第一篇:人教版六年级上册比的意义教学设计
人教版六年级上册数学《比的意义》教学设计
教学目标
一、知识教学点
1、理解比的意义,知道比的各部分名称、会读、会写、会求比值。
2、理解并掌握比与分数、除法的关系。
二、能力训练点
1、培养学生的分析、比较和综合能力。
2、进一步培养学生的抽象概括能力。
三、德育渗透点
1、渗透爱国主义教育。
2、引导学生探索知识间的内在联系,激发学生学习兴趣。
四、美育渗透点。
通过演示,使学生感悟到数学知识内在联系的逻辑之美,增强审美意识。教学流程
一、创设情境,导入新课。
师:同学们,每周一,我们来到学校后必须要做的一件事是什么? 生:(齐说)升国旗。
师:是呀,五星红旗是我们祖国的尊严和荣誉的象征,我们每一位中国人都为之感到骄傲和自豪。老师手中也有一面红旗(出示红旗),瞧,五星红旗是如此的灿烂、如此的美丽,但你知道吗?它还蕴藏着很多有趣的数学问题呢!你想了解它吗?老师告诉你:它的长为3米,宽为2米,你能提出什么问题呢?又如何解答?
生1:我能求出五星红旗的周长。生2:我能求出五星红旗的面积。
生3:我能求出长是宽的几倍,宽是长的几分之几。
师:大家提出的问题都很好,有哪些是表示倍数关系的呢? 学生说后,老师根据学生回答板书: 3÷2=1 2÷3=
师:这是我们以前学过的倍数关系。今天,我们再来学习一种新的关系,是什么呢?
板书标题:比
二、自主探究,团结合作。
师:比到底是一种什么样的关系呢? 生1:比表示一场比赛的比分。生2:比表示两个数相除。
生3:比表示两个数相除,又表示两个量之间的倍比关系。
师:你说得非常好,老师同意你的观点,既然比表示两个量的倍比关系,这道题中有哪两个量?它们之间又有什么关系?
学生分组讨论后,小组汇报讨论结果,老师根据学生的汇报情况完成板书: 长与宽的比是3比 2 = 3 ÷ 2 = 1 宽与长的比是2比 3 = 2 ÷ 3 = 师:在日常生活中,对两个量进行比较的例子有很多(投影出示)。一辆汽车2小时行100千米,这辆汽车的速度是多少千米?(口答)那么汽车的速度我们又可以说成什么和什么的比,是几比几? 板书:路程和时间的比是100比2。(再一次引导学生口述,巩固记忆)
(投影出示)学校买来10个篮球,共花800元,每个篮球多少元? 师:你能按照上面说法说一说吗?
师:刚才我们将两个量进行比较,既可以用除法,也可以用比来表示,那么什么叫做比呢?
生1:两个数相除可以写成两个数的比。生2:比也表示两个数相除。
生
3、两个数相除又叫做两个数的比。
师:你真聪明!两个数相除又叫做两个数的比,“又叫做”是什么意思? 生1:表示两个数的关系,可以是相除关系,也可以是比的关系。生2:具有相除关系的两个数,都可以用比来表示。
生3:同样具有比的关系的两个数,也可以用相除关系来表示。
师:大家的发言非常的好,两个数相除又叫做两个数的比,比也有符号,怎样来写比呢?
以“3比2”为例,引导学生说出比的各部分名称、读法和写法,以及怎样求比值。
学生小组讨论、汇报讨论结果,教师根据学生回答逐一板书: 长与宽的比是3比2,写作 3 : 2 = 3 ÷ 2 = 1 师:大家都认识了比的各部分名称,其实比与分数、除法还有许多联系奥妙呢!你知道吗?
生1:比的前项相当于被除数,后项相当于除数,比值相当于商,比号相当于除号。
生2:我发现比的前项相当于分数的分子,比的后项相当于分母,比值相当于分数值,比号相当于分数线。
生3:我发现比值是用比的前项除以后项得来的。
生4:老师,既然比的后项相当于除数,又相当于分母,而除数、分母都不能为0,因此,我觉得比的后项也不能为0。
师:你的观察非常仔细,说得非常好,非常对1 生5:老师,既然比的后项不能为0,为什么在体育比赛当中经常会出现“2 :0”、“3:0”呢?
师:你提出的问题真好!有哪位同学来帮老师解释呢?
学生回答后,老师强调:在体育比赛中的“2 :0”、“3 :0”只表示每队各得多少分,而不表示分数的倍比关系,与数学中的比的意义不同。
生6:老师,比可以写成除法形式,除法可以写成分数形式,请问比可以改写成分数的形式?
师:当然可以(指),像2 :3可以写成,但还是读作2比3,而不能读作三分之二。
三、实践应用,解决问题。活动一:算一算
求比值:4:5 0.8:0.4 : 学生独立完成后,看比值、找规律。活动二:说一说
(投影出示)你能把它们分别组成比吗?
1、小刚9岁、小丽13岁
2、钢笔5支、铅笔8支
3、小林身高120厘米,小强身高130厘米。
4、六(1班)有60人,六(2)班有61人。活动三:相信你
小强的身高是1米,他爸爸的身高是173厘米,小强说他和爸爸身高的比是1:173,对不对?你认为呢? 活动四:辨真假
师:乒乓球是我国的国球,在今年世界锦标赛中,我国小将王皓以4:0的比分横扫德国名将波尔,勇获冠军。请问:这个比分与今天所学的比有何不同? 活动五:填一填
0.25= =()=()÷()=):(
第二篇:《比的意义》教学设计(人教版六年级上册)
教学目标:
1、使学生在自主探究的学习过程中理解比的意义。
2、掌握比的各部分名称,以及比与除法、分数的关系,会求比值。明确比的后项不能为零的道理。
3、引导学生探索知识间的内在联系,培养学生敢于质疑问难,勇于探索的精神。教学重点:理解并掌握比的意义,会求比值。教学难点:理解比与除法、分数的关系。教学关键:理解一个比中各部分量的关系。教具准备:小黑板 教学过程:
一、提出问题
1、导语:神话总是在人们期待中变成现实,2003年10月15日,我国第一艘载人飞船“神舟五号”顺利升空,那精彩的一幕至今让人记忆犹新。请同学们把书轻翻到第43页看书中的插图。此时画面中航天英雄杨利伟向人们展示联合国国旗和中华人民共和国国旗。
师:这两面国旗都是长375px、宽250px,根据这两个条件怎样用算式表示它们长和宽的关系呢?
生自由汇报: ①15÷10 表示长是宽的几倍。②10÷15 表示宽是长的几分之几。
③15-10 表示长比宽多多少?或宽比长少多少?
教师小结:表示这样的两个数量关系可以用减法,也可以用除法。在用除法来表示两个量之间的关系时还可以用比的方式。怎么表示呢?这就是我们今天要学的新知识。板书:比的意义
2、出示学习目标: ⑴理解比的意义。
⑵掌握比的各部分名称,以及比与除法、分数的关系,会求比值。⑶明确比的后项不能为零的道理。
二、解决问题
(一)、出示自学提示:
⑴看书自学第43----44页,思考:什么是比?你能结合书中的例子谈谈你对比的意义的理解吗?
⑵比的各部分名称是什么?怎样求比值呢?用序号①②③……标出你学会的内容。⑶比与除法、分数之间的联系与区别是什么?
(二)、学生自学汇报
1、师:15÷10表示什么?(长是宽的几倍),也可以说成长和宽的比是15比10。10÷15表示什么?也可以说成谁与谁的比呢? 生:10÷15表示宽是长的几分之几,也可以说成宽和长的比是10比15.教师小结:长和宽表示长度,是同类量。同类量可以比,不同类量可以比吗?
2、出示“神舟五号”进入运行轨道后在离地面350千米的高空作圆周运动,平均90分钟绕地球一周,大约运行42252km。师边说边板书:42252km 90分钟
师:怎样用算式表示飞船进入轨道后平均每分钟飞行多少千米呢? 生1:42252÷90 表示是飞船速度。(用除法算式)生2:速度可以用路程÷时间表示 生3:我们也可以用比来表示路程和时间关系 生4:42252÷90也可以说成路程和时间的比是42252比90。
教师小结:长和宽的比是两个长度比,即同类量的比,表示两个数之间倍数关系。而路程和时间的比是两个不同类量的比,但它们是有关联的量,两个不同类量的比可以表示出一个新的量。它们相除时都可以用比来表示。
3、归纳概括
师:观察上面这些例子,你能试着概括什么叫比吗?自说,同桌互议。生:两个数相除又叫做两个数的比。(师板书)
教师小结:我们把除法形式,可以说成两个数的比,所以两个数相除又叫做两个数的比。
4、比的各部分名称是什么?怎样求比值呢?(生继续汇报)生1:比号像冒号 “ :”
师说明:比有自己的书写形式,写比时把比号写在两数字中间,读作谁比谁,如10﹕15读作10比15 生2:比各部分名称(生举例说明)15 ﹕ 10= 15 ÷ 10 = = ︱ ︱ ︱ ︱ ︱
前项 比号 后项 用前项除以后项 商 比值 生3:求比值是用比的前项除以比的后项
生4:比值表示方法有三种:小数、分数、整数 师出示练习题求比值: 10:25 0.5:0.05 :
(指三名学生到黑板板演,其他学生在本上完成,汇报,总结)生5:比值与比的联系与区别
比值是一个数,是比的前项除以后项所得的商,它可以用分数、小数、整数来表示。而比是表示两个数的关系,可以用分数表示,但不能读作分数,更不能用小数、整数表示。(即比是由两个数和一个比号组成)
练习:p44 1题 做一做(填空汇报)
生6:比与除法、分数之间的联系与区别(师下发表格,小组同学共同完成)学生汇报填写下表:
比 前项:比号 后项 比值 一种关系 除法 被除数 ÷除号 除数商 一种运算
分数 分子 — 分数线 分母 分数值 一个数 讨论:
①为什么是“相当于”而不是是或等于呢? ②比的后项为什么不能是0呢?
③能否用字母表示出它们三者关系呢?a÷b= a/b = a:b(b≠0)
三、归纳概括
1、这节课你有什么收获?
2、你怎样获取知识的?
第三篇:六年级上册数学教案-4.1比的意义 |人教新课标(2014秋)
比的意义
【教学内容】《义务教育教科书
数学》(人教版)六年级上册第48、49页内容
【教学目标】
1、理解比的意义,学会比的读写法,掌握比的各部分名称和求比值的方法。
2、通过探索比与除法、分数关系的过程,初步理解比和分数、除法之间的关系。
3、能运用比的知识解决简单的实际问题,培养学生分析、综合、抽象、概括等能力。
【教学重点】理解比的意义,掌握比各部分的名称。
【教学难点】理解比和分数、除法之间的关系。
【教具准备】
教具:自制PPT课件。
学具:学习卡一张。
【教学过程】
一、创设情境,引出“比”。
1、创设情境:杨利伟展示联合国国旗和中华人民共和国国旗。
2、提出问题:怎样用算式表示长和宽的倍数关系?
3、揭示课题:新的数学比较方法——比。
【设计意图:飞船发射情境既教育了孩子们对国家大事的关心,又很自然地引入杨利伟手上的国旗长宽问题,进而引导学习“比”。】
二、探究新知,认识“比”。
(一)引导理解同类量的比
1、介绍比,并理解比的顺序
2、找出比,并说出比的含义。
(二)引导理解不同类量的比
1、汽车4小时行驶了240千米。
2、寻找生活中的比
(三)引导归纳比的意义。
【设计意图:从同类量的比和不同类量的比两个方面引导孩子理解并归纳比的意义。重点在于引导孩子多找一找,多说一说,在自主学习的过程中消化吸收新的概念。】
三、自学教材,掌握“比”。
1、学生自学,完成自学提纲。
2、学生反馈。
(1)
比的各部分名称
(2)
比值的表示形式。
(3)
比的另一种表示形式。
(4)
比和比值的区别。
【设计意图:充分发挥学生学习的主体性,通过自主学习,初步认识比的基本信息,并通过反馈、练习巩固自学的内容。】
四、辩证关系,分清“比”
1、同桌交流:比和除法、分数有什么区别和联系?
2、汇报交流:比和除法、分数各部分之间的联系和区别。
联系(相当于)
区别
比
前项
:(比号)
后项
比值
两个数的相除关系
除法
被除数
÷除号
除数
商
分数
分子
-(分数线)
分母
分数值
一种数
3、总结规律:你能用一个式子表示出比、除法、分数之间的关系吗?
4、质疑探究:比分和比的区别。
【设计意图:通过讨论、比较,学生分清比和除法、分数的区别也意识到比、除法、分数之间存在联系,从而建构不同知识间的联系。】
五、趣味练习,巩固“比”。
1、巧手做一做
2、慧眼辨一辨
3、动脑想一想
【设计意图:通过不同层次的练习,一方面巩固知识,另一方面设计开放练习,拓展学生认识。】
六、联系生活,欣赏“比”。
【设计意图:数学来源于生活,应用于生活。从生活中、人体中找“比”,体会“比”就在我们的生活中。】
七、浅谈收获,总结“比”
板书设计:
比的意义
两个数的比表示两个数相除。
15÷10
长和宽的比是15比10。
:
10=15÷10=3/2
…比值
…后项
…前项
…比号
10÷15
宽和长的比是10比15。
10:15=10÷15=2/3
240÷4
路程和时间的比是240比4。
240:4=240÷4
=60
a:b=a÷b=
a
b
所用教材内容:
第四篇:人教版数学六年级上册《比的意义》教学设计
人教版数学六年级上册《比的意义》教学设计
教学目标:
1.在具体的情境中理解比的意义,学会比的读法、写法,掌握比的各部分名称及求比值的方法。
2.经历探索比与分数、除法之间关系的过程,体会数学知识之间的内在联系,把握比的意义的本质。3.在自主学习中,积累数学活动经验,培养学生分析、概括的能力,感受数学学习的乐趣。教学重点:理解比的意义以及比与分数、除法之间的关系。教学难点:理解比与分数、除法之间的关系,明确比与比值的区别。教学准备:课件,学具。教学过程:
一、创设情境,揭示课题
1.课件出示:2003年10月15日,我国第一艘载人飞船“神舟”五号顺利升空。在太空中,执行此次任务的航天员杨利伟在飞船里向人们展示了联合国旗和中华人民共和国国旗。教师提问:这就是杨利伟展示的两面旗,它们的长都是15 cm,宽都是10 cm。比较它们长和宽的关系,你能提出怎样的数学问题? 预设情况:
(1)长比宽多多少厘米?15-10;(2)宽比长少多少厘米?15-10;(3)长是宽的多少倍?15÷10;(4)宽是长的几分之几?10÷15。
2.揭题:今天我们将进一步研究这种倍数关系,它除了用除法表示外,还可以用一种新的数学方法──“比”来表示。(板书课题:比的意义)
二、探究新知,理解比的意义
(一)同类量的比 师:刚才我们用“15÷10”表示长是宽的多少倍,可以说成长和宽的比是15比10,记作15:10。那么,10÷15表示宽是长的几分之几,怎样用比表示它们的关系呢?(可以说成宽和长的比是10比15,记作10:15。)
师:想一想15比10和10比15一样吗?它们有什么不同?(引导学生理解比的前项、后项所表示的意义不同。)
(二)不同类量的比 课件出示:“神舟”五号进入运行轨道后,在距地350 km的高空作圆周运动,平均90分钟绕地球一周,大约运行42252 km。那么飞船进入轨道后平均每分钟飞行多少千米? 1.读题理解题意,说说知道了哪些信息? 2.独立解答,说清解题思路。(速度可以用“路程÷时间”表示。)3.尝试用比表示路程和时间的关系。(路程和时间的比是42252比90,记作42252:90。)
(三)比较分析 1.观察比较。
师:观察这三个比,说说它们有什么联系与区别?(引导学生发现这三个比都表示相除的关系,但前两个比中两个量都表示长度,相比的两个量是同类量;第三个比中的两个量,一个表示路程,一个表示时间,是不同类量,不同类量的比可以表示一个新的量。)
师:想一想,路程与时间的比可以表示哪个量?(速度)2.归纳:什么叫比?(板书:两个数的比表示两个数相除。)
三、自主学习,加深认识
(一)深化理解 1.自学比的相关知识。
学生自学教材第49页“做一做”之前的内容,思考以下问题:比各部分的名称是什么?怎样求一个比的比值? 2.汇报交流。(1)比各部分的名称。课件出示:15:10=15÷10=,让学生说出比的各部分名称。(板书:前项、比号、后项、比值。)(2)比值的意义。
师:怎样求一个比的比值呢?(比的前项除以比的后项所得的商就是比值。)(3)练习:求出下列各比的比值: 3:5; 0.4:0.16; :8。
师:比和比值有什么区别?(引导学生小结:比表示一种关系,而比值是一个数,通常用分数表示,也可以用小数或整数表示。)
(二)沟通联系
1.师:同桌讨论一下,比与除法、分数之间有什么联系?比的前项、后项和比值分别相当于分数和除法算式中的什么?比的后项可以是0吗? 讨论后根据学生交流反馈填写下表:
2.请尝试用字母表示比和除法、分数之间的内在联系。板书:。
师:根据分数与除法的关系,两个数的比还可以写成分数形式。如15:10也可以写成,仍读作“15比10”。
3.师:足球比赛中的比分3:0与我们今天学习的比一样吗?(引导学生理解:各类比赛中的比不是我们这节课学习的比,它只是一种计分形式,是比较大小的,是相差关系,不是相除关系。)
四、巩固知识,应用拓展 1.P49“做一做”第1题。
(1)出示课件,让学生根据条件和要求写出比并求出比值。反馈交流时,让学生说说两个相比的量是同类量吗?并说说有什么发现?(发现是同类量的比,这两个比的比值相等。)(2)提问:小敏所花的钱数和练习本数之比是():(),比值是()。请学生思考这两个比的量是同类量吗?比值表示什么意思?(所花钱数和练习本数是不同类的量,比值表示单价。)
学生独立完成。反馈时,说说未知的前项或后项是怎样求出的。(引导学生根据比与除法的关系求出未知的前项或后项,归纳一般方法:前项=比值×后项;后项=前项÷比值。)3.练习十一第1题。
(1)请学生独立完成,反馈交流时引导学生明确比的前项、后项是有顺序的,前项、后项所表示的量与数据之间必须一一对应;第(3)题请学生说说比值的具体含义是什么。(表示平均每人制作的模型数量。)
(2)提问:你还可以写出哪几个比?说出它们的具体含义。(引导学生说出多个量的比。)
五、回顾总结,交流收获
师:说说这节课我们学习了什么?你有什么收获或问题?
第五篇:人教新课标六年级上册数学教案比的基本性质教学设计
比的基本性质
教学内容:比的基本性质
教学要求:
1.使学生理解和掌握比的基本性质,能应用比的基本性质化简比。
2.通过观察分析、自主探索、相互交流,培养学生迁移类推、概括归纳的能力。
3.继续渗透对立统一的辩证唯物主义观点。
教学重点:理解和掌握比的基本性质。
教学难点:应用比的基本性质化简比。
教学过程:
一、回顾旧知,复习铺垫
1.口答。
(1)比的意义是什么?
(2)比与除法、分数之间的关系是怎样的?
(3)在除法里,商不变的性质是怎样的?
(4)分数的基本性质是什么?
2.填空。
(1)24÷6=()÷3=()÷1
(2)=20= 1530
二、引导探索,学习新知
我们已经学过商变的性质和分数的基本性质,又知道除法、分数与比之间
有着非常密切的关系,那么比又有什么性质呢?我们来学习“比的基本性质”。
1.比的基本性质。
(1)让学生把24÷6=12÷3=4÷1改成用比来表示。
(2)引导学生观察,从左往右看,前项、后项起了什么变化?比值有没有变?
同样,反过来观察,从右往左看,前项、后项起了什么变化?比值有没
有变?
(3)探究学习,讨论:这道题的变化规律是怎样的?
(4)引导学生归纳比的基本性质。
(5)你认为比的基本性质里,哪些词很重要?为什么?
(6)自主学习,巩固新知。
①12:16=(12÷4):(16÷□)= □: □
②7:4=(7×3):(4×□)= □: □
44③3: =(3×□):(×5)= □: □ 55
④1515==25254 2.比的基本性质的应用。
我们学习了比的基本性质,就可以应用这个性质,把比化成最简单的整数比。
(1)把下面各分数约分。
61427***99
小结约分的方法及根据。
(2)出示P46例1。
让学生分别表示出两面旗的长和宽的比。这两个比不能够简单明白的反映出长和宽的关系,因此我们要把它化成最简单的整数比,也就是变成比前项和后项互质的比。把比化成最简单的整数比的过程叫做化简比。
(3)根据比的基本性质,怎样化简呢?
15:10=(15÷5):(10÷5)=3:2
180:120=(180÷60):(120÷60)=3:2
想一想:还可以用别的方法化简吗?
(4)把下面各比化成最简单的整数比。
12:0.75:2 69
学生先试做,再交流方法。
三、巩固深化,拓展思维,做一做。
四、分课小结,提高认识。
比的基本性质是什么?怎样化简比?
五、课堂练习,辅助消化。
第4~7题。
六、课外补充,拓展延伸
1.某棉纺厂男职工人数与女职工人数的比是2:7,已知女职工有140人,男职工有多少人?
2.一项工作,如果单独做,甲需要5天完成,乙完成这项工作比甲多需要3天。甲、乙两人单独完成这项工作的时间比是多少?工作效率比是多少?
3.某商场营业员人数在45到55人之间。已知女营业员和男营业员人数的比
是8:5。这个商场男、女营业员各有多少人?