纳米二氧化硅-环氧树脂复合材料的研究现状

时间:2019-05-13 14:14:23下载本文作者:会员上传
简介:写写帮文库小编为你整理了多篇相关的《纳米二氧化硅-环氧树脂复合材料的研究现状》,但愿对你工作学习有帮助,当然你在写写帮文库还可以找到更多《纳米二氧化硅-环氧树脂复合材料的研究现状》。

第一篇:纳米二氧化硅-环氧树脂复合材料的研究现状

纳米SiO2 /EP复合材料的研究进展

摘要:综述了环氧树脂/纳米二氧化硅复合材料的研究进展。主要介绍了环氧树脂/纳米SiO2复合材料的制备方法,并对该复合材料的发展提出了自己的看法。

关键词:环氧树脂;纳米二氧化硅;复合材料

Research development of epoxy/silica hybrid nanocomposites Abstract: The paper gives a brief introduction on the development of epoxy/nano-SiO2 hybrid materials.Here we mainly present the preparation of epoxy/nano-SiO2,and propose some prospects of this composites。

Key words: Epoxy;nano-SiO2;nanocomposite 纳米二氧化硅(nano-SiO2)为无定型白色粉末(团聚体),是一种无毒、无味和无污染的非金属功能材料。由于其具有较大的比表面积,并且表面存在着羟基,故具有奇异或反常的特性,如表面效应、小尺寸效应、量子尺寸效应及宏观量子隧道效应,因而在橡胶、塑料、胶粘剂和涂料等领域中应用广泛[1-3]。目前,研究 nano-SiO2的制备方法已成为纳米技术领域的一大热点。环氧树脂(EP)是一类典型的热固性树脂,在聚合物复合材料中应用最为广泛。由于 EP 具有优异的粘接性能、力学性能和电绝缘性能,并且收缩率和

[4-5]成本较低,故在胶粘剂、密封胶和涂料等领域中得到广泛应用。但是,EP 固化物因交联度过高而脆性较大,从而限制了其在某些领域中的应用[6]。因此,在保证 EP 优异性能的前提下,对其进行增韧改性已成为近年来该领域的研究热点。

Nano-SiO2粒子因存在着表面缺陷和非配对原子多等特点,与聚合物发生物理或化学结合的可能性较大,故可用于增强与聚合物基体的界面结合,提高聚合物的承载能力,从而达到增强增韧聚合物的目的。1 Nano-SiO2的微观结构[7-8]

Nano-SiO2分子呈三维网状结构,与其它纳米材料一样,表面都存在着不饱和残键和不同键合状态的羟基(包括未受干扰的孤立羟基、彼此形成氢键的连生的缔合羟基以及两个羟基连在一个硅原子上的双生羟基),因此 nano-SiO2具有很高的活性(其结构如图 1 所示)。Nano-SiO2的制备

制备 nano-SiO2的方法主要有干法和湿法两种。干法包括气相分解法和电弧法;湿法包括化学沉淀法、溶胶-凝胶法和微乳液法。由于干法工艺制备的 nano-SiO2纯度高、性能好,但设备投资较大,生产过程中能耗大、成本高,故目前国内外多采用湿法工艺制备 nano-SiO2。2.1 化学沉淀法

化学沉淀法是以硅酸钠和酸化剂(H2SO4、HCl等)为原料,反应生成的沉

[9]淀物经分离、干燥后得到SiO2。化学沉淀法是目前最主要的生产方法,最终的产品粒径主要受所选择的酸化剂、硅酸盐浓度及搅拌条件等影响。其制备原理如式(1)、式(2)所示。

2.2 溶胶-凝胶法

溶胶-凝胶法一般以硅酸酯为原料,经水解缩聚后逐渐胶化,然后经过一定的后处理(陈化、干燥)得到所需的材料。采用溶胶-凝胶法技术制备的 nano-SiO2,其最终粒径受反应物水和 NH3的浓度、硅酸酯的类型[正硅酸四甲酯(TMOS)、正硅酸四乙酯(TEOS)和正硅酸四丙酯(TPOS)等]、醇的种类(甲醇、乙醇、丙醇和戊醇等)、催化剂的种类(酸或碱)和温度等因素的影响而有所不同。通过对这些影响因素的调控,可获得不同结构的纳米材料[10]。最常用的硅酸酯是 TEOS。首先将 TEOS 水解成原硅酸[见式(3)];然后原硅酸分子间脱水,逐步形成Si-O-Si 长链; 最终形成硅氧四面体组成的 SiO2大分子[见式(4)]。

2.3 微乳液法

微乳液法是液相化学制备法中较新颖的一种。微乳液是一种直径为 10~100 nm、热力学稳定的、各向同性的、外观透明或半透明的分散体系,主要由表面活性剂、助表面活性剂(通常为醇类)、油和水等组成,可分为“油包水(W/O)型”和“水包油(O/W)型”两种。由于反胶束微乳液(W/O)的液滴粒径小、分散性好,液滴内部的水相是提供良好化学反应的场所,并且液滴大小和形状均可控,故 nano-SiO2粒径分布及形状也均可控制。因此,常用此方法制备nano-SiO2。2.4 湿法工艺制备的优缺点

三种制备方法(化学沉淀法、溶胶-凝胶法和微乳液法)的优缺点及今后的研究方向如表 1 所示。

Table 1 The characteristics of different preparation methods 制备方法 方法描述 共混法

优点

缺点

使用范围

粒子通过各种方式与有机工艺简单;工业聚合物混合 可行性好;粒子

添加量高

粒子易团聚;溶液、悬浮相互作用弱 液、乳液和熔

融体系(如塑料)等 添加量较低;乳液和水性体需要表面改系;用于设计性;在溶剂型各种特殊结构 体系中的应用受到局限 易产生严重的相分离;产生乙醇和水;不能用于溶剂型体系

已成为有机/无机杂化在、材料的主要制备法 原位聚合在单体溶液中分散纳米粒纳米粒子均匀分法 子,然后进行聚合 散;保持纳米特

性;相互作用强;反应条件温和 溶胶—凝胶法 使用烷氧金属或金属盐等前驱物和有机聚合物的共溶剂,在聚合物存在的前提下,在共溶剂体系中使前驱物水解和缩合

反应条件温和;分散均匀;能够达到“分子复合”水平

3纳米SiO2改性聚合物的方法

目前用于纳米SiO2改性聚合物的方法很多,主要有原位聚合法法、溶胶一凝胶法、共混法。3.1原位聚合法

即在位分散聚合,该法是应用在位填充技术,将纳米SiO2在单体中分散均匀后,再进行聚合反应,原位聚合法的特点是既能使纳米SiO2粒子均匀分在聚合物中,又保持了粒子的纳米属性,而且原位聚合法通常是一次聚合成型,无需进一步热加工,因此避免了热加工带来降解的影响,保证了纳米SiO2-聚合物基体的各种性能的稳定。3.2溶胶一凝胶法 这种方法从20世纪80年代以来开始使用。它是将硅氧烷非金属化合物等前驱物溶于水或有机溶剂中,溶剂经水解生成纳米SiO2粒子并形成溶胶,再经蒸发干燥而成凝胶。具体方法是:将前驱物(如Si(OCH2CH3)4)溶于聚合物溶液中,在催化剂存在下让前驱物水解形成纳米SiO2胶体粒子,干燥后得到半互穿网络的聚合物纳米SiO2粒子复合物。另一种方法是将前驱物与单体溶解在溶剂中,让水解与聚合反应同时进行,使聚合物均匀嵌入无机纳米SiO2网络中形成半互穿以至全互穿(聚合物已交联)网络。3.3共混法

共混法是将纳米SiO2与聚合物直接进行分散混合而得到的一类复合材料。这类方法的特点是过程较简单,容易实现工业化。其缺点是要纳米SiO2粒子呈原生态纳米级的均匀分散较困难,因而也给产品的稳定性带来新的问题。为此也发展了以下一些不同的工艺。

(l)溶液共混法将聚合物溶解于溶剂中,然后加人纳米SiO2粒子并混合使之均匀分散,除去溶剂而得到复合材料,其特点是纳米SiO2粒子的分散较好,但同时也带来环境污染、溶剂回收等问题。

(2)悬浮液或乳液共混法与溶液共混法类似,只是用悬浮液或乳液代替溶液。在不适宜溶液共混的一些情况下,悬浮液或乳液共混也是一类有用的方法。

4.纳米颗粒改性环氧树脂机理

对于纳米颗粒改性对胶粘剂的作用机制,己成为当前的研究热点。现在较普遍接受的观点是:纳米颗粒表面众多的非配对原子易与环氧胶基体发生物理及化学作用,与分子链发生物理或化学结合。在纳米粒子均匀分散于环氧胶中后,如果环氧胶受到外力冲击,能量在高分子基体和纳米颗粒界面间被吸收或纳米颗粒易产生应力集中效应而引发其周围基体树脂产生银纹,纳米粒子间的环氧胶也产生塑性形变,吸收一定的冲击能随着粒子的微细化,其比表面积将进一步增大,使纳米粒子与环氧胶间接触面亦增大,当材料受到外力冲击时会产生更多银纹及塑性形变,并吸收更多冲击能而达到增韧效果。另一方面,刚性纳米粒子的存在,使环氧胶内银纹扩展受阻和钝化,终停止开裂,不致发展为破坏性开裂,从而产生增韧效果。但是,如果纳米粒子加入太多,纳米粒子就会团聚,大的团聚体引发裂纹,宏观表现为在环氧胶中部开裂形成,断裂强度反而下降。另外,随着纳米粒子的加入,阻止分子链运动或交联密度增大,使玻璃化温度升高,提高体系的耐热性。5.纳米改性环氧树脂的研究现状

Bauer[11]等人用硅烷偶联剂对纳米SiO2、Al2O3和TiO2表面处理,然后在酚醛环氧树脂(epoxy Novolac)胶粘剂中分别加入30wt%的上述纳米颗粒,发现环氧胶的硬度得到提高,玻璃化转变温度提高了20K。李赫亮[12]向环氧树脂胶粘涂层中分别加入粉煤灰、纳米SiO2,通过改变磨料的粒度和含量,冲蚀的转角和转速,研究其耐冲蚀磨损性能,发现以纳米SiO2为填料比以粉煤灰为填料的环氧树脂胶粘涂层的抗冲蚀能力强。Yao 等[13]比较了SiO2-环氧纳米复合物在玻璃态时的储能模量,发现SiO2对环氧基材有显著的增强效果。用

[14]环氧树脂和经聚氧乙烯改性的二氧化硅,并用二氨二苯砜作为固化剂成功后制成的EP/SiO2纳米复合材料,纳米粒径的无机颗粒在环氧基质中主要呈均相分布而无大的颗粒。研究发现经过聚氧乙烯(PEO)接枝的二氧化硅颗粒含有柔韧的PEO链段,它能有效的加强改性剂与环氧树脂之间的连接力。在储能模量和玻璃化温度变化不大,并且所有的改性体系的断裂面表现出坚韧的断裂性能的情况下,经过聚氧乙烯接枝的二氧化硅改性后的环氧树脂的冲击强度是纯环氧树脂的2倍。将纳米颗粒加入到环氧树脂中发现环氧试样的质量损失和剥蚀率出现了明显的下降,抗原子氧剥蚀性能得到了大幅度的提高[15]。

随着水工建设的发展需求,对环氧树脂的技术要求也越来越高,其中尤以解决环氧树脂的老化(耐候性)、增强增韧等问题最为迫切。传统的环氧树脂改性,主要通过对环氧低聚物和固化剂的选择,但改性效果不理想,而且不能同时解决耐候性、增加强度和韧性等问题。近年来,聚合物基纳米复合材料以其优异的性能受到人们的关注。国内外有报道已经在实验室制备出环氧树脂*纳米粒子复合材料,但如何解决纳米颗粒在环氧树脂基体中的均匀分散问题,提高制备水平和制备效率,依然有待进一的研究。

参考文献

[1] ZHANG RUI-JING,YANG KE,XIONG TIAN-YING.Research on a new process of preparation for nano-SiO2 with high activity and mesopores [ J ].Journal of Materials Sciences & Technology,2004,20(3):353-356.[2]张密林,丁立国,景晓燕,等.纳米二氧化硅的制备、改性与应用[J].化学工程师,2003(6):11-14.[3]安秋凤,郭锟.纳米 SiO2表面改性及其应用在复合材料中的研究进展[J].纳米科技,2007,4(5):9-14.[4]陈祥宝.聚合物基复合材料手册[M].北京:化学工业出版社,2004:3-8.[5] LI FENG-MEI,BAO JIAN-WEN,CHEN XIANG-BAO,et al.Factors influencing EB curing of epoxy matrix[J].RadiationPhysics and Chemistry,2002,63(3-6):557-561.[6] WEI CHUN,TAN SONG-TING,WANG XIA-YU,et al.Effects of liquid crystalline polyurethane on the structureand properties of epoxy [J].Journal of Materials ScienceLetters,2002,21(9):719-722.[7]杨波,何慧,周扬波,等.气相法白炭黑的研究进展[J].化工进展,2005,24(4):372-377.[8]王永康,王立.纳米材料科学与技术[M].杭州:浙江大学出版社,2002.[9]康睿宇,徐国想,曹静雅.纳米 SiO2的制备、改性和应用[J].化工时刊,2006,20(10):60-64.[10]胡兵,蒋斌波,陈纪忠.单分散性 SiO2的制备与应用[J].化工进展,2005,24(6):603-606,611.[11] Bauer F, Decker U, Ernst H, Findeisen M, Langguth H, Mehnert R, Sauerland V, Hinterwaldner R.Functionalized Inorganic/Organic Nanocomposites as New Basic Raw Materials for Adhesives and Sealants Part2.Int.J Adhesion.2006, 26:567-570 [12] 李赫亮,刘敬福,张伟强.环氧胶粘纳米涂层冲蚀磨损性能研究.中国胶粘剂,2006,15(5):15~16 [13] Yao XF, Yeh HY, Zhou D, Zhang YH((2006)J Compos Mater 40:371 [14] Shaorong Lu, Chun Wei, Jinhong Yu.Preparation and Characterization of Epoxy Nanocomposites by Using PEO-Grafted Silica Particles as Modifier.Journal of Materials Science.2007, 42: 6708~6715 [15] 王鑫,赵小虎, 王明珠等.纳米颗粒增强环氧树脂抗原子氧剥蚀性能机理研究.航空学报.2007, 28(1): 207~212

第二篇:材料表面纳米化研究现状

金属材料表面纳米化研究现状

摘要:金属材料的表面纳米化处理是近几年表面强化方法研究的热点之一。这种技术将纳米晶体材料的优异性能与传统工程金属材料相结合,在工业应用上具有广阔的应用前景。通过对表面纳米化的基本原理、制备方法、结构特征和功能特性的综述 ,提出要实现这种新技术的工业应用需要解决的问题,如影响因素,表面纳米化形成动力学等。

关键词:表面纳米化;金属材料;研究现状

1、介绍

表面工程是21世纪工业发展的关键技术之一,它是先进制造技术的重要组成部分,同时又可为先进制造技术的发展提供技术支撑。表面工程,是经表面预处理后,通过表面涂覆、表面改性或多种表面工程技术复合处理,改变固体金属表面或非金属表面的形态、化学成分、组织结构和应力状态等,以获得所需要表面性能的系统工程。表面工程的最大优势是能够以多种方法制备出优于本体材料性能的表面功能薄层,赋予零件耐高温、耐腐蚀、耐磨损、抗疲劳、防辐射等性能。这层表面材料与部件的整体材料相比,厚度薄、面积小,但却承担着工作部件的主要功能[1-3]。

从19世纪80年代表面工程的诞生到现在,经历了三个发展阶段,第一代表面工程是指传统的单一表面工程技术,包括热喷涂、电刷镀、、激光熔覆、PVD(物理气相沉积)技术、CVD(化学气相沉积)技术以及激光束、离子束、电子束三束表面改性等[4-5]。第二代表面工程又称复合表面工程,是指将两种或多种传统的表面技术复合应用,起到“1+l>2”的协同效果[6]。例如,热喷涂与激光(或电子束)重熔的复合,热喷涂与电刷镀的复合,化学热处理与电镀的复合,多层薄膜技术的复合等。第三代表面工程即纳米表面工程,是指纳米材料和纳米技术有机地与传统表面工程的结合与应用。

纳米表面工程是以纳米材料和其他低维非平衡材料为基础,通过特定的加工技术或手段,对固体表面进行强化、改性、超精细加工或赋予表面新功能的系统工程。简言之,纳米表面工程就是将纳米材料和纳米技术与表面工程交叉、复合、综合并开发应用[7-9]。

在服役环境下,金属材料的失效多始于表面,因此只要在材料上制备出一定厚度的纳米结构表层,即实现表面纳米化,就可以通过表面组织和性能的优化提高材料的整体性能和服役行为。与其它纳米材料制备方法相比,表面纳米化技术

和表面纳米化材料有许多独特之处:①表面纳米化采用常规表面机械处理方法(或对其进行改进)即可实现,且对所有金属材料均具有普适性,在工业上应用不存在明显的技术障碍;②表面纳米化在明显提高材料表面和整体的力学性能及化学性能的同时,不损害材料的韧性,从而有效地解决了纳米材料强度升高与韧性明显下降之间的矛盾;③材料高性能纳米结构表层与基体之间的结构和性能均呈梯度变化,二者之间不存在明显的界面,因此在使用过程中不会因为温度和应力等的变化而发生剥层和分离等;④表面纳米化在材料表面产生的高体积分数界面为扩散提供了理想的通道,能大幅度地降低化学处理的温度和时间,解决了低温化学处理这一技术“瓶颈”,使得精密零部件的化学处理成为可能;⑤表面纳米化可以制各出表面为纳米晶、晶粒尺寸沿厚度方向逐渐增大的梯度结构,这种结构反映出材料通过塑性变形由粗晶逐渐演变成纳米晶的过程,据此可以探索出形变诱发的纳米化机理,并可以排除制备条件(包括方法和参数)和材料内部缺陷(如空隙、裂纹和污染等)的影响,在一块样品上研究宽尺寸范围内(从微米到纳米量级)的组织与性能的关系[11]。

2、表面纳米化的制备方法及基本原理

在金属材料表面获得纳米结构表层的主要途径有三种[12]:表面涂覆或沉积、表面自身纳米化、混合纳米化。如图 1 所示,以下分别作以介绍。

2.1表面面涂层或沉积

首先制备出具有纳米尺度的颗粒,再将这些颗粒固结在材料的表面,在材料上形成一个与基体化学成分相同(或不同)的纳米结构表层。这种材料的主要特征是:纳米结构表层内的晶粒大小比较均匀,表层与基体之间存在着明显的界面,材料的外形尺寸与处理前相比有所增加,图 1(a)。

3对表面纳米化的展望

近些年来,已经有文献报道了关于在不同金属表面上成功制备表面纳米层及对表面纳米层组织结构的研究,所研究的金属材料包括纯铁[7]、不锈钢[12](如:AISI304、316L、OCrl8NigTi等)、低碳钢(如:SM400、55400等)、低合金钢(如:16MnR等)、高锰钢[15]、中碳钢及中碳低合金钢(如:40Cr等)以及铝合金、工业纯钦等有色合金[16-18]。研究表明,材料表面纳米化后性能得到极大的提高,如强度、硬度、耐磨性以及防腐性能等。此外,材料表面纳米化后,氮化过程中氮化速率高,氮化温度明显降低等。

表面纳米化为将纳米技术与常规金属材料的结合提供了切实可行的途径,这种表面被赋予独特的结构和良好性能的新材料在工业上有着巨大开发应用潜力。它既着眼于目前的科学技术水平,又面向实际工程应用,因此有可能为利用纳米技术明显地提高传统工程金属材料的性能和使用寿命提供一条切实可行的途径。目前表面纳米化的研究还处于起步阶段,要想实现这种新技术的工业应用,需要解决以下问题:①加工工艺、参数及材料的组织、结构和性能对纳米化的影响;②表面纳米化的微观机制及形成动力学;③纳米结构表层的组织与性能的关系;④纳米结构表层的热稳定性与化学性能。

参考文献

[1]中国表面工程编辑部,徐滨士院士谈纳米表面工程 [J].中国表面工程 ,2002 ,(2): 47.[2]吕德隆.表面工程技术的发展与应用 [J].国外金属热处理 ,2002 ,(5): 132 15.[3]欧忠文,徐滨士,马世宁,等.纳米材料在表面工程中应用的研究进展[J ].中国表面工程 ,2000 ,(2): 529.[4]李 瑛,王福会,等.表面纳米化对金属材料电化学腐蚀行为的影响[J ].腐蚀与防护 ,2003 ,(1).[5]杨邦朝,陈金菊,韩丽坤,等.纳米技术在表面处理中的应用[J ].表面技术 ,2003 ,(3): 60 2 61.[6]张聪慧 ,刘研蕊 , 兰新哲 , 等.钛合金表面高能喷丸纳米化后的组织与性能[J ].热加工工艺 , 2006 ,(1): 528.[7] N.R.Tao, Z.B.Wang.An investigation of surface nanocrystallization mechanism in Fe induced by surface mechanical attrition treatment[J].Acta Materialia 50(2002)4603–4616

[8] W.L.Li, N.R.Tao and K.Lu.Fabrication of a gradient nano-micro-structured surface layer on bulk copper by means of a surface mechanical grinding treatment[J], Scripta Materialia 59(2008)546–549 [9] Chao Yuan, Ruidong Fu.Microstructure evolution and mechanical properties of nanocrystalline zirconium processed by surface circulation rolling treatment[J].Materials Science & Engineering A 565(2013)27–32 [10] K.Lu, J.Lu, J.Mater.Sci.Technol.15(1999)193–197.[11] N.R.Tao, Z.B.Wang, W.P.Tong, M.L.Sui, J.Lu, K.Lu, Acta Mater.50(2002)4603–4616.[12] L.Zhang, Y.Han, J.Lu, Nanotechnology 19(2008)165706.[13] G.Liu, S.C.Wang, X.F.Lou, J.Lu, K.Lu, Scr.Mater.44(2001)1791–1795.[14] G.Liu, J.Lu, K.Lu, Mater.Sci.Eng.A 286(2000)91–95.[15] W.L.Li, N.R.Tao, K.Lu, Scr.Mater.59(2008)546–549.[16] T.H.Fang, W.L.Li, N.R.Tao, K.Lu, Science 331(2011)1587–1590.[17] R.Z.Valiev, R.K.Islamgaliev, I.V.Alexandrov, Prog.Mater.Sci.45(2000)103–189.[18] K.Lu, J.Lu, Mater.Sci.Eng.A 375–377(2004)38–45.

第三篇:环氧树脂的改性研究发展

环氧树脂的改性研究发展

付东升朱光明韩娟妮

(1西北工业大学化工系,2西北核技术研究所)

1、前言

近年来,科研工作者对环氧树脂进行了大量的改性研究,以克服其性脆,冲击性、耐热性差等缺点并取得了丰硕的成果。过去,人们对环氧树脂的改性一直局限于橡胶方面,如端羧基丁脂橡胶、端羟基丁腊橡胶、聚琉橡胶等[1—4]。近年来,对环氧树脂的改性不断深入,改性方法日新月异,如互穿网络法、化学共聚法等,尤其是液晶增韧法和纳米粒子增韧法更是近年来研究的热点。综述了近年来国内外对环氧树脂的改性研究进展。

2、丙烯酸增韧改性环氧树脂

利用丙烯酸类物质增韧环氧树脂可以在丙烯酸酯共聚物上引入活性基团,利用活性基团与环氧树脂的环氧基团或经基反应,形成接技共聚物,增加两相间的相容性。另一种方法是利用丙烯酸酯弹性粒子作增韧剂来降低环氧树脂的内应力。还可以将丙烯酸酯交联成网络结构后与环氧树脂组成互穿网络(IPN)结构来达到增韧的目的。张海燕[5]等人利用环氧树脂与甲基丙烯酸加成聚合得到环氧-甲基丙烯酸树脂(EAM),其工艺性与不饱和聚酯相似,化学结构又与环氧树脂相似,得到的改性树脂体系经固化后不仅具有优异的粘合性和化学稳定性,而且具有耐热性好、较高的延伸率,固化工艺简单等优点。同时由于共聚链段甲基丙烯酸酯的引入,体系固化时的交联密度降低,侧基的引入又为主链分子的运动提供更多的自由体积,因此改性体系的冲击性能得以提高。韦亚兵[6]利用IPN法研究了聚丙烯酸酯对环氧树脂的增韧改性。他将线性聚丙烯丁酯交联成网状结构后与环氧树脂及固化剂固化,形成互穿网络结构。该方法增加了丙烯酸丁酯与环氧树脂的相容性。该互穿网络体系具有较高的粘接强度和优异的抗湿热老化能力。

李已明[7]通过乳液聚合法首先制备出丙烯酸丁酯(PBA)种子乳液,在引发剂作用下合成出核乳液,然后在该种子上引入聚甲基丙烯酸甲酯壳层得到核壳粒子。利用该粒子来增韧环氧村脂时,由于聚甲基丙烯酸甲酯的溶解度参数与环氧树脂的溶解度参数相近,因此两者的界面相容性非常好。用SEM对其进行观察时可发现核壳粒子的壳层与环氧树脂溶为一体,而核芯PBA则在环氧基体中呈颗粒状的分散相。M.Okut[8]对PBA/PMMA核壳粒子增韧环氧基体体系进行了动态力学分析,在动态力学图谱上高温区可以发现没有与PMMA对应的玻璃化转化峰,只有与环氧树脂对应的玻璃化转变峰,这同时也证明了环氧树脂与PM MA的相容性。改性体系的缺口冲击强度显著提高,断口特征形貌由环氧树脂的脆性断裂转化为韧性断裂。

3、聚氨酯增韧环氧树脂

利用聚氨酯改性环氧树脂主要是为了改善其脆性,提高其柔韧性,增加剥离强度。聚氨酯粘接性能好,分子链柔顺,在常温下表现出高弹性。施利毅等[9]利用高分子合金的思想,采用熔体共混法制备出了PU/EP共混体系。他以异氰酸根封端的聚氨酯预聚体与环氧树脂在熔融条件下加入固化剂固化后得到共混改性体系:由于异氰酸根本身能与环氧基团反应,因此得到的改性体系两相间有良好的相容性,利用DMA分析,可发现其谱图上在m(PU):m(EP)=20:80时只有单一的宽的玻璃化转变蜂,这进一步证明了两相间的相容性。改性体系比环氧树脂的冲击强度有了大幅度提高。

目前研究最多的聚氨酯增韧环氧树脂体系是以聚氨酯与环氧树脂形成SIPN和IPN结构,这两种结构可起“强迫互容”和“协同效应”作用,使聚氨酯的高弹性与环氧树脂的良好的耐热性、粘接性有机地结合在一起,取得满意的增韧效果。

Y.Li[10]等利用双酚A环氧树脂与末端为异氰酸酯的聚醚聚氨酯低聚物进行改性接枝,二者在四氢呋喃溶液中形成均相溶液,然后在DDM固化剂作用下形成线性聚氨酯贯穿于环氧网络的半互穿网络结构。两者在用量比为1 1 2

70/30时有很好的协同性能。体系的剪切、剥离强度与冲击强度均有较大程度的提高,体系的断裂延伸率由环氧基体的2.09%提升至211.9%,断裂强度提高了18.56MPa,同时该体系还具有良好的阻尼特性。管云林等[11]探讨了PU/EP的相行为与粘接剪切性能的关系,通过红外光谱分析发现,该体系中不仅存在着EP与PU的各自的交联反应,还存在二者的共聚反应。用DSC对其进行分析发现该体系在高温下有单一宽的玻璃化温度,同时还发现体系的玻璃化温度随环氧树脂用量增加而提高,甚至高于EP基体Tg,其原因是EP用量增大后,PU与EP的接技反应增多,分子间作用力增大,从动态力学谱图上也可看出,损耗峰向高温方向移动。通过TEM观察发现,体系两相间界面模糊,这进一步证明了两相间的相容性。体系中存在的聚氨酯与环氧树脂的接技共聚物大大增加了二者的互穿效应,从而体系的综合性能得以提高。

4、双马来酰亚胺(PI)改性环氧树脂

双马来酰亚胺耐热性能好,利用其改性环氧树脂可以大大提高环氧树脂高温下的粘合强度。关长参等[12]以双马来酰亚胺、环氧树指、芳香二胺为原料制备出了新型的环氧树脂增韧体系。该体系耐热性好、粘合性能优异,室温下及200℃测其剪切强度(45#钢/45#钢)几乎没有变化。徐子仁[13]用加入烯丙基双酚A的方法来增加环氧树脂与BMI相容性。通过红外光谱分析发现烯丙基双酚A可与双马来酰亚胺发生接枝共聚反应,形成带有环氧基团的双马来酰亚胺树脂,在加入固化剂时可与环氧树脂发生固化交联,使体系中的两相具有良好相容性。得到一种耐高温的韧性环氧改性树脂。

梁国正[14]以环氧树脂为基础合成了环氧双马来酰亚胺(EB)。该体系由功能性双马来酰亚胺与环氧树脂反应而成,固化则利用双马来酰亚胺的固化机理。该体系不仅具有环氧树脂的粘接性好、固化收缩率低的特点,而且还具有类似双马来酰亚胺树脂的高耐热性。同时,该体系的冲击性能也比双马来酰亚胺有了较大的提高。

5、聚酰胺酸(PAA)改性环氧树脂

聚酰胺酸(PAA)是聚酰亚胺(PI)的反应中间体。与PI相比,PAA在低沸点溶剂中即可制得。PAA改性环氧树脂体系与PI改性体系相比较具有更加优异的剥离性能。利用PAA改性环氧树脂时,其自身相当于环氧树脂的固化剂,可以与环氧基团形成类酯结构,同时,PAA本身又具有一定的活性,可以酰胺化形成PI长链,使固化体系表现出高的粘结剪切强度和耐热性能。赵石林[15]等在THF/CH3OH混合溶剂中利用PMDA与ODA合成出PAA并成功地用作环氧树脂的固化剂和改性剂。改性体系由于PAA与EP之间的协同作用而具有良好的综合性能。同时该体系固化时低沸点溶剂易于挥发,不会造成大的内应力。Kevin等[16]探讨了固化温度对PAA改性EP体系性能的影响。由于材料中的内应力通常是造成材料综合性能下降的原因。他们采用两阶段固化工艺来充分排除固化体系中残存的溶剂和气泡以进一步提高体系的综合性能。

6、纳米粒子增韧环氧树脂

纳米粒子尺寸界定在1—100nm之间,它具有极高的比表面积,表面原子具有极高的不饱和性,因此纳米粒子的表面活性非常大。在利用纳米粒子增韧环氧树脂时,环氧基团在界面上与纳米粒子形成远大于范德华力的作用力,形成非常理想的界面,能起到很好的引发微裂纹、吸收能量的作用。郑亚萍[17]利用SiO2纳米粒子对环氧树脂体系进行了大量的改性研究。通过利用分散剂实现了纳米粒子与环氧树脂的均匀混合。解决了纳米粒子由于粒径过小易团聚的问题。研究结果表明,SiO2/EP复合体系中由于SiO2粒子表面存在着羟基,两者在界面处存在着较强的分子间力,因此有较好的相容性。通过SEM观察分析,在改性体系中纳米粒子呈分散相,环氧树脂为连续相。纳米粒子以第二聚集体的形式较均匀地分散在树脂基体中。由于二者粘接性能好,因而在受冲击时能起到吸收冲击能量的作用,从而达到增韧的目的。付万里[18]利用SEM观察纯EP冲击断口与EP/粘土纳米复材冲击断口时发现,前者断口为光滑脆性断裂形貌特征,而后者断口则凸凹不平,表现出韧性断裂形貌特征。其原因为纳米刚性粒子在复材体系中作为应力集中物在受力时既能引发银纹,又能终止银纹。同时由于纳米粒子具有强的刚性,裂纹在扩展遇到纳米粒子时发生转向或偏转吸收能量达到增韧之目的。纳米SiO2粒子可使环氧树脂的冲击性能和拉伸性能大幅度提高。

7、热致液晶聚合物(TCLP)增韧环氧树脂的研究

液晶高分子聚合物是一类分子中含有液晶单元的高分子化合物。通常按其形成液晶态的物理条件可分为溶致型液晶和热致型液晶。利用热致型液晶TCIP增韧环氧树脂既能提高其韧性,又能确保不降低环氧树脂的其它力学性能和耐热性。TCLP增韧机理主要是裂纹钉锚作用机制。(TCLP)作为第二相(刚性与基体相近),本身有一定的韧性和较高的断裂延伸率。因此只需少量就增韧环氧树脂,同时提高其模量和耐热性。

Baolong Zhang等[19]合成出一种侧链高分子液晶LCGMB来增韧环氧基体,该化合物在增韧环氧树脂时,柔性的液晶分子主链能弥补环氧基体的脆性,侧链的刚性单元又保证了改性体系的模量不会下降,从而提高体系的综合力学性能。在研究时还发现体系的冲击性能随LCGMB的用量增大而增大,当用量为20%~30%摩尔分数时有最大冲击性能。经SEM观察分析,其冲击断口环氧树脂呈连续相,液晶则以微粒形式分散在树脂基体中。当受到冲击时液晶微粒是应力集中源并诱发周围环氧基体产生塑性形变吸收能量。

常鹏善[20]用含有芳酯的液晶环氧4,4’-二缩水甘油醚基二苯基酰氧(PHBHQ)增韧E-51环氧树脂,选择熔点与液晶相玻璃化温度相一致,反应活性较低的混合芳香胺为固化剂,当PHBHQ的质量分数达50%时固化树脂冲击强度为40.2J/m2,与不加PHBHQ的冲击性能相比较,提高31.72J/m2,此外玻璃化温度也有一定的提高。

8、结语

今后环氧树脂将朝着“规模化、高纯化、精细化、专用化、系列化、功能化”的方向发展。随着科研工作者的不断努力,对环氧树脂的改性研究也将日新月异。环氧树脂在人们生活中的应用也将越来越广泛。

第四篇:环氧树脂涂料研究现状及发展

环氧树脂涂料研究现状及发展

摘要:环氧树脂是一种重要的热固性树脂品种。由于它具有优良的物理机械性能、电绝缘性能、耐化学腐蚀性能、耐热及粘接性能,所以用它配制的环树脂胶粘剂素有“万能胶”之美称,广泛应用于化工、涂料、机械、电子、家电、汽车及航天航空等工业领域,对国民经济发展起着极其重要的作用

关键词:环氧树脂发展现状发展前景

随着我国树脂生产技术的提升,2008年中国环氧树脂行业迅速发展壮大,但是受到波及全球的金融危机的影响,2008年到2010年间,环氧树脂行业经受了巨大考验,环氧树脂市场及价格走势备受关注。2008年金融危机对环氧树脂可谓带来沉重打击,由于买方市场市场的急剧萎缩,环氧树脂的价格从高峰跌入低谷。经过2009年经济复苏的带动,环氧树脂价格也重新开始攀升,但仍与最高峰的价格有差距。

2009年全年,环氧树脂的价格呈现了稳步上升的趋势,2010年5月到达了价格的最高峰值。但在5月之后,开始大幅回落,618#由5月最高价将近26000元/吨的关口,直线下降到6月22000元/吨的价格,降幅12%。环氧树脂的原料环氧氯丙烷和双酚A的价格双双下跌,致使环氧树脂价格频频下滑。

国内产不足需

2000年我国环氧树脂产能为10.8万吨,产量为10万吨,消费量21.66万吨,2005年产量、消费量分别增加至35万吨和65万吨,年均增长率分别为28.5%、24.5%。

2008年我国环氧树脂生产厂商已达200多家,但产能在0.5万吨/年以上的厂商却只有12家。各地拟在建环氧树脂产能为55万吨/年。

虽然我国环氧树脂产量快速增长,但供需缺口仍在不断扩大,进口量也逐年增多。2000年我国环氧树脂净进口量为11.71万吨,2005年增长至16.51万吨,2006年超过20万吨,我国环氧树脂进口量占世界贸易总量的1/2。我国的旺盛需求以及世界范围内原料价格的上扬,导致近年环氧树脂价格上扬,进口成本不断攀升。

2008年是环氧树脂市场低潮年份。2007年产能大幅扩张、产量大幅提高,高速增长超过了实际需求,给2008年环氧树脂市场埋下供过于求的隐患。2008年环氧树脂市场受到了全球金融危机的影响,环氧树脂下游的需求骤降,导致了环氧树脂的价格下减。

2008年初时市场尚能维持,春节以后虽然传统旺季到来,但行情不见起色,交投不温不火,并且价格逐步有所下行;奥运期间因相关管制,市场渐行渐弱;年末随着全球金融危机蔓延,使

环氧树脂市场受到重挫。华东地区的环氧树脂价格直线下滑,液体树脂从28000元吨价,下同降至15000元,固体树脂从23000元降至10000元,下降幅度全部超过60%,创出了5年以来最低水平。而装置的生产能力利用率,也被压缩到平均50%水平以下,特别是10月创下液体树脂30%、固体树脂20%历史新低。我国的液体环氧树脂在2008年金融危机前呈现慢慢下滑的价格走势。但到金融危机全面爆发的2008年8月后,价格则狂泻千里,618#的价格由最高位的260000元/吨,跌至了12000元/吨。由于2008年环氧树脂市场受石油价格和中间商操纵的影响,价格出现了剧烈的波动。2009年,我国涂料行业市场逐渐好转,作为涂料原料的环氧树脂也走出阴霾,重新回归理性市场,价格也稳步提升。粉末涂料的生产中需要大量应用环氧树脂,从环氧树脂的企业构成来看,2008年以陶氏化学为代表的外商投资企业、巴陵石化为代表的国内实力派企业在我国粉末涂料市场上所占份额有所增加。陶氏化学预计,2010年我国消费量将达90万-100万吨。

其实环氧树脂在很多方面都有着不小的贡献,很多企业都愿意去研究它,下面就简单的来说一下目前环氧树脂应用研究方面有哪些:

发展: 环氧树脂基材的涂料将成绿色涂料主导

所谓“绿色涂料”是指节能、低污染的水性涂料、粉末涂料、高固体含量涂料(或称无溶剂涂料)和辐射固化涂料等。由于传统涂料对环境与人体健康有影响,所以人们都在想办法开发绿色涂料,20世纪70年代前几乎所有涂料都是溶剂型的,70年代以来由于溶剂的昂贵价格和降低VOC排放量的要求日益严格,越来越多的低有机机溶剂含量和不含有机溶剂的涂料得到了大发展。专家表示,现在产生了越来越多使用绿色涂料,但从基料性能和使用现状看,环氧树脂基材的涂料将成为绿色涂料主导。环保型汽车用水性环氧树脂底漆的研制

以新型第5类水性环氧树脂体系为基料,添加无毒无污染防锈颜、填料,选择适宜的助剂,制备了环保型双组分低温烘干型汽车用底漆。研究了水性环氧体系的成膜性能,环氧基与胺氢的摩尔比和颜料体积浓度(PVC)对漆膜耐盐雾性能的影响。环氧树脂基复合材料表面金属化处理研究

采用特殊的表面活化处理方法对环氧树脂基复合材料进行处理,然后采用电镀工艺在复合材料表面沉积铜-镍复合镀层,并对复合材料金属镀层附着力、环境适应性能和电磁屏蔽性能进行了测试分析。结果表明,金属层与复合材料基材结合良好;经过温度冲击试验,金属镀层无起泡、开裂、脱落等缺陷;通过雷达波反射特性测试,表面金属化处理的复合材料与金属具有相同的雷达波反射特性,可用于防静电性、电磁屏蔽性要求较高的包装材料。

参考文献:《环氧树脂纳米涂料研究进展》作者:唐光斌 《环氧改性氟树脂涂料研究》作者:吕君亮

《环氧改性氟树脂涂料研究》作者:施铭德

《环氧树脂生产与应用》作者:王德中

《环氧树脂应用领域、行业以及发展历史的概述》作者:王嵩《世界环氧树脂产品发展趋势》作者:苏站

第五篇:二氧化硅处理方法的研究

二氧化硅处理方法的研究 08级化学工程与工艺黄星桥 摘要:随着人们环保意识的不断增长,绿色消费已是当今世界上流社会的时尚。化工生产中,易挥发的毒性有机溶剂渐渐被水所取代,各种无机颗粒填充聚合物乳液体系已得到较为广泛的应用,由于涂料产品总量之大,水性涂料首先成为环境标志的典型代表【1】。此外,水性胶粘剂、水性油墨以及其它复合材料体系也不断得到研究与开发。在包括填料、聚合物基料和溶剂这样的分散体系中,溶剂和基料竞争填料表面上的吸附位置。为了最佳的或可接受的填料分散,基料如果不是优先吸附,至少应当相等地被吸附【2】。油性体系中,无机填料表面的亲油改性,可保证填料在体系的分散稳定性,树脂与亲油表面的亲和吸附,使填料与基料间界面结合不成为难题;水溶性高分子体系与油性体系类似,无机填料的极性表面基本上不影响分散稳定性及界面问题。而乳胶体系填料在溶剂‘水j中的分散以及它与乳胶颗粒在成膜时的界面粘结成为一对矛盾。为解决这一矛盾,使用带两亲性端基的分散剂是常用的手段,一种优良的代表性氨基醇是2一氨基一2一甲基一1一丙醇,商品名为AMP一95【3】。这种分散由于易受PH值、温度等条件的影响,贮存稳定性不好。为此,Th.Batzilla and A.Tulken 【4】在细Al片表面形成交联共聚物,不容易受各种条件影响,但在体系中这种物理吸附还是存在解吸附现象,影响分散及涂膜的性能。

因此,本实验主要研究通过化学接枝两亲性共聚物的方法,以期使填料(二氧化硅)在乳液体系(聚丙烯酸酯乳液)中,既能长期稳定分散,又能保证它与基料在成膜后有良好的界面结合,除此之外还有物理改性(表面包覆改性,热处理改性)和化学改性(醇酯法表面改性,偶联剂法改性,改性及气相法表面改性)。一、二氧化硅表面处理方法 1.1 物理改性【5~7】

物理改性是指两组分之间除范德华力、氢键力或静电吸附等分子之间的相互作用力外,不存在离子键或共价键作用的一种表面改性方法。它又可分为表面包覆改性和热处理改性两种方法。

1.1.1 表面包覆改性

表面覆盖改性是指表面改性剂与纳米SiO2表面无化学反应,包覆物与颗粒之间依靠范德华力、氢键、静电作用等而连接起来的改性方法。在制备纳米SiO2的溶液中加入表面活性剂,在形成纳米SiO2的同时,表面活性剂包覆在其表面,形成均匀的纳米颗粒,此种方法可有效地改善纳米SiO2的分散性。1.1.2 热处理改性

热处理改性是指将纳米SiO2放在一定的介质内加热、保温、冷却,通过改变纳米SiO2表面或内部的组织结构来控制其性能的一种综合工艺过程。热处理后SiO2表面吸湿量低,且其填充制品吸湿量也显著下降,其原因可能是由于高温加热条件下以氢键缔合的相邻羟基发生脱水而形成稳定键合,从而导致吸水量降低。此种方法简便经济,但是仅仅通过热处理,不能很好地改善填充时界面的粘合效果,所以在实际应用中,常对纳米SiO2使用含锌化合物处理后在200-400℃条件下进行热处理,或使用硅烷偶联剂和过渡金属离子对纳米SiO2处理后进行热处理,或用聚二甲基二硅氧烷改性SiO2,然后再进行热处理。2.1 化学改性

表面化学改性是指表面改性剂与粒子表面一些基团发生化学反应而达到改性目的。由于纳米SiO2表面存在不饱和残键和不同状态的羟基,这些活性基团可以同一些表面改性剂发生反应,从而使SiO2表面带上具有特定化学活性的有机基团,改善SiO2粒子与各种有机溶剂及聚合物基体之间的相容性。根据化学反应的不同,表面化学改性方法可以分为偶联剂法改性、醇酯法表面改性以及聚合物接枝法改性等。2.1.1 醇酯法表面改性【5~7】

醇酯法是用脂肪醇与二氧化硅表面的羟基发生反应,脱去水分子,二氧化硅表面的羟基被烷氧基取代。反应需要在高温高压下进行。与硅烷偶联剂相比,用醇改性的优点在于改性剂脂肪醇价格低廉,易于合成且结构容易控制。改性的效果受到醇的烷基链长度的影响。用大于8 个碳原子的醇进行改性,接枝的疏水烷基链较长,二氧化硅的表面性能改变十分明显,而用同样量的小于8 个碳原子的醇改性,二氧化硅的表面性能改变要差很多。2.1.2 偶联剂法改性【5~8】

偶联剂是具有两性结构的化学物质,其一部分基团可与粉体表面的各种官能团反应,另一部分基团可与有机高聚物基料发生化学反应或物理缠绕,在无机粉体和有机高聚物之间建立起“分子桥”。常用的偶联剂有硅烷偶联剂、钛酸酯偶联剂、锡铝酸盐偶联剂等。目前纳米SiO2表面改性研究较多的是硅烷偶联剂表面改性。使用硅烷偶联剂改性二氧化硅表面,由于不同工艺条件制备的二氧化硅表面结构特性及物化特性不同,偶联剂的分子结构各异,胶料品种多样,使改性二氧化硅填充胶的综合性能改善程度不同。因此需要根据二氧化硅的表面结构,被填充材料的特性等因素来综合考虑偶联剂类型的选择。研究表明,协同使用两种偶联剂有时好于单单独用一种。除去使用硅烷偶联剂改性二氧化硅外,也可使用甲基硅烷钠、乙基硅烷钠、甲基硅烷钠铝等用作改性剂。2.1.3 聚合物接枝法改性【5~7】

聚合物接枝法是在二氧化硅表面进行单体的聚合。超细二氧化硅表面呈亲水性,极性强。极性较弱的有机单体不容易吸附或化学结合在其表面上,较难在超细二氧化硅表面上接枝聚合物。为了解决这个问题,首先需要加入一定的表面活性剂与二氧化硅的表面羟基反应。对二氧化硅进行初步改性,然后加入溶剂化的单体,使单体以表面活性剂为起点发生原位聚合,从而形成聚合物接枝改性的二氧化硅产品。表面活性剂选用的原则是有利于聚合物与之结合。硅烷偶联剂起到了联接二氧化硅表面与聚合物的桥梁的作用。在已被表面活性剂改性后的二氧化硅表面接枝合成聚合物,可根据超细二氧化硅应用的聚合物体系不同,有目的地在二氧化硅表面接枝不同性能的聚合物,并且具有接枝包覆均匀完全、分散程度好等特点。因此用聚合物接枝改性过的二氧化硅与有机材料的相溶性更好。张超灿等用硅烷偶联剂KH-550 对二氧化硅进行改性后,采用两亲性的聚丙烯酸酯对二氧化硅表面处理,得到的填料产品在聚丙烯酸酯乳液中,既能长期稳定分散,又具有良好的界面作用。2.1.4、气相法二氧化硅表面处理【9~11】

气相法二氧化硅(俗称气相法白炭黑)是由氯硅烷经氢氧焰高温水解制得的一种精细、特殊的无定形粉体, 其产品纯度高、平均原生粒径为7~40 nm、比表面积50~380 m2 /g、SiO2质量分数不小于9918% , 是一种多功能的添加剂,广泛应用于硅橡胶、涂料、复合材料中, 起到补强、增稠、触变等作用[ 1 ]。但应用中存在一个关键问题, 就是如何与聚合物更好的相容, 使其能均匀分散在聚合物中。通过一定的工艺使某些改性剂与气相法二氧化硅表面的硅羟基发生反应, 消除或减少硅羟基的数量, 使气相法二氧化硅由亲水性变为疏水性, 就能改善二氧化硅与聚合物的相容性。目前常用的改性剂有醇、脂肪酸、硅烷偶联剂等等。国外已开发出多种改性产品, 如: Degussa 公司的R974、WACKER 公司的H200, 本公司;六甲基二硅氮烷: CP, 国药集团化学试剂有限公司;无水乙醇、氢氧化钠: AR, 国药集团化学试剂有限公司。电子天平: AV412, 沈阳杰龙仪器有限公司;白钢反应器装置: 自制。2.2 实验方案

本实验采用干法工艺对气相法二氧化硅进行改性, 即将干燥的气相法二氧化硅与六甲基二硅氮烷蒸汽接触并进行反应(工艺流程见图1)。将100 g气相法二氧化硅在反应器中升温到150 ℃预热2 h;六甲基二硅氮烷通过汽化装置汽化后进入反应器中, 与气相法二氧化硅反应一定时间后出料。未反应的六甲基二硅氮烷被中和掉。

图1 气相法二氧化硅表面改性工艺流程示意图 2.3 硅羟基密度的测定

先将2 g气相法二氧化硅试样放入200 mL的烧杯中, 加入25 mL无水乙醇润湿;然后加入75mL氯化钠质量分数为20%的氯化钠溶液, 搅拌成悬浊液;用浓度为011 mol/L的盐酸或相同浓度的氢氧化钠溶液调节悬浊液pH值至4;搅拌状态下用浓度为011 mol/L的氢氧化钠溶液滴定, 直至pH值上升至9稳定不变。依式1计算试样表面的硅羟基数量。D = cV /mS ×NA ×10-3(1)式中, D 为硅羟基密度, 个/nm2;c 为滴定用NaOH标准溶液浓度, 本实验为011 mol/L;V 为pH值从410升至910时所消耗的NaOH的体积,mL;NA 为阿伏伽德罗常数;S 为比表面积,nm2 /g;m 为样品质量, g。3 聚合物接枝法 3.1主要仪器及材料

二氧化硅为工业级,山西临猗化工实验厂生产;硅烷偶联剂KH一550,武汉大学化工厂;水为蒸馏水:甲基丙烯酸甲酯为工业级,经蒸馏;无水乙醇,丙酮,乙酸乙酯,石油醚为分析纯;丙烯酸为化学纯;BPO;聚丙烯酸酯乳液。JJ0—2润湿角测量仪;200两级胶体磨;QTG型涂膜涂布器;QBY 型漆膜摆式硬度计;QTX型漆膜弹性试验器:QcJ型漆膜冲击器;QFZ型漆膜附着力试验仪;涂膜材料(马口铁、玻璃板按国标剪裁);Testscan ShimadzuFTIR 8 000 series;SX一40型扫描电镜。3.2二氧化硅的表面处理 3.2.1 改性剂的制备

在250ml三口烧瓶中,加入40 g甲基丙烯酸甲酯(MMA)和35 ml无水乙醇,搅拌,将5 单体重的BPO分两次加人,温度控制在80 C左右.回流约1 h后,体系变稠,再反应1~2 h,停止。用石油醚洗涤后,再用蒸馏水沉淀.干燥其它几种共聚物合成均采取溶液聚合法.其配比详见表1。

3.2.2 硅烷偶联剂改性 均衡干法、湿法和喷雾法等几种改性方法后,我们采用较为方便的干法实验【3】。

称取9.0 的KH一550溶解于2~3倍的乙醇水溶液(水/醇一1/9)中,适当加点盐酸,完全分散后,缓慢滴加人在室温下高速搅拌的定量二氧化硅粉料中,添加完毕后,将温度逐渐升至1O0~l10℃,继续搅拌2.5~3 h.降至室温,再进行干燥。3.2.3 二次接枝

将适量聚合物溶于丙酮中,并用少量SOC1 进行酰氯化(100 PMMA 除外)后,加入用KH一55O改性的SiO2:粉末.搅拌下回流3~5 h,离心分离,并用相应溶剂洗涤粉末2~3次,将剩余一COCI水解后,用稀NaOH溶液中和,再离心分离,干燥。三结果与讨论 待处理。。参考文献

【1】陈伟明我国环境标志f水性淙料)产品的前景.中国涂料,199g,3:gl 【2】 T C 巴顿.沫料流动和颜料分散北京:化学工业出版社,1988.10 【3】 NP Technical Bulletin No 37,AMP一95-the VersatileIngredientforWate r-Based Paint Systems,MCChemical Group.HillsHe.I_'.1 976 【4】Th Batzilla and A.Tu[ke Prepa ration of Encapsulated Aluminunl Pigments by Emulsion Polymerization and Their Characteriza—non.J C~ating Tech.,1998,(8):81 【5】王云芳,郭增昌,王汝敏.纳米二氧化硅的表面改性研究[J].化学研究与应用,2007,19(4):382-385 【6】李曦,刘连利,王莉莉.纳米二氧化硅的研究现状与进展[J].渤海大学学报(自然科学版),2006,27(4):304-308 【7】关博文,刘开平,张艳等.纳米SiO2的制备及改性研究进展[J].辽宁化工,2008,37(5):3-4-307 【8】庞久寅1,2,王春鹏1,储富祥1,林明涛1

(1.中国林科院林产化学工业研究所,南京210042;2.北华大学交通建筑工程学院,吉林132013)【9】解小玲,郭李有,许并社1纳米二氧化硅表面改性研究[ J ]1应用化工, 2007, 36(7): 703 – 7041 【10】杨海堃,孙亚君1气相法白炭黑的表面改性[ J ] 有机硅材料及应用, 1999,(5): 15 – 171

下载纳米二氧化硅-环氧树脂复合材料的研究现状word格式文档
下载纳米二氧化硅-环氧树脂复合材料的研究现状.doc
将本文档下载到自己电脑,方便修改和收藏,请勿使用迅雷等下载。
点此处下载文档

文档为doc格式


声明:本文内容由互联网用户自发贡献自行上传,本网站不拥有所有权,未作人工编辑处理,也不承担相关法律责任。如果您发现有涉嫌版权的内容,欢迎发送邮件至:645879355@qq.com 进行举报,并提供相关证据,工作人员会在5个工作日内联系你,一经查实,本站将立刻删除涉嫌侵权内容。

相关范文推荐

    细谈纳米TiO2对大豆蛋白/聚乙烯醇复合薄膜的影响研究论文[推荐阅读]

    0 引言食品包装不仅可以保护产品、促进消费,而且可以为消费者带来便利,在食品工业中占居举足轻重的地位。市面上出售的包装膜以及保鲜膜不容易降解,因而会对周围环境造成不良影......

    LED环氧树脂封装料的研究

    环氧树脂封装料目前大概有50%的市场依耐于进口,主要是高档位的市场。象海索、川裕、力上、EPFINE等等基本上占据了高档位的市场。国内以邵惠集团较早生产LED环氧树脂封装料,近......

    浅谈纳米光电子器件的发展现状

    3.1 量子线激光器近日,科学家研制出功率比传统激光器大1000倍的量子线激光器,从而向创造速度更快的计算机和通信设备迈进了一大步。这种激光器可以提高音频、视频、因特网及其......

    高剥离强度环氧树脂体系的研究(大全五篇)

    高剥离强度环氧树脂体系的研究 李帅20072084环氧树脂是由具有环氧基的化合物与多元羟基化合物(双酚A、多元醇、多元酸、多元胺)进行缩聚反应而制得的产品。环氧树脂具有高强......

    如何写研究现状

    一、为什么要写国内外研究现状 通过写国内外研究现状,可以考察学生是不是阅读了大量的相关文献。 为什么要求学生阅读大量的参考文献呢?不是为了让学生抄袭,而是为了让学生了解......

    研究现状

    我国手机拥有量早在2002年便 已是世界第一位.至2007年11月 底,全国手机用户接近5亿户.普及率 高达38.5%,在一些大城市如北京、 上海、广州、深圳等地都已经达到或者接近100%的普及......

    纳米材料研究现状及应用前景要点

    纳米材料研究现状及应用前景 摘要:文章总结了纳米粉体材料、纳米纤维材料、纳米薄膜材料、纳米块体材料、纳米复合材料和纳米结构的制备方法,综述了纳米材料的性能和目前主要......

    国内外研究现状

    对农村经济发展问题的研究,国内外学者都是承认发展中国家二元经济结构的前提下,以西方发展经济学理论为理论基础,探讨了农村经济发展的道路和方向,而且在不断研究和分析后,对农村......