第一篇:变电站综合自动化系统建设调试运行(小编推荐)
变电站综合自动化系统建设调试运行
结课论文
论文题目 姓名 班级 学号
智能变电站的结构形式
摘要:智能变电站是我国智能电网建设的重要环节,国内已有多个智能变电站建成投产,根据其过程层设备和间隔层设备之间的通信方式不同,其典型结构形式主要有三种。本文简要介绍了智能变电站的概念与系统结构,并分析阐述了三种不同结构形式之间的差别和优缺点。
智能变电站是智能电网建设在变电领域的重要内容,其主要作用就是为智能电网提供标准的、可靠的节点,目前已经在全国大面积铺开建设。智能变电站的大规模建成投运,将会对电网的安全运行及电力企业的增效减耗提供更有力的支持。
一、智能变电站的概念
根据《智能变电站技术导则》的定义,智能变电站是采用先进、可靠、集成、低碳、环保的设备组合而成,以全站信息数字化、通信平台网络化、信息共享标准化为基本要求,自动完成信息采集、测量、控制、保护、计量和监测等基本功能,并可根据需要支持电网实时自动控制、智能调节、在线分析决策、协同互动等高级应用功能的变电站。
二、智能变电站的系统结构
目前,智能变电站系统结构从逻辑结构层面分析,主要包括过程层、间隔层和站控层三个层次。
1.过程层。过程层由独立的智能电子装置和一次设备及其所属的智能组件构成,其中,一次设备主要包括隔离开关、断路器、电流/电压互感器、变压器等。归纳起来,过程层的主要功能有:系统运行过程中实时检测各种电气量,主要是电流、电压、相位以及谐波分量的检测;运行设备的状态参数检测,如断路器、隔离开关的位置信息等;设备操作的控制执行与驱动,如分、合断路器,隔离开关等。
2.间隔层。间隔层设备主要由二次设备组成。这些二次设备主要有系统测控装置、继电保护装置、计量装置和故障录波装置等。间隔层只采用一个间隔的数据作用于该间隔一次设备的功能,也就是和控制器、传感器以及远方的输入、输出设备实现通信。归纳起来,间隔层的主要功能有:优先控制统计运算、数据采集等控制指令的发出;实时汇总本间隔过程层的数据;实现本间隔操作的闭锁功能;实现上下结构的通信功能;保护并控制一次设备的运行;实现操作同期和其他控制功能。
3.站控层。站控层位于变电站自动化系统的最上层,包括自动化站级通信系统、对时系统、站域控制、监控系统、网络打印服务器等,对整个变电站的设备进行监控、报警以及信息的传递,主要用于数据、同步相量和电能量的采集,负责管理保护信息,具有监控、操作闭锁等功能。归纳起来,站控层的主要功能有:利用两级高速网络实全站数据信息的实时汇总,刷新实时数据库,在设定的时间点登录历史数据库;接收控制中心或调度中心的控制指令,同时将其传输至过程层和间隔层;在线维护过程层和间隔层的设备运行,对参数实施在线修改;具有在线可编程的全站操作闭锁控制功能;自动分析变电站故障,可进行操作培训;根据规定将相关数据传输至控制中心或调度中心;可实现站内监控和人机联系;实现各种智能变电站高级应用。
三、智能变电站的不同结构形式
智能变电站从最初的试点工程阶段到大规模建设阶段,由于相关技术的发展水平和应用需求的不同,在智能变电站技术发展的不同阶段出现了不同的结构形式,主要差别在于过程层设备和间隔层设备之间的通信方式。
1.“点对点”结构的智能变电站
常规变电站在结构上就是按照间隔划分的“点对点”结构,每个间隔的底层设备信息,如电流、电压、位置信息等,通过电缆硬接线直接接入到本间隔的二次设备上,因此“点对点”结构的智能变电站系统实现起来最为简单。所谓“点对点”结构,就是指测量数据由合并单元通过光纤直接连接到需要数据的保护、测控、计量、录波等装置;设备的控制信号也是由保护、测控等装置直接通过光纤连接到被控制设备的智能终端。其结构示意图如图1所示。
与常规变电站比较,“点对点”结构的智能变电站只是用光纤代替了电缆,并不能实现过程层信息的共享,没能完全发挥出智能变电站应有的优势。在实现母差等复杂保护功能时,仍然需要把每个间隔的信息通过光纤直接连接到母差保护装置上,光纤接线仍较复杂和繁多。同时,全站故障录波等自动化功能也未能得到很好的解决。因此,随着智能变电站技术的发展,“点对点”模式必将被全站信息共享的模式所取代。
2.基于网络交换机的分布式智能变电站
电子式互感器、智能一次设备和智能组件等技术的不断成熟,以及计算机高速网络在实时系统中的应用不断成熟,为智能变电站系统以及基于全站信息共享的保护和自动化技术的研究提供了良好的机会。采用工业以太网交换机作为过程总线,取代“点对点”光纤直连的方式,可以实现过程层信息的网络交换和共享。其方式系统结构如图2所示。
此种结构形式的特点:采用网络交换机实现网络通信,简化了大量的光纤直连接线,为过程层数据的交换和共享打下了坚实的基础。在此结构的基础上,实现母差保护等复杂保护功能将非常容易。这种结构更好地发挥了智能变电站在信息交换方面的优势。
3.过程层分布采集、间隔层集中控制的智能变电站
过程层采用分布式结构,用合并单元和智能终端实现数据采集;间隔层集中处理,采用系统控制器实现全站保护和自动化功能;通信网络采用网络交换机实现信息的交换和共享。该系统结构如图3所示。
过程层分布采集、间隔层集中控制的智能变电站系统包含两类关键技术:
(1)保护、自动化功能整合技术。常规变电站的二次装置主要有继电保护、测控单元、故障录波器、同步相量测量单元等装置,这些装置之间相互独立,无法形成一体化的站控层应用系统。IEC61850标准为一体化平台的实现提供了有力支持,可将测控、保护、录波、同步向量测量等装置整合成一体化的智能装置,在站控层也提供集成应用后台系统,为运行人员提供一体化功能环境。
(2)全站统一配置的集中式保护技术。集中式保护汇总了变电站每个设备的信息,在此基础上可以实现母差保护等较复杂的保护功能。集中式保护技术不但可以利用变电站每个设备的信息,而且可以利用同一设备在不同时刻的信息,从而实现保护的快速性、选择性、可靠性和灵敏性。并能实现一些变电站的站级控制功能,如无功补偿、自动电压控制等功能。
四、智能变电站不同结构形式方案比较 1.“点对点”结构的智能变电站方案
“点对点”结构形式的智能变电站,过程层设备和间隔层设备通过“点对点”的光纤直接连接,同一间隔内的过程层设备和间隔层设备存在对应关系。“点对点”结构模式的通信通道是相互独立的,不会因网络问题造成信息阻塞;“点对点”模式与常规变电站架构相似,可以遵循以往常规变电站的经验进行配置,最为简单,在通信方面出现问题的概率最小。“点对点”模式的智能变电站的主要缺点是不能实现数据的共享,且光纤接线复杂、繁多。由于“点对点”结构的智能变电站不仅技术上简单可靠,而且比较实现容易,所以,这种方案在很多的智能变电示范工程中得到应用。
2.基于网络共享的全分布式智能变电站方案
此方案采用网络交换机实现全站信息的共享,过程层采用合并单元和智能终端实现数字化、信息化,间隔层按间隔和功能配置了保护和自动化装置,这种方案的最主要优点就是实现了全站信息的共享,同时能够降低单一间隔设备故障时产生的影响。基于网络共享的分布式方案还不能基于共享信息配置全站的保护和自动化功能,难以全面发挥智能变电站信息共享的主要优势;同时,由于存在着大量的间隔层二次设备,使得网络结构复杂,也增加了智能变电站二次系统的造价。此方案适合用在对变电站可靠性要求很高的高电压等级枢纽变电站,可通过分布式间隔层设备承担不同间隔的功能,以提高系统的可靠性。
3.基于网络共享的集中式智能变电站方案 基于网络共享的集中式智能变电站方案,完全采用以太网交换技术实现全站信息的共享,过程层同样采用合并单元和智能终端实现数字化和信息化,与全分布式智能变电站方案不同的是,间隔层采用集中控制装置实现全站的保护和自动化功能。该方案优点是基于共享信息配置全站的保护和自动化功能,提高了智能变电站的自动化水平;同时简化了间隔层二次设备,大大降低了工程造价。利用集中控制装置的同时,也产生了相关的可靠性风险,集中控制装置如果出现故障,对智能变电站的安全运行将会造成非常大的影响,因此通常需要配置冗余系统。集中式的结构也给按间隔停电检修带来问题,适用于低电压等级的智能化变电站或高电压等级智能化变电站的低压部分。
4.基于网络共享的集中、分布相结合的智能变电站方案基于网络共享的集中、分布相结合的智能变电站结构方案,综合了集中式和分布式的优点,同时也克服了集中和分布式自身的缺点,根据变电站的实际情况配置集中、分布的功能,例如对高电压等级采用分布功能,对低电压等级采用集中功能,这种结构形式的智能变电站将是未来的发展目标。
第二篇:浅谈变电站综合自动化系统
浅谈变电站综合自动化系统
吴科续
(丰满发电厂,吉林
丰满
132108)
摘 要:本文简要介绍了变电站综合自动化系统的重要性和发展趋势,提出了变电站综合自动化基本概念,并对系统结构、通讯方式和能实现的基本功能及变电站自动化的发展前景进行分析。
关键词:变电站综合 自动化系统 结构 功能
1.前言
电网是一个不可分割的整体,对整个电网的一、二次设备信息进行综合利用,对保证电网安全稳定运行具有重大的意义。变电站综合自动化是一项提高变电站安全、可靠稳定运行水平,降低运行维护成本,提高经济效益,向用户提供高质量电能服务的一项措施。随着自动化技术、通信技术、计算机和网络技术等高科技的飞速发展,一方面综合自动化系统取代或更新传统的变电站二次系统,已经成为必然趋势。另一方面,保护本身也需要自检查、故障录波、事件记录、运行监视和控制管理等更强健的功能。发展和完善变电站综合自动化系统,是电力系统发展的新的趋势。2.系统结构
目前从国内、外变电站综合自动化的开展情况而言,大致存在以下几种结构:2.1分布式系统结构
按变电站被监控对象或系统功能分布的多台计算机单功能设备,将它们连接到能共享资源的网络上实现分布式处理。系统结构的最大特点是将变电站自动化系统的功能分散给多台计算机来完成。分布式模式一般按功能设计,采用主从CPU系统工作方式,多CPU系统提高了处理并行多发事件的能力,解决了CPU运算处理的瓶颈问题。各功能模块(通常是多个CPU)之间采用网络技术或串行方式实现数据通信,选用具有优先级的网络系统较好地解决了数据传输的瓶颈问题,提高了系统的实时性。分布式结构方便系统扩展和维护,局部故障不影响其他模块正常运行。该模式在安装上可以形成集中组屏或分层组屏两种系统组态结构,较多地使用于中、低压变电站。分布式变电站综合自动化系统自问世以来,显示出强大的生命力。目前,还存在在抗电磁干扰、信息传输途径及可靠性保证上的问题等。
2.2集中式系统结构
集中式一般采用功能较强的计算机并扩展其I/O接口,集中采集变电站的模拟量和数量等信息,集中进行计算和处理,分别完成微机监控、微机保护和自动控制等功能。由前置机完成数据输入输出、保护、控制及监测等功能,后台机完成数据处理、显示、打印及远方通讯等功能。目前国内许多的厂家尚属于这种结构方式,这种结构有以下不足:
(1)前置管理机任务繁重、引线多,降低了整个系统的可靠性,若前置机故障,将失去当地及远方的所有信息及功能。
(2)软件复杂,修改工作量大,系统调试烦琐。
(3)组态不灵活,对不同主接线或规模不同的变电站,软、硬件都必须另行设计,工作量大并且扩展一些自动化需求的功能较难。2.3分层分布式结构
按变电站的控制层次和对象设置全站控制级——变电站层(站级测控单元)和就地单元控制级——间隔层(间隔单元)的二层式分布控制系统结构。也可分为三层,即变电站层、通信层和间隔层。
这种结构相比集中式处理的系统具有以下明显的优点:
(1)可靠性提高,任一部分设备故障只影响局部,即将“危险”分散,当站级系统或网络故障,只影响到监控部分,而最重要的保护、控制功能在段级仍可继续运行;段级的任一智能单元损坏不应导致全站的通信中断,比如长期霸占全站的通信网络。
(2)可扩展性和开放性较高,利于工程的设计及应用。
(3)站内二次设备所需的电缆大大减少,节约投资也简化了调试维护。3.常见通讯方式
目前国内常采用以太网通讯方式,在以太网出现之前,无论RS-232C、EIA-422/485都无法避免通信系统繁琐、通讯速度缓慢的缺陷。现场总线的应用部分地缓解了便电站自动化系统对通信的需求,但在系统容量较大时依然显得捉襟见肘,以太网的应用,使通讯问题迎刃而解。常见的通讯方式有:
(1)双以太网、双监控机模式,主要是用于220-500kV变,在实现上可以是双控机+双服务器方式,支撑光/电以太网。
(2)单以太网,双/单监控机模式。
(3)双LON网,双监控机模式。
(4)单LON网,双/单监控机模式。4.变电站自动化系统应能实现的功能
4.1微机保护:是对站内所有的电气设备进行保护,包括线路保护,变压器保护,母线保护,电容器保护及备自投,低频减载等安全自动装置。各类保护应具有下列功能:
(1)故障记录。(2)存储多套定值。
(3)显示和当地修改定值。
(4)与监控系统通信。根据监控系统命令发送故障信息,动作序列,当前整定值及自诊断信号,接收监控系统选择或修改定值,校对时钟等命令,通信应采用标准规约。
4.2数据采集及处理功能
包括状态数据,模拟数据和脉冲数据
(1)状态量采集
状态量包括:断路器状态,隔离开关状态,变压器分接头信号及变电站一次设备告警信号、事故跳闸总信号、预告信号等。目前这些信号大部分采用光电隔离方式输入系统,也可通过通信方式获得。
(2)模拟量采集
常规变电站采集的典型模拟量包括:各段母线电压、线路电压,电流和有功、无功功率值。馈线电流,电压和有功、无功功率值。4.3事件记录和故障录波测距
事件记录应包含保护动作序列记录,开关跳合记录。变电站故障录波可根据需要采用两种方式实现,一是集中式配置专用故障录波器,并能与监控系统通信。另一种是分散型,即由微机保护装置兼作记录及测距计算,再将数字化的波型及测距结果送监控系统由监控系统存储和分析。
4.4控制和操作功能
操作人员可通过后台机屏幕对断路器,隔离开关,变压器分接头,电容器组投切进行远方操作。为了防止系统故障时无法操作被控设备,在系统设计时应保留人工直接跳合闸手段。
4.5系统的自诊断功能
系统内各插件应具有自诊断功能,并把数据送往后台机和远方调度中心。对装置本身实时自检功能,方便维护与维修,可对其各部分采用查询标准输入检测等方法实时检查,能快速发现装置内部的故障及缺陷,并给出提示,指出故障位置。
4.6数据处理和记录
历史数据的形成和存储是数据处理的主要内容,它包括上一级调度中心,变电管理和保护专业要求的数据,主要有:
(1)断路器动作次数。
(2)断路器切除故障时截断容量和跳闸操作次数的累计数。
(3)输电线路的有功、无功,变压器的有功、无功、母线电压定时记录的最大,最小值及其时间。
(4)独立负荷有功、无功,每天的峰谷值及其时间。
(5)控制操作及修改整定值的记录。
根据需要,该功能可在变电站当地全部实现,也可在远动操作中心或调度中心实现。
4.7人机联系系统的自诊断功能
系统内各插件应具有自诊断功能,自诊、断信息也像被采集的数据一样周期性地送往后台机和远方调度中心或操作控制中心与远方控制中心的通信。
4.8本功能在常规远动“四遥”的基础上增加了远方修改整定保护定值、故障录波与测距信号的远传等,其信息量远大于传统的远动系统。还应具有同调度中心对时,统一时钟的功能和当地运行维护功能。
5.结束语
通过以上分析,可以看到变电所综合自动化对于实现电网调度自动化和现场运行管理现代化,提高电网的安全和经济运行水平起到了很大的促进作用,它将能大大加强电网一次、二次系统的效能和可靠性,对保证电网安全稳定运行具有重大的意义。随着技术的进步和硬件软件环境的改善,它的优越性必将进一步体现出来。■ 参考文献
1.杨奇逊.变电站综合自动化技术发展趋势.电力系统自动化,1995。
2.王海猷,贺仁睦.变电站综合自动化监控主站的系统资源平衡.电网技术,1999。
2008.05.08 吴科续(1978-),男,工程师,从事水轮发电机组值班员工作。邮 编:132108 通讯地址:吉林市丰满发电厂发电部 联系电话:*** 工作电话:0432-4604511
第三篇:浅析变电站综合自动化系统
浅析整流供电综自动化系统
周玉杰
(鸿骏铝电公司动力一分厂,内蒙古 霍林郭勒市 029200)摘要:本文简要介绍了变电站综合自动化系统的重要性和发展趋势,提出了变电站综合自动化基本概念,并对系统结构、通讯方式和能实现的基本功能及变电站自动化的发展前景进行分析 关键词:变电站综合 自动化系统 结构 功能
1.概述
近几年全国电解铝行业发展讯速,生产规模不断扩大,从整个铝冶炼行业的安全生产特点来看,整流供电综合自动化系统越来越受到重视。变电站综合自动化是一项提高变电站安全、可靠稳定运行水平,降低运行维护成本,提高经济效益,向电解提供高质量电能服务的一项措施。随着自动化技术、通信技术、计算机和网络技术等高科技的飞速发展,一方面综合自动化系统取代或更新传统的变电站二次系统,已经成为必然趋势。另一方面,保护本身也需要自检查、故障录波、事件记录、运行监视和控制管理等更强健的功能。发展和完善供电整流综合自动化系统是今后整流供电发展的新的趋势。
2.系统结构
目前从国内整流供电综合自动化的开展情况而言,大致存在以下几种结构:
2.1分布式系统结构
按变电站被监控对象或系统功能分布的多台计算机单功能设备,将它们连接到能共享资源的网络上实现分布式处理。系统结构的最大特点是将变电站自动化系统的功能分散给多台计算机来完成。分布式模式一般按功能设计,采用主从CPU系统工作方式,多CPU系统提高了处理并行多发事件的能力,解决了CPU运算处理的瓶颈问题。各功能模块(通常是多个CPU)之间采用网络技术或串行方式实现数据通信,选用具有优先级的网络系统较好地解决了数据传输的瓶颈问题,提高了系统的实时性。分布式结构方便系统扩展和维护,局部故障不影响其他模块正常运行。该模式在安装上可以形成集中组屏或分层组屏两种系统组态结构,较多地使用于中、低压变电站。分布式变电站综合自动化系统自问世以来,显示出强大的生命力。
2.2集中式系统结构
集中式一般采用功能较强的计算机并扩展其I/O接口,集中采集变电站的模拟量和数量等信息,集中进行计算和处理,分别完成微机监控、微机保护和自动控制等功能。由前置机完成数据输入输出、保护、控制及监测等功能,后台机完成数据处理、显示、打印及远方通讯等功能。目前国内许多的厂家尚属于这种结构方式,这种结构有以下不足:
(1)前置管理机任务繁重、引线多,降低了整个系统的可靠性,若前置机故障,将失去当地及远方的所有信息及功能。
(2)软件复杂,修改工作量大,系统调试烦琐。
(3)组态不灵活,对不同主接线或规模不同的变电站,软、硬件都必须另行设计,工作量大并且扩展一些自动化需求的功能较难。
2.3分层分布式结构
按变电站的控制层次和对象设置全站控制级——变电站层(站级测控单元)、就地单元控制级——间隔层(间隔单元)的二层式分布控制系统结构。也可分为三层,即站控层、通信层和间隔层。
这种结构相比集中式处理的系统具有以下明显的优点:
2.3.1可靠性提高,任一部分设备故障只影响局部,即将“危险”分散,当站级系统或网络故障,只影响到监控部分,而最重要的保护、控制功能在段级仍可继续运行;段级的任一智能单元损坏不应导致全站的通信中断,比如长期霸占全站的通信网络。
2.3.2可扩展性和开放性较高,利于工程的设计及应用。
2.3.3站内二次设备所需的电缆大大减少,节约投资也简化了调试维护。目前全国各大铝厂供电系统均采用分层分布式结构,下面就这种方式展开讨论。
3.电解铝供电综自系统结构方式 3.1 系统结构
3.1.1变电站自动化系统由站控层、网络层和间隔层三部分组成,并用分层、分布、开放式网络系统实现连接。站控层设备及网络发生故障而停运时,不能影响间隔层的正常运行。
3.1.2 站控层由计算机网络连接的系统主机及操作员站和各工作站等设备构成,提供站内运行的人机联系界面,实现管理控制间隔层设备等功能,形成全站监控、管理中心,并可与调度中心和集控站通信。站控层的设备可集中或分散布置。3.1.3网络层是站控层与间隔层联络的中枢,间隔层的信息通过网络层最后到达站控层,实现信息的收集功能;站控层的遥控和遥调指令通过网络层到达间隔,实现控制功能。随着通讯技术的快速发展,测控和保护装置对外通信接口基本都能实现双以太网口通讯,网络层架构按双网配置,主备网之间可以实现无扰动切换。由于网络层设备的发展,又赋予了网络层设备新的功能,既通讯协议的解析,这种设计理念正逐步在铝电解供电综自系统中得到应用,也是未来发展的趋势。由于间隔层设备的厂家较多,通讯规约没有一个统一的标准,整个通讯规约的解析主要由站控层来完成,这就增加了站控层设备的负荷,结果导致整个综自系统的反应速度提不上来。底层的协议由网络层具有高性能、高效率的硬件芯片来完成,大大提高的协议解析的速度和效率,同时又减轻了站控层设备的负担。3.1.4间隔层由测控单元、间隔层网络和各种网络、通信接口设备等构成,完成面向单元设备的监测控制等功能。间隔层设备按相对集中方式分散下放到各个继保小室。系统结构的分布性必须满足系统中任一装置故障或退出都不应影响系统的正常运行
3.2 网络结构
3.2.1 网络拓扑结构采用总线型、环形、星型方式。
站控层设备采用基于TCP/IP或UDP/IP协议的以太网方式组网,并具有良好的开放性,能满足与电力系统专用网络连接及容量扩充等要求。每一继保小室可设一子网,合理的控制整个网络的流量,防止网络风暴的产生。
3.2.2 站控层和间隔层均采用双重化监控网络,网络设备按双重化配置,双网按热备用方式运行。
3.2.3 具备合理网络架构和信息处理机制,能够保证在正常运行状态及事故状态下均不会出现因为网络负荷过重而导致系统死机或严重影响系统运行速度的情况。
3.3站控层设备及其功能
站控层设备包括主机、操作员工作站、远动通讯装置、故障及信息系统子站、微机五防系统、GPS对时系统以及其它智能接口。
3.3.1主机
具有主处理器及服务器的功能,为站控层数据收集、处理、存储及发送的中心,管理和显示有关的运行信息,供运行人员对变电站的运行情况进行监视和控制,间隔层设备工作方式的选择,实现各种工况下的操作闭锁逻辑等。大都采用两台主机互为热备用工作方式。
3.3.2操作员工作站
是站内自动化系统的主要人机界面,用于图形及报表显示、事件记录及报警状态显示和查询,设备状态和参数的查询,操作指导,操作控制命令的解释和下达等。通过操作员站,运行值班人员能够实现全站设备的运行监视和操作控制。可以配置两台操作员站,操作员站间应能实现相互监视操作的功能。
3.3.3故障及信息系统子站
能在正常和电网故障时,采集、处理各种所需信息,并充分利用这些信息,为继电保护运行、管理服务,为分析、处理电网故障提供支持。工作站大都具备多路数据转发的能力,能够通过网络通道向多个调度中心进行数据转发,通信规约应符合当地电网继电保护故障信息系统通信与接口规范。支持根据调度中心命令对相应装置进行查询和远程维护,包括远程配置、可视化数据库维护、参数的上传下载、设备运行状态监视等。故障及信息系统子站双机配置,采用互为热备用工作方式,双机都能独立执行各项功能。当一台工作站故障时,系统实现双机无缝自动切换,由另一台工作站执行全部功能,并保证切换时数据不丢失,并同时向各级调度和操作员站发送切换报警信息。
3.3.4远动通讯装置
满足直采直送要求,收集全站测控装置、保护装置等设备的数据,将信息通过双通道(专线或网络通道)上传至上一级调度中心,调度中心下发的遥控命令向变电站间隔层设备转发。
远动通信装置双机配置,采用互为热备用工作方式,双机都能独立执行各项功能。当一台通信装置故障时,系统实现双机无缝自动切换,由另一台通信装置执行全部功能,并同时向各级调度和主机发送切换报警信息。也可采用双主机工作方式。
3.2.5微机五防系统
微机五防系统主要包含五防主机、五防软件、电脑钥匙、充电通信控制器、编码锁具等,实现面向全站设备的综合操作闭锁功能。微机五防系统应与变电站自动化系统一体化配置,五防软件应是变电站自动化系统后台软件的一个有机组成部分,独立配置一台微机五防工作站。
3.2.6 GPS对时系统
为故障录波装置、微机保护装置、测控装置和站控层设备等提供统一时间基准的系统。
4.结束语
随着计算技术、网络技术、通讯技术、视频技术的发展,整流供电综合自动化系统将赋予更强大的功能,其将为电解安全平稳供电发挥越来越重要的作用。
参考文献
1.胡建斌.《霍煤鸿骏铝电公司二期铝合金项目综自系统技术协议》,2007年02月。作者简介 周玉杰、1970、山东济宁、中级程序员、大学、供电技术及其自动化、主要从事变压站综合自动化及远动工作、E-mail:hlh_zhouyj@126.com、电话:(0475)7959106
第四篇:浅析变电站综合自动化系统
浅析变电站综合自动化系统 开封供电公司 齐明亮
摘 要:本文简要介绍了变电站综合自动化系统的重要性和发展趋势,提出了变电站综合自动化基本概念,并对系统结构、通讯方式和能实现的基本功能及变电站自动化的发展前景进行分析
关键词:变电站综合 自动化系统 结构 功能
一、概述
电网是一个不可分割的整体,对整个电网的一、二次设备信息进行综合利用,对保证电网安全稳定运行具有重大的意义。变电站综合自动化是一项提高变电站安全、可靠稳定运行水平,降低运行维护成本,提高经济效益,向用户提供高质量电能服务的一项措施。随着自动化技术、通信技术、计算机和网络技术等高科技的飞速发展,一方面综合自动化系统取代或更新传统的变电站二次系统,已经成为必然趋势。另一方面,保护本身也需要自检查、故障录波、事件记录、运行监视和控制管理等更强健的功能。发展和完善变电站综合自动化系统,是电力系统发展的新的趋势。
二、系统结构
目前从国内、外变电站综合自动化的开展情况而言,大致存在以下几种结构:
1.分布式系统结构
按变电站被监控对象或系统功能分布的多台计算机单功能设备,将它们连接到能共享资源的网络上实现分布式处理。系统结构的最大特点是将变电站自动化系统的功能分散给多台计算机来完成。分布式模式一般按功能设计,采用主从CPU系统工作方式,多CPU系统提高了处理并行多发事件的能力,解决了CPU运算处理的瓶颈问题。各功能模块(通常是多个CPU)之间采用网络技术或串行方式实现数据通信,选用具有优先级的网络系统较好地解决了数据传输的瓶颈问题,提高了系统的实时性。分布式结构方便系统扩展和维护,局部故障不影响其他模块正常运行。该模式在安装上可以形成集中组屏或分层组屏两种系统组态结构,较多地使用于中、低压变电站。分布式变电站综合自动化系统自问世以来,显示出强大的生命力。目前,还存在在抗电磁干扰、信息传输途径及可靠性保证上的问题等。
2.集中式系统结构
集中式一般采用功能较强的计算机并扩展其I/O接口,集中采集变电站的模拟量和数量等信息,集中进行计算和处理,分别完成微机监控、微机保护和自动控制等功能。由前置机完成数据输入输出、保护、控制及监测等功能,后台机完成数据处理、显示、打印及远方通讯等功能。目前国内许多的厂家尚属于这种结构方式,这种结构有以下不足:
(1)前置管理机任务繁重、引线多,降低了整个系统的可靠性,若前置机故障,将失去当地及远方的所有信息及功能。
(2)软件复杂,修改工作量大,系统调试烦琐。(3)组态不灵活,对不同主接线或规模不同的变电站,软、硬件都必须另行设计,工作量大并且扩展一些自动化需求的功能较难。
3.分层分布式结构
按变电站的控制层次和对象设置全站控制级——变电站层(站级测控单元)和就地单元控制级——间隔层(间隔单元)的二层式分布控制系统结构。也可分为三层,即变电站层、通信层和间隔层。
这种结构相比集中式处理的系统具有以下明显的优点:
(1)可靠性提高,任一部分设备故障只影响局部,即将“危险”分散,当站级系统或网络故障,只影响到监控部分,而最重要的保护、控制功能在段级仍可继续运行;段级的任一智能单元损坏不应导致全站的通信中断,比如长期霸占全站的通信网络。
(2)可扩展性和开放性较高,利于工程的设计及应用。
(3)站内二次设备所需的电缆大大减少,节约投资也简化了调试维护。
三、常见通讯方式
目前国内常采用以太网通讯方式,在以太网出现之前,无论RS-232C、EIA-422/485都无法避免通信系统繁琐、通讯速度缓慢的缺陷。现场总线的应用部分地缓解了便电站自动化系统对通信的需求,但在系统容量较大时依然显得捉襟见肘,以太网的应用,使通讯问题迎刃而解。常见的通讯方式有: 1)双以太网、双监控机模式,主要是用于220-500kV变,在实现上可以是双控机+双服务器方式,支撑光/电以太网。2)单以太网,双/单监控机模式。3)双LON网,双监控机模式。4)单LON网,双/单监控机模式。
四、变电站自动化系统应能实现的功能
1.微机保护:是对站内所有的电气设备进行保护,包括线路保护,变压器保护,母线保护,电容器保护及备自投,低频减载等安全自动装置。各类保护应具有下列功能: 1)故障记录2)存储多套定值
3)显示和当地修改定值
4)与监控系统通信。根据监控系统命令发送故障信息,动作序列。当前整定值及自诊断信号。接收监控系统选择或修改定值,校对时钟等命令。通信应采用标准规约。
2.数据采集及处理功能
包括状态数据,模拟数据和脉冲数据
1)状态量采集
状态量包括:断路器状态,隔离开关状态,变压器分接头信号及变电站一次设备告警信号、事故跳闸总信号、预告信号等。目前这些信号大部分采用光电隔离方式输入系统,也可通过通信方式获得。
2)模拟量采集 常规变电站采集的典型模拟量包括:各段母线电压、线路电压,电流和有功、无功功率值。馈线电流,电压和有功、无功功率值。
3.事件记录和故障录波测距
事件记录应包含保护动作序列记录,开关跳合记录。
变电站故障录波可根据需要采用两种方式实现,一是集中式配置专用故障录波器,并能与监控系统通信。另一种是分散型,即由微机保护装置兼作记录及测距计算,再将数字化的波型及测距结果送监控系统由监控系统存储和分析。
4.控制和操作功能
操作人员可通过后台机屏幕对断路器,隔离开关,变压器分接头,电容器组投切进行远方操作。为了防止系统故障时无法操作被控设备,在系统设计时应保留人工直接跳合闸手段。
5.防误闭锁功能
6.系统的自诊断功能
系统内各插件应具有自诊断功能,并把数据送往后台机和远方调度中心。对装置本身实时自检功能,方便维护与维修,可对其各部分采用查询标准输入检测等方法实时检查,能快速发现装置内部的故障及缺陷,并给出提示,指出故障位置。7.数据处理和记录
历史数据的形成和存储是数据处理的主要内容,它包括上一级调度中心,变电管理和保护专业要求的数据,主要有: 1)断路器动作次数;
2)断路器切除故障时截断容量和跳闸操作次数的累计数;
3)输电线路的有功、无功,变压器的有功、无功、母线电压定时记录的最大,最小值及其时间;
4)独立负荷有功、无功,每天的峰谷值及其时间;
5)控制操作及修改整定值的记录。
根据需要,该功能可在变电站当地全部实现,也可在远动操作中心或调度中心实现。
8.人机联系系统的自诊断功能
系统内各插件应具有自诊断功能,自诊、断信息也像被采集的数据一样周期性地送往后台机和远方调度中心或操作控制中心与远方控制中心的通信。
9.本功能在常规远动“四遥”的基础上增加了远方修改整定保护定值、故障录波与测距信号的远传等,其信息量远大于传统的远动系统。还应具有同调度中心对时,统一时钟的功能和当地运行维护功能。
五、结语
通过以上分析,可以看到变电所综合自动化对于实现电网调度自动化和现场运行管理现代化,提高电网的安全和经济运行水平起到了很大的促进作用,它将能大大加强电网一次、二次系统的效能和可靠性,对保证电网安全稳定运行具有重大的意义。随着技术的进步和硬件软件环境的改善,它的优越性必将进一步体现出来。
第五篇:浅析变电站综合自动化运行管理
浅析变电站综合自动化运行管理
时间:2010-10-11 16:29来源:电力知识在线 作者:网络 点击:次
1变电站监控系统的运行管理 变电站监控系统是把变电站中的中央信号、事故音响、运行数据、倒闸操作等功能综合起来,进行统一管理,将各种信息进行分析、筛选和归类,以利于进行正常的监控和操作。变电站综合自动化监控系统的运行管理可分为日常管理、交接班、倒 1变电站监控系统的运行管理
变电站监控系统是把变电站中的中央信号、事故音响、运行数据、倒闸操作等功能综合起来,进行统一管理,将各种信息进行分析、筛选和归类,以利于进行正常的监控和操作。变电站综合自动化监控系统的运行管理可分为日常管理、交接班、倒闸操作、验收和故障处理等。
1.1日常管理
1.1.1一般规定
(1)核对“四遥”即遥测、遥信、遥控、遥调的正确性。进行通信网络测试、标准时钟校对等维护,发现问题及时处理并做好记录。
(2)进行变电站例行遥控传动试验和对上级调度自动化系统信息及功能有影响的工作前,应及时通知有关的调度自动化值班人员,并获得许可。
(3)一次设备变更(比如设备的增减、主接线的变更、互感器变比改变等)后,修改相应的画面和数据等内容时,应以经过批准的书面通知为准。
(4)运行中严禁关闭监控系统报警音箱,应将音箱音量调至适中位置。
(5)未经调度或上级许可,值班人员不得擅自将监控系统退出(除故障外),如有设备故障退出,必须及时汇报调度员。
(6)五防解锁钥匙应统一管理,由上级主管授权使用。
(7)每隔半年将主机历史数据进行备份,该工作应由站长联系公司远动班完成,如条件允许,应采用磁盘阵列的方式进行备份。
(8)保持监督控制中心和周围环境的整齐清洁。
1.1.2日常监控
监控系统的日常监控,是指以微机监控系统为主、人工为辅的方式,对变电站内的日常信息进行监视、控制、以掌握变电站一次主设备、站用电及直流系统、二次继电保护和自动装置等的运行状态,保证变电站正常运行的目的。日常监控是变电站最基本的一项工作,每个运行人员都必须了解微机监控系统日常监控的内容并掌握其操作方法。
监控系统的日常监视的内容:各子站一次主接线及一次设备;各子站继电保护及自动装置的投入情况和运行情况;电气运行参数(如有功功率、无功功率、电流、电压和频率等),各子站潮流流向;光字牌信号动作情况,并及时处理;主变分接开关运行位置;每小时查看日报表中各整点时段的参数(如母线电压,线路电流、有功及无功功率,主变温度,各侧电流、有功功率及无功功率等);电压棒型图、各类运行日志;事故信号、预告信号试验检查;五防系统网络的运行状态;UPS电源的运行情况;直流系统的运行情况。
1.1.3操作监控
操作监控是指操作人员在变电站内进行倒闸操作、继电保护及自动装置的投退操作以及其他特殊操作工作时,监控人员对操作过程中监控系统的各类信息进行监视、控制,以保证各种变电设备及操作人员在操作过程中的安全。
操作监控的内容有一次设备的倒闸操作,继电保护及自动装置连接片的投退操作。
1.1.4事故处理异常监控
事故监控是指变电站在发生事故跳闸或其他异常情况时,监控人员对发生事故或异常情况前后某一特定时间段内的信息进行监视、分析及控制,以迅速正确地判断处理各类突发情况,使电网尽快恢复到事故或异常情况前的运行状态,保证本站设备安全可靠地运行,确保整个系统的稳定。
事故监视的内容一般有主变压器、线路断路器继电保护动作跳闸处理的监视;主变压器过负荷的异常运行监视;主变压器冷却器故障的处理;主变压器油温异常的监控;各曲线图中超出上、下限值的监视及处理;音响失灵后监控;系统发生扰动后的监控;光字牌信号与事故、异常监控等。
1.2交接班和倒闸操作管理
监控中心交接班与原常规站交接班内容基本相同,要明确设备运行方式、倒闸操作、设备检修、继电保护自动装置运行情况、设备异常事故处理、工作票执行情况等方面的内容。需要特别注意的有两个事项:网络的测试情况和所有工作站病毒检查情况。通讯一旦中断或网络发生异常监控中心对各变电站将会束手无策。倒闸操作一般应在就地监控微机上进行,监控值班人员在就地监控微机上进行任何倒闸操作时,仍要严格遵守DL408-1991《电业安全工作规程(发电厂和变电所电气部分)》的规定,一人操作,一人监护。监控值班人员必须按规定的权限进行操作,严禁执行非法命令或超出规定的权限进行操作。1.3验收管理
就地监控微机要求有与现场设备一致的一次主接线图,在图中可以调用和显示电压、负荷曲线、电压的棒图或保护的状态,能对断路器进行控制,投退保护压板,调整主变分接头,查看历史数据等功能。要在日常的运行中获得可靠的信息,初期的验收主要有遥测量(YC)、遥信量(YX)、遥控量(YK)、遥调量(YT)四个方面的内容。
1.3.1遥测量
遥测量指信息收集和执行子系统收集到的,反映电力系统运行状态的各种运行参数(基本上是模拟量)。
正常的遥测量数据包括:主变压器各侧的有功及无功功率、电流、变压器的上层油温;线路的有功及无功功率、电流(220kV以上线路三相电流);母线分段开关的有功功率、电流;母线电压、零序电压(3UO);电容器的无功功率、电流;消弧线圈的零序电流;直流系统的浮充电压、蓄电池端电压、控母电压、合母电压、充电电流;站用变的电压、系统频率。这些正常的遥测数据,测量误差应小于1%,在验收时要逐一核对,根据现场情况尽可能在送电前完成。
1.3.2遥信量
遥信量指反映电力系统结构状态的各种信息,是开关量(需经隔离才能送入远动装置)。
遥信量数据包括:开关位置信息;开关远方/就地切换信号;开关异常闭锁信号、操作机构异常信号、控制回路断线信号;保护动作、预告信号、保护装置故障信号;主变压器有载分头位置、油位异常信号、冷却系统动作信号、主变压器中性点接地隔离开关与运行方式改变有关的隔离开关位置信号;自动装置投切、动作、故障信号(即DZJZ,备用电源装置);直流系统故障信号,现场手动操作解除闭锁系统信号;全站事故总信号、预告总信号、各段母线接地信号、重合闸动作信号、远动终端下行通道故障信号、消防及安全防范装置动作信号(火灾报警)。
遥信量的选择不见得是越多越好,对重要的与不重要的加以区分,应选择重要的保护与开关量信息,当一次系统发生事故时,会有大量的数据,如果不进行选择会影响人对事故的正确判断及对事故的快速反应。也可增加相应的特殊信号或对一些遥信量进行合并,合并的信号运行人员应清楚是哪几个信号,如控制回路断线、机构异常等。
1.3.3遥控量
遥控量指改变设备运行状况的控制命令,包括开关分、合;变压器中性点地刀分、合;保护软压板的投、解。要求遥控量的传输可靠。验收时要核对正确性,还需做一些必要的措施,尤其是第一次控制开关(就地微机、监控微机数据库有变化时)现场要有防误控的措施,把运行设备的远方/就地开关切换至就地。设备只要有检修时,要对开关遥控进行分、合测试,以保证其正确性。
1.3.4遥调量
遥调量是指连续或断续改变设备运行参数的有关信息,如变压器的分接头等。验收时分接头位置指示与实际相符,调升命令下达后变压器分接头应该升。
1.4事故异常管理
监控系统的故障处理或事故抢修应等同于电网一次设备的故障处理或事故抢修。变电站现场事故处理预案中要加入监控系统部分。监控系统设备出现严重故障或异常,影响到电气设备操作的安全运行时,按事故预案处理,并加强对电网一次、二次设备的监视,以避免出现电网事故或因监视不力危及设备和电网安全。同时立即汇报调度和本部门分管领导确定抢修方案,统一安排处理。
监控机发出异常报警时,监控人员应及时检查,必要时检查相应的一、二次设备。监控系统主机故障,备用机若不能自动切换时,应及时向调度和有关部门汇报,尽快处理。在监控系统退出期间,运行人员应加强对一、二次设备的巡视,及时发现问题。在处理事故、进行重要测试或操作时,有关二次回路上的工作必须停止,运行人员不得进行运行交接班。监控系统设备永久退出运行,设备维护单位需向上级调度自动化管理部门提出书面申请,经自动化主管领导批准后方可进行。
2存在的问题及对策
改造后的变电站综合自动化系统由于设备问题、电磁干扰、通道误码等原因,信息误发、漏发情况时有发生。往往在事故情况下有大量的信息上传,因此要求值班人员能迅速进行判断。简单可行的办法是一看时间,二看遥测量。无论什么保护动作其启动都是由动作量值整定的,都有一个启动到动作出口的过程。计算机将保护动作的过程按时间顺序体现出来,通过遥信量的分、秒、毫秒在同一时间段内有不同的保护动作情况,可以判断为误遥信。再结合遥测量的变化、相应开关变位、事故总动作信号来判断。例如:主变有一侧开关变位,三侧电流、有功、无功正常,中、低压侧电压正常,这时应判断开关变位是误发或现场把控制电源断开所引起。
运行中经常出现的异常有通讯中断、监控微机死机、遥测值不刷新和遥控拒控制。异常或事故处理时应坚持以下处理步骤:记录跳闸开关名称及编号,在事故报警窗中查询开关的跳闸时间及保护动作情况、时间,做好记录后将变位设备对位。
3结束语
变电站综合自动化系统的运行管理需要结合现场实际不断探索,尤其在日常运行、交接班、倒闸操作、设备验收、异常事故处理等方面不断研究,加强每一个环节的管理,变电运行管理才能扎实有效,变电站的安全运行才能得以保证。
(责任编辑:资料在线)