第一篇:高速铁路隧道空气动力学关键技术
附件二
驻外科技机构推荐项目
一、目录
一、目录........................................................1
二、驻外科技机构推荐项目简介.........................................2 序号61
高速铁路隧道空气动力学关键技术............................2 序号62
激光清理雕像表面技术......................................4 序号63
生物质气化技术(新型气化反应炉设计)……………………………5 序号64
航空移动通讯系统..........................................6 序号65
纳米自洁涂料产品开发......................................7
二、驻外科技机构推荐项目简介
序号61
高速铁路隧道空气动力学关键技术
(2007-052-瑞士-003)
瑞士的赫特尔工程公司(HBI公司)从事火车隧道、地铁和公路隧道的通风和气体动力学的设计已有40年的历史,在此期间完成了近500条隧道项目设计工作。多年来HBI一直致力于用计算机技术支持的软件对通风设施和气体动力学进行设计,而且用模拟的方法进行更深一层次的计算(火灾模拟、烟的扩散、废气气体等)。HBI公司拥有1维,2维和3维空间的计算软件,用它可以模拟复杂的隧道系统,在实际应用中取得了良好的效果。HBI公司还积极参与了“PIARC”工作组的课题研究,并且是“PIARC”的成员之一。HBI公司愿意与中国伙伴分享下列自有技术,共同在中国开展有关业务:
1、隧道空气动力学的关键技术
——对隧道内车辆和隧道本身的机械作用力 ——所需的列车牵引力大小
——隧道出入口的空气爆炸效应(空气动力学效应)——列车内乘客的气压舒适度 ——对列车两侧的气流计算
2、隧道气候的关键技术
——铁路隧道内要求的温度和湿度
——对于隧道内设备和列车要求的温度和湿度
3、隧道通风方面的关键技术 ——在通常运营情况下的隧道通风 ——在维修和保养时的隧道通风 ——在出现事故时的隧道通风
技术成熟度:HBI公司拥有的隧道设计模拟工具以及丰富经验在许多重大工程项目的隧道建设中得到了成功的应用,如目前世界最长在建隧道57公里圣哥达(St.Gotthard)铁路隧道,德国慕尼黑磁浮列车工程,汉堡ELb隧道等。外方提出合作方式:
1、同中方伙伴合作,对具体隧道工程的空气动力学、隧道气候和通风的设计方案提供支持以及优化和审核。
2、共同开发适合中国的隧道空气动力学、隧道气候和通风模拟软件程序。
3、支持和协助高速铁路隧道空气动力学标准和规范制定。
序号62
激光清理雕像表面技术
(2007-055-波兰-002)
雕塑作品常年暴露在空气中,被空气中的酸性物质腐蚀变黑,难以清洗,是文物保护工作中一项难题,用激光的方法清除,具有效率高、不损坏文物表面等优点。
本技术利用了硬壳污垢和本体在激光辐射吸收系数的巨大差异。对于Nd辐射:YAG激光,波长λ=1.06μm,黑色污垢能吸收超过90%的辐射值,而清洗后的光洁表面仅吸收10~25%的辐射。黑色污垢吸收辐射后,在短时间内(几个~几十个纳秒内)引起了温度的快速上升,并使污垢受热。加热区域的扩大,产生足够的应力使污垢被去除。
外方单位:波兰某技术学院 光电研究所 技术成熟程度:小规模试生产
外方提议合作方式:技术转让/技术入股/合作生产
序号63
生物质气化技术(新型气化反应炉设计)
(2007-056-以色列-002)
生物质气化技术主要是以低生物质(如农作物秸杆、木屑、柴草)等为原料的气化技术,使低生物质完成从固态到可燃气体的转化。气化反应炉是生物质气化工程的核心设备,现有的各种气化反应炉存在很多不足,如产生气体中灰分和焦油含量较高,清理较麻烦;气化过程比较慢,不能达到很高速度,不利于大工业生产;气化生成的混合气(一氧化碳和氢气)与燃烧废气混合在一起,无法分离,限制了应用范围。
以色列理工学院教授设计的改进型Judd 反应炉分为气化室和燃烧室两个部分。在气化室中,充满了温度为1000℃左右的热砂子,作为化学反应的媒体和热交换的载体。生物质从气化室顶部一侧喂入后,与热砂子充分混合,从而被加热到1000℃左右。大约400摄氏度左右的主水蒸气从气化室底部注入,慢慢上升,与高温的生物质发生还原反应,产生混合气(氢气和一氧化碳)。产生的混合气与未反应的高温水蒸气从气化室顶部吹出,然后经过冷却过程除掉水蒸气,得到比较纯净的混合气。在气化室的底部一侧,加入水平方向的二级水蒸气,通过水平的吹动,迫使气化室中的热砂子和未完全反应的生物质(即碳)从气化室底部吹入到燃烧室中。固体混合物(未反应的碳和砂子)进入燃烧室后,在强空气的吹动下,向上流动并且发生完全燃烧反应,从而将在气化室中因还原反应 而温度有所降低的砂子重新加热至1000℃以上。燃烧所产生的废气从燃烧室顶部逸出,而热砂子由于重力和空气的吹动作用回落入气化室中,与新喂入的生物质混合继续进行气化反应。
该反应炉的优点:能得到较纯净的混合气,可进一步作为化学工业原料使用,而不是仅仅作为燃料燃烧;由于水平二级水蒸气的吹动作用,整个反应炉的工作速度可以达到较高的水平,工艺过程易于控制,适合大工业生产;结构简单,成本低易于制造维修。
技术成熟度:实验室成果
外方提议合作方式:技术转让/技术入股/合作生产/ 外方希望与中国有关单位合作,对气化反应炉进行试验和改进,然后实现产业化。
序号64
航空移动通讯系统
(2007-060-新西兰-001)
新西兰航空通讯设备是自行研究开发的新技术产品。该通讯设备可以使用一般的手机直接连接到航空通讯系统,不仅可以在航空系统内通话,也可以接受普通手机的非航空系统之通讯。完成航空任务后,手机可以随时卸下,用作普通手机。该设备其通话质量比一般航空通讯要高,同时,该设备系统还可以同GPS相联,飞行跟踪,通讯和导航等,并可以取代现有固定的航空设备。该设备适用于所有的航空用途,特别适用于直升飞机,小型飞机,农用飞机和救灾飞行等。
外方单位:新西兰伊可集团公司
技术成熟度:专利/小规模生产
外方提议合作方式:出口产品/合作生产
感兴趣者请三周内尽快回复。
序号65
纳米自洁涂料产品开发
Nano HybridCoatings 之纳米自洁涂料设计配方及材料建立于 纳米碳球及纳米颗粒之混合共价键结构设计、采用美国赛斯纳米科技公司拥有之完整纳米碳球衍生物化学结构专利之部分化学成份、配合纳米颗粒之表面结构设计、形成共价混合体(Hybrid)为纳米自洁表面履膜之主材料、仿制自然荷叶表面之微结构排列。其功能包括超排水性及灰尘不沾性、形成防水及自洁之表面履膜、以类似表面微结构、亦可转换成超容水性做生化应用产品用途。
以超排水性及自洁功能系列产品而言、赛斯纳米科专利技使用之纳米碳球组件材料亦同时具有独特光触媒灭菌功能、在阳光或可见光(室内灯光)照射下、可进行表面除菌防徽霉作用、以碳球组件之高度光触媒稳定性、配合表面缺水性可大幅减低细菌生存率、此项除菌作用是以具毒性之单性氧为破坏菌体之功能、故对干燥表面亦可生存之霉菌种亦可执行光触媒效用、此项光触媒防菌功能加上一般自洁防尘功能、使Nano HybridCoatings 履膜材料优于市场上现有之自洁涂料产品。同时 Nano HybridCoatings 之自洁单层履膜产品是以化学共价键为材料制造方法、比市场上现有之自洁涂料产品更耐用、具竞争潜力。在生产自洁履膜产品的成本分析上、其主成分之碳球原料在现有市场之小量购买价格为$4.0 per gram、大量(吨级)购买价格可远低于此价格一半以下、以 Nano HybridCoatings 之单层履膜设计来计算表面单层纳米颗粒履盖量、将其转换计算成碳球原料用量、再导入原料每平方公尺成本可得1.5-2.0美分值、因而自洁履膜材料产品之主成本将决定于表面履膜制程及劳工成本、具同等于现有市场自洁产品之竞争潜力。
本计划经费需求预估为50万美元,一次投入,占股40%。用以 完成纳米自洁涂料之产品样品开发送交美国主要的化学公司验证。
初期销售纳米自洁关键成份材料及授权纳米履膜制程为主、主要客户包含Dow Chemical、BASF、DuPont等国际大型化学材料公司。后期销售自有品牌之具纳米自洁功能产品、主要联盟客户为汽车玻璃制造商、建材制造商、家具制造商、家电产品制造商、各项光电及电子零件制造商、及化学纤维厂等。2008年全世界膜工业总产值约年达100亿美元,2010年中国膜工业的产值将达50亿-80亿元人民币。2008年全世界玻璃工业总产值约达666亿美元,包括中国玻璃工业总产值约达222亿美元,及美国汽车门窗玻璃总产值约67亿美元。以数量来说,在2008年, 全世界玻璃市场需求量将达到46亿平方米以上。2010年中国的汽车玻璃市场需求量将达到7723万平方米以上。
我们的专利技术有考虑生产成本,是采用浸泡(dipping Process)作为生产制程。
21世纪纳米自洁涂料的自洁净和净化环境功能特性将成为人类创造舒适的生活环境不可或缺的工具。建筑玻璃以及工业材料作为我们纳米自洁涂料进入市场的首选主体。
外方单位:美国赛斯纳米科技股份有限公司 技术成熟度:实验室成果 外方要求:
1.寻求50万美元投资资金,一次投入,占股40%。投资资金必须投资在美国。
2.项目负责人成博士将于6月17日到6月21日参加美国旅美专家协会访问深圳与广州。如对此项目感兴趣的投资人请尽快与深圳市科技开发交流中心信息资源部联系(电话:83699770)。
第二篇:空气动力学总结
班级:JS001105 学号:2011300092 姓名:程云鹤 [注]西北工业大学/空气动力学/前六章的简单总结
第一章
空气动力学中的基本变量有:①压强,是作用在单位面积上的正压力,该力是由于气体分子在单位时间内对面发生冲击(或穿过该面)而发生的动量变化,plim②密度,定义为单位体积内的质量,密度具有点属性,limdF,dA0dAdm,dv0 ③温度,反应dv平均分子动能,在高速空气动力学中有重要作用。④速度,流动速度是指当一个非常小的流体微元通过空间某任意一点的速度。⑤粘性系数,dv dy空气动力及力矩的来源有两个:①物体表面的压力分布 ②物体表面的剪应力分布。气动力的描述有两种坐标系:风轴系和体轴系。力矩与所选的点有关系,抬头为正,低头为负。
气动力系数是比空气动力及力矩更基本且反映本质的无量纲系数,在三维中的力系数与
LL'二维中有差别,如:升力系数CL(3D),cl(2D)
qSqc压力中心,作用翼剖面上的空气动力,可简化为作用于弦上某参考点的升力L,阻力D或法向力N,轴向力A及绕该点的力矩M。如果绕参考点的力矩为零,则该点称为压力中心,显然压力中心就是总空气动力的作用点。
在等式中,等号左边和等号右边各项的的量纲应相同,某些物理变量可以用一些基本量(组合)来表达,据此有了量纲分析法。在教材上,通过量纲分析法引出了雷诺数Re和马赫数M,这两个参数被称作相似参数。自由来流的马赫数Re=Vc/=惯性力/黏性力,马赫数M=V/a,马赫数可以度量压缩性,飞行器飞行的速度越大,M就越大,飞行器前面的空气就压缩的越厉害,因此M可以作为判断空气受到压缩程度的指标。
判断流动动力学相似的标准是:①物体的几何外形相似 ②相似参数相同,即马赫数和雷诺数。
流动类型:当分子对物体表面的碰撞很频繁以致于物体不能分辨出单个分子碰撞,这时,对物体表面而言流体是连续介质,这样的流动成为连续流动。如果流动中没有摩擦、热传导或者扩散,那么这样的流动被称为无黏流动。密度是常数的流动称作不可压缩流动,密度变化的流动是可压缩流动。
马赫数区域:如果流动中任意一点的马赫数都小于1,那么流动是亚音速的。既有M<1的区域又有M>1的区域成为跨音速区域。如果流场中任意一点的马赫数都大于1,该流动是超音速的。当M足够大,以至于黏性相互作用和/或者化学反应在流动中占首要地位,这样的流动称为高超声速流动。
大部分空气动力流动的理论分析都把远离物体的区域作为无黏流动来考虑,只将紧挨着物体表面的包含耗散效应的薄层区域作为黏性流动来考虑。紧挨物体的薄层黏性区域叫做边界层。
第二章
空气力系数在确定飞机性能和设计时是非常重要的工程指标。设计的目的是在获得必需的升力的同时产生尽可能小的阻力。
数量场的梯度,p的梯度p定义为这样的一个矢量: ①它的量值就是p在这个给定点单位空间长度上的变化率的最大值
②它的方向就是p在这个给定点最大变化率的最方向。在笛卡尔坐标系中p=p(x,y,z),则ppppijk xyz矢量场的散度,固定质量的流体微元的单位体积的体积时间变化率等于速度矢量的散度,用V表示。在笛卡尔坐标系中V=V(x,y,z)=VxiVyjVzk,则有散度VVxVyVz xyz矢量场的旋度,是速度矢量V的旋度的一半,V的旋度表示为V,在笛卡尔坐标系中V=V(x,y,z)=VxiVyjVzk,则有
iVxVxjyVykVzVyVxVzVyVxiyzjzxkxy zVz线积分,面积分和体积分之间的关系可应用于计算中(斯托克斯定理,散度定理和梯度定理),斯托克斯定理如下
ds Ads(A)cs描述流体的模型有:①有限控制体模型②无限小流体模型③分子模型 速度散度的数学描述及物理含义:V1D(V),该式表明速度矢量的散度在物
VDt理上代表了一个运动的流体微元单位体积的体积时间变化率。
流动的基本控制方程:
①连续方程,把质量守恒的物理原理应用到固定于空间的有限体积控制体的最终结果。它是流体力学的最基本方程之一。
②动量方程,在流场中,流体除了要满足质量守恒之外,还要满足动量守恒。也就是说流体的动量随时间的变化率与流体所受的体积力和表面力的和是相等的。把这个相等关系用数学关系式表示,即是动量方程。
③能量守恒,能量守恒的数学表示形式就是能量方程。
实质导数,D/Dt是表示当一个流体微元运动通过点1时它的密度的瞬时时间变化率的符号。按定义,这个符号叫做实质导数(或物质导数,随体导数),实质导数等于当地导数加上迁移导数。
迹线,当微元A从点1开始向下游运动时,它的运动路径定义为微元的迹线。流线,是这样的一种曲线,其上任意一点的切向皆为这一点的速度方向。染色线是指在一段时间内一些流体微元通过相同一点所连接起来的线。
流体微元(团)的旋转角速度为1vuvuik j2yzzxxy速度矢量的旋度(涡量)为V 变形(应变率)为xyuvuv,zx,yz zxxyyz流体旋度的总效应是以速度环量来体现的:-Vds
c流函数为(x,y)c,流函数的存在是根据二维不可压缩流动的连续方程得来的,而连续方程总是成立的,所以凡是二维不可压缩流动,流函数必定存在。
速度势V,对于一个标量函数,流动的速度可由的梯度给出。我们称为速度势。第三章
伯努利方程为p1 11V12p2V22 221pV2const, along a streamline 21pV2const, through the flow(对于无旋流)
2压强系数为Cppp,对于不可压缩流动,Cp可以只用速度来表示,qVCp1V
无旋不可压缩流动的控制方程(拉普拉斯方程):0
四种基本流动:①均匀流:有一来流速度大小为V的均匀流动,其速度方向与x轴同
22向,此均匀流动满足V0及V0的关系,所以均匀流动可以看成是无旋不可压缩流动。②源流:a.源流是一种不可压缩流动,即V0。但源点除外,因为此点位奇点。B.源流动在任意点处(除源点)都是无旋的。③偶极子流动:在一个源-汇对的的演变中,l趋与0,产生偶极子流动。④涡流:所有的流线都是关于一个点的同心圆,此外,任意给定的圆形流线上的速度是恒定的,速度的大小与到圆心的距离成反比,这样的流动称为涡流。几种基本流动叠加合成的典型流动:均匀流与点源和点汇的叠加,绕圆柱的无升力流动(均匀流与偶极子的叠加),绕圆柱的有升力流动。
'库塔-茹科夫斯基定理,LV,其中Vds
A第四章
对机翼的气动分析可以分为两部分:对机翼剖面(即翼型)的研究;和对翼型气动特性的修正以应用于完整的有限翼展机翼。在翼型描述中的几个术语有:中弧线(mean camber line),前缘(leading edge),后缘(trailing edge),弦线(chord line),弯度(camber),厚度(thickness),弦长(chord length)。中弧线上的所有点位于上下表面的中点,即在中弧线各点沿垂直方向测量距离时,各点与上下表面间的距离相等。中弧线头部和尾部的点分别称为前缘和后缘。连接翼型前缘点和后缘点的直线叫弦线,前缘点到后缘点的直线距离记为翼型的弦长c,弯度是指沿着垂直于弦线方向测量的弯度线到弦线的最大距离。厚度是指垂直于弦线方向上下表面间的最大距离。翼型参数。cl为翼型升力系数;升力为0时对应的迎角叫零升力迎角,记为L0;阻力和分离导致的压差阻力(又叫做形状阻力),两者之和即为翼型的型阻系数cd;在翼型上存在着一个特殊的位置点,对该点的力矩大小不随迎角的变化而变化,这个点称为气动中心。对库塔条件的说明和总结:①对于给定形状且给定迎角的翼型,绕翼型的环量大小恰好使得流体光滑流过后缘点。②如果翼型后缘夹角为有限大小,则后缘点位驻点③如果翼型后缘夹角为0,则沿上下表面流过翼型后缘的速度为相等的有限值。开尔文环量定理:D0 它表明由相同流体微团所形成的封闭曲线上的环量对时间的Dt变化率为0 薄翼型的薄翼理论,翼型用布置在弯度线上的涡面模拟。对称翼型的气动特性:①翼型的升力系数与几何迎角成正比,且几何迎角为0时,升力系数也为0②翼型的升力线斜率为2π③翼型的压力中心和气动中心都在1/4弦线处。表面摩擦阻力的估计:层流流动5.0x1.328 Cf RexRec0.37x0.074
Cf/51/5Re1Rexc 表面摩擦阻力的估计:湍流流动转捩:由前缘开始的流动总是层流。接着在前缘点下游某点处,层流边界层开始失稳,并且流动中开始触发小的湍流,经过一段叫做转捩区的区域后,边界层变成完全的湍流。临界雷诺数=Vxcr 流经翼型的真实流动中存在前缘失速和后缘失速。升阻比L/D是衡量翼型气动效率的一个标尺,最大升力系数cl,max。为了提高最大升力系数,可以采用高升力装置,如襟翼和前缘缝翼。另外,厚度也是影响最大升力系数的关键。
第五章
实际作用在亚声速机翼上的总阻力是由诱导阻力Di,表面摩擦阻力Df及流动分离产生的压差阻力Dp构成的。由黏性引起的阻力又称为型阻。型阻系数定义为cdDfDpqS
诱导阻力系数为CDiDi qS 机翼的翼梢旋涡会在机翼周围产生一个小的向下的诱导速度。这一由尾旋涡诱导出一个很小的向下的速度分量,称之为下洗速度,用表示 由于下洗的存在,以及下洗使得相对来流向下偏转的效应,对当地翼型剖面具有以下两个重要的影响:①当地翼型剖面真正感受到的迎角是翼型弦线与当地相对来流之间的夹角eff,定义eff为有效迎角。effi②各翼型剖面的当地升力方向与当地相对来流方向垂直,即升力方向在与来流垂直向上的基础上又向后偏转了一个i角。所以当地升力矢量在来流方向上会产生一个分量,这个分量叫做诱导阻力。普朗特升力线理论的基本方程为
(y0)(y0)1L0(y0)πVc(y0)4πV(d/dy)dyb/2y0y
b/2椭圆升力分布:环量随展向距离呈椭圆关系变化。因此这种环量分布称为椭圆环量分布。
第六章
本章为三维不可压流,与二维流动进行对比便于理解。三维点源Vr2πr2 -
4πr
三维偶极子-cos24πr3绕球的流动VVsin
2球面上的最大速度要比圆柱上的小。这是三维泄流效应的一个例子。三维泄流效应是所有的三维流动中存在的普遍现象。
学习总结
在本学期,对《空气动力学》的前六章进行了学习。通过学习,对空气动力学基本概念有了一些认识,对一些流动有了初步了解。教材中的内容难度并不大,但内容很丰富,很多地方值得以后继续深入研究。该课程激发了我对将来学习的热情,对我帮助很大。
第三篇:列车空气动力学概论教学大纲
《列车空气动力学概论》教学大纲
课程的基本描述
课程名称
列车空气动力学概论
【单击此处输入英文课程名称】
课程编号
20CL0212
考核方式
考查课
课程性质
专业方向课
适用专业
车辆工程系
参考教材
理论
田红旗
.列车空气动力学.中国铁道出版社,第一版,2007
实训
张英朝
.汽车空气动力学数值模拟技术.北京大学出版社,2011
总
学
时
32学时
理论学时
24学时
实训学时
8学时
上机学时
0学时
学
分
2学分
开课学期
第5学期
前导课程
高等数学、理论力学
后续课程
车辆动力学软件原理及应用
课程说明
2.1
课程的地位与任务
《列车空气动力学概论》是车辆工程专业的一门专业选修课,课程目标在于培养学生具备进行列车空气动力学分析的的基本知识和基本手段。课程任务要求具体如下:
1、学生通过学习该课程,应能掌握流体力学的基本知识、影响列车运行的空气动力学因素以及空气动力学基础知识;
2、掌握列车空气动力学研究手段,数值分析方法,了解列车空气动力学分析在高速列车外形设计中的地位与作用,进而具有综合运用所学的知识,研究改进或开发新的列车外形的能力。
2.2
课程教学目标
能够将数学、自然科学、工程基础和专业知识用于解决车辆系统复杂工程问题。具备解决车辆系统复杂工程问题所需的工程基础知识和技能。
2.3
学时分配
学时数要与下面内容中的学时分配数相一致。
学时分配表
章
次
标
题
理论学时
实训学时
任务一
绪论
0
任务二
流体静力学
0
任务三
流体动力学
0
任务四
理想不可压缩流体平面位流
0
任务五
粘性流体及边界层理论
任务六
列车空气动力学问题
任务七
专题讨论
0
总学时
2.4
课程的主要特点
本课程是车辆工程专业的一门专业选修课,课程目标在于培养学生具备进行列车空气动力学分析的的基本知识和基本手段。
2.5
教学方法
1.采用启发式教学,鼓励学生自学,培养学生的自学能力;以“少而精”为原则,精选教学内容;增加讨论课,调动学生学习的主观能动性。
2.在教学内容上,系统讲授流体力学、空气动力学的基本理论、基本知识和基本方法,使学生能够系统掌握用于解决列车空气动力学问题的专业基础知识。
3.在教学过程中采用电子教案,CAI课件,多媒体教学与传统板书教学相结合,提高课堂教学信息量。
4.理论教学与工程实践相结合,引导学生利用计算流体力学分析软件,解决具体的列车流线型头型设计问题。
5.课内讨论和课外答疑相结合,每周至少一次进行答疑。
教学内容与学时分配
任务一
绪论(2学时)
掌握程度采用了解、理解和运用,具体含义如下:
了解:能记住学习过的内容。
理解:能领会课程内容的含义,掌握知识的内涵。
掌握:能在新的具体情况下应用所学知识解决问题。
各知识点的重要程度划分为核心、推荐、可选,具体含义如下:。
核心:该知识点是核心知识单元的一部分。
推荐:该知识点不是核心知识单元的一部分,但应包含在必修课程中。
可选:该知识点属于选修知识单元。
教学内容以2学时为一个教学单元进行编写。
教学内容1(2学时):
1.物质形态(了解,可选)
2.空气动力学的发展与分类(理解,推荐)
3.量纲与单位(理解,推荐)
重点:课程的研究对象。
难点:内容及学习目的。
讲授提示与方法:采用启发式教学,鼓励学生自学,培养学生的自学能力;以“少而精”为原则,精选教学内容;增加讨论课,调动学生学习的主观能动性。
作业:
1.课后习题
任务二
流体静力学(4学时)
教学内容1(2学时):
1.了解流体的各种属性,包括:易流性、压缩性、粘性等(理解,推荐)
2.掌握流体静力平衡微分方程(掌握,核心)
教学内容2(2学时):
3.流体静力平衡微分方程分析(掌握,核心)
4.掌握标准大气的特征。(理解,推荐)
重点:流体的属性。
难点:流体静力平衡计算及分析。
讲授提示与方法:采用启发式教学,鼓励学生自学,培养学生的自学能力;以“少而精”为原则,精选教学内容;增加讨论课,调动学生学习的主观能动性。
作业:
1.课后习题
任务三
流体动力学(4学时)
教学内容1(2学时):
1.掌握流体运动的描述方法(理解,推荐)
2.能分析流体微团的运动特征(理解,推荐)
教学内容2(2学时):
3.掌握理想流体运动微分方程组(掌握,核心)
4.掌握流体运动的积分方程组(掌握,核心)
重点:流体的描叙以及流体的运动特征。
难点:流体运动的计算及分析。
讲授提示与方法:采用启发式教学,鼓励学生自学,培养学生的自学能力;以“少而精”为原则,精选教学内容;增加讨论课,调动学生学习的主观能动性。
作业:
1.课后习题
任务四
理想不可压缩流体平面位流(4学时)
教学内容1(2学时):
1.理想不可压缩流体平面位流的基本方程(掌握,核心)
教学内容2(2学时):
2.掌握几种简单的二维位流基本方程(理解,推荐)
3.了解一些简单的流体迭加(了解,可选)
重点:理想不可压缩流体平面位流的描述。
难点:理想不可压缩流体平面位流的计算。
讲授提示与方法:采用启发式教学,鼓励学生自学,培养学生的自学能力;以“少而精”为原则,精选教学内容;增加讨论课,调动学生学习的主观能动性。
作业:
1.课后习题
任务五
粘性流体及边界层理论(4学时)
教学内容1(2学时):
1.掌握流体的粘性及其对流动的影响(理解,推荐)
2.掌握粘性流体运动方程(掌握,核心)
教学内容2(2学时):
3.掌握边界层近似及其特征(理解,推荐)
4.掌握平面不可压缩流体层流边界层方程(理解,推荐)
重点:流体粘性对流动的影响,粘性流体的运动形式,边界层概念。
难点:粘性流体运动方程的计算和解析。
讲授提示与方法:采用启发式教学,鼓励学生自学,培养学生的自学能力;以“少而精”为原则,精选教学内容;增加讨论课,调动学生学习的主观能动性。
作业:
1.课后习题
任务六
列车空气动力学问题(2学时)
教学内容1(2学时):
1.掌握列车空气动力学影响因素(理解,推荐)
2.列车空气动力学研究方法(理解,推荐)
3.列车外形设计与空气动力学的关系(理解,推荐)
重点:列车空气动力学方法解析。
难点:列车外形设计。
讲授提示与方法:采用启发式教学,鼓励学生自学,培养学生的自学能力;以“少而精”为原则,精选教学内容;增加讨论课,调动学生学习的主观能动性。
作业:
1.课后作业
任务七
专题讨论(2学时)
教学内容1(2学时):
1.了解流体粘性特征(理解,推荐)
2.在了解列车空气动力学特性及影响因素基础上,掌握高速列车中一般采用了哪些具体措施来具体应对空气动力学问题(了解,可选)
重点:流体粘性。
难点:列车空气动力学运用。
讲授提示与方法:采用启发式教学,鼓励学生自学,培养学生的自学能力;以“少而精”为原则,精选教学内容;增加讨论课,调动学生学习的主观能动性。
作业:
1.课后习题
实训设计
4.1实训教学基本信息
实训学时
实训学时及项目分配
验证性
演示性
综合性
设计性
合 计
4.2实训教学目的与基本要求
1.自学某种计算流体动力学软件,如fluent,ansys,starccm等;
2.掌握和理解列车外流场分析的模型简化方法;
3.分析影响外流场分布的主要因素
4、撰写研究报告。
4.3主要仪器设备
【单击此处输入正文】
4.4主要消耗材料
【单击此处输入正文】
4.5实训项目设置
序号
实训项目名称
实训目的及内容提要
学时数
实训类型
实训要求
每组人数
列车流场分析
掌握和理解列车外流场分析的模型简化方法
设计
必做
合计
考核与成绩记载
5.1
考核的方式及成绩的评定
1.平时考核(占总成绩50%):
30分出勤和纪律+5分听课笔记+5分测验及作业+5分期中考试+5分实训
2.期末考核(占总成绩50%):论文
执笔人
审核人
3.成绩评定:百分制(考试)
第四篇:流体力学结课论文:空气动力学在高速铁路建设中的应用研究
流体力学结课论文
空气动力学在高速铁路建设中的应用研究
摘要:我国高速铁路建设正处于上升期,高铁建设中遇到的问题也越来越多,相关理论研究对于高铁建设的顺利开展意义重大。本文通过对空气动力学的学习研究,初步认识和了解了空气动力学在高速铁路隧道建设中的应用,对流体力学对于土木工程的重要性有了更进一步的认识。
关键词:土木工程 高速铁路 隧道 空气动力学 流体力学
1前言
哈大高速铁路是国家“十一五”规划的重点工程,被纳入国家《中长期铁路网规划》。哈大高铁指在中国黑龙江省哈尔滨市与辽宁省大连市之间建设的高速客运专用铁路,于2007年8月23日正式开工建设,2012年12月1日正式开通运营。哈大客运专线(高铁)是我国中长期铁路规划中“四纵四横”高速铁路网的“一纵”,是京哈高铁的重要组成部分,通车后将成为世界上第一条投入运营的穿越高寒地区的高速铁路。
流体力学在土木工程中应用广泛,而在高速铁路的建设过程中,流体力学的重要分支空气动力学则起到了极为重要的作用。我国高速铁路建设正处于上升期,高铁建设中遇到的问题也越来越多,相关理论研究对于高铁建设的顺利开展意义重大。
2空气动力学简介
空气动力学是流体力学的一个分支,它主要研究物体在同气体作相对运动情况下的受力特性、气体流动规律和伴随发生的物理化学变化。它是在流体力学的基础上,随着航空工业和喷气推进技术的发展而成长起来的一个学科。
最早对空气动力学的研究,可以追溯到人类对鸟或弹丸在飞行时的受力和力的作用方式的种种猜测。17世纪后期,荷兰物理学家惠更斯首先估算出物体在空气中运动的阻力;1726年,牛顿应用力学原理和演绎方法得出:在空气中运动的物体所受的力,正比于物体运动速度的平方和物体的特征面积以及空气的密度。这一工作可以看作是空气动力学经典理论的开始。
1755年,数学家欧拉得出了描述无粘性流体运动的微分方程,即欧拉方程。这些微分形式的动力学方程在特定条件下可以积分,得出很有实用价值的结果。19世纪上半叶,法国的纳维和英国的斯托克斯提出了描述粘性不可压缩流体动量守恒的运动方程,后称为纳维-斯托克斯方程。
到19世纪末,经典流体力学的基础已经形成。20世纪以来,随着航空事业的迅速发展,空气动力学便从流体力学中发展出来并形成力学的一个新的分支。
20世纪60年代以来,由于交通、运输、建筑、气象、环境保护和能源利用等多方面的发展,空气动力学在更多领域有了更为广泛的研究和应用。
20世纪70年代以来,激光技术、电子技术和电子计算机的迅速发展,极大地提高了空气动力学的实验水平和计算水平,促进了对高度非线性问题和复杂结构的流动的研究。
3高速铁路隧道空气动力学效应
当列车进入隧道时,原来占据着空间的空气被排开。空气的粘性以及气流对隧道壁面和列车表面的摩阻作用使得被排开的空气不能像在隧道外那样及时,顺畅地沿列车两侧和上部流动,列车前方的空气受压缩,随之产生特定的压力变化过程,引起相应的空气动力学效应并随着行车速度的提高而加剧。
3.1列车进入隧道引起瞬变压力
列车进入隧道引起的压力变化是两部分的叠加:1列车移动时从挤压、排开空气到留下真空整个过程引起的压力变化;2列车车头进入隧道产生的压缩波以及车尾进入隧道产生的膨胀波在隧道两洞口之间来回反射产生的压力变化(M
ach波)。
当双线隧道中同时有不同方向列车相向行驶时,叠加所产生的情况则更为复杂。列车在隧道中运行时(无相向行驶列车)车上测得的最大压力波动发生在第一个反射波到达列车时。
3.2 列车进入隧道引起行车阻力
行车阻力由机械阻力和空气阻力两部分组成。机械阻力一般同行车速度成正比;空气阻力则同行车速度二次方成正比。在隧道中,空气阻力问题更为突出。
3.3 列车进入隧道引起微压波
微压波是隧道出口微气压波的简称,是高速铁路隧道运营过程中产生的空气动力学问题之一。微压波使得列车高速进入隧道时,在另一侧出口产生突然爆炸声响,对隧道出口附近的环境构成危害。
4高速铁路隧道空气动力学效应的影响
高速铁路隧道空气动力学效应会对高速列车运营、人员舒适度和环境造成一系列影响:
(1)高速列车经过隧道时,瞬变压力造成旅客和乘务人员耳膜明显不适、舒适度降低;
(2)高速列车进入隧道时,会在隧道出口产生微气压波,发出轰鸣声,使隧道口附近建筑物门窗发生振动,产生扰民的环境问题;
(3)行车阻力增大,从而使运营能耗增大;
(4)形成空气动力学噪声;
(5)列车克服阻力所作的功转化为热量,在隧道中积聚引起温度升高等。高速铁路隧道空气动力学效应的影响因素
5.1 机车车辆方面
行车速度,车头和车尾形状,列车横断面,列车长度,列车外表面形状和粗糙度,车辆的密封性等。
5.2 隧道方面
隧道净空断面面积,双线单洞还是单线双洞,隧道壁面的粗糙度,洞口及辅助结构物形式,竖井、斜井和横洞,道床类型等。
5.3 其它方面
列车在隧道中的交会等。降低空气动力学效应的主要设计措施
高速铁路隧道设计主要由限界、构造尺寸、使用空间和缓解或消减列车进入隧道诱发的空气动力学效应两方面的要求确定。
研究表明,当列车以200 km以上时速通过铁路隧道时,空气动力学效应对行车、旅客乘车舒适度、洞口环境的不利影响已十分明显且起控制作用,因此,隧道的设计除须遵照现行《铁路隧道设计规范》(TB10003)规定及提高防灾救援要求外,还应考虑下列因素:(1)隧道内形成的瞬变压力对乘员舒适度及相关车辆结构的影响;(2)空气阻力的增大对行车的影响;(3)隧道口所形成的微压波对环境的影响;(4)列车风对隧道内作业人员待避条件的影响。
缓解或消减列车进入隧道诱发的空气动力学效应的主要设计措施是:
6.1 车辆方面的措施
6.1.1 车辆的密封性
我们所讨论的舒适度是车内旅客乘车的舒适度,因此我们更为关心的是车 内压力变化情况。在其他条件相同的情况下,车辆密闭性能越好,车辆内的最大瞬变压力就越小。
6.1.2 车辆的外形
车辆外形的改善可从车辆的横断面积和车头形状考虑:在隧道横断面净面 积不变的前提下,减小车辆的横断面积可降低阻塞比,有效降低隧道内的瞬变压 力,进而可缓解车内的瞬变压力。
6.2 隧道构造措施
6.2.1 设置缓冲段
在隧道的口部设置缓冲段可减小列车进入隧道时产生压缩波的波前压力梯度,因为压缩波的波前压力梯度与列车速度的三次方成正比,所以减小压力梯度的效果可转换成降低列车速度的效果,进而可以明显地降低微气压波以及由此 而产生的噪声和对环境的影响。
缓冲段的横断面形状可为拱形或为门形,要求在其两侧可按一定的比例开 孔;沿其纵向可做成逐渐扩大的型式或喇叭形。
6.2.2 设置横洞
对于双洞单线隧道在每隔一定的距离采用横洞连通,以起到减压风道的作 用。在英法海峡隧道中就采用了横向通道来释放压力波(其减压风道间距为250m,风道直径为 2m),这种风道可减少对列车的空气动力阻力。
6.2.3 增加隧道断面面积
增加隧道断面面积对于降低空气动力学效应是不言而喻的,其可以将隧道 断面放大;也可以采用单洞双线的隧道。但是前者会增加造价,后者当列车在隧 道中会车时,会加剧空气动力效应。
6.2.4 设置竖井
在隧道内适当位置修建通风竖井(或斜井),以降低压缩波梯度。这种竖井应尽可能利用施工留下的工作井。该竖井的位置应兼顾到高速列车行车时降低 瞬变压力的要求。
6.2.5 噪声
隧道周壁采用吸音材料贴面,以降低空气动力学噪声。
6.2.6 隐蔽及设置
隧道内设施应尽量隐蔽设置,对在隧道内必须设置的设施采取适当的防护 措施,以防列车运行时产生的列车风对设施的破坏。
6.2.7 隔热设置
列车克服阻力所做的功转化为热量,在隧道中积聚引起温度升高。为此可设置通风井,配置风机排出在隧道中因列车克服阻力而产生的热量或其他原因产 生的热量,英法海峡隧道亦采用机械通风方法排出隧道内的热量。
6.2.8 防水设置
其他措施还有如在隧道内设置水幕、喷水滴等。
7结语
我国的高速铁路隧道建设刚刚开始,在借鉴国外技术经验的基础上,克服了一些缺点和不足,在一定程度上有效解决和控制了高速铁路隧道内空气动力学效应问题。但我国对于高速铁路隧道内空气动力学效应研究还是不够的,需要继续研究和探讨,使该问题得到更好的解决。
通过对空气动力学的学习研究,初步认识和了解了空气动力学在高速铁路隧道建设中的应用,对流体力学对于土木工程的重要性有了更进一步的认识。
参考文献
[1]王建宇,高度铁路隧道空气动力学若干问题探讨,中国铁道出版社,2006年
[2] 常翔,高速铁路隧道空气动力学效应控制,隧道建设,2007年8月,117-120
[3]百度百科,空气动力学,http://baike.baidu.com/view/78138.htm,2012年12月27日
第五篇:高速铁路隧道工程质量缺陷整治技术
高速铁路隧道工程质量缺陷整治技术
冀光华
(中国中铁隧道集团路桥工程处,安徽黄山 245000)
【摘要】 由于国内目前参建隧道工程施工的队伍施工能力及技术水准层次不齐,已完成并投入运营的隧道存在诸多质量问题或缺陷,给人民群众的生命及财产安全带来了极大的安全隐患,2013年中国铁路建设总公司、京福高速铁路安徽段有限责任公司先后就正在施工的京福高速铁路隧道工程质量问题专项整治工作下发了近15个管理文件,目的在于采取科学合理的技术方案或措施,把隧道工程质量问题或缺陷消灭在施工过程中或交付正式运营前,从而从真正意义上实现百年大计、质量第一的质量管理目标,本文以京福高速铁路安徽段站前各标段隧道工程为工程实例,通过对缺陷分类、整治工法的研究、探索与工程实践,总结出一套较为系统和成熟的经验,希望能为国内后续类似工程项目提供有益的技术借鉴。
【关键词】隧道工程;质量缺陷;整治技术 1 前 言
京福高速铁路安徽段站前八个标段累计承担了总计52.5座隧道约66.5KM的施工任务,截至2013年底,所有隧道将全部建成,隧道施工过程质量控制总体评价较好,各单位﹑分部﹑分项以及检验批质量满足国家现行高速铁路隧道施工技术规范﹑质量验收标准﹑基本实现施工设计文件意图;然而在施工过程中由于诸多因素影响,也产生了一些质量缺陷,为保证高标准的竣工交验,需要对隧道质量缺陷进行梳理和分类并采取针对性的措施认真进行整治。2缺陷分类
根据全线施工现场排查结果统计,52.5座隧道的缺陷分类大致分为以下十八种情况:
⑴干湿裂纹:系指大于0.3mm的施工缝部位收缩性单、双月牙形裂纹;拱墙45°不规则收缩裂纹;仰拱或底板施工缝裂纹﹑专业配电或综合洞室构造物裂纹; ⑵二次衬砌板间施工缝错台:系指大于0.5mm~10 mm的错台;
⑶二次衬砌拱墙背后脱空:分防水板后初期支护脱空及防水板前二次衬砌脱空两种情况;
⑷拱墙衬砌表面残留后置件或凸出尖锐物:系指悬挂风水及电力管线的后置钢筋或锚栓等;
⑸二次衬砌拱墙表观缺陷:系指砼冷缝﹑蜂窝麻面﹑砂化﹑离析面﹑面渗﹑违规面状修补等;
⑹接触网槽道安置错误或破损:分型号或规格使用错误;安置结构位置不准确;施工操作误损三种情况;
⑺边墙或拱部板间施工缝止水带外露;
⑻二次衬砌钢筋砼表面露筋或钢筋保护层厚度不足; ⑼隧底存在虚渣或结构砼不密实;
⑽拱部及边墙孔洞处理不规范:包括二衬背后回填压浆孔、二衬灌注孔、实体检测取芯孔、墙脚泄水孔缺失或堵塞、隧道口横向排水管漏孔等;
⑾二次衬砌结构钢筋缺失或初支钢架间距超标;
⑿不稳定块处理不到位:泛指隧道拱墙板间施工缝及孔洞周边崩边、掉角、掉砟等;
⒀接地端子缺失或安设标识错误:含综合接地和防闪络接地两种; ⒁垃圾或灰尘清理不到位:主要指通信信号及电力沟底、隧道拱墙表面、中心水沟底等施工垃圾;
⒂二次衬砌结构厚度不满足规范要求:包括仰拱、填充层及隧道底板三部分; ⒃初期支护及二次衬砌砼结构强度不满足规范要求;
⒄二次衬砌结构筑物周边轮廓棱角缺失或线型不美观:主要是隧道洞门轮廓、沟槽、专业配电和综合洞室轮廓线形等;
⒅洞外其它缺陷:系指隧道弃渣场防护绿化不规范、截水天沟施做不规范、隧道洞门或明洞背后回填质量不规范、隧道进出口洞顶上方危石未清理等。3处置工法 3.1干湿裂纹
⑴拱墙湿裂纹采取沿裂纹两侧(距离裂缝5cm)交叉斜向45°打孔(孔间距20cm)+清理裂缝和钻孔孔内灰尘+封闭裂缝+安装灌注针头+留置出气孔及观测孔+压注改性环氧树脂或其它高分子化学浆液材料进行封堵处理;边墙底部与沟槽盖板结合部需机械开槽埋管(∮50软式透水管),槽宽不小于5cm;槽深不小于10cm,最终将渗漏水引排至侧沟。
⑵隧道仰拱或底板裂纹渗漏水处理分两种情况:①隧道底板未施做前采取首先沿隧道纵向在每一条仰拱填充顶面横向施工缝处切V型槽→安设∮50软式透水管→将原设计用来排泄防撞墙侧槽水的横向∮50PVC管自弯头以下更换为∮50软式透水管→沿防撞墙底部(内测),沿隧道纵向布设通长∮50软式透水管并与横向软式透水管T接→最终将水引排至中心水沟;②隧道底板施做以后采取沿隧道横向中心水沟方向在渗漏水处用切割机和手持电搞开正梯形槽(槽宽顶15cm,底宽20cm,槽深至原隧底一铺填充层顶面)→槽底布设∮100PVC半管→管顶填筑5cm透水材料(砂或碎石),→高标号微膨胀(C30)砼封顶→最后再拉毛整体道床板区域,最终将水引排至中心水沟;③上述两种工艺结束后沿隧道中心水沟纵向中心线5m间距用手持风钻垂直钻孔,孔径42mm,孔深至仰拱底以下10cm。
⑶专业配电或综合洞室漏水
原则上采取洞顶手持电钻打孔(∮20)+安管(∮20钢管,长度大于拱顶二衬结构厚度,外露10cm 连接压浆管连接件)+螺杆压浆泵压注C30水泥净浆(水灰比C/W控制在1:1~1:2),采用注浆量及注浆压力双指标控制,注浆量控制在每个洞室0.2~0.3t水泥;注浆压力控制在小于0.4Ma 为宜,注浆记录表需严格履行施工单位负责人、现场技术员、作业队和现场监理四方签认手续。另外结合在内壁棱角部位埋管(∮50软式透水管),最终将水引排至通号及电力沟槽间侧沟。
⑷小于0.3mm的干裂纹原则上不做处理。3.2二次衬砌板间施工缝错台
大于0.5mm小于1cm的错台采用电动手砂轮45°斜切2cm缝宽打磨处理,然后用钢丝刷清理松动颗粒,表面涂刷水泥基渗透结晶防水涂料即可,小于0.5mm的错台采用电动手砂轮90°直切0.5mm缝宽打磨处理,然后用钢丝刷清理松动颗粒,表面涂刷水泥基渗透结晶防水涂料即可。3.3二次衬砌拱墙背后脱空
采取在隧道拱部手持电钻打孔(∮20)+安管(∮20钢管,长度大于拱顶二衬结构厚度,外露10cm 连接压浆管连接件)+螺杆压浆泵压注C30水泥净浆(水灰比C/W控制在1:1~1:2),采用注浆量及注浆压力双指标控制,注浆量控制在每延米0.3~0.5t水泥;注浆压力控制在小于0.3Ma 为宜。注浆记录表需严格履行施工单位负责人、现场技术员、作业队和现场监理四方签认手续。3.4拱墙衬砌表面残留后置件或凸出尖锐物
大多集中在大跨和轨面线位置,采取电动手砂轮切除并涂刷防锈漆及水泥基结晶涂料覆盖处理。3.5二次衬砌拱墙表观缺陷
对于砼表面砂化﹑离析﹑蜂窝麻面和违规面状修补采取高压风﹑水清洗砼表面,人工规则涂刷水泥基渗透结晶防水涂料进行渗透和覆盖处理;局部面渗或二衬不密实采取表面梅花形布孔﹑高压控制灌浆﹑人工规则涂刷水泥基渗透结晶防水涂料进行表面恢复;拱墙局部砼冷缝原则上不做处理。3.6接触网槽道安置错误或破损
对于现场埋置型号错误,按照以大带小原则进行现场确认和处理;对于破损错误,采取按设计图进行外置更换处理。3.7边墙或拱部板间施工缝止水带外露
该缺陷为不稳定块高发区,采取手持电钻适量开槽,电动手砂轮清除不稳定块,然后用裁纸刀割除外露止水带即可,如果割除止水带后槽洞较大(宽度大于5 cm,长度大于50 cm),需采取手持电钻打孔植筋并用环氧砂浆或水泥聚合物灌浆料进行封堵处理,植筋直径不得小于HPB12。3.8二次衬砌钢筋砼表面露筋或钢筋保护层厚度不足
⑴依据检测结果,对于钢筋保护层厚度大于等于2cm的原则上不做处理; ⑵依据检测结果,对于钢筋保护层厚度小于2cm的或钢筋彻底外露锈蚀的必须采取结构耐久性补强措施处理。
⑶对于钢筋保护层厚度大于1cm,小于2cm的区域采取表面凿毛→高压水水枪冲洗→涂刮特种加固装修胶泥(渗透性改性环氧胶泥)→水泥基渗透结晶涂料封闭表面的方法进行处理。
⑷对于钢筋彻底外露锈蚀的情况必须采取人工搭设简易门式脚手架或汽车作业平台→手持电钻剥离钢筋→钢筋重置或复位→凿毛钢筋间衬砌砼5cm 深→涂刷钢筋防锈剂→涂刮特种加固装修胶泥(渗透性改性环氧胶泥)→水泥基渗透结晶涂料封闭表面的方法进行处理。3.9隧底存在虚渣或结构砼不密实
⑴对于隧道底板存在虚渣的区段,采取手持风钻打孔(∮42)+安管(∮32钢管,长度大于隧道底板二衬结构厚度,外露10cm 连接压浆管连接件)+螺杆压浆泵压注C30水泥净浆(水灰比C/W控制在1:1~1:3),采用注浆量及注浆压力双指标控制,注浆量控制在每延米0.1~0.3t水泥;注浆压力控制在小于0.3Ma 为宜。注浆记录表(详见附件)需严格履行施工单位负责人、现场技术员、作业队和现场监理四方签认手续。
⑵上述注浆参数适用于虚渣厚度大于10cm小于30cm的工况;虚渣厚度大于30cm的工况除采取压注C30水泥净浆外还需采取打设锚杆进行结构补强;虚渣厚度小于10cm的原则上不做处理。3.10拱部及边墙孔洞处理不规范
对于边墙取芯孔洞采用结构同标号(M30)砂浆进行封堵处理;对于拱部二衬压浆孔深度超过10cm采用手持电钻打孔植筋,环氧砂浆或水泥聚合物灌浆料进行封堵处理;孔洞表面规则涂刷水泥基结晶涂料;对于遗漏泄水管采用取芯机45°取芯补孔;对于二次衬砌回填压浆管及时进行切除和封堵;对于堵塞的泄水管采用人工配合机械疏通孔洞内杂物或砼浆(块),保证排水通畅。3.11二次衬砌结构钢筋缺失或初支钢架间距超标
⑴ⅳ级围岩衬砌钢筋缺失长度小于6米的,实测二衬混个凝土强度、厚度满足设计要求,表面无裂纹,可以不处理;ⅴ级围岩衬砌施工缝两侧缺失钢筋连续长度小于3米的也可以不处理。
⑵级围岩段钢筋缺失长度大于6米小于10米的,按实际砼强度、结构厚度进行结构安全检算,不满足规定的可采用锚杆进行结构补强,长度大于10米的必须采取返工处理方案。
⑶断层带或岩溶较发育地段衬砌砼缺失钢筋的均应返工处理。
⑷ⅳ级围岩衬砌钢筋实测间距小于30cm、ⅴ级围岩衬砌钢筋实测间距小于或等于25cm的经结构安全检算,满足有关规定的可不处理。
⑸ⅳ级围岩衬砌钢筋实测间距大于30cm、ⅴ级围岩衬砌钢筋实测间距大于25cm的,根据衬砌砼实际厚度、强度,围岩级别、监控量测等情况综合分析,可采用锚杆补强处理。3.12不稳定块处理不到位
⑴对于施工缝错台周边月牙形或双裂纹块采取手持电动砂轮进行规则切缝或结合部打磨处理;
⑵对于止水带外露形成三角形不稳定快,采用手持电动砂轮适量开槽清除三角形不稳定快;对已剥离外露止水带用刀具切除处理;如果割除止水带后槽洞较大(宽度大于5 cm,长度大于50 cm),需采取手持电钻打孔植筋,利用环氧砂浆或环氧胶泥进行封堵处理。
⑶对于拱部素凝土不规则闭合裂纹独立成块,先采用手持电钻钻孔探测二次衬砌结构厚度及空腔范围,若结构厚度满足设计要求,无空腔或空腔面积小于0.3平米时,用电镐凿除不稳定快后比照空腔处理原则进行处理;若结构厚度不满足设计要求,空腔面积大于0.3平米时,比照二次衬砌背后空洞方法进行处理。
⑷对于违规修补的蹦边或干裂块,采取手持电镐凿除修补区域比照第2条处理原则进行处理。
3.13接地端子缺失或安设标识错误
一是严格按规范在现场具体部位对综合接地和防闪络接地端子进行标准符号标识,二是施做沟槽时手持电钻打孔预置∮16钢筋及桥隧型接地端子。3.14垃圾或灰尘清理不到位
隧道拱墙灰尘用高压水枪冲洗;通信信号及电力沟底的杂料或垃圾采用人工清理后安装沟槽盖板;中心水沟底杂物垃圾采用人工配合机械(挖机及自卸汽车)进行清运后安装中心水沟盖板,清理工作需专人负责,务求一次到位,隧道静态验收前需安排专人进行全隧道清洗。3.15二次衬砌结构厚度不满足规范要求
⑴Ⅱ、Ⅲ级围岩衬砌厚度大于等于25 cm的可不处理;小于25 cm的根据砼实际强度、厚度缺陷段纵向长度等情况进行结构安全检算,确定处理方案,一般可采用锚杆补强措施,且要保证锚杆灌浆质量。
⑵ⅳ级围岩衬砌厚度大于设计值80%,混凝体强度满足设计要求,连续长度小于6米经结构安全检算满足有关规定的可不处理;小于设计值80%或连续长度大于6米,经结构安全检算不满足有关规定的,根据砼实际强度、围岩条件、地下水发育情况、缺陷范围、钻孔探查验证等进行综合判断,可采用锚杆进行补强处理。⑶Ⅴ级围岩衬砌厚度不满足设计要求的必须返工处理。
⑷二次衬砌拱部局部厚度不足,可采用螺杆泵回填压注同标号水泥砂浆进行结构补强,注意注浆量及注浆压力双指标控制。
⑸根据仰拱取芯情况,仰拱填充层厚度小于设计值30cm以内,基底围岩整体性较好地段,可以进行隧底锚杆加固处理;仰拱填充层厚度小于设计值30cm以上的需进行微震静态爆破拆除,人工配合机械清理后返工处理。3.16初期支护及二次衬砌砼结构强度不满足规范要求
经取芯验证衬砌砼强度不小于设计值90%的,衬砌厚度满足要求的可以不处理;衬砌砼强度小于设计值90%,应按砼实际强度、厚度进行结构安全检算,不满足有关规定的必须返工处理。
3.17二次衬砌结构筑物周边轮廓棱角缺失或线型不美观
对洞内沟槽、专业配电和综合洞室优先安排专业工人进行技术修饰处理。3.18洞外其它缺陷
严格按施工设计文件、施工规范和验收标准精心施做。4保证措施
⑴成立隧道工程质量缺陷整治工作领导小组,负责消缺工作的整体部署及计划安排、负责整治方案、工法固化及施工现场的总体安排、负责缺陷整治工作任务的资源配置及监督和实施。
⑵按隧道单位工程建立和完善隧道问题库台账并及时进行更新,对照问题库台账,制定隧道消缺总体整改推进计划和月度具体消缺整治计划。
⑶建立质量问题销号验收台账,对问题库及时进行更新和消号。5结语
施工企业应当严格按照设计文件、施工规范和验收标准组织施工,缺陷整治终归是被动的质量补救工作,施工企业真正遵循和恪守“有法可依是前提,执法必严是过程,违法必究是结果,总结和提高是目的”的原则,才能真正意义上的做强做大。
参考文献:
⑴ 国家现行隧道施工规范及验收标准;
⑵ 中国铁路总公司和京福公司隧道施工质量专项整治相关文件。