第一篇:110kV变电站典型设计应用实例[范文]
110kV变电站典型设计应用实例
传统的110kV变电站主要以户外设计和安装为主,占地面积大,且设备容易被腐蚀,尤其在高污秽地区,还极易造成污闪事故的发生。为了建设坚强电网,发挥规模优势,提高资源利用率,提高电网工程建设效率,国家电网公司在2005年提出“推广电网标准化建设,各级电网工程建设要统一技术标准,推广应用典型优化设计,节省投资,提高效益”。典型设计坚持以“安全可靠、技术先进、保护环境、投资合理、标准统一、运行高效”的设计原则,采用模块化设计手段,做到统一性与可靠性、先进行、经济性、适应性和灵活性的协调统一。
海阳市供电公司积极响应国家电网公司的号召,积极推广110kV变电站典型设计。本文就海阳市供电公司110kV变电站典型设计的应用实例予以阐述,以说明推广典型设计的重要意义。110kV变电站典型设计应用实列
海阳市供电公司2006年开始采用110kV变电站典型设计,到目前为止,已经完成3座110kV变电站的设计、建设工作。从实际效果来看,具有较好的经济效益和社会效益,下面以110kV望石变电站为例对典型设计进行分析。
110kV望石变电站位于海阳市新建的临港产业区,该区域规划面积较小,但是电力负荷较为集中。该区域包括以莱福士造船厂在内的多个用电大户正在兴建中,而山东核电设备制造公司已经投产。根据该区域负荷预测及用电负荷性质,海阳市供电公司按照安全可靠、技术先进、投资合理、运行高效的原则,结合该站用电负荷集中、土地昂贵、临近海边(Ⅳ级污秽区)、电缆出线多等客观事实,对110kV望石变电站作了如下设计。
该站为半户内无人值班变电站(半户内布置方式即除主变压器以外的全部配电装置,集中布置在一幢主厂房的不同楼层的电气布置方式),变电站主体是生产综合楼,除主变压器外所有配电装置均安装在综合楼内。以生产综合楼和主变压器为中心,四周布置环形道路,大门入口位于站区东南角,正对生产综合楼主入口。综合楼共两层,一层为10kV配电装置室、电容器室、接地变压器室及主控室,二层为110kV GIS室。
1.1 电气主接线
变电站设计规模及主接线。通过负荷资料的分析,考虑到安全、经济及可靠性,确定110kV变电站主接线。电气主接线图如图1所示。通过负荷分析和供电范围,确定变压器台数、容量及型号,该设计中主变压器总容量为2×50MVA(110/10.5kV),一期(共两期)设计为1×31.5MVA(110/10.5kV),采用双绕组油浸自冷有载调压变压器。110kV出线共2回,一期1回,采用内桥接线方式。10kV出线共24回,一期24回,采用单母线分段接线方式。无功补偿电容器为2×6000(3000+3000)kvar,分别接入10kV两段母线上。
图1 110kV望石变电站主接线图
各级电压中性点接地方式。110kV侧直接接地,由于主变压器10kV侧没有中性点,而10kV侧全部采用电缆出线,电网接地电容电流较大,故采用了站用电与消弧线圈共用的接地变压器。
1.2 短路电流水平
根据终期(共两期)双绕组自冷变压器的容量、空载损耗、负载损耗、短路阻抗等相关参数,考虑电网远景规划,按照三相短路验算,并套用《国家电网公司输变电工程典型设计110kV变电站分册》中110kV变电站典型设计(方案B-1),确定110kV电压等级的设备短路电流为kA,10kV电压等级的设备短路电流为31.5kA。
1.3 主要电气设备选择
考虑城市噪音控制,选用双绕组低损耗自冷变压器,采用YNd11接线组别。因站址临近海边,空气湿度大及盐碱度高,故110kV设备采用六氟化硫封闭式组合电器,断路器额定电流为2000A,额定开断电流为31.5kA。10kV设备选用N2X系列气体绝缘开关柜,N2X开关柜采用单气箱结构,每个开关柜独立一个气箱,气箱内安装免维护的三工位开关和固封极柱式真空断路器,通过插接方式与其他元器件组合,实现和满足不同的主接线方式。该开关柜分成三个间隔:高压密封间隔,低压控制间隔,电缆和TA间隔。断路器为真空断路器,主变压器及分段回路额定电流为3150A,额定开断电流为31.5kA;出线回路额定电流为1250A,额定开断电流为20kA。
1.4 过电压保护及接地
110kV及35kV设备全部选用金属氧化物避雷器,并按照GB 11032-2000《交流无间隙金属氧化物避雷器》之规定进行选择。按照防直击雷原则进行理论计算,在主建筑屋顶安装避雷带及避雷针,用以保护主建筑物及主变压器。按照DL/T 621-1997《交流电气装置的接地》的规定进行电气设备接地,主接地网由水平接地体和垂直接地体组成复合接地网,将建筑物的接地与主接地网可靠连接,接地埋深0.8m。接地网实测电阻为0.43Ω。
1.5 站用电和照明
变电站远景采用2台干式接地变压器500/10.5-80/0.4,每台总容量为500kVA,其中站用电额定容量为80kVA。两台接地变压器分别经断路器接入10kV#
4、#5母线上。站用电为380/220V三相四线制中性点直接接地系统,站用变压器低压侧采用单母线分段接线。室外照明采用投光灯,室内工作照明采用荧光灯、白炽灯,事故照明采用白炽灯。事故照明为独立的照明系统。
1.6 计算机监控系统
计算机监控系统为分层分布式网络结构,能完成对变电站所有设备的实时监视和控制。电气模拟量采集采用交流采样,保护动作及装置报警等重要信号采用硬节点方式输入测控单元。系统具备防误闭锁功能,能完成全站防误操作闭锁。具有与电力调度数据专网的接口,软、硬件配置能支持联网的网络通信技术及通信规约的要求。全站设有一套双时钟源GPS对时系统,实现整个系统所有装置的时钟同步。监控系统可对110kV及10kV断路器、隔离开关、主变压器中性点接地开关、主变压器分接头、无功补偿装置、站用电源、直流系统、UPS系统等多方面进行监控。操作控制功能按分层操作设计,达到了任何一层的操作、设备的运行状态和选择切换开关的状态都处于计算机监控系统的监控之中。
1.7 保护装置的配置
整个保护系统全部选用微机型保护装置。主变压器保护包括差动保护和后备保护,在主控室集中组屏安装。10kV保护测控装置采用保护测控一体化装置,装设在成套开关柜上,10kV线路保护具有低周减载功能。另外,10kV系统还具有小电流接地选线功能。
1.8 直流系统
直流系统额定电压为220V,设单组阀控式铅酸免维护蓄电池组和双套冗余配置的高频开关电源充电装置,并设置一套微机型直流接地自动检测装置。蓄电池容量为100Ah。该系统还配置一台UPS,容量为3kVA,UPS系统为站内计算机监控系统、保护装置、通信设备等重要二次设备提供不间断电源。
1.9 图象监控系统和火灾探测报警系统
大楼入口处设置摄像头;主控室、电容器室、接地变压器室以及各级电压配电装置室均安装室内摄像头;主变压器区安装室外摄像头。监控信号通过光缆传送到调度主站,用以完成变电站全站安全及设备运行情况的监控。
站内配置一套火灾报警系统。火灾报警控制器设置在主控楼内。当有火灾发生时,报警系统可及时发出声光报警信号,显示发生火灾的地点,并通过通信接口和光缆,将信息最终传至调度端。结束语
该典型设计的变电站与常规室外布置变电站相比具有以下优点。第一,土地占用面积不足常规变电站的三分之一。第二,该站临近海边,属高污秽地区。所有配电设备均室内布置,尤其是110kV及10kV配电设备全部采用气体绝缘全密封开关设备,有效地防范了污闪事故的发生。第三,配电设备检修周期长,供电可靠性高。第四,采用接地变压器,很好地解决了10kV电缆出线引起的电网接地大电容电流。第五,具备了无人值班的条件,实现了变电站无人值班。
应用110kV变电站典型设计,能大大提高生产效率,同时也对110kV变电站建设标准、设备规范、节约土地及资源消耗等方面有着重要意义。
参考文献
[1] GB 50343-2004.建筑物电子信息系统防雷技术规范[S].[2] GB 50057-2000.建筑物防雷设计规范[S].[3] DL 548-1994.电力系统通信站防雷运行管理规程[S].[4] DL/T 621-1997.交流电气装置的接地[S].[5] GB 11032-2000.交流无间隙金属氧化物避雷器[S].[6] 国家电网公司输变电工程典型设计110kV变电站分册,2005.
第二篇:变电站典型设计情况介绍
本文由我爱继保贡献
pdf文档可能在WAP端浏览体验不佳。建议您优先选择TXT,或下载源文件到本机查看。
变电站典型设计情况介绍
江苏省电力设计院 褚农
摘要:本文介绍了 220(110)kV 变电站典型设计在江苏省电力系统的推广应用情况,并重 点介绍了国家电网公司 500(330)kV 变电站典型设计情况。1 概述 开展典型设计工作,是贯彻落实国家电网公司“一强三优”战略的一项工作,是统一公 司工程建设标准、规范管理的重要手段。国网公司典型设计从变电站入手,全面推行。计划 2005 年上半年完成 500kV 及 330kV 变电 站的典型设计,下半年开始试行;年内要完成 220kV 及 110kV 变电站的典型设计。并在公司 系统新建工程中全部推广应用。江苏省电力公司为了适应地方经济发展需要,并实现电网效益的最大化,从 2001 年开始开 展 220kV 及 110kV 变电站的典型设计,并着力于推广应用工作。两年多来的应用实践证明,这一举措是成功的。本文先就江苏省推广应用 220kV 及 110kV 变电站的典型设计的情况作简要介绍,然后介绍国 网公司 500kV(330)kV 变电站典型设计的情况。2 江苏省公司 220kV 及 110kV 变电站的典型设计 2.1 编制过程 220kV(110kV)变电站典型设计的编制工作分三个阶段进行。第一阶段:搜资调研,确定典设主要设计原则。我院在对江苏变电站设计进行统计梳理的同时,还赴与江苏经济同样发达的省市学习调 研,取长补短;对一些争议较大的技术问题进行专题调研分析。共完成调研报告和专题报告 8 篇,有《广东地区搜资调查报告》、《上海地区搜资调查报告》、《取消旁路母线专题报 告》、《变电站计算机监控系统与“五防”装置设计专题报告》、《直流系统额定电压选取 专题报告》、《PASS 及 COMPASS 调研报告》、《110kV 自冷和风冷变压器选型》、《环保型 自动灭火系统调研报告》。通过搜资调研为典型设计提供真实可靠的依据。原则主要包括编制深度、应用范围、规模区间、短路电流控制水平、设备水平以及运行管理 模式等。《典型设计主要设计原则(初稿)》完成后,省公司组织了公司本部有关部门、我 院典设组成员和 13 个地市供电公司总工程师以及生技、基建、调度部门负责人进行了座谈,广泛听取意见、了解需求。第二阶段:编制和审定典设的设计方案和技术条件书。根据第一阶段确定的主要设计原则,我们编制了专题报告,进行了分析论证,提出了典 设方案的推荐意见及相应的技术条件书。技术条件书主要包括各电压等级的电气主接线形 式、配电装置形式、出线回路数及引出方式、主变压器形式、无功补偿配置方式、监控及保 护配置方式、所用交流及直流电源配置方式和主变压器消防措施等。第三阶段:编制完成变电站典型设计。根据确定的编制方案及技术条件书,对技术方案进行全面的论述和定量计算,选定主要 设备参数。各方案的初步设计文件包括设计说明书、设计图纸、主要设备清册及概算书等。省公司先后对典型设计的送审版和批准版进行评审,通过评审确定了今后新建变电站的接 线、配电装置、监控方案、控制楼面积及概算指标等主要原则和典设中的基本模块。典型设 计的批准版由省公司总经理作序出版,并印发执行。2.2 变电站主要设计原则和方案 变电站典型设计总体设计原则为:(1)典型设计贯彻“安全、可靠、经济、适用”的设计原则。(2)考虑到江苏在经济、技术等方面处于国内领先位置,设计上将体现先进性,技术上 适度超前。(3)除遵循部标 SDJ2-88 《220kV~500kV 变电站设计规程》 DL/T 5103-1999、《35kV~110kV 无人值班变电所设计规程》及其它有关规程规范外,还应符合省电力公司编制的《江苏省 35kV~220kV 变电站设计技术导则》等有关规定。根据江苏地区的特点,变电站设计类型既可按照负荷密集程度进行划分,也可按照变电站所在地 区划分。为使典设各方案具有广泛的代表性,我们针对本省特点,220kV 变电站提出 A(负荷密集 地区)、B(一般地区)、C(城市地区)三大类共计 8 个变电站设计方案、11 个建筑方案。110kV 变电站提出了 A(主变及高压配电装置户外布置、中压配电装置户内布置)、B(主变户外布置、配电装置户内布置)、C(全户内布置)三大类共计 8 个方案。各方案组合及其主要技术条件见附 表 1~2。2.3 设计特点和应用情况 变电站典型设计适用于江苏省大部分 220kV 和 110kV 变电站,并且作为变电站的设计规范,被纳入省公司的企业标准。典设自 2002 年底执行以来,在电网建设工作中发挥了较大效益,江苏 省 2004 年投运的 27 个新建 220kV 变电站,2005 年和 2006 年即将投运的 73 个新建 220kV 变电站,均采用了典型设计。110kV 变电站典型设计应用范围更为广泛。(1)典型设计具有模块化设计的特点,配电装置、控制楼、概算等都具有一定的独立性,对 不同规模的变电站的初步设计,可以根据工程建设规模,以典型设计作为修正模块进行调整。(2)典型设计中的概算模块比较全面、客观,成为省公司编制上报项目建议书时的依据。(3)典型设计中无法统一的个性化的方面,如主变调相调压计算、系统保护通信方案、短路 电流核算、地基处理、各级电压出线方向以及总平面布置方案等仍需单独设计。(4)典型设计的编制过程是统一标准和统一认知的过程。广泛听取设计、建设、生产及调度 各方面的意见的基础上,领导参与指导和决策,有利于统一意见,把典型设计提升为企业标准。(5)典型设计提高了工作效率,保证了工作质量。典型设计不是设计的参考,而是设计的标 准。因此,典型设计的推广应用减少了专业协调的工作量,使设计专业之间的协调流畅,工作效 率大大提高。(6)典型设计的应用提高了初步设计审查效率。审查会上主要讨论具体设计方案与典设方案 的不同之处。减少了大量重复的讨论和无谓的扯皮。初设修改和批文下达时间也大大缩短,也为 设备招投标创造了良好条件。(7)以典设为基础的初设方案,其工程造价与典设方案出入不大,更易于控制工程造价的总 投资,避免了工程造价出现大起大落的现象。(8)为使各设计院会用或愿意用典型设计,省公司组织多次典型设计宣贯活动,请典设编制 人员介绍设计原则、方案组合、适时条件和使用方法。(9)典型设计需要不断优化和完善。随着我国经济体制改革的不断深化,电力技术的不断进 步,典型设计也应随之进行滚动修改,进一步优化。3 国家电网公司 500(330)kV 变电站典型设计的情况 3.1 任务的提出及工作过程 刘振亚总经理在国家电网公司 2005 年工作报告中提出:推行电网标准化建设。各级电网工程 建设要统一技术标准,推广应用典型优化设计,节省投资,提高效益。郑宝森副总经理在国家电网公司 2005 年基建工作报告中提出:以典型设计为导向,促进技术 进步和提高集约化管理水平。2005 年 1 月 28 日由国网公司基建部提出典型设计工作大纲; 2 月 5 日由基建部和顾问集团公司共同完成典型设计招标文件; 2 月 6 日在北京招标文件发布,共邀请 13 家设计院参加投标; 2 月 28 日前各投标设计院完成典型设计标书,28 日在北京开标; 3 月 4 日完成评标及定标工作,4 日在北京召开中标发布会,共有 5 家设计院中标,分别是华 东电力设计院、江苏省电力设计院、中南电力设计院、西北电力设计院、华北电力设计院。相继成立了“国家电网公司 500(330)kV 变电站典型设计工作组”,组长单位为国家电网 公司基建部;副组长单位为中国电力工程顾问集团公司;成员单位有华东院、江苏院、中南院、西北院、华北院。根据各院特点,工作组进行了设计分工: 华东院负责主设备为 GIS 方案的设计,并负责华东地区 500kV 变电站情况的调研工作; 江苏院负责主设备为 HGIS 方案的设计,并负责南方电网公司 500kV 变电站情况的调研工作;
中南院负责主设备为瓷柱式方案的设计,并负责华中地区 500kV 变电站情况的调研工作; 华北院负责主设备为落地罐式方案的设计,并负责华北地区 500kV 变电站情况的调研工作; 西北院负责 330kV 变电站方案的设计,并负责西北地区 330kV 变电站情况的调研工作。面对典设工作面广量大、情况复杂、时间紧,国网公司基建部很抓落实,及时组织召开了多 次设计协调会,基本上两星期开一次协调会。3 月 4 日中标发布会上明确分工,布置任务。3 月 18 日于苏州召开第一次协调会,会议就典型设计目的、原则、技术条件、工作进度、调 研分工等有关问题,一次、二次、土建、水工、暖通、技经等专业的设计原则和深度要求进行了 认真的讨论,并形成初步意见。4 月 5 日于北京召开第二次协调会,会议就对前阶段典设工作进展情况、典设中间成果进行检 查和评审,并对需解决的有关技术问题进行了讨论,形成了一致性意见。紧接着 4 月 6 日于北京召开典设工作研讨会,邀请电网公司策划部、生产技术部、安全监察部、建设运营部、国调中心、国网建设公司,各大区电网公司、各省电力公司、各大区电力设计院的 代表参加会议。会议听取了典设中间成果的介绍,通过深入并热烈地讨论,达成共识,统一思想,避免了设计闭门造车,以便下阶段典设工作的顺利开展。4 月 20 日于武汉召开第三次协调会,会议对典型设计的工作进度,主控通信楼、大门和围墙 的设计方案,模块的拼接,典型设计送审稿的章节编制和格式,以及存在的问题进行了讨论,并 形成结论意见。5 月 18 日~19 日于北京召开典设成果评审会,国家电网公司郑宝森副总经理、中国电力顾问 集团公司于刚副总经理出席会议并分别作了重要讲话。国网公司各部门,各网省公司,各设计院 代表对典型设计送审稿进行了认真负责的讨论,充分发表了意见,使典型设计更贴近实际,更符 合生产运行的要求。典型设计分为 6 个阶段: 编制方案组合及技术条件阶段:根据目前实际情况,并适当考虑发展裕度,变电站典型设计 综合考虑电压等级、主变容量、无功补偿、出线回路和方向、电气主接线、短路电流、设备选型、配电装置,控制及远动、建筑面积等条件,提出设计方案和设计技术条件。搜资调研及专题研究阶段:各设计院分头开展搜资调研工作,编写地区调研报告,对于分歧 意见较大的技术问题,进行重点调研,并写出专题报告。典型设计编制阶段:经讨论审定设计方案和技术条件后,各院开展变电站典型设计实质性设 计编制阶段,完成设计图纸、说明书、设备清册、概算书初稿;经评审后进一步优化和细化,编 制典型设计使用说明,完成典型设计成品(报批稿)。评审及修改阶段:由国家电网公司组织生产、基建、设计单位的设计人员,对典型设计成品 进行评审。形成评审意见后各设计院进行设计修改,形成典型设计报批稿。批准颁发阶段:典型设计报批稿提交国家电网公司,由公司领导写序,作为企业标准出版发 行。推广应用阶段:(略)。3.2 开展 500(330)kV 变电站变电站典型设计的目的 输变电工程典型设计是贯彻国家电网公司集约化管理的基础,开展变电站典型设计工作的目 的是:统一建设标准,统一设备规范,减少设备型式,以便于集中规模招标,方便运行维护,降 低变电站建设和运营成本;采用模块化设计,方便方案的拼接和扩展,加快设计、评审和批复进 度,提高工作效率。3.3 500(330)kV 变电站典型设计的主要原则 变电站典型设计的原则是:安全可靠、技术先进、投资合理、标准统一、运行高效。为此,在典型设计中,要注意处理和解决典型设计方案的先进性、经济性、适应性,灵活性和统一性及 其相互关系。先进性:典型设计方案,设备选型先进,合理,占地少、注重环保,变电站可比指标先进; 经济性:综合考虑工程初期投资和长期运行费用,追求设备寿命期内最优的经济效益; 适应性:典型设计要综合考虑各地区的实际情况,要在整个国家电网公司系统中具有广泛的 适用性:并能在较长的时间内,对不同规模,型式、外部条件均能适用; 灵活性:典型设计模块间接口灵活,增减方便,组合型式多样,概算调整方便;
可靠性:保证设备、各个模块和模块拼接后系统的安全可靠性; 统一性:建设标准统一,基建和生产运行的标准统一,外部形象风格统一。3.4 典型设计方案组合及主要内容 3.4.1 总体方案设计 典型设计方案分 500kV 变电站和 330kV 变电站两大部分。500kV 变电站典型设计按主设备不同分为 A(GIS 设备)、B(HGIS 设备)、C(敞开式设备)、D(落地罐式设备)4 类方案,各类方案又根据主变容量和最终台数的不同再分子方案。各方案组 合及主要技术条件详见附表 3~附表 6。330kV 变电站典型设计按主设备不同分为 A(GIS 设备)、C(敞开式设备)、D(落地罐式设 备)3 类方案,各类方案又根据主变容量和最终台数的不同再分子方案。各方案组合及主要技术条 件详见附表 7。3.4.2 电气二次设计 变电站初期按有人值班设计,留有远期实现无人值班的接口和功能配置。不含系统保护、调度自动化和系统通信专业的具体内容。提出了监控系统主要设计原则。包括监控范围、系统硬件设备配置原则,对系统软件工作平台、防误操作闭锁、GPS 对时、保护信息采集方式及通信规约等方面进行了重点论述,提出推荐方 案。提出了元件保护、直流系统及交流不停电电源的主要设计原则。提出了二次设备组屏原则,对监控系统测控装置、线路保护、主变压器及高压电抗器保护、故障录波等主要二次设备的组屏提出推荐方案。根据工程规模进行主控室、计算机室、继电器小室、直流电源室等的具体布置。3.4.3 土建部分设计 变电站大门、围墙要能体现国网公司“内质外形”建设,树立“国家电网”的品牌形象,设 计简洁、明快、大方、实用,具备现代工业建筑气息,建筑造型和立面色调与变电站整体状况以 及所在区域周围环境协调、统一。大门围墙采用标志统一、风格统一、色彩统一,字体统一等要 求,变电站大门入口处一侧统一设置“标志墙”。其上为球形标志,下有“国家电网”四字,右 侧为“国家电网公司 500(330)kV XX 变电站”。变电站围墙采用实体围墙,高度统一采用 2.5m,另加远红外探测器。站区道路采用混凝土路面,统一采用公路(郊区)型设计。经过设计优化后,330kV GIS 方案占地面积 1.7ha,330kV 敞开式方案 3-3.5ha.;500kV GIS 方案占地面积 3.0~3.8ha,HGIS 方案占地面积 3.5~4.5ha;敞开式方案 5.8-7.3ha。统一了站区主要生产建筑和房间的设置,建设有主控通信楼、继电器小室、站用电室等建筑 物。建筑面积,500kV 变电站控制在 1100~1300平米,330kV 变电站控制在 1000~1100平米。主控通信楼内房间的设置统一为:生产用房设有主控室、计算机室、通信机房(当通信电源组屏 布置时,电源室和通信机房合并布置),辅助及附属房间设有交接班室、值班休息室 2-3 间、办 公室 2 间(含资料室)、会议室、备餐室、检修工器具间等。主控通信楼采用框架结构。继电器小室当布置在串中时,跨度采用 5.1m,采用室内电缆沟敷 设电缆。继电器小室采用砖混结构,加设钢板网屏蔽,普通钢门。所有构架、设备支架均推荐采用钢管结构,热镀锌防腐。变电站主要生产用房及办公、值休等用房和保护小室需安装空调机,其余生产用房采用轴流 风机机械通风,电缆层采用自然通风。主控通信楼采用小集中空调,继电器小室采用分体空调。位于采暖区的变电站可采用分散供暖方式。主变压器消防优先考虑采用泡沫喷淋、排油充氮方式。继电器室全集中布置时主控通信楼建筑体积不大于 5000 m3,不设室内建筑水消防系统,但应设室 外建筑水消防系统。继电器小室分散布置时,主控通信楼建筑面积控制在建筑体积不大于 3000 m3,全站不设室外 水消防系统,采用移动式化学灭火装置。3.4.4 技经部分 为使典型设计的各方案、模块的投资在同一价格水平上,便于进行对比分析,在典型设计概 算编制时采用统一的取费标准、统一的定额、统一的设备材料价格和统一的其他费用标准。为适应实际工程和典型设计的各基本组合方案的投资水平对比分析的需要,对不在本次典型
设计范围内的有关工程费用进行了统一规定,包括水源、站外电源、站外通信、进站道路、地基 处理、站外排水、护坡挡墙等,保证了典型设计的各基本组合方案的概算投资的完整性。使用时需根据工程规模和实际情况选用基本组合方案或模块方案参考造价进行分析、合理调 整。联系方式:褚农,教高,江苏省电力设计院,025-85081300,chunong@jspdi.com.cn 附表 1: 方案 A1 主变
江苏省 220kV 变电站典型设计主要工程技术条件
适用规模 220kV 出 线 6 回,110kV 出线 8 回,35kV 出线 10 回 接线 220kV、110kV 采 用双母线接线,35kV 采用单母线 分段接线 配电装置 220kV、110kV 配 电装置采用软母线 改进半高型,35kV 配电装置采用户内 开关柜 布置格局 220kV 出 线 与 110kV 出 线 构 180o布置 220kV 出 线 与 110kV 出 线 构 90o布置 220kV 出 线 与 110kV 出 线 构 180o布置 220kV 出 线 与 110kV 出 线 构 90o布置 220kV 出 线 与 110kV 出 线 构 180o布置 220kV 出 线 与 110kV 出 线 构 90o布置 主变露天,建 筑物两列式布 置 主变半户内,整体建筑式布 置 主变露天,建 筑物两列式布 置 A2 本期 2 台 120MVA 主变 远景 3 台 B1-1 B2-1 B1-2 本期 2 台 180MVA 主变 远景 3 台
220kV 出 线 6 回,110kV 出线 8 回,35kV 出线 10 回
220kV、110kV 采 用双母线接线,35kV 采用单母线 分段接线
220kV、110kV 配 电装置采用管母线 中型,35kV 配电装 置采用户内开关柜 B2-2 220kV 出 线 6 回,110kV 出线 8 回,10kV 出线 24 回 220kV 出线本期 2 回远期 3 回,110kV 出 线 12 回,10kV 出线 24 回 220kV 出线本期 2 回远期 3 回,110kV 出 线 8 回,10kV 出线 24 回
220kV、110kV 采 用双母线接线,10kV 采用单母线 分段接线
220kV、110kV 配 电装置采用管母线 中型,10kV 采用户 内开关柜 C1 C3 本期 2 台 180MVA 主变 远景 3 台
220kV 采 用 单 元 接线,110kV 采用 双母线接线,10kV 单母线分段 接线 220kV、110kV 采 用户内 GIS,10kV 采用户内开关柜,全电缆出线 220kV、110kV 采 用户内装配式配电 装置,架空出线; 10kV 采用户内开 关柜电缆出线 C2 所有方案 直流系统:2 组 220V 阀控式密封铅酸蓄电池,2 组充电装置(高频开关电源),配置 DC/DC 变换 器供-48V 系统通信电源,不设蓄电池室。交流所用:所用电系统 380/220V 中性点接地,采用三相四线制,单母线分段接线,两台所变分列 运行。继电保护:220kV、110kV 线路、主变设微机保护,保护测控相对独立;35kV 设微机保护(含低 周减载和接地检测功能),保护测控合一,分散布置。自动装置:电容器组投切;35kV 消弧线圈跟踪补偿。对时装置:全所共用 1 台 GPS。防误操作:不专设微机五防装置,由计算机监控系统统一考虑。电能计量:主变中低压侧设关口表,其余按规程配置。电气测量:利用监控系统完成。信息采集:模拟量和开关量。控制方式:远方调度,监控系统,就地三级操作。通信方式:变电站接入地区光纤环网,通信容量及可靠性按照变电站无人值班要求设计。
附表 2: 方案 主变 远景: 2× 50MVA 本期: 2× 50MVA 远景: 2× 50MVA 本期: 2× 50MVA 江苏 110kV 变电所典型设计主要工程技术条件
适用规模 110kV 进线 2 回,35kV 出线 4 回架 空,4 回电缆,10kV 出线 16 回电 缆 110kV 进线 4 回,35kV 出线 4 回架 空,回电缆,4 10kV 出线 16 回电缆 接线 110kV 采用线变 组接线 35kV、10kV 采用 单母线分段接线 配电装置 布置格局 主变及 110kV 配 电装置户外布 置,35kV、10kV 配电装置户内 布置 A1 110kV 采用单母 线分段接线 A2 35kV、10kV 采用 单母线分段接线 110kV 采用内桥 110kV 配电装置 主变及 110kV 配 远景: 110kV 进线 3 回,采用户外敞开式 电 装 置 户 外 布 或线变组接线 3× 50MVA A3 10kV 出线 36 回电 10kV 采用单母线 设备,10kV 采用 置,10kV 配电 本期: 缆 2× 50MVA 装置户内布置 户内开关柜 分段接线 110kV 采用内桥 远景: 110kV 进线 2 回,接线 2× 50MVA B3 10kV 出线 24 回电 110kV 配电装置 主变户外布置,10kV 采用单母线 本期: 缆 采用户内敞开式 110kV 配电装置 2× 50MVA 分段接线 设备,10kV 采用 及 10kV 配电装 110kV 采用线变 远景: 置户内布置 户内开关柜 110kV 进线 3 回,组接线 3× 50MVA B4 10kV 出线 36 回电 10kV 采用单母线 本期: 缆 2× 50MVA 分段接线 远 景 : 2× 110kV 进线 2 回,110kV 采用内桥 接线 50MVA 10kV 出线 24 回电 C2 10kV 采用单母线 本 期 : 2× 缆 50MVA 分段接线 110kV 采用户内 110kV 采用双内 远景: GIS,10kV 采用 桥或双外侨接线 全户内 3× 50MVA 户内开关柜,全 C3 本期: 110kV 进线 3 回,10kV 采用单母线 电缆出线 2× 50MVA 10kV 出线 36 回电 分段接线 缆 110kV 采用线变 远景: 组接线 3× 50MVA C4 10kV 采用单母线 本期: 2× 50MVA 分段接线 所有方案 直流系统:2 组 220V 阀控式密封铅酸蓄电池,2 组充电装置(高频开关电源),设蓄电池室。交流所用:电系统 380/220V 中性点接地,采用三相四线制,单母线分段接线,两台所变分列运行。继电保护:220kV、110kV 线路、主变设微机保护,保护测控相对独立;35/10kV 设微机保护,保护 测控合一,分散布置。自动装置:电容器组投切;35/10kV 消弧线圈跟踪补偿;35/10kV 接地检测。对时装置:全所共用 1 台 GPS。防误操作:闭锁不专设微机五防装置,由计算机监控系统统一考虑。电能考核:计量主变中低压侧设关口表,其余按规程配置。就地电气:测量利用监控系统完成电气测量。信息采集:类型模拟量和开关量。控制操作:方式远方调度,监控系统,就地三级操作。通信方式:变电所接入地区的光纤环网,光纤网络与继电保护统一考虑,通信容量及可靠性按照变 电所无人值班要求设计。
110kV 配电装置 采用户外敞开式 设备,35kV、10kV 采用户内开关柜
附表 3: 序 号 项目 名称
500kV 变电站(GIS)典型设计主要技术条件
方案编号 A-1-1 A-1-2 4 台主变 本期 1 组 1000MVA,最终 4 组 1000MVA,单相自耦,无载调压。本期 1 组 750MVA,最终 4 组 750MVA,单 相 自 耦,无载 调压。本期 1 组 750MVA,最终 4 组 750MVA,本期 1 组 最终 3 组 A-1-3 A-2-1 A-2-2 3 台主变 本期 1 组 最终 3 组 本期 1 组 750MVA,最终 3 组 750MVA,A-2-3 1000MVA,750MVA,1000MVA,750MVA,1 主变压器
三相自耦,单相自耦,单相自耦,三相自耦,无载调压。无载调压。无载调压。无载调压。500kV 并联电抗器: 本期 1 组 150Mvar,最终 2 组,为线路高抗,均装中性点小 电抗,不考虑母线高抗。最终 6 组;35kV 并联电容器:本期 2 组 60Mvar,最终 6 组。2 台主变进串,第 3 台主变经单断路器 接二段母线;本期设 9 台断路器(1 台 远景设备本期上),串内 GIS 设备。500kV 高抗经隔离开关接入线路。220kV 双母线双分段接线,本期双母线 接线,GIS 设备。35kV 单母线接线,不设总断路器。500kV 本期 4 回,最终 8 回架空,一个 220kV 本期 8 回,最终 14 回架空出线(一个或两个方向出线),2 回电缆出 线。
500kV 并 联 电 抗 器 : 本 期 1 组 150Mvar,最终 2 组,为线路高抗,均 无功补偿 2 装置 装中性点小电抗,不考虑母线高抗。最终 8 组;35kV 并联电容器:本期 2 组 60Mvar,最终 8 组。对 4 台主变,主变均进串;对 3 台主 变,2 台主变进串,1 台主变经断路器 电气主接 4 线 接 2 段母线。本期设 8 台断路器。500kV 高抗经隔离开关接入线路。220kV 双母线双分段接线,本期双母 线接线。35kV 单母线接线,不设总断路器。500kV 本期 4 回,最终 8 回架空,一 出线回路 3 数和出线 方向 5 6 7 8 9 10 短路电流 主要设备 选型 配电装置 保护及 自动化 建筑面积 站址基本 条件 最终 16 回架空出线,一个或两个方向 出线(3 台主变方案其中 2 回电缆出线)。单相/三相自耦变压器; 500kV、220kV 采用户外 GIS;
35kV 并联电抗器:本期 2 组 60Mvar,35kV 并联电抗器:本期 2 组 60Mvar,500kV 一个半断路器接线,远景 6 串,500kV 一个半断路器接线,远景 6 串;
个或两个方向出线;220kV 本期 8 回,或两个方向出线; 500、220、35kV 短路电流水平分别为:63(50)、50、40kA 35kV 采用户外 AIS,断路器采用柱式,电容器采用组装式,电抗器采用干式。500kV、220kV 户外 GIS。计算机监控系统,不设常规控制屏,监控和远动统一考虑,可满足无人值班要 求,保护集中布置。全站总建筑面积 2000m2以内,非采暖区。主变采用水喷雾消防系统。海拔高度<1000m,地震动峰加速度 0.1g,风荷载 30m/s,地耐力 R=150kPa,地 下水无影响,非采暖区,场地同一标高,污秽等级 III 级。
附表 4 序 号 1 500kV 变电站(HGIS)典型设计主要技术条件
方案编号 项目名称 B-1 主变压器 主变电气 接线 远景串数 本期 1 组、最终 4 B-2 本期 1 组、最终 4 B-3 本期 1 组、最终 3 组 750MVA 主变。第三台主变经断路器接 母线 5 垂直 2个 不设平行
组 1000MVA 主变。组 750MVA 主变。主变全部进串 6平行 1个 不设 垂直 主变全部进串 6 垂直 2个 设置 垂直 2 500kV 母线与主 变梁 主要出线 方向 总断路器 3 35kV 母线与主 变梁
项目 无功 4 补偿
相同的主要工程技术条件 500kV 并联电抗器:本期 1 组 150Mvar,最终 2 组,经隔离开关接入线路,均装 设中性点电抗,不考虑母线高抗;35kV 电容器、并联电抗器按每台主变各配置 2 组 60Mvar 设计。500kV:本期 4 回,最终 8 回;220kV:本期 8 回,最终 16 回,1 个主要出线方 向。500kV 一个半断路器接线,本期设 1 个不完整串和 2 个完整串共 8 台断路器; 220kV 双母线双分段接线,本期双母线接线;35kV 单母线单元制接线。500kV 部分 63 或 50kA,220kV 部分 50kA,35kV 部分 40kA。单相自耦变压器;500kV 采用户外 HGIS,220kV 采用户外 GIS,35kV 采用户外 AIS,断路器采用柱式,35kV 并抗采用干式或油式,电容器采用组装式,站变采 用油浸式。500kV 户外悬吊管母线中型布置,高架横穿进出线,间隔宽度 28m;220kV 间隔 宽度 13m;35kV 采用支持管母线中型布置。计算机监控系统,不设常规控制屏,监控和远动统一考虑,可以满足无人值班要 求;保护就地布置。全站总建筑面积 1400m2以内,主控通信楼建筑面积 650—750 m2;主变消防采用 SP泡沫喷淋灭火或排油充氮方式。5 出线 电气主 6 接线 短路 7 电流 主要 8 设备 配电 9 装置 保护 10 自动化 土建 11 站址 12 条件
按地震动峰值加速度 0.10g,风荷载 30m/s,地耐力 R=150kPa,地下水无影响,非采暖区设计,假设场地为同一标高。按海拔 1000 米以下,国标Ⅲ级污秽区设 计
附表 5 序 号 1 项目名称
500kV 变电站(瓷柱式)典型设计主要技术条件表 500kV 变电站(瓷柱式断路器)典型设计工程技术条件
主变压器 本期 1 组 750MVA,最终 2/3/4 组 750MVA 500kV 并联电抗器,本期 1 组 150Mvar,最终 2 组,为线路高抗,均装设中性点小 抗,不考虑母线高抗。2 无功补偿 3 组和 4 组主变方案,每组主变压器 35kV 侧无功配置:2 组 60Mvar 并联电感器,装 置 2 组 60Mvar 并联电容器。2 组主变方案,每组主变方案 35kV 侧无功配置:3 组 60Mvar 并联电感器,3 组 60Mvar 并联电容器。本期 35kV 侧无功配置:2 组 60Mvar 并联电抗器,2 组 60Mvar 并联电容器。出线回路 500kV 本期 4 回,最终 10 回,两个方向出线。数和出线 220kV 本期 6 回,最终 16 回(3 组或 4 组主变)或 12 回(2 组主变),一个方向出线或 方向 两个方向出线。500kV 一个半断路器接线,远期 6 串,2 组主变进串,后 2 组或 1 组主变经断路器 接母线。本期设 8 组断路器。500kV 高压电抗器均为经隔离开关接入线路。3 4 电气主接 线 220kV 双母线双分段接线或双母线单分段,本期双母线接线。35kV 单母线接线,不装设总断路器。5 6 短路电流 500、220、35kV 短路电流水平分别为 63(50)、50、40kA 主要设备 单相自耦变压器。500kV、220kV、35kV 采用户外瓷柱式断路器。选型 35kV 电容器采用组装式、电抗器采用干式。500kV 屋外悬吊管母线中型布置,主变高架横穿和低架横穿进串。7 配电装置 220kV 屋外支持管母线中型布置(3 组或 4 组主变)或悬吊母线中型布置(2 组主变)。35kV 支持管母线中型布置。保护及 计算机监控系统,不设常规控制屏,监控和远动统一考虑,可以满足无人值班要 自动化 求。保护就地布置。土 站 建 全站总建筑面积 1400m2以内,主控通信楼建筑面积 650-750m2(小于 3000m3),非 采暖区。主变消防采用水喷雾消防系统。8 9 10 址 海拔 1000m 以下,地震动峰值加速度 0.10g,设计风速 30m/s,地耐力 R=150kPa,基本条件 地下水无影响,假设场地为同一标高。国标 III 级污秽区。附表 6 序号 1 500kV 变电站(落地罐式)典型设计主要技术条件表
项目名称 500kV 变电站工程技术条件 本期 1 组 750MVA,最终 2/3/4 组 1000MVA(750MVA)500kV 并联电抗器,本期 1 组 150Mvar,最终 2 组,为线路高抗,装设中性点 小电抗,不考虑母线高抗。
主变压器
无 功 补 偿 装 3 台和 4 台主变方案,每台主变压器 66kV 侧无功配置:2 组 60Mvar 并联电抗 2 置 器,2 组 60Mvar 并联电容器。2 台主变方案,每台主变方案 66V 侧无功配置: 3 组 60Mvar 并联电抗器,3 组 60Mvar 并联电容器。本期 66kV 侧无功配置:2 组 60Mvar 并联电抗器,2 组 60Mvar 并联电容器。出线回路数 3 和出线方向 500kV 本期 4 回,最终 10 回,两个方向出线。220kV 本期 6 回,最终 16 回(3 台或 4 台主变)或 12 回(2 台主变),一个方 向出线。500kV 一个半断路器接线,远期 6 串,2 台主变进串,后 2 台或 1 台主变经断 4 电气主接线 路器接母线。本期设 8 台断路器。500kV 高压电抗器均为经隔离开关接入线路。220kV 双母线双分段接线或双母线单分段,本期双母线接线。66kV 单母线接线,装设总断路器。5 6 短路电流 500、220、66kV 短路电流水平分别为 63(50)、50、31.5kA 主 要 设 备 选 单相自耦变压器 型 500kV、220kV 采用户外罐式断路器,66kV 采用户外柱式断路器。500kV 屋外悬吊管母线中型布置,主变高架横穿和低架横穿进串。7 配电装置 220kV 屋外悬吊管母线中型布置。66kV 支持管母线中型布置。保 护 及 自 动 计算机监控系统,不设常规控制屏,监控和远动统一考虑,可以满足无人值班 8 化 土建 要求。保护就地布置。
全站总建筑面积 1500m2以内,主控通信楼建筑面积 650-750m(小于 3000 m3),9 采暖区。主变消防采用SP泡沫喷淋灭火。站 址 基 本 条 海拔 1000 米以下,地震动峰值加速度 0.10g,设计风速 30m/s,地耐力 R=150kPa,10 件
地下水无影响,假设场地为同一标高。国标 III 级污秽区。
附表 7 序 项目名称 号 1 主变压器
330kV 变电站典型设计主要技术条件表
330kV 变电站工程技术条件 本期 1 台 240MVA(360MVA),最终 2/3 台 240MVA(360MVA)。330kV 并联电抗器,本期 1 组 90Mvar,最终 2 组,GIS 方案最终为 1 组,均
无功补偿装置
为线路高抗,并装设中性点小抗,不考虑母线高抗。35kV 侧无功按主变配置:1 组 30Mvar 并联电抗器,3 组 20Mvar 并联电容器。本期 35kV 侧无功配置:1 组 30Mvar 并联电抗器,3 组 20Mvar 并联电容器。
出 线 回 路 数 和 330kV 本期 4 回,最终 6 回,两个方向出线。3 出线方向 110kV 本期 6 回,最终 14 回,一个方向出线或两个方向出线。330kV 一个半断路器接线。330kV 高压电抗器均为经隔离开关接入线路。4 电气主接线 330kVGIS 方案为双母线接线。110kV 双母线接线单分段,本期双母线接线。35kV 单母线接线,设总断路器。5 短路电流 330、110、35kV 短路电流水平分别为 50、40、31.5kA 三相自耦有载调压 6 主要设备选型 330kV 采用罐式、柱式断路器和 GIS。110kV 采用柱式断路器和 GIS。35kV 电容器采用框架组合式和集合式,电抗器采用干式 330kV 屋外软母线和悬吊管母线中型布置,主变高架横穿和低架横穿进串。330kVGIS 采用屋外配电装置。7 配电装置 110kV 屋外软母线半高型、中型布置和支持管母线中型布置。110kVGIS 屋外 配电装置。35kV 采用屋外和屋内布置。8 保护及自动化 计算机监控系统,不设常规控制屏,监控和远动统一考虑,可以满足无人值班 要求。保护就地布置。GIS方案全站总建筑面积 1100m2以内,敞开式方案主控通信楼建筑面积 600m2 9 土建(小于 3000m3),全站总建筑面积 1050m2以内,采暖区。当 35kV采用屋内配 电装置时,其配电装置室不计入全站总建筑面积。主变消防采用SP泡沫喷淋灭 火或排油注氮灭火。10 站址基本条件 海拔 1000 米以下,地震动峰值加速度 0.10g,设计风速 30m/s,地耐力 R=150kPa,地下水无影响,假设场地为同一标高。国标 III 级污秽区。1本文由我爱继保贡献
pdf文档可能在WAP端浏览体验不佳。建议您优先选择TXT,或下载源文件到本机查看。
变电站典型设计情况介绍
江苏省电力设计院 褚农
摘要:本文介绍了 220(110)kV 变电站典型设计在江苏省电力系统的推广应用情况,并重 点介绍了国家电网公司 500(330)kV 变电站典型设计情况。1 概述 开展典型设计工作,是贯彻落实国家电网公司“一强三优”战略的一项工作,是统一公 司工程建设标准、规范管理的重要手段。国网公司典型设计从变电站入手,全面推行。计划 2005 年上半年完成 500kV 及 330kV 变电 站的典型设计,下半年开始试行;年内要完成 220kV 及 110kV 变电站的典型设计。并在公司 系统新建工程中全部推广应用。江苏省电力公司为了适应地方经济发展需要,并实现电网效益的最大化,从 2001 年开始开 展 220kV 及 110kV 变电站的典型设计,并着力于推广应用工作。两年多来的应用实践证明,这一举措是成功的。本文先就江苏省推广应用 220kV 及 110kV 变电站的典型设计的情况作简要介绍,然后介绍国 网公司 500kV(330)kV 变电站典型设计的情况。2 江苏省公司 220kV 及 110kV 变电站的典型设计 2.1 编制过程 220kV(110kV)变电站典型设计的编制工作分三个阶段进行。第一阶段:搜资调研,确定典设主要设计原则。我院在对江苏变电站设计进行统计梳理的同时,还赴与江苏经济同样发达的省市学习调 研,取长补短;对一些争议较大的技术问题进行专题调研分析。共完成调研报告和专题报告 8 篇,有《广东地区搜资调查报告》、《上海地区搜资调查报告》、《取消旁路母线专题报 告》、《变电站计算机监控系统与“五防”装置设计专题报告》、《直流系统额定电压选取 专题报告》、《PASS 及 COMPASS 调研报告》、《110kV 自冷和风冷变压器选型》、《环保型 自动灭火系统调研报告》。通过搜资调研为典型设计提供真实可靠的依据。原则主要包括编制深度、应用范围、规模区间、短路电流控制水平、设备水平以及运行管理 模式等。《典型设计主要设计原则(初稿)》完成后,省公司组织了公司本部有关部门、我 院典设组成员和 13 个地市供电公司总工程师以及生技、基建、调度部门负责人进行了座谈,广泛听取意见、了解需求。第二阶段:编制和审定典设的设计方案和技术条件书。根据第一阶段确定的主要设计原则,我们编制了专题报告,进行了分析论证,提出了典 设方案的推荐意见及相应的技术条件书。技术条件书主要包括各电压等级的电气主接线形 式、配电装置形式、出线回路数及引出方式、主变压器形式、无功补偿配置方式、监控及保 护配置方式、所用交流及直流电源配置方式和主变压器消防措施等。第三阶段:编制完成变电站典型设计。根据确定的编制方案及技术条件书,对技术方案进行全面的论述和定量计算,选定主要 设备参数。各方案的初步设计文件包括设计说明书、设计图纸、主要设备清册及概算书等。省公司先后对典型设计的送审版和批准版进行评审,通过评审确定了今后新建变电站的接 线、配电装置、监控方案、控制楼面积及概算指标等主要原则和典设中的基本模块。典型设 计的批准版由省公司总经理作序出版,并印发执行。2.2 变电站主要设计原则和方案 变电站典型设计总体设计原则为:(1)典型设计贯彻“安全、可靠、经济、适用”的设计原则。(2)考虑到江苏在经济、技术等方面处于国内领先位置,设计上将体现先进性,技术上 适度超前。(3)除遵循部标 SDJ2-88 《220kV~500kV 变电站设计规程》 DL/T 5103-1999、《35kV~110kV 无人值班变电所设计规程》及其它有关规程规范外,还应符合省电力公司编制的《江苏省 35kV~220kV 变电站设计技术导则》等有关规定。根据江苏地区的特点,变电站设计类型既可按照负荷密集程度进行划分,也可按照变电站所在地 区划分。为使典设各方案具有广泛的代表性,我们针对本省特点,220kV 变电站提出 A(负荷密集 地区)、B(一般地区)、C(城市地区)三大类共计 8 个变电站设计方案、11 个建筑方案。110kV 变电站提出了 A(主变及高压配电装置户外布置、中压配电装置户内布置)、B(主变户外布置、配电装置户内布置)、C(全户内布置)三大类共计 8 个方案。各方案组合及其主要技术条件见附 表 1~2。2.3 设计特点和应用情况 变电站典型设计适用于江苏省大部分 220kV 和 110kV 变电站,并且作为变电站的设计规范,被纳入省公司的企业标准。典设自 2002 年底执行以来,在电网建设工作中发挥了较大效益,江苏 省 2004 年投运的 27 个新建 220kV 变电站,2005 年和 2006 年即将投运的 73 个新建 220kV 变电站,均采用了典型设计。110kV 变电站典型设计应用范围更为广泛。(1)典型设计具有模块化设计的特点,配电装置、控制楼、概算等都具有一定的独立性,对 不同规模的变电站的初步设计,可以根据工程建设规模,以典型设计作为修正模块进行调整。(2)典型设计中的概算模块比较全面、客观,成为省公司编制上报项目建议书时的依据。(3)典型设计中无法统一的个性化的方面,如主变调相调压计算、系统保护通信方案、短路 电流核算、地基处理、各级电压出线方向以及总平面布置方案等仍需单独设计。(4)典型设计的编制过程是统一标准和统一认知的过程。广泛听取设计、建设、生产及调度 各方面的意见的基础上,领导参与指导和决策,有利于统一意见,把典型设计提升为企业标准。(5)典型设计提高了工作效率,保证了工作质量。典型设计不是设计的参考,而是设计的标 准。因此,典型设计的推广应用减少了专业协调的工作量,使设计专业之间的协调流畅,工作效 率大大提高。(6)典型设计的应用提高了初步设计审查效率。审查会上主要讨论具体设计方案与典设方案 的不同之处。减少了大量重复的讨论和无谓的扯皮。初设修改和批文下达时间也大大缩短,也为 设备招投标创造了良好条件。(7)以典设为基础的初设方案,其工程造价与典设方案出入不大,更易于控制工程造价的总 投资,避免了工程造价出现大起大落的现象。(8)为使各设计院会用或愿意用典型设计,省公司组织多次典型设计宣贯活动,请典设编制 人员介绍设计原则、方案组合、适时条件和使用方法。(9)典型设计需要不断优化和完善。随着我国经济体制改革的不断深化,电力技术的不断进 步,典型设计也应随之进行滚动修改,进一步优化。3 国家电网公司 500(330)kV 变电站典型设计的情况 3.1 任务的提出及工作过程 刘振亚总经理在国家电网公司 2005 年工作报告中提出:推行电网标准化建设。各级电网工程 建设要统一技术标准,推广应用典型优化设计,节省投资,提高效益。郑宝森副总经理在国家电网公司 2005 年基建工作报告中提出:以典型设计为导向,促进技术 进步和提高集约化管理水平。2005 年 1 月 28 日由国网公司基建部提出典型设计工作大纲; 2 月 5 日由基建部和顾问集团公司共同完成典型设计招标文件; 2 月 6 日在北京招标文件发布,共邀请 13 家设计院参加投标; 2 月 28 日前各投标设计院完成典型设计标书,28 日在北京开标; 3 月 4 日完成评标及定标工作,4 日在北京召开中标发布会,共有 5 家设计院中标,分别是华 东电力设计院、江苏省电力设计院、中南电力设计院、西北电力设计院、华北电力设计院。相继成立了“国家电网公司 500(330)kV 变电站典型设计工作组”,组长单位为国家电网 公司基建部;副组长单位为中国电力工程顾问集团公司;成员单位有华东院、江苏院、中南院、西北院、华北院。根据各院特点,工作组进行了设计分工: 华东院负责主设备为 GIS 方案的设计,并负责华东地区 500kV 变电站情况的调研工作; 江苏院负责主设备为 HGIS 方案的设计,并负责南方电网公司 500kV 变电站情况的调研工作;
中南院负责主设备为瓷柱式方案的设计,并负责华中地区 500kV 变电站情况的调研工作; 华北院负责主设备为落地罐式方案的设计,并负责华北地区 500kV 变电站情况的调研工作; 西北院负责 330kV 变电站方案的设计,并负责西北地区 330kV 变电站情况的调研工作。面对典设工作面广量大、情况复杂、时间紧,国网公司基建部很抓落实,及时组织召开了多 次设计协调会,基本上两星期开一次协调会。3 月 4 日中标发布会上明确分工,布置任务。3 月 18 日于苏州召开第一次协调会,会议就典型设计目的、原则、技术条件、工作进度、调 研分工等有关问题,一次、二次、土建、水工、暖通、技经等专业的设计原则和深度要求进行了 认真的讨论,并形成初步意见。4 月 5 日于北京召开第二次协调会,会议就对前阶段典设工作进展情况、典设中间成果进行检 查和评审,并对需解决的有关技术问题进行了讨论,形成了一致性意见。紧接着 4 月 6 日于北京召开典设工作研讨会,邀请电网公司策划部、生产技术部、安全监察部、建设运营部、国调中心、国网建设公司,各大区电网公司、各省电力公司、各大区电力设计院的 代表参加会议。会议听取了典设中间成果的介绍,通过深入并热烈地讨论,达成共识,统一思想,避免了设计闭门造车,以便下阶段典设工作的顺利开展。4 月 20 日于武汉召开第三次协调会,会议对典型设计的工作进度,主控通信楼、大门和围墙 的设计方案,模块的拼接,典型设计送审稿的章节编制和格式,以及存在的问题进行了讨论,并 形成结论意见。5 月 18 日~19 日于北京召开典设成果评审会,国家电网公司郑宝森副总经理、中国电力顾问 集团公司于刚副总经理出席会议并分别作了重要讲话。国网公司各部门,各网省公司,各设计院 代表对典型设计送审稿进行了认真负责的讨论,充分发表了意见,使典型设计更贴近实际,更符 合生产运行的要求。典型设计分为 6 个阶段: 编制方案组合及技术条件阶段:根据目前实际情况,并适当考虑发展裕度,变电站典型设计 综合考虑电压等级、主变容量、无功补偿、出线回路和方向、电气主接线、短路电流、设备选型、配电装置,控制及远动、建筑面积等条件,提出设计方案和设计技术条件。搜资调研及专题研究阶段:各设计院分头开展搜资调研工作,编写地区调研报告,对于分歧 意见较大的技术问题,进行重点调研,并写出专题报告。典型设计编制阶段:经讨论审定设计方案和技术条件后,各院开展变电站典型设计实质性设 计编制阶段,完成设计图纸、说明书、设备清册、概算书初稿;经评审后进一步优化和细化,编 制典型设计使用说明,完成典型设计成品(报批稿)。评审及修改阶段:由国家电网公司组织生产、基建、设计单位的设计人员,对典型设计成品 进行评审。形成评审意见后各设计院进行设计修改,形成典型设计报批稿。批准颁发阶段:典型设计报批稿提交国家电网公司,由公司领导写序,作为企业标准出版发 行。推广应用阶段:(略)。3.2 开展 500(330)kV 变电站变电站典型设计的目的 输变电工程典型设计是贯彻国家电网公司集约化管理的基础,开展变电站典型设计工作的目 的是:统一建设标准,统一设备规范,减少设备型式,以便于集中规模招标,方便运行维护,降 低变电站建设和运营成本;采用模块化设计,方便方案的拼接和扩展,加快设计、评审和批复进 度,提高工作效率。3.3 500(330)kV 变电站典型设计的主要原则 变电站典型设计的原则是:安全可靠、技术先进、投资合理、标准统一、运行高效。为此,在典型设计中,要注意处理和解决典型设计方案的先进性、经济性、适应性,灵活性和统一性及 其相互关系。先进性:典型设计方案,设备选型先进,合理,占地少、注重环保,变电站可比指标先进; 经济性:综合考虑工程初期投资和长期运行费用,追求设备寿命期内最优的经济效益; 适应性:典型设计要综合考虑各地区的实际情况,要在整个国家电网公司系统中具有广泛的 适用性:并能在较长的时间内,对不同规模,型式、外部条件均能适用; 灵活性:典型设计模块间接口灵活,增减方便,组合型式多样,概算调整方便;
可靠性:保证设备、各个模块和模块拼接后系统的安全可靠性; 统一性:建设标准统一,基建和生产运行的标准统一,外部形象风格统一。3.4 典型设计方案组合及主要内容 3.4.1 总体方案设计 典型设计方案分 500kV 变电站和 330kV 变电站两大部分。500kV 变电站典型设计按主设备不同分为 A(GIS 设备)、B(HGIS 设备)、C(敞开式设备)、D(落地罐式设备)4 类方案,各类方案又根据主变容量和最终台数的不同再分子方案。各方案组 合及主要技术条件详见附表 3~附表 6。330kV 变电站典型设计按主设备不同分为 A(GIS 设备)、C(敞开式设备)、D(落地罐式设 备)3 类方案,各类方案又根据主变容量和最终台数的不同再分子方案。各方案组合及主要技术条 件详见附表 7。3.4.2 电气二次设计 变电站初期按有人值班设计,留有远期实现无人值班的接口和功能配置。不含系统保护、调度自动化和系统通信专业的具体内容。提出了监控系统主要设计原则。包括监控范围、系统硬件设备配置原则,对系统软件工作平台、防误操作闭锁、GPS 对时、保护信息采集方式及通信规约等方面进行了重点论述,提出推荐方 案。提出了元件保护、直流系统及交流不停电电源的主要设计原则。提出了二次设备组屏原则,对监控系统测控装置、线路保护、主变压器及高压电抗器保护、故障录波等主要二次设备的组屏提出推荐方案。根据工程规模进行主控室、计算机室、继电器小室、直流电源室等的具体布置。3.4.3 土建部分设计 变电站大门、围墙要能体现国网公司“内质外形”建设,树立“国家电网”的品牌形象,设 计简洁、明快、大方、实用,具备现代工业建筑气息,建筑造型和立面色调与变电站整体状况以 及所在区域周围环境协调、统一。大门围墙采用标志统一、风格统一、色彩统一,字体统一等要 求,变电站大门入口处一侧统一设置“标志墙”。其上为球形标志,下有“国家电网”四字,右 侧为“国家电网公司 500(330)kV XX 变电站”。变电站围墙采用实体围墙,高度统一采用 2.5m,另加远红外探测器。站区道路采用混凝土路面,统一采用公路(郊区)型设计。经过设计优化后,330kV GIS 方案占地面积 1.7ha,330kV 敞开式方案 3-3.5ha.;500kV GIS 方案占地面积 3.0~3.8ha,HGIS 方案占地面积 3.5~4.5ha;敞开式方案 5.8-7.3ha。统一了站区主要生产建筑和房间的设置,建设有主控通信楼、继电器小室、站用电室等建筑 物。建筑面积,500kV 变电站控制在 1100~1300平米,330kV 变电站控制在 1000~1100平米。主控通信楼内房间的设置统一为:生产用房设有主控室、计算机室、通信机房(当通信电源组屏 布置时,电源室和通信机房合并布置),辅助及附属房间设有交接班室、值班休息室 2-3 间、办 公室 2 间(含资料室)、会议室、备餐室、检修工器具间等。主控通信楼采用框架结构。继电器小室当布置在串中时,跨度采用 5.1m,采用室内电缆沟敷 设电缆。继电器小室采用砖混结构,加设钢板网屏蔽,普通钢门。所有构架、设备支架均推荐采用钢管结构,热镀锌防腐。变电站主要生产用房及办公、值休等用房和保护小室需安装空调机,其余生产用房采用轴流 风机机械通风,电缆层采用自然通风。主控通信楼采用小集中空调,继电器小室采用分体空调。位于采暖区的变电站可采用分散供暖方式。主变压器消防优先考虑采用泡沫喷淋、排油充氮方式。继电器室全集中布置时主控通信楼建筑体积不大于 5000 m3,不设室内建筑水消防系统,但应设室 外建筑水消防系统。继电器小室分散布置时,主控通信楼建筑面积控制在建筑体积不大于 3000 m3,全站不设室外 水消防系统,采用移动式化学灭火装置。3.4.4 技经部分 为使典型设计的各方案、模块的投资在同一价格水平上,便于进行对比分析,在典型设计概 算编制时采用统一的取费标准、统一的定额、统一的设备材料价格和统一的其他费用标准。为适应实际工程和典型设计的各基本组合方案的投资水平对比分析的需要,对不在本次典型
设计范围内的有关工程费用进行了统一规定,包括水源、站外电源、站外通信、进站道路、地基 处理、站外排水、护坡挡墙等,保证了典型设计的各基本组合方案的概算投资的完整性。使用时需根据工程规模和实际情况选用基本组合方案或模块方案参考造价进行分析、合理调 整。联系方式:褚农,教高,江苏省电力设计院,025-85081300,chunong@jspdi.com.cn 附表 1: 方案 A1 主变
江苏省 220kV 变电站典型设计主要工程技术条件
适用规模 220kV 出 线 6 回,110kV 出线 8 回,35kV 出线 10 回 接线 220kV、110kV 采 用双母线接线,35kV 采用单母线 分段接线 配电装置 220kV、110kV 配 电装置采用软母线 改进半高型,35kV 配电装置采用户内 开关柜 布置格局 220kV 出 线 与 110kV 出 线 构 180o布置 220kV 出 线 与 110kV 出 线 构 90o布置 220kV 出 线 与 110kV 出 线 构 180o布置 220kV 出 线 与 110kV 出 线 构 90o布置 220kV 出 线 与 110kV 出 线 构 180o布置 220kV 出 线 与 110kV 出 线 构 90o布置 主变露天,建 筑物两列式布 置 主变半户内,整体建筑式布 置 主变露天,建 筑物两列式布 置 A2 本期 2 台 120MVA 主变 远景 3 台 B1-1 B2-1 B1-2 本期 2 台 180MVA 主变 远景 3 台
220kV 出 线 6 回,110kV 出线 8 回,35kV 出线 10 回
220kV、110kV 采 用双母线接线,35kV 采用单母线 分段接线
220kV、110kV 配 电装置采用管母线 中型,35kV 配电装 置采用户内开关柜 B2-2 220kV 出 线 6 回,110kV 出线 8 回,10kV 出线 24 回 220kV 出线本期 2 回远期 3 回,110kV 出 线 12 回,10kV 出线 24 回 220kV 出线本期 2 回远期 3 回,110kV 出 线 8 回,10kV 出线 24 回
220kV、110kV 采 用双母线接线,10kV 采用单母线 分段接线
220kV、110kV 配 电装置采用管母线 中型,10kV 采用户 内开关柜 C1 C3 本期 2 台 180MVA 主变 远景 3 台
220kV 采 用 单 元 接线,110kV 采用 双母线接线,10kV 单母线分段 接线 220kV、110kV 采 用户内 GIS,10kV 采用户内开关柜,全电缆出线 220kV、110kV 采 用户内装配式配电 装置,架空出线; 10kV 采用户内开 关柜电缆出线 C2 所有方案 直流系统:2 组 220V 阀控式密封铅酸蓄电池,2 组充电装置(高频开关电源),配置 DC/DC 变换 器供-48V 系统通信电源,不设蓄电池室。交流所用:所用电系统 380/220V 中性点接地,采用三相四线制,单母线分段接线,两台所变分列 运行。继电保护:220kV、110kV 线路、主变设微机保护,保护测控相对独立;35kV 设微机保护(含低 周减载和接地检测功能),保护测控合一,分散布置。自动装置:电容器组投切;35kV 消弧线圈跟踪补偿。对时装置:全所共用 1 台 GPS。防误操作:不专设微机五防装置,由计算机监控系统统一考虑。电能计量:主变中低压侧设关口表,其余按规程配置。电气测量:利用监控系统完成。信息采集:模拟量和开关量。控制方式:远方调度,监控系统,就地三级操作。通信方式:变电站接入地区光纤环网,通信容量及可靠性按照变电站无人值班要求设计。
附表 2: 方案 主变 远景: 2× 50MVA 本期: 2× 50MVA 远景: 2× 50MVA 本期: 2× 50MVA 江苏 110kV 变电所典型设计主要工程技术条件 适用规模 110kV 进线 2 回,35kV 出线 4 回架 空,4 回电缆,10kV 出线 16 回电 缆 110kV 进线 4 回,35kV 出线 4 回架 空,回电缆,4 10kV 出线 16 回电缆 接线 110kV 采用线变 组接线 35kV、10kV 采用 单母线分段接线 配电装置 布置格局 主变及 110kV 配 电装置户外布 置,35kV、10kV 配电装置户内 布置 A1 110kV 采用单母 线分段接线 A2 35kV、10kV 采用 单母线分段接线 110kV 采用内桥 110kV 配电装置 主变及 110kV 配 远景: 110kV 进线 3 回,采用户外敞开式 电 装 置 户 外 布 或线变组接线 3× 50MVA A3 10kV 出线 36 回电 10kV 采用单母线 设备,10kV 采用 置,10kV 配电 本期: 缆 2× 50MVA 装置户内布置 户内开关柜 分段接线 110kV 采用内桥 远景: 110kV 进线 2 回,接线 2× 50MVA B3 10kV 出线 24 回电 110kV 配电装置 主变户外布置,10kV 采用单母线 本期: 缆 采用户内敞开式 110kV 配电装置 2× 50MVA 分段接线 设备,10kV 采用 及 10kV 配电装 110kV 采用线变 远景: 置户内布置 户内开关柜 110kV 进线 3 回,组接线 3× 50MVA B4 10kV 出线 36 回电 10kV 采用单母线 本期: 缆 2× 50MVA 分段接线 远 景 : 2× 110kV 进线 2 回,110kV 采用内桥 接线 50MVA 10kV 出线 24 回电 C2 10kV 采用单母线 本 期 : 2× 缆 50MVA 分段接线 110kV 采用户内 110kV 采用双内 远景: GIS,10kV 采用 桥或双外侨接线 全户内 3× 50MVA 户内开关柜,全 C3 本期: 110kV 进线 3 回,10kV 采用单母线 电缆出线 2× 50MVA 10kV 出线 36 回电 分段接线 缆 110kV 采用线变 远景: 组接线 3× 50MVA C4 10kV 采用单母线 本期: 2× 50MVA 分段接线 所有方案 直流系统:2 组 220V 阀控式密封铅酸蓄电池,2 组充电装置(高频开关电源),设蓄电池室。交流所用:电系统 380/220V 中性点接地,采用三相四线制,单母线分段接线,两台所变分列运行。继电保护:220kV、110kV 线路、主变设微机保护,保护测控相对独立;35/10kV 设微机保护,保护 测控合一,分散布置。自动装置:电容器组投切;35/10kV 消弧线圈跟踪补偿;35/10kV 接地检测。对时装置:全所共用 1 台 GPS。防误操作:闭锁不专设微机五防装置,由计算机监控系统统一考虑。电能考核:计量主变中低压侧设关口表,其余按规程配置。就地电气:测量利用监控系统完成电气测量。信息采集:类型模拟量和开关量。控制操作:方式远方调度,监控系统,就地三级操作。通信方式:变电所接入地区的光纤环网,光纤网络与继电保护统一考虑,通信容量及可靠性按照变 电所无人值班要求设计。
110kV 配电装置 采用户外敞开式 设备,35kV、10kV 采用户内开关柜
附表 3: 序 号 项目 名称
500kV 变电站(GIS)典型设计主要技术条件
方案编号 A-1-1 A-1-2 4 台主变 本期 1 组 1000MVA,最终 4 组 1000MVA,单相自耦,无载调压。本期 1 组 750MVA,最终 4 组 750MVA,单 相 自 耦,无载 调压。本期 1 组 750MVA,最终 4 组 750MVA,本期 1 组 最终 3 组 A-1-3 A-2-1 A-2-2 3 台主变 本期 1 组 最终 3 组 本期 1 组 750MVA,最终 3 组 750MVA,A-2-3 1000MVA,750MVA,1000MVA,750MVA,1 主变压器
三相自耦,单相自耦,单相自耦,三相自耦,无载调压。无载调压。无载调压。无载调压。500kV 并联电抗器: 本期 1 组 150Mvar,最终 2 组,为线路高抗,均装中性点小 电抗,不考虑母线高抗。最终 6 组;35kV 并联电容器:本期 2 组 60Mvar,最终 6 组。2 台主变进串,第 3 台主变经单断路器 接二段母线;本期设 9 台断路器(1 台 远景设备本期上),串内 GIS 设备。500kV 高抗经隔离开关接入线路。220kV 双母线双分段接线,本期双母线 接线,GIS 设备。35kV 单母线接线,不设总断路器。500kV 本期 4 回,最终 8 回架空,一个 220kV 本期 8 回,最终 14 回架空出线(一个或两个方向出线),2 回电缆出 线。
500kV 并 联 电 抗 器 : 本 期 1 组 150Mvar,最终 2 组,为线路高抗,均 无功补偿 2 装置 装中性点小电抗,不考虑母线高抗。最终 8 组;35kV 并联电容器:本期 2 组 60Mvar,最终 8 组。对 4 台主变,主变均进串;对 3 台主 变,2 台主变进串,1 台主变经断路器 电气主接 4 线 接 2 段母线。本期设 8 台断路器。500kV 高抗经隔离开关接入线路。220kV 双母线双分段接线,本期双母 线接线。35kV 单母线接线,不设总断路器。500kV 本期 4 回,最终 8 回架空,一 出线回路 3 数和出线 方向 5 6 7 8 9 10 短路电流 主要设备 选型 配电装置 保护及 自动化 建筑面积 站址基本 条件 最终 16 回架空出线,一个或两个方向 出线(3 台主变方案其中 2 回电缆出线)。单相/三相自耦变压器; 500kV、220kV 采用户外 GIS;
35kV 并联电抗器:本期 2 组 60Mvar,35kV 并联电抗器:本期 2 组 60Mvar,500kV 一个半断路器接线,远景 6 串,500kV 一个半断路器接线,远景 6 串;
个或两个方向出线;220kV 本期 8 回,或两个方向出线; 500、220、35kV 短路电流水平分别为:63(50)、50、40kA 35kV 采用户外 AIS,断路器采用柱式,电容器采用组装式,电抗器采用干式。500kV、220kV 户外 GIS。计算机监控系统,不设常规控制屏,监控和远动统一考虑,可满足无人值班要 求,保护集中布置。全站总建筑面积 2000m2以内,非采暖区。主变采用水喷雾消防系统。海拔高度<1000m,地震动峰加速度 0.1g,风荷载 30m/s,地耐力 R=150kPa,地 下水无影响,非采暖区,场地同一标高,污秽等级 III 级。
附表 4 序 号 1 500kV 变电站(HGIS)典型设计主要技术条件
方案编号 项目名称 B-1 主变压器 主变电气 接线 远景串数 本期 1 组、最终 4 B-2 本期 1 组、最终 4 B-3 本期 1 组、最终 3 组 750MVA 主变。第三台主变经断路器接 母线 5 垂直 2个 不设平行
组 1000MVA 主变。组 750MVA 主变。主变全部进串 6平行 1个 不设 垂直 主变全部进串 6 垂直 2个 设置 垂直 2 500kV 母线与主 变梁 主要出线 方向 总断路器 3 35kV 母线与主 变梁
项目 无功 4 补偿
相同的主要工程技术条件 500kV 并联电抗器:本期 1 组 150Mvar,最终 2 组,经隔离开关接入线路,均装 设中性点电抗,不考虑母线高抗;35kV 电容器、并联电抗器按每台主变各配置 2 组 60Mvar 设计。500kV:本期 4 回,最终 8 回;220kV:本期 8 回,最终 16 回,1 个主要出线方 向。500kV 一个半断路器接线,本期设 1 个不完整串和 2 个完整串共 8 台断路器; 220kV 双母线双分段接线,本期双母线接线;35kV 单母线单元制接线。500kV 部分 63 或 50kA,220kV 部分 50kA,35kV 部分 40kA。单相自耦变压器;500kV 采用户外 HGIS,220kV 采用户外 GIS,35kV 采用户外 AIS,断路器采用柱式,35kV 并抗采用干式或油式,电容器采用组装式,站变采 用油浸式。500kV 户外悬吊管母线中型布置,高架横穿进出线,间隔宽度 28m;220kV 间隔 宽度 13m;35kV 采用支持管母线中型布置。计算机监控系统,不设常规控制屏,监控和远动统一考虑,可以满足无人值班要 求;保护就地布置。全站总建筑面积 1400m2以内,主控通信楼建筑面积 650—750 m2;主变消防采用 SP泡沫喷淋灭火或排油充氮方式。5 出线 电气主 6 接线 短路 7 电流 主要 8 设备 配电 9 装置 保护 10 自动化 土建 11 站址 12 条件
按地震动峰值加速度 0.10g,风荷载 30m/s,地耐力 R=150kPa,地下水无影响,非采暖区设计,假设场地为同一标高。按海拔 1000 米以下,国标Ⅲ级污秽区设 计
附表 5 序 号 1 项目名称
500kV 变电站(瓷柱式)典型设计主要技术条件表 500kV 变电站(瓷柱式断路器)典型设计工程技术条件
主变压器 本期 1 组 750MVA,最终 2/3/4 组 750MVA 500kV 并联电抗器,本期 1 组 150Mvar,最终 2 组,为线路高抗,均装设中性点小 抗,不考虑母线高抗。2 无功补偿 3 组和 4 组主变方案,每组主变压器 35kV 侧无功配置:2 组 60Mvar 并联电感器,装 置 2 组 60Mvar 并联电容器。2 组主变方案,每组主变方案 35kV 侧无功配置:3 组 60Mvar 并联电感器,3 组 60Mvar 并联电容器。本期 35kV 侧无功配置:2 组 60Mvar 并联电抗器,2 组 60Mvar 并联电容器。出线回路 500kV 本期 4 回,最终 10 回,两个方向出线。数和出线 220kV 本期 6 回,最终 16 回(3 组或 4 组主变)或 12 回(2 组主变),一个方向出线或 方向 两个方向出线。500kV 一个半断路器接线,远期 6 串,2 组主变进串,后 2 组或 1 组主变经断路器 接母线。本期设 8 组断路器。500kV 高压电抗器均为经隔离开关接入线路。3 4 电气主接 线 220kV 双母线双分段接线或双母线单分段,本期双母线接线。35kV 单母线接线,不装设总断路器。5 6 短路电流 500、220、35kV 短路电流水平分别为 63(50)、50、40kA 主要设备 单相自耦变压器。500kV、220kV、35kV 采用户外瓷柱式断路器。选型 35kV 电容器采用组装式、电抗器采用干式。500kV 屋外悬吊管母线中型布置,主变高架横穿和低架横穿进串。7 配电装置 220kV 屋外支持管母线中型布置(3 组或 4 组主变)或悬吊母线中型布置(2 组主变)。35kV 支持管母线中型布置。保护及 计算机监控系统,不设常规控制屏,监控和远动统一考虑,可以满足无人值班要 自动化 求。保护就地布置。土 站 建 全站总建筑面积 1400m2以内,主控通信楼建筑面积 650-750m2(小于 3000m3),非 采暖区。主变消防采用水喷雾消防系统。8 9 10 址 海拔 1000m 以下,地震动峰值加速度 0.10g,设计风速 30m/s,地耐力 R=150kPa,基本条件 地下水无影响,假设场地为同一标高。国标 III 级污秽区。
附表 6 序号 1 500kV 变电站(落地罐式)典型设计主要技术条件表
项目名称 500kV 变电站工程技术条件 本期 1 组 750MVA,最终 2/3/4 组 1000MVA(750MVA)500kV 并联电抗器,本期 1 组 150Mvar,最终 2 组,为线路高抗,装设中性点 小电抗,不考虑母线高抗。
主变压器
无 功 补 偿 装 3 台和 4 台主变方案,每台主变压器 66kV 侧无功配置:2 组 60Mvar 并联电抗 2 置 器,2 组 60Mvar 并联电容器。2 台主变方案,每台主变方案 66V 侧无功配置: 3 组 60Mvar 并联电抗器,3 组 60Mvar 并联电容器。本期 66kV 侧无功配置:2 组 60Mvar 并联电抗器,2 组 60Mvar 并联电容器。出线回路数 3 和出线方向 500kV 本期 4 回,最终 10 回,两个方向出线。220kV 本期 6 回,最终 16 回(3 台或 4 台主变)或 12 回(2 台主变),一个方 向出线。500kV 一个半断路器接线,远期 6 串,2 台主变进串,后 2 台或 1 台主变经断 4 电气主接线 路器接母线。本期设 8 台断路器。500kV 高压电抗器均为经隔离开关接入线路。220kV 双母线双分段接线或双母线单分段,本期双母线接线。66kV 单母线接线,装设总断路器。5 6 短路电流 500、220、66kV 短路电流水平分别为 63(50)、50、31.5kA 主 要 设 备 选 单相自耦变压器 型 500kV、220kV 采用户外罐式断路器,66kV 采用户外柱式断路器。500kV 屋外悬吊管母线中型布置,主变高架横穿和低架横穿进串。7 配电装置 220kV 屋外悬吊管母线中型布置。66kV 支持管母线中型布置。保 护 及 自 动 计算机监控系统,不设常规控制屏,监控和远动统一考虑,可以满足无人值班 8 化 土建 要求。保护就地布置。
全站总建筑面积 1500m2以内,主控通信楼建筑面积 650-750m(小于 3000 m3),9 采暖区。主变消防采用SP泡沫喷淋灭火。站 址 基 本 条 海拔 1000 米以下,地震动峰值加速度 0.10g,设计风速 30m/s,地耐力 R=150kPa,10 件
地下水无影响,假设场地为同一标高。国标 III 级污秽区。
附表 7 序 项目名称 号 1 主变压器
330kV 变电站典型设计主要技术条件表
330kV 变电站工程技术条件 本期 1 台 240MVA(360MVA),最终 2/3 台 240MVA(360MVA)。330kV 并联电抗器,本期 1 组 90Mvar,最终 2 组,GIS 方案最终为 1 组,均
无功补偿装置
为线路高抗,并装设中性点小抗,不考虑母线高抗。35kV 侧无功按主变配置:1 组 30Mvar 并联电抗器,3 组 20Mvar 并联电容器。本期 35kV 侧无功配置:1 组 30Mvar 并联电抗器,3 组 20Mvar 并联电容器。
出 线 回 路 数 和 330kV 本期 4 回,最终 6 回,两个方向出线。3 出线方向 110kV 本期 6 回,最终 14 回,一个方向出线或两个方向出线。330kV 一个半断路器接线。330kV 高压电抗器均为经隔离开关接入线路。4 电气主接线 330kVGIS 方案为双母线接线。110kV 双母线接线单分段,本期双母线接线。35kV 单母线接线,设总断路器。5 短路电流 330、110、35kV 短路电流水平分别为 50、40、31.5kA 三相自耦有载调压 6 主要设备选型 330kV 采用罐式、柱式断路器和 GIS。110kV 采用柱式断路器和 GIS。35kV 电容器采用框架组合式和集合式,电抗器采用干式 330kV 屋外软母线和悬吊管母线中型布置,主变高架横穿和低架横穿进串。330kVGIS 采用屋外配电装置。7 配电装置 110kV 屋外软母线半高型、中型布置和支持管母线中型布置。110kVGIS 屋外 配电装置。35kV 采用屋外和屋内布置。8 保护及自动化 计算机监控系统,不设常规控制屏,监控和远动统一考虑,可以满足无人值班 要求。保护就地布置。GIS方案全站总建筑面积 1100m2以内,敞开式方案主控通信楼建筑面积 600m2 9 土建(小于 3000m3),全站总建筑面积 1050m2以内,采暖区。当 35kV采用屋内配 电装置时,其配电装置室不计入全站总建筑面积。主变消防采用SP泡沫喷淋灭 火或排油注氮灭火。10 站址基本条件 海拔 1000 米以下,地震动峰值加速度 0.10g,设计风速 30m/s,地耐力 R=150kPa,地下水无影响,假设场地为同一标高。国标 III 级污秽区。
第三篇:智慧校园的典型实例应用
智慧校园的典型实例应用---CY-TIY物联网实验箱
所谓“智慧校园”是指通过CY-TIY物联网新技术来改变人和校园资源相互交互的方式,实现从环境(包括实验室、教室、设备等))、资源(如公文、图书、讱义、课件等)、、到活动(包括教、学、科研、管理、服务、办公等)的全部数字化、智能化。在“智慧校园” 这幅蓝图描绘中,可以看到无处不在的网络学习、融合创新的网络平台、丰富多彩的校园文化、方便周到的校园生活。
CY-TIY物联网教学实验系统是专为高等院校、职高的物联网专业和计算机、通讯、电子等专业的学生学习、应用物联网技术而开发的完整的实验教学系统,结合现在市场需求,用实验方法为学生提供整套实验设备,使学生能通过直观的操作实验来加深学习理论。实验系统的设计紧贴现今的物联网行业实际应用,使学生通过该实验系统的学习,毕业后能够较快的适应物联网行业的工作。
CY-TIY实训系列以“智慧校园”体系中最具代表性的“智慧校园生活”物联网应用部分,结合高职物联网人才培养的特点和要求等进行浓缩和典型化设计,适用于高等职业教育的物联网就业教学。
学生通过CY-TIY实训系列,可以进行体验性实验、操作性实验和设计性实验等。学生通过体验性实验的学习,掌握“智慧校园生活”业务和物联网技术概念性知识,了解各种典型的物联网业务模型。在有了对“智慧校园”典型业务和物联网技术的基础性了解之后,学生通过操作性实验的学习,了解和掌握物联网各种设备管理维护和软件开发技能,具备基本的物联网应用模型分析、管理和开发技能,并能借助实训系统搭建来实现“智慧校园生活”模型。通过体验性实验和操作性实验两部分实验的学习,学生进入最后的设计性实验的学习,设计性实验重点培养学生运用所学的物联网知识和技术实践真实的技术活动,让学生在物联网设计过程中找到学习的乐趣。
硬件平台
硬件平台包括:交换机、服务器、串口服务器、无线路由器、超高频 RFID、Zigbee模块、网络摄像机、条形码扫描枪、智能电表、智能窗帘、火焰探测器、烟感探测器、感应式门禁等设备。
软件平台
软件平台包括: Win
7、IIS、Adobe Flash Player、Microsoft、NET FrameworkVisual Studio 2008、SQL Server 2008、Android、Visio、文本编辑器等操作系 统及软件。
实现目标
(1)掌握应用物联网设备,包括:传感器、条码识读设备、ZigBee 模块、RFID 识读设备、数 据采集模块及常用网络设备等。(2)掌握物联网开发相关知识和技术。
(3)综合运用软件工程思想,以“智慧校园生活”案例为典型代表,运用面向对象分析和设计方法、C#、Android、数据库等基础知识,完成“智慧校园生活”中的宿舍、图书馆两个学生活动场所的典型物联网应用业务。
第四篇:传感器设计及应用实例论文
压力传感器(压力变送器)的原理及应用
概 述:压力传感器是工业实践中最为常用的一种传感器,其广泛应用于各种工业自控环境,涉及水利水电、铁路交通、智能建筑、生产自控、航空航天、军工、石化、油井、电力、船舶、机床、管道等众多行业,下面就简单介绍一些常用传感器原理及其应用
1、应变片压力传感器原理与应用
力学传感器的种类繁多,如电阻应变片压力传感器、半导体应变片压力传感器、压阻式压力传感器、电感式压力传感器、电容式压力传感器、谐振式压力传感器及电容式加速度传感器等。但应用最为广泛的是压阻式压力传感器,它具有极低的价格和较高的精度以及较好的线性特性。下面我们主要介绍这类传感器。
在了解压阻式力传感器时,我们首先认识一下电阻应变片这种元件。电阻应变片是一种将被测件上的应变变化转换成为一种电信号的敏感器件。它是压阻式应变传感器的主要组成部分之一。电阻应变片应用最多的是金属电阻应变片和半导体应变片两种。金属电阻应变片又有丝状应变片和金属箔状应变片两种。通常是将应变片通过特殊的粘和剂紧密的粘合在产生力学应变基体上,当基体受力发生应力变化时,电阻应变片也一起产生形变,使应变片的阻值发生改变,从而使加在电阻上的电压发生变化。这种应变片在受力时产生的阻值变化通常较小,一般这种应变片都组成应变电桥,并通过后续的仪表放大器进行放大,再传输给处理电路(通常是 A/D转换和CPU)显示或执行机构。
它由基体材料、金属应变丝或应变箔、绝缘保护片和引出线等部分组成。根据不同的用途,电阻应变片的阻值可以由设计者设计,但电阻的取值范围应注意:阻值太小,所需的驱动电流太大,同时应变片的发热致使本身的温度过高,不同的环境中使用,使应变片的阻值变化太大,输出零点漂移明显,调零电路过于复杂。而电阻太大,阻抗太高,抗外界的电磁干扰能力较差。一般均为几十欧至几十千欧左右。
电阻应变片的工作原理
金属电阻应变片的工作原理是吸附在基体材料上应变电阻随机械形变而产生阻值变化的现象,俗称为电阻应变效应。金属导体的电阻值可用下式表示:
式中:ρ——金属导体的电阻率(Ω·cm2/m)
S——导体的截面积(cm2)
L——导体的长度(m)
我们以金属丝应变电阻为例,当金属丝受外力作用时,其长度和截面积都会发生变化,从上式中可很容易看出,其电阻值即会发生改变,假如金属丝受外力作用而伸长时,其长度增加,而截面积减少,电阻值便会增大。当金属丝受外力作用而压缩时,长度减小而截面增加,电阻值则会减小。只要测出加在电阻的变化(通常是测量电阻两端的电压),即可获得应变金属丝的应变情况。来源: http://tede.cn
2、陶瓷压力传感器原理及应用
抗腐蚀的陶瓷压力传感器没有液体的传递,压力直接作用在陶瓷膜片的前表面,使膜片产生微小的形变,厚膜电阻印刷在陶瓷膜片的背面,连接成一个惠斯通电桥(闭桥),由于压敏电阻的压阻效应,使电桥产生一个与压力成正比的高度线性、与激励电压也成正比的电压信号,标准的信号根据压力量程的不同标定为2.0 / 3.0 / 3.3 mV/V等,可以和应变式传感器相兼容。通过激光标定,传感器具有很高的温度稳定性和时间稳定性,传感器自带温度补偿0~70℃,并可以和绝大多数介质直接接触。
陶瓷是一种公认的高弹性、抗腐蚀、抗磨损、抗冲击和振动的材料。陶瓷的热稳定特性及它的厚膜电阻可以使它的工作温度范围高达-40~135℃,而且具有测量的高精度、高稳定性。电气绝缘程度 >2kV,输出信号强,长期稳定性好。高特性,低价格的陶瓷传感器将是压力传感器的发展方向,在欧美国家有全面替代其它类型传感器的趋势,在中国也越来越多的用户使用陶瓷传感器替代扩散硅压力传感器。
3、扩散硅压力传感器原理及应用
工作原理
被测介质的压力直接作用于传感器的膜片上(不锈钢或陶瓷),使膜片产生与介质压力成正比的微位移,使传感器的电阻值发生变化,和用电子线路检测这一变化,并转换输出一个对应于这一压力的标准测量信号。来源:www.xiexiebang.com
4、蓝宝石压力传感器原理与应用
利用应变电阻式工作原理,采用硅-蓝宝石作为半导体敏感元件,具有无与伦比的计量特性。
蓝宝石系由单晶体绝缘体元素组成,不会发生滞后、疲劳和蠕变现象;蓝宝石比硅要坚固,硬度更高,不怕形变;蓝宝石有着非常好的弹性和绝缘特性(1000 OC以内),因此,利用硅-蓝宝石制造的半导体敏感元件,对温度变化不敏感,即使在高温条件下,也有着很好的工作特性;蓝宝石的抗辐射特性极强;另外,硅-蓝宝石半导体敏感元件,无p-n漂移,因此,从根本上简化了制造工艺,提高了重复性,确保了高成品率。
用硅-蓝宝石半导体敏感元件制造的压力传感器和变送器,可在最恶劣的工作条件下正常工作,并且可靠性高、精度好、温度误差极小、性价比高。
表压压力传感器和变送器由双膜片构成:钛合金测量膜片和钛合金接收膜片。印刷有异质外延性应变灵敏电桥电路的蓝宝石薄片,被焊接在钛合金测量膜片上。被测压力传送到接收膜片上(接收膜片与测量膜片之间用拉杆坚固的连接在一起)。在压力的作用下,钛合金接收膜片产生形变,该形变被硅-蓝宝石敏感元件感知后,其电桥输出会发生变化,变化的幅度与被测压力成正比。
传感器的电路能够保证应变电桥电路的供电,并将应变电桥的失衡信号转换为统一的电信号输出(0-5,4-20mA或0-5V)。在绝压压力传感器和变送器中,蓝宝石薄片,与陶瓷基极玻璃焊料连接在一起,起到了弹性元件的作用,将被测压力转换为应变片形变,从而达到压力测量的目的。
5、压电压力传感器原理与应用
压电传感器中主要使用的压电材料包括有石英、酒石酸钾钠和磷酸二氢胺。其中石英(二氧化硅)是一种天然晶体,压电效应就是在这种晶体中发现的,在一定的温度范围之内,压电性质一直存在,但温度超过这个范围之后,压电性质完全消失(这个高温就是所谓的“居里点”)。由于随着应力的变化电场变化微小(也就说压电系数比较低),所以石英逐渐被其他的压电晶体所替代。而酒石酸钾钠具有很大的压电灵敏度和压电系数,但是它只能在室温和湿度比较低的环境下才能够应用。磷酸二氢胺属于人造晶体,能够承受高温和相当高的湿度,所以已经得到了广泛的应用。
现在压电效应也应用在多晶体上,比如现在的压电陶瓷,包括钛酸钡压电陶瓷、PZT、铌酸盐系压电陶瓷、铌镁酸铅压电陶瓷等等。
压电效应是压电传感器的主要工作原理,压电传感器不能用于静态测量,因为经过外力作用后的电荷,只有在回路具有无限大的输入阻抗时才得到保存。实际的情况不是这样的,所以这决定了压电传感器只能够测量动态的应力。
压电传感器主要应用在加速度、压力和力等的测量中。压电式加速度传感器是一种常用的加速度计。它具有结构简单、体积小、重量轻、使用寿命长等优异的特点。压电式加速度传感器在飞机、汽车、船舶、桥梁和建筑的振动和冲击测量中已经得到了广泛的应用,特别是航空和宇航领域中更有它的特殊地位。压电式传感器也可以用来测量发动机内部燃烧压力的测量与真空度的测量。也可以用于军事工业,例如用它来测量枪炮子弹在膛中击发的一瞬间的膛压的变化和炮口的冲击波压力。它既可以用来测量大的压力,也可以用来测量微小的压力。
压电式传感器也广泛应用在生物医学测量中,比如说心室导管式微音器就是由压电传感器制成的,因为测量动态压力是如此普遍,所以压电传感器的应用就非常广泛。
BP01型压力传感器及其在便携式电子血压计中的应用
介绍了德利康公司的BP01型压力传感器的主要性能和参数给出了一个用BP01作传感器组成的便携式电子血压计的实际电路,并对该应用电路的工作原理进行了说明,同时给出了该便携式电子血压计电路的设计和调试方法。概述
BP01 型压力传感器是为监测血压而专门设计的,主要用于便携式电子血压计。它采用精密厚膜陶瓷芯片和尼龙塑料封装,具有高线性、低噪声和外界应力小的特点;采用内部标定和温度补偿方式,从而提高了测量的精度、稳定性以及可重复性,在全量程范围内,精度为±1%,零点失调不大于±300μV。BP01的主要性能参数
BP01的内部等效电路和外形封装如图1所示;表1所列为BP01在电源电压Vs为5.0V、环境温度TA为25℃时的主要性能参数。
BP01的极限参数如下:
·最大工作电压:20VDC;
·最大耐压:1500 mmHg;
·工作温度范围:0~70℃;
·引脚焊接温度(最大值):250℃(2~4秒)。基于BP01的电子血压计
3.1工作原理
用BP01构成的便携式电子血压计的原理电路如图2所示,它由偏置电源电路(A1、A2)、前置处理电路(A3~A6)、显示电路(A7)和压力传感器(BP01)组成,该血压计的血压测量范围为0~200mmHg,分辨率为0.1mmHg,工作电源为一节9V迭层电池。现将血压计中各主要电路的工作原理分述如下:
a.偏置电源电路
电源电路由带有内置参考电压的双运放LM10组成,A1构成同相放大器,A2构成跟随器,它们的作用是将内置的参考电压放大后用作压力传感器BP01的偏置电压Vs,其Vs的值由下式决定:
Vs=Vref(1+R2/R3)
式中:Vref为LM10的内置参考电压。其值为200mV,将此值连同电路中的R2和R3的值代入上式即可求得偏置电压Vs的值为5V。
b.前置处理电路
前置处理电路由A3~A6四个运算放大器组成,其中A3构成失调偏置电路以对电路失调进行补偿;A5构成跟随器,用于对压力传感器BP01的输出信号进行隔离缓冲;A4、A6构成放大电路,其增益AV由下式决定:
AV=1+(R1/RT)
若忽略失调,前置处理电路的输出电压Vout为:
Vout=2(1+R1/RT)VIN
式中:VIN为压力传感器BP01的输出电压。
c.显示电路
显示电路选用三位半的显示驱动器。工作时,压力传感器BP01的输出经前置处理电路放大后,由显示驱动电路来驱动LCD,以读出测量的血压值。
3.2调试方法
a.零压输出调整
在零压输出时,调整失调电位器RP1,在血压计的显示值为000.0时,即可认为完成了零压输出调整。
b.前置电路增益的调整
压力传感器BP01的满量程输出与偏置电压有一定的关系,当5V偏置时,在200mmHg压力下的输出为10mV,其对应的显示驱动电路的输入为200mV,因此前置电路的增益AV为200mV/10mV,这样,利用前面Av的计算公式即可反推出增益电阻RT的值。
若选取电阻R1为10kΩ,则增益电阻RT应为1.1kΩ。调试时可先用电位器调整输出值,再用万用表测出该电位器的阻值,最后再换成固定电阻。
c.满量程调整
满量程调整时,先在显示电路的输入端加上200mV电压,然后调整电位器RP2,使其读数为199.9mmHg即可。
上调整完成之后,一般应多重复几次,以使显示值可靠地符合精度要求。
3.3元器件的选择
为保证测量精度,上述电路的外围元器件的选择也是一个不容忽视的重要环节。一般情况下,电位器RP1、RP2应选用1%精度的金属膜多圈电位器;电阻应选用1%精度的金属膜电阻器;电容一般选用聚脂薄膜或者云母电容。结束语
在使用压力传感器BP01和其它器件设计便携式电子血压计时,应注意的是:对于不同的偏置电压,其输出也不同,因而前置处理电路的增益应做相应的调整,以满足满量程的不同要求。
第五篇:钣金件数字化制造技术典型应用实例
钣金件数字化制造技术典型应用实例
钣金件是构成航空航天等产品外形、结构和内装的主要零件。以飞机产品为例,三代机与二代机对比,钣金件总
零件减少,但其数量比例并未减少,约占飞机零件数量的50%。在航空航天产品研制中,大型整体壁板、曲线弯
边框肋零件、导弹加强框等复杂钣金件精密成形是关键性技术之一。基于数字化技术发展精密成形是世界各国在
钣金成形技术发展趋势方面一致的认识。本课题首先描述了钣金零件制造技术的发展需求和数字化制造技术基础,分析了钣金数字化制造技术的核心,最后介绍了典型应用实例。
航空航天产品对钣金件制造技术的要求
随着航空航天产品的发展,对钣金零件的表面质量、形状精度、成形过程稳定性、成形后性能、产品合格率
等的要求日益提高。新型飞机气动外形要求更严、寿命要求长,钣金件不许敲击成形,对钣金件的要求不只是贴
合,而且要有稳定的质量和性能状态,飞机机翼外形相对理论外形的偏差一般要小于0.5,不平滑度小于
0.05~0.15,钣金件弯边高度的精度要求是H+0.2-0.1。而靠样板等模拟量协调制造的工装外形误差往往达 0.2~0.3mm,局部甚至高达0.5mm,要提升钣金成形技术水平,钣金件制造的数字化是必然选择。
与其他加工制造方法相比,钣金制造数字化有着更为复杂的技术难题。首先,钣金件外形复杂、薄板料,制
造过程包括下料、成形等多个工序,其数字化定义不仅包括零件本身的定义,更包括工序件的定义和优化。为达
到精密成形,如何在考虑塑性变形特点、成形回弹等因素的基础上进行毛坯定义、成形工艺数模定义,如何解决
钣金件制造中模具型面的传递与控制等问题变得十分复杂。其次,钣金件成形是塑性变形过程,由于物理上的非
线性所带来的不唯一性、不可逆性等引起的工艺上的不确定性,在影响钣金成形质量和生产效率的诸多因素中,能够完全定量把握的并不多。第三,钣金成形过程是一次性的,在较短时间内完成成形过程。成形过程中需控制 的主要是成形力、温度等工艺过程参数,而非坐标等几何参数,控制难度更大。由于材料性能的不稳定性和随机
性,使工艺参数设计和成形过程精确控制十分困难。因此,需从成形工艺设计、制造模型定义、模具型面控制与
设计、工艺过程模拟与综合优化等方面展开研究,形成实现复杂钣金件精密成形的数字化制造整体解决方案。
钣金数字化制造技术基础
钣金件数字化制造是在考虑塑性变形特点、成形质量要求等因素基础上,以数字化技术为手段,通过合理的
制造模型数字化定义、模具数字化设计制造、优化的加工工艺参数及成形过程精确控制,使零件成形后不需要加
工或仅需少量加工就可满足质量要求,其过程见图1。
钣金件数字化制造技术基础包括以下方面。
(1)钣金件工艺数字化设计技术:以钣金件制造模型信息为依据,完成制造指令设计、工艺参数计算,生成
钣金车间加工零件的生产性工艺文件。通过对钣金材料性能数据、典型流程、工艺参数等工艺知识进行积累,把
大量经验和试验数据转化为企业内共享知识,通过知识重用技术在钣金制造过程中从知识库中提取合适知识用于
钣金成形工艺设计,提高钣金工艺设计效率和成形质量。
(2)钣金件制造模型定义技术:钣金零件从毛坯到成品零件的成形过程由多个工序组成,下料工序的毛坯和
排样模型、成形工序的工件模型和回弹修正模型等共同构成了制造模型。制造模型的精确定义是进行成形工艺过
程和模具设计的基本依据,控制着零件精密成形过程。对钣金零件,需考虑零件材料、变形特性等因素,建立毛
坯和工艺模型的专用计算工具,为工装设计、工艺参数设计、数控编程等提供数据源,以满足零件精密成形的需 要。
(3)钣金件成形模具设计与制造技术:钣金零件刚度小,橡皮囊液压成形、蒙皮拉形、型材拉弯、导管弯曲、冲压成形等成形工艺,必须用体现零件尺寸和形状的成形模具来制造,以保证其形状和尺寸的准确度。难点在
于为了避免成形缺陷(回弹、起皱、破裂等),实现精密成形,模具形状与最终零件形状并不相同。以制造模型
为依据,运用数值模拟等技术手段建立模具型面和尺寸修正的综合优化技术,保证精密成形。
(4)钣金件成形数控编程与设备控制技术:钣金数控成形设备已得到广泛应用,一些重点钣金成形设备均采
用了数控化,如数控下料铣、数控拉形机、数控弯管机、数控拉弯机、数控喷丸机等。钣金成形设备的数控化使
生产效率、精度和产品适应性较手工成形大为提高。对蒙皮拉形、喷丸成形、数控拉弯等设备,需要控制的主要
是成形力、时间等工艺过程参数,传统上采用经过多次试验的“录返式”方法得到控制程序,无法适应提高加工
效率和质量的要求。通过解析各类设备控制程序文件的格式,开发根据工艺参数自动生成数控指令的工具,实现
数控编程的自动化和设备的精确控制。
钣金件数字化制造技术核心
钣金件数字化制造过程中,各种信息均以数字形式表达和存储,通过网络在钣金制造的工艺、生产等各业务
部门内传递和交换。从以传统的模拟量为载体向以数字量为载体的制造模式的变革,核心在于2个方面:一方面是
面向工艺链数字化定义制造模型,作为工艺、工装设计和数控代码生成的依据;另一方面是对工艺知识进行建库
和使用,作为信息定义的支撑,从而建立以数字量定义、传递与控制为主的技术体系。
1基于制造模型的数字量传递与控制
在钣金件设计模型向最终零件的移形过程中,由于成形过程中材料性能的影响以及回弹等因素,成形钣金件 的模具形状与设计的零件最终形状存在一定偏差,而不是设计模型的简单传递。制造模型与设计模型是同一对象 的2个不同部分,适用于2个不同阶段。在基于模拟量传递为主的钣金件制造模式中,钣金件制造工艺过程各环节 的几何形状没有严密的数字定义,零件制造准确度难以提高。钣金件设计模型准确描述了最终形状和尺寸,但未
考虑钣金件工艺过程的中间状态,无法解决设计信息向制造延拓的矛盾。确定工序顺序和内容后,制造模型是考
虑工艺因素,把传统制造模式中以模拟量作为载体的零件形状和尺寸信息采用如图2所示,基于制造模型的数字量传递与控制是通过面向工艺过程定义工件模型和工艺模型——移形到工艺装备——生
成数控程序——以数字量传递至数控设备这样一个并行数字化制造过程,其实质在于毛坯组合排样模型、成形工
艺模型等下料、成形、检验各控形节点中的CAD几何模型直接用于成形模具设计、检验工装设计、制造指令设计、工艺参数设计、数控加工等环节;基于工装的数字化模型,能在样板制造、模具制造中始终保持给定的公差;
考虑如图2所示,基于制造模型的数字量传递与控制是通过面向工艺过程定义工件模型和工艺模型——移形到工艺
装备——生成数控程序——以数字量传递至数控设备这样一个并行数字化制造过程,其实质在于毛坯组合排样模
型、成形工艺模型等下料、成形、检验各控形节点中的CAD几何模型直接用于成形模具设计、检验工装设计、制
造指令设计、工艺参数设计、数控加工等环节;基于工装的数字化模型,能在样板制造、模具制造中始终保持给
定的公差;考虑回弹等因素直接修正后进行模具设计;这就消除了从检验标准装备到工作装备再到零件的模拟量
传递的若干中间环节引起的误差,减少了人为不确定因素的影响,改变了反复试错的制造方式,从而实现精密、快速和低成本的制造。
2基于工艺知识的钣金件工艺过程设计
钣金件及其成形工艺的种类繁多、成形过程的多因素性决定了钣金件制造依赖于在长期实践中积累的经验知
识,钣金件工艺过程设计是知识需求密集的过程。在钣金数字化制造中,除了使用CAx系统辅助设计工作之外,同时还需要钣金制造知识的支持。对已有知识的重用包括知识建库和知识使用2个基本的过程。如图3所示,基于知识的钣金制造要素定义是对钣金制造领域知识进行建库存储,在钣金件数字化制造过程中,应用系统
根据钣金零件信息从知识库中检索已有知识而使知识重现,形成问题的解,同时创建的新知识不断更新到知识库 中。
在对企业钣金工艺设计大量调研的基础上,对钣金工艺知识进行分类形成型谱图,对基本类型知识进一步分
解为信息后建立钣金工艺知识库框架;对知识采集和入库,首先定义钣金工艺领域术语,在此基础上创建制造指
令知识、各种成形工艺参数设计知识、成形模具设计知识等内容。采用基Web的架构对知识进行管理,分布式环
境便于工艺人员查阅、选用、修正和不断积累。
典型应用案例
1框肋零件橡皮囊液压成形
框肋零件是飞机机体骨架中的组件,担负着确定飞机外形和承受气动载荷的双重任务。框肋零件的结构要素
包括腹板、弯边、加强窝、加强槽、减轻孔、下陷等。弯边按几何形状分为直线弯边、凸曲线弯边、凹曲线弯边,有气动外形要求的零件弯边有较严格的精度要求。
采用基于制造模型的数字量传递方法,橡皮囊液压成形模具外形的设计(见图4)依赖于制造模型中的成形工
艺模型而不是直接依赖零件原始数模。成形工艺模型考虑了零件的回弹等因素,给出修正方案及修正参考值,对
型面和尺寸进行了合理的预修正。通过对框肋零件回弹修正设计知识的整理和存储,建立框肋零件回弹修正模型
设计知识库,支持框肋零件回弹量的预测。以制造模型为框肋零件橡皮囊液压成形工艺过程的数据源,改变了反
复试错的制造方式,简化了模具设计的工作,减少了人为不确定因素的影响,提高了模具设计的效率,同时可保
证零件成形后的精度,提高零件制造的质量,实现零件的精密、快速和低成本的制造。
2型材拉弯成形
航空航天产品结构中型材零件有框、肋梁的缘条和长桁零件等,是构成产品骨架的主要结构件。以导弹加强
框为例,该类零件是导弹横向承力元件,除了维持弹身外形,其主要的功用是承受弹身的横向集中载荷,由于导 弹产品对零件强度的要求使得零件壁厚、材料硬度大,难于成形。通过发展拉弯过程精确成形与智能控制技术,建立数字化拉弯系统,如图5所示。
根据拉弯毛料的材料特性、几何形状、模具外形尺寸、机床工作参数、加载方式、摩擦润滑情况,结合塑性
力学与工艺参数设计知识库,计算拉弯工艺参数,根据计算参数自动生成数控加工程序,用以控制数控拉弯机成
形过程,该技术已将回弹角控制精度由1.2°提高至0.2°,实现型材零件精密成形。
结束语
数字化是现代制造技术发展的核心。航空航天产品钣金件种类繁多、结构复杂,既具有共同的生产特性,又
具有各自的工艺特点,制造模型和工艺知识是钣金件数字化制造的核心所在。由于钣金工艺的特点其实现数字化 的难点,钣金精密制造技术发展需要从基础研究、应用研究、成果工程化这样一个过程紧密衔接,经过长时间的
自主研究和工程化过程,绝非引入几套设备、软件就可以形成实现精密成形的钣金件数字化制造技术能力。近年 来,国内在国防基础科研、民机专项等项目支持下,结合型号产品的研制,已突破了多项关键技术,为我国全面
掌握精密成形技术奠定了基础。
数字量表达和定义,是工艺资源设计和工艺过程进一步设计的依据。其作用包括用于工艺装备设计、工艺参 数和数控程序设计。