中型布置。66kV 支持管母线中型布置。保 护 及 自 动 计算机监控系统,不设常规控制屏,监控和远动统一考虑,可以满足无人值班 8 化 土建 要求。保护就地布置。
全站总建筑面积 1500m2以内,主控通信楼建筑面积 650-750m(小于 3000 m3),9 采暖区。主变消防采用SP泡沫喷淋灭火。站 址 基 本 条 海拔 1000 米以下,地震动峰值加速度 0.10g,设计风速 30m/s,地耐力 R=150kPa,10 件
地下水无影响,假设场地为同一标高。国标 III 级污秽区。
附表 7 序 项目名称 号 1 主变压器
330kV 变电站典型设计主要技术条件表
330kV 变电站工程技术条件 本期 1 台 240MVA(360MVA),最终 2/3 台 240MVA(360MVA)。330kV 并联电抗器,本期 1 组 90Mvar,最终 2 组,GIS 方案最终为 1 组,均
无功补偿装置
为线路高抗,并装设中性点小抗,不考虑母线高抗。35kV 侧无功按主变配置:1 组 30Mvar 并联电抗器,3 组 20Mvar 并联电容器。本期 35kV 侧无功配置:1 组 30Mvar 并联电抗器,3 组 20Mvar 并联电容器。
出 线 回 路 数 和 330kV 本期 4 回,最终 6 回,两个方向出线。3 出线方向 110kV 本期 6 回,最终 14 回,一个方向出线或两个方向出线。330kV 一个半断路器接线。330kV 高压电抗器均为经隔离开关接入线路。4 电气主接线 330kVGIS 方案为双母线接线。110kV 双母线接线单分段,本期双母线接线。35kV 单母线接线,设总断路器。5 短路电流 330、110、35kV 短路电流水平分别为 50、40、31.5kA 三相自耦有载调压 6 主要设备选型 330kV 采用罐式、柱式断路器和 GIS。110kV 采用柱式断路器和 GIS。35kV 电容器采用框架组合式和集合式,电抗器采用干式 330kV 屋外软母线和悬吊管母线中型布置,主变高架横穿和低架横穿进串。330kVGIS 采用屋外配电装置。7 配电装置 110kV 屋外软母线半高型、中型布置和支持管母线中型布置。110kVGIS 屋外 配电装置。35kV 采用屋外和屋内布置。8 保护及自动化 计算机监控系统,不设常规控制屏,监控和远动统一考虑,可以满足无人值班 要求。保护就地布置。GIS方案全站总建筑面积 1100m2以内,敞开式方案主控通信楼建筑面积 600m2 9 土建(小于 3000m3),全站总建筑面积 1050m2以内,采暖区。当 35kV采用屋内配 电装置时,其配电装置室不计入全站总建筑面积。主变消防采用SP泡沫喷淋灭 火或排油注氮灭火。10 站址基本条件 海拔 1000 米以下,地震动峰值加速度 0.10g,设计风速 30m/s,地耐力 R=150kPa,地下水无影响,假设场地为同一标高。国标 III 级污秽区。