第一篇:高分子材料成型加工
第一章
1.高分子材料的定义
以高分子材料为主要组分的材料
2.高分子材料成型加工的定义
高分子材料是通过成型加工工艺得到具有实用性的材料或制品过程的工程技术
3.高分子材料工程特征的含义
高分子材料制品的性能既与材料本身的性质有关,有很大程度上受成型加工过程所产生的附加性质的影响
第三章
2.热稳定剂是一类能够防止高分子材料在成型加工或使用过程中因受热而发生降解或交联的添加剂
分类: 铅盐类稳定剂,有机锡类稳定剂,有机锑类稳定剂,有机辅助稳定剂,复合稳定剂,稀土类稳定剂
用于食品: 有机锡类稳定剂,复合稳定剂,稀土类稳定剂
3.Pvc塑料
因为PVC是一种极现在高温下的加工成型。
??/、?性高分子,分子间的作用力很强,导致加工温度超过其分解温度,只有加入热稳定剂才能实
4.抗氧剂是指可抑制或延缓高分子材料自动氧化速度,延长其使用寿命的物质。
抗臭氧剂是指可以阻止或延缓高分子材料发生臭氧破坏的化学物质。
不同:抗氧剂是抑制扩散到制品内部的氧,而抗臭氧只是在制品表面上发挥作用。
5.光稳定剂是可有效地抑制光致降解物理和化学过程的一类添加剂。
?/、?/ 8.润滑剂是降低熔体与加工机械或成型模具之间以及熔体内部相互直接按的摩擦和黏附,改善加工流动性,提高生产能力和制品外观质量的一类添加剂。
因为其可以调节PVC树脂熔化速率和降低熔体黏度 9.???
10.硫化促进剂:提高硫化速度,缩短硫化时间,降低硫化温度,减少了硫化剂用量,提高或改善硫化胶物理机械性能
硫化活性剂:提高胶料中硫化促进剂的活性,减少硫化促进剂的用量,缩短硫化时间 防焦剂:少量加入即可防止或延迟胶料在加工和贮存时产生焦烧 12.着色剂,发泡剂,阻燃剂,抗静电剂,偶联剂,防霉剂
第四章
1.高分子材料制品设计中,成型加工方法选择的依据是什么?
制品形状,产品尺寸,材料特征,公差精度,加工成本
2.?? 3.?? 4.高分子材料进行配方设计的一般原则和依据各是什么?
制品的性能要求:抓住主要矛盾,用其所长,避其所短,必要时可共混或复合改性
成型加工性能的要求:各种成型加工方法的工艺和设备各有其特点,对材料的要求也不同,故需充分考虑。
原材料的要求:材料的主体成分-高分子化合物决定了材料的基本性能,添加剂对材料及其制品的性能有很大的影响
产品的经济成本要求:在满足使用性能的前提下,选用质量稳定可靠,价格低的原材料,调节配方,尽可能的减少成本
5.配方有哪几种表示方法?各有何作用?相互关系是什么?
以质量份数表示的配方:以高分子化合物为100份,计量容易,应用广泛,适于工业生产
以质量百分数表示的配方:以混合料为100份,计算原材料消耗,定额指标等方便,便于财务的成本核算及定价
以体积百分数表示的配方:以混合体积为100份,便于计算体积成本及原材料仓储体积
生产配方:生产中实际使用的配方表示形式,便于直接计算,符合生产实际
相互关系:?/?、???
第六章
1.物料的混合有哪三种基本运动形式?聚合物成型时熔融物料的混合以哪一种运动形式为主?为什么?
答:混合涉及到三种扩散的基本运动形式,即分子扩散、涡流扩散和体积扩散。
体积扩散,即对流混合。是指流体质点、液滴或固体粒子由系统的一个空间位臵向另一空间位臵的运动,两种或多种组分在相互占有的空间内发生运动,以期达到各组分的均匀分布。在聚合物加工中,这种混合占支配地位。
2.什么是“非分散混合”,什么是“分散混合”,两者各主要通过何种物料运动和混合操作来实现? 答:非分散混合。在混合中仅增加粒子在混合物中分布均匀性而不减小粒子初始尺寸的过程称为非分散混合或简单混合。
这种混合的运动基本形式是通过对流来实现的,可通过包括塞形流动和不需要物料连续变形的简单体积排列和臵换来达到。
分散混合。是指在混合过程中发生粒子尺寸减小到极限值,同时增加相界面和提高混合物组分均匀性的混合过程。分散混合的目的是把少数组分的固体颗粒和液满分散开来,成为最终粒子或允许的更小颗粒或液滴,并均匀地分布到多组分中,这就涉及少组分在变形粘性流体中的破裂问题,这是靠强迫混合物通过窄间隙而形成的高剪切区来完成的。
3.为什么在评定固体物料的混合状态时不仅要比较取样中各组分的比率与总体比率的差异大小,而且还要考察混合料的分散程度? 答:衡量混合效果需从物料的均匀程度和组分的分散程度两方面来考虑。均匀程度指混入物所占物料的比率与理论或总体比率的差异。但就是相同比率的混合情况也是十分复杂的。在取样分析组成时,若一次抽取的试样的量足够多,或者,一次取样量虽不多,但取样的次数足够多,虽然每次抽取的试样分析结果有所出入,但(取多个试样分析结果的平均值时,)仍可得出混合情况相同的结论。然而从混合料中各组分的分散程度来看,则可能相差甚远。因此,在判定物料的混合状态时,还必须考虑各组分的分散程度。
4.温度对生胶塑炼有何影响?为什么天然橡胶在110℃时塑炼效果最差? 答:低温下,氧和橡胶大分子的直接引发氧化作用很小,但是低温橡胶的粘度很高,机械剪切作用力大大提高,橡胶大分子链在机械力作用下的断裂破坏是主要的,其断裂生成的大分子游离基立即与周围的空气中的氧相结合,生成分子量较小的稳定大分子,自由基活性得到终止。高温时,氧和橡胶大分子的化学活泼性大大提高,氧可以直接引发大分子发生氧化裂解反应,随着温度的升高反应速度急剧加大,所以机械塑炼效果也随之加大。当天然橡胶在110摄氏度的时候,它的机械力作用是最小的时候,氧化裂解的作用也是最小的时候。5.天然橡胶的低温机械塑炼的目的及其原理与聚氯乙烯塑料中添加邻苯二甲酸二丁酯的目的及其原理有何异同?
答:天然橡胶的低温机械塑炼的目的是提高天然橡胶的可塑性,便于配合剂在基体中的均匀分布,也有利于后续的成型加工;原理是在主要在机械力的作用下,使大分子链发生断链。
聚氯乙烯塑料中添加邻苯二甲酸二丁酯的目的是为了降低大分子链之间的作用下,提高链段的运动能力,使得玻璃化温度降低,最终制品的韧性增强,柔性增大。
6.何谓橡胶的混炼?用开炼机混炼时三阶段及配合剂的加入次序? 答:混炼就是将各种配合剂与可塑度合乎要求的生胶或塑炼胶在机械作用下混合均匀,制成混炼胶的过程。开炼机混炼经历包辊、吃粉、翻捣三个阶段。
配合剂加入顺序是混炼主要的工艺条件,为了能在较短的混炼时间里得到质量良好的混炼胶,应根据配合剂的作用、用量及其混炼特性来合理安排加入顺序。一般原则是;难分散的、量少的先加;易分散的、量多的后加;硫化剂和促进剂分开加,以免混在一起加入时因局部温度过高而使胶料焦烧;硫黄最后加。所以通常配合剂加入顺序为: 生胶一固体软化剂—促进剂、活性剂、防老剂一补强剂、填充剂一液体软化剂—硫黄及超促进剂。
7.何谓胶料混炼过程中产生的结合橡胶?
答:生胶在塑炼时橡胶大分子断链生成自由基,这种情况在混炼时同样会发生。在混炼过程中,橡胶分子断链生成大分子自由基可以与炭黑粒子表面的活性部位结合,也可以与发黑聚集体在混炼时被搓开所产生的具有较高活性的新生面结合,或者已与炭黑结合的橡胶又通过缠结或交联结合更多的橡胶,形成一种不溶于橡胶溶剂的产物--结合橡胶。
8.区分“简单组分高分子材料”和“复杂组分高分子材料”,并请各举2-3例
答:简单组分高分子材料:主要由高聚物组成(含量很高,可达95%以上),加入少量(或不加入)抗氧剂、润滑剂、着色剂等添加剂。如: PE、PP、PTFE。
复杂组分高分子材料:复杂组分塑料则是由合成树脂与多种起不同作用的配合剂组成,如填充剂、增塑剂、稳定剂等组成。如:PF、SPVC 9.成型用的塑料形态有哪几种?各种形态的塑料有什么不同的特点?它们的应用情况如何?
答:热塑性塑料:热塑性塑料分子结构都是线型结构,在受热时发生软化或熔化,可塑制成一定的形状,冷却后又变硬。在受热到一定程度又重新软化,冷却后又变硬,这种过程能够反复进行多次。如聚氯乙烯、聚乙烯、聚苯乙烯等。塑性塑料成型过程简单,能够连续化生产,并且具有相当高的机械强度,因此发展很快。
热固性塑料:热固性塑料的分子结构是体型结构,在受热时也发生软化,可以塑制成一定的形态,但是受热到一定程度或加入少量固化剂后,就硬化定型,再加热也不会变软和改变形态了。热固性塑料加工成型后,受热不再软化,因此不能回收再用,如酚醛塑料、氨基塑料、环氧树脂等都是属于此类塑料。热固性塑料成型工艺过程比较复杂,所以连续生产有一定的困难,但其耐热性好、不容易变形,而且价格比较低廉。
工程塑料:工程塑料是可作为工程结构材料和代替金属制造机器零部件等的塑料。例如聚酰胺、聚碳酸酯、聚甲醛、ABS树脂、聚四氟乙烯、聚酯、聚砜聚酰亚胺等。工程塑料具有密度小、化学稳定性高、机械性能良好、电绝缘性优越、加工成型容易等特点,广泛应用于汽车、电器、化工、机械、仪器、仪表等工业,也应用于宇宙航行、火箭、导弹等方面。
通用塑料:是指产量大、价格低、应用范围广的塑料,主要包括聚烯烃、聚氯乙烯、聚苯乙烯、酚醛塑料和氨基塑料五大品种。人们日常生活中使用的许多制品都是由这些通用塑料制成。10.什么叫塑料的混合和塑化,其主要区别在哪里?
答:这是物料的初混合,是一种简单混合,是在树脂的流动温度以下和较低剪切作用下进行的,在这一混合过程中,只是增加各组分微粒空间的无规则排列程度,而不减小粒子的尺寸。一般是一个间歇操作过程。
塑化物料在初混合基础上的再混合过程,是在高于树脂流动温度和较强剪切作用下进行的。塑化的目的是使物料在温度和剪切力的作用下熔融,获得剪切混合的作用,驱出其中的水分和挥发物,使各组分的分散更趋均匀,得到具有一定可塑性的均匀物料。11.哪些机械通常用于塑料的初混合?哪些机械用于塑炼? 答:初混合:在大批量生产时,较多使用高速混合机,其适用于固态混合和固液混合。S型和Z型捏合机主要适用于固态和液态混合,对物料有较强的撕捏作用,另外还有转鼓式混合机和螺带式混合机。塑化常用的设备主要是开放式塑炼机、密炼机和挤出机。12.塑料的塑化与橡胶的塑炼二者的目的和原理有何异同?
答::塑化:再混合,是高一级的混合。在高于流动温度(Tf或Tm)和较强烈的剪切速率下进行。混合后,塑料各组份的物理和化学性质有所变化。其目的是使物料在一定温度和剪切力下熔融,驱出其中的水份和挥发物。使各组份的分散更趋均匀,得到具有一定可塑性的均匀物料。
塑炼:使生胶由强韧的弹性转变为柔软的便于加工的塑性状态的过程。目的是使生胶获得一定的可塑性,使之适合于混炼、压延、压出、成型等工艺操作;使生胶的可塑性均匀化,以便得到质量均匀的胶料。(目的是降低弹性,增加可塑性,获得流动性;混炼时配合剂易于分散均匀,便于操作;使生胶分子量分布变窄,胶料质量均匀一致。)
13.什么是“生胶的塑炼”,什么是“塑料的塑炼”,为什么要分别对生胶和塑料进行塑炼?两者分别可采取哪些措施,提高塑炼效果? 答:生胶的塑炼:使生胶由强韧的弹性转变为柔软的便于加工的塑性状态的过程。目的是使生胶获得一定的可塑性,使之适合于混炼、压延、压出、成型等工艺操作;使生胶的可塑性均匀化,以便得到质量均匀的胶料。(目的是降低弹性,增加可塑性,获得流动性;混炼时配合剂易于分散均匀,便于操作;使生胶分子量分布变窄,胶料质量均匀一致。)
塑料的塑炼:再混合,是高一级的混合。在高于流动温度(Tf或Tm)和较强烈的剪切速率下进行。混合后塑料各组份的物理和化学性质有所变化。其目的是使物料在一定温度和剪切力下熔融,驱出其中的水份和挥发物。使各组份的分散更趋均匀,得到具有一定可塑性的均匀物料。
14.聚氯乙烯粒状塑料与酚醛压塑粉在配臵过程中的塑化工序、目的、作用原理有何不同?
答:聚氯乙烯粒状塑料:通过双键聚合而成,经过筛选、配料、混合、塑化成粒状。
酚醛压塑粉:过滤、配料、混合、塑化的粉状塑料。目的:都是为了得到制品成型前的物料。
原理:使用的机械不同,他们的自身的物理化学性质不同,致使他们得到的物料不同。
15、何谓塑料溶液和溶胶塑料?
答:塑料溶液的主要组成是作为溶质的合成树脂及各种配合剂和作为溶剂的有机溶剂。溶剂的作用是为了分散溶解树脂,使得到的塑料溶液获得流动性。溶剂对制品是没有作用的,只是为了加工而加入的一种助剂,在成型过程中必须予以排出。
溶胶塑料又称糊塑料,是固体树脂稳定地悬浮在非水液体介质中形成的分散体(悬浮体)。在溶胶塑料中氯乙烯聚合物或共聚物应用最广,通常称聚氯乙烯糊。
溶胶塑料中的非水液体主要是在室温下对树脂溶剂化作用很小而在高温下又很易增塑树脂的增塑剂或溶剂,是分散剂。有时还可加入非溶剂性的稀释剂,甚至有些加入热因性树脂或其单体。除此之外,溶胶塑料还因不同的要求加入胶凝剂、填充剂、表面活性剂、稳定剂、着色剂等各种配合剂,因此,溶液塑料的组成是比较复杂的,其在室温下是非牛顿液体,具有一定流动性。16.简述聚合物共混的目的及原则
答:1.利用各聚合物组分的性能,取长补短,消除各单一聚合物组分性能的缺点,保持各自的优点,得到综合性能优异的聚合物材料。2.少量的某一聚合物作为另一个聚合物的改性剂,获得显著的改性效果。
3.通过共混改善聚合物的加工性能。
第七章
1.何谓热固性塑料的固化速度?固化速率太慢或太快对制品有何影响?
答:这是热固性塑料成型时特有的也是最重要的工艺性能,它是衡量热固性塑料成型时化学反应的速度。它是以热固性塑料在一定的温度和压力下,压制标难试样时,使制品的物理机械性能达到最佳值所需的时间与试件的厚度的比值(s/mm厚度)来表示,此值愈小,固化速率愈大。
固化速率应当适中,过小则生产周期长,生产效率低,但过大则流动性下降,会发止塑料尚未充满模具型腔就已固化的现象,就不能适于成型薄壁和形状复杂的制品。
2.简述热固性塑料模压成型的工艺步骤。
答:热固性塑料模压成型工艺过程通常由成型物料的准备、成型和制品后处理三个阶段组成。
1、计量;
2、预压;
3、预热;
4、嵌件安放;
5、加料;
6、闭模;
7、排气;8.保压固化;
9、脱模冷却;
10、制品后处理;
3.试分析模压温度的高低对模压成型工艺的影响。
答:模压温度是指成型时所规定的模具温度,对塑料的熔触、流动和树脂的交联反应速度有决定性的影响。
在一定的温度范围内,模温升高、物料流动性提高,充模顺利,交联固化速度增加,模压周期缩短,生产效率高。但过高的模压温度会使塑料的交联反应过早开始和固化速度太快而使塑料的熔融粘度增加,流动性下降,造成充模不全。另外一方面,由于塑料是热的不良导体,模温高,固化速度快,会造成模腔内物料内外层固化不一,表层先行硬化,内层固化时交联反应产生的低分子物难以向外挥发,会使制品发生肿胀、开裂和翘曲变形,而且内层固化完成时,制品表面可能已过热,引起树脂和有机填料等分解,会降低制品的机械性能。因此模压形状复杂、壁薄、深度大的制品,不宜选用高模温,但经过预热的塑料进行模压时,由于内外层温度较均匀,流动性好,可选用较高模温。
模压温度过低时,不仅物料流动性差,而且固化速度慢,交联反应难以充分进行,会造成制品强度低,无光泽,甚至制品表面出现肿胀,这是由于低温下固化不完全的表层承受不住内部低分子物挥发而产生的压力的缘故。
4.在热固性塑料模压成型中,提高模温应相应地降低还是升高模压压力才对模压成型工艺有利?为什么?
答:在热固性塑料模压成型中,提高模温一般应相应地升高模压压力才对模压成型工艺有利。在一定范围内模温提高能增加塑料的流动性,模压压力可降低;但模温提高也会使塑料的交联反应速度加速,从而导致熔融物料的粘度迅速增高,因而需更高的模压压力。综合以 上因素,提高模温一般应相应地提高模压压力。
5.热固性塑料模压成型中物料的预热温度对模压压力有何影响?为什么?
答:进行预热可以使物料熔化速度加快,黏度下降,流动性提高,模压压力降低;但如果预热温度过高会使塑料在预热过程中有部分固化,会抵消预热增大流动性效果,模压时需更高的压力来保证物料充满型腔。在预热时软化倾向>交联倾向,一般经过预热的物料可使用较低的模压压力。
6.在高分子材料成型加工中,哪些地方要求交联?交联能赋予高聚物制品哪些性能?
答:未硫化的橡胶Tg 在室温以下,常温下发黏,强度很低,基本无使用价值。通过硫化(交联),才能使用。酚醛树脂、氨基树脂、环氧树脂、不饱和聚酯等是具有活性官能团的低分子量的齐聚物,也只有通过交联,才能充分发挥它们的特性。在聚乙烯、聚氯乙烯、聚氨酯等泡沫塑料生产中,交联也是极为重要的工艺技术,交联有助于提高泡孔壁的强度。交联后的性能取决于交联密度。交联密度高,相邻交联点之间相对分子质量小,链段活动性受到限制,Tg 随之增高。交联改善了高分子材料的力学性能、耐热性能、化学稳定性能和使用性能。
7.试述天然橡胶以硫磺硫化后的制品大分子结构特征。
答:硫化后,橡胶大分子结构中各部位已程度不同地形成了网状结构,大分子链之间有主价键力的作用,使大分子链的相对运动受到一定的限制,在外力作用下,不易发生较大的位移,变形减小,强度增大,失去可溶性,只能有限溶胀。
8.试述橡胶硫化后的物理性能的变化,并解释之。
答:天然橡胶在硫化过程中,随着线型大分子逐渐变为网状结构,可塑性减小,拉伸强度、定伸强度、硬度、弹性增加,而伸长率、永久变形、疲劳生热等相应减小,但若继续硫化,则出现拉伸强度、弹性逐渐下降,伸长率、永久变形反而会上升的现象。这些现象都是线形大分子转变为网状结构的特征。
9.生胶和硫化胶在分子结构及性能上有何不同?
答:硫化前:结构:线性大分子,分子与分子之间无价键力;
性能:可塑性大,伸长率高,具可溶性。
硫化后:结构:1)化学键;2)交联键的位臵;3)交联程度;
4)交联
性能:1)力学性能(定伸强度、硬度、拉伸强度、伸
长率、弹性);2)物理性能;3)化学稳定性 10.橡胶的硫化历程分为几个阶段?各阶段的实质和意义是什么? 答:橡胶在硫化过程中,其各种性能随硫化时间增加而变化。将与橡胶交联程度成正比的某一些性能(如定伸强度)的变化与对应的硫化时间作曲线图,可得到硫化历程图。橡胶的硫化历程可分为四个阶段:焦烧阶段、预硫阶段、正硫化阶段和过硫阶段。
焦烧阶段。又称硫化诱导期,是指橡胶在硫化开始前的延迟作用时间,在此阶段胶料尚未开始交联,胶料在模型内有良好的流动性。对于模型硫化制品,胶料的流动、充模必须在此阶段完成,否则就发生焦烧,出现制品花纹不清,缺胶等缺陷。
预硫阶段。焦烧期以后橡胶开始交联的阶段。在此阶段,随着交联反应的进行,橡胶的交联程度逐渐增加,并形成网状结构,橡胶的物理机械性能逐渐上升,但尚未达到预期的水平,但有些性能如抗撕裂性、耐磨性等却优于正硫化阶段时的胶料。预硫阶段的长短反映了橡胶硫化反应速度的快慢,主要取决于胶料的配方。
正硫化阶段。橡胶的交联反应达到一定的程度,此时的各项物理机械性能均达到或接近最佳值,其综合性能最佳。此时交联键发生重排、裂解等反应,胶料的物理机械性能在这个阶段基本上保持恒定或变化很少.所以该阶段也称为平坦硫化阶段。
过硫阶段。正硫化以后继续硫化便进入过硫阶段。交联反应和氧化及热断链反应贯穿于橡胶硫化过程的始终,只是在不同的阶段,这两种反应所占的地位不同,在过硫阶段中往往氧化及热断链反应占主导地位,因此胶料出现物理机械性能下降的现象。
11.橡胶制品生产过程中,剩余焦烧时间的长短与橡胶制品的类型有什么关系?
答:不同的硫化方法和制品,对焦烧时间的长短亦有不同要求。在硫化模压制品时,总是希望有较长的焦烧期,使胶料有充分时间在模型内进行流动,而不致使制品出现花纹不清晰或缺胶等缺陷。在非模型硫化中,则应要求硫化起步应尽可能早一些,因为胶料起步快而迅速变硬,有利于防止制品因受热变软而发生变形。不过在大多数情况下,仍希望有较长的焦烧时间以保证操作的安全性。12.何谓返原性胶料和非返原性胶料?
答:在过硫阶段中不同的橡胶出现的情况是不同的。天然橡胶、丁苯橡胶等主链为线型大分子结构,在过硫阶段断链多于交联而出现硫化返原现象;而对于大部分合成橡胶,如丁苯、丁腈橡胶,在过硫阶段中易产生氧化支化反应和环化结构,胶料的物理机械性能变化很小,甚至保持恒定,这种胶料称硫化非返原性胶料。
13.何谓硫化三要素?对硫化三要素控制不当会造成什么后果? 答:硫化温度、硫化压力和硫化时间。
硫化温度是促进硫化反应的主要因素,提高硫化温度可以加快硫化速度,缩短硫化时间,提高生产效率。
硫化压力的选取主要根据胶料的性质、产品结构和其他工艺条件等决定的。对流动性较差的,产品形状结构复杂的,或者产品较厚、层数多的宜选用较大的硫化压力。硫化温度提高,硫化压力也应高一些。但过高压力对橡胶的性能也不利,高压会对橡胶分子链的热降解有加速作用;对于含纤维织物的胶料,高压会使织物材料的结构被破坏,导致耐屈挠性能下降。
橡胶在硫化过程中,性能在不断变化,所以选取恰当的硫化时间对保证制品质量十分重要。在一定的硫化温度和压力下,橡胶有一最宜的硫化时间,时间太长则过硫,时间太短则欠硫,对产品性能都不利。14.何谓正硫化和正硫化时间?正硫化时间的测定方法有哪几种?各有何特点?
答:正硫化是一个阶段,在正硫化阶段中,胶料的各项物理机械性能保持最高值,但橡胶的各项性能指标往往不会在同一时间达到最佳值。
橡胶处在正硫化时,其物理机械性能或综合性能达到最佳值,预硫或过硫阶段胶料性能均不好。达到正硫化所需的时间为正硫化时间。测定正硫化点的方法很多,主要有物理机械性能法、化学法和专用仪器法。
(1)物理机械性能法。此法的缺点是麻烦,不经济。
(2)化学法。测定橡胶在硫化过程中游离硫的含量,以及用溶胀法测定硫化胶的网状结构的变化来确定正硫化点。此法误差较大,适应性不广,有一定限制。
(3)专用仪器法。这是用专门的测试仪器来测定橡胶硫化特性并确定正硫化点的方法。目前主要有门尼粘度计和各类硫化仪,其中转子旋转振荡式硫化仪用得最为广泛。
15.某一胶料的硫化温度系数为2,当硫化温度为137℃时,测出其硫化时间为80min,若将硫化温度提高到143℃,求该胶料达正硫化所需要的时间?上述胶料的硫化温度时间缩短到60min时,求所选取的硫化温度是多少?
t答:1Kt2802t214313710T2T110
t2=52min 80260T213710
1.249=0.3010(T2-137)
T2=141.2℃
16.某胶料的硫化温度系数为2,在实验室中用试片测定,当硫化温度为143℃时,硫化平坦时间为20---80min,该胶料在140℃下于模型中硫化了70min,问是否达到正硫化?
解:由范特霍夫方程得 t1/t2=KT2-T1/10 得
t1/70=2140-143/10 解得 t1=56.9min ∵t1=56.9min在硫化平坦时间20---80min范围内
∴该胶料已达到正硫化
17.绘出增强热固性塑料层压板成型时热压过程五个时期的温度和压力与时间的关系曲线,并说明各时期的温度和压力在成型中的作用。答:压制的温度控制一般分为五个阶段
预热阶段:板坯的温度由室温升至树脂开始交联反应的温度,使树脂开始熔化,并进一步渗入增强材料中,同时排出部分挥发物。此时的压力=最高压力的1/3~1/2。
中间保温阶段:树脂在较低的反应速度下进行交联固化反应,直至溢料不能拉成丝,然后开始升温升压。
升温阶段:将温度和压力升至最高,加快交联反应。(此时树脂的流动性已下降,高温高压不会造成胶料流失)
热压保温阶段:在规定的温度和压力下,保持一定时间,使树脂充分交联固化。
冷却阶段:树脂在充分交联后,使温度逐渐降低,进行降温冷却。
第八章
1.挤出机螺杆在结构上为何分段?分段的根据是什么?
答:根据物料在螺杆中的温度、压力、黏度等的变化特征,可将螺杆分为加料段、压缩段、均化段三段。
2.挤出螺杆一般分为哪几段?每段各有什么作用?对于晶态塑料的挤出成型,应选择何种螺杆?其L2 的长度有何特征,为什么? 答:根据物料在螺杆中的温度、压力、粘度等的变化特征,可将螺杆分为加料段、压缩段和均化段三段。
加料段:加料段的作用是对料斗送来的塑料进行加热,同时输送到压缩段。塑料在该段螺槽始终保持固体状态。压缩段:又叫相迁移段,其作用是对加料段送来的料起挤压和剪切作用,同时使物料继续受热,由固体逐渐转变为熔融体,赶走塑料中的空气及其他挥发成分,增大塑料的密度,塑料通过压缩段后,应该成为完全塑化的粘流状态。
均化段:又叫计量段,其作用是将塑化均匀的物料在均化段螺槽和机头回压作用下进一步搅拌塑化均匀,并定量定压地通过机头口模挤出成型。
对于晶态塑料的挤出成型:挤出结晶型热塑性塑料的加料段要求较长,使塑料有足够的停留时间,慢慢软化,该段约占螺杆全长的60% 65%;结晶型塑料,熔融温度范围较窄,压缩段较短,为3 5Ds;为了稳定料流,均化段应有足够的长度,通常是螺杆全长的20% 25%。
其L2 的长度较短,因为其熔融温度范围较窄。
3.什么叫压缩比?挤出机螺杆设计中的压缩比根据什么来确定? 答:螺杆的压缩比A:指螺杆加料段第一个螺槽的容积与均化段最后一个螺槽的容积之它表示塑料通过螺杆的全过程被压缩的程度。A愈大,塑料受到挤压的作用也就愈大,排除物料中所含空气的能力就大。但A太大,螺杆本身的机械强度下降。压缩比一般在2 5之间。
压缩比的大小取决于挤出塑料的种类和形态,粉状塑料的相对密度小,夹带空气多,其压缩比应大于粒状塑料。另外挤出薄壁状制品时,压缩比应比挤出厚壁制品大。压缩比的获得主要采用等距变深螺槽、等深度变距螺槽和变深变距螺槽等方法,其中等距变深螺槽是最常用的方法。
4.什么是挤出机螺杆的长径比?长径比的大小对塑料挤出成型有什么影响?长径比太大又会造成什么后果?
答:螺杆的长径比L/Ds:指螺杆工作部分的有效长度L与直径Ds之比,此值通常为15 25,但近年来发展的挤出机有达40的,甚至更大。
L/Ds大,能改善塑料的温度分布,混合更均匀,并可减少挤出时的逆流和漏流,提高挤出机的生产能力。L/Ds过小,对塑料的混合和塑化都不利。因此,对于硬塑料、粉状塑料或结晶型塑料要求塑化时间长,应选较大的L/Ds。L/Ds大的螺杆适应性强,可用于多种塑料的挤出。
但L/Ds大大,对热敏性塑料会因受热时间大长而易分解,同时螺杆的自重增加,制造和安装都困难,也增大了挤出机的功率消耗。目前,L/Ds以25居多。
5.渐变型和突变型螺杆有何区别?它们各适合哪类塑料的挤出?为什么?
答:等距变深螺杆按其螺槽深度变化的快慢(即压缩段的长短)又可分为等距渐变形螺杆和等距突变形螺杆。非晶型塑料宜选用渐变形螺杆,结晶型塑料宜选用突变形螺杆。
6.如欲提高挤出机加料段固体输送能力,应对设备采取什么措施?指出其理论依据。答:固体塞的移动情况是旋转运动还是轴向运动占优势,主要决定于螺杆表面和料筒表面与物料之间的摩擦力的大小。只有物料与螺杆之间的摩擦力小于物料与料筒之间的摩擦力时,物料才沿轴向前进;否则物料将与螺杆一起转动,因此只要能正确控制物料与螺杆及物料与料筒之间的静摩擦因数,即可提高固体输送能力。
为了提高固体输送速率,应降低物料与螺杆的静摩擦因数,提高物料与料筒的径向静摩擦因数。要求螺杆表面有很高的光洁度,在螺杆中心通入冷却水,适当降低螺杆的表面温度,因为固体物料对金属的静摩擦因数是随温度的降低而减小的。
7.塑料在挤出机中的熔化长度的意义是什么?
答:挤出过程中,在加料段内是充满未熔融的固体粒子,在均化段内则充满着已熔化的物料,而在螺杆中间的压缩段内固体粒子与熔融物共存,物料的熔化过程就是在此区段内进行的,故压缩段又称为熔化区。在熔化区,物料的熔融过程是逐渐进行的,自熔化区始点A开始,固体床的宽度将逐渐减小,熔池的宽度逐渐增加,直到熔化区终点B,固体床的宽度下降到零,进入均化段,固体床消失,螺槽全部充满熔体。从熔化开始到固体床的宽度降到零为止的总长度,称为熔化长度。
8.塑料熔体在挤出机螺槽内有几种流动形式?造成这几种流动的主要原因是什么?
答:从压缩段送入均化段的物料是具有恒定密度的粘流态物料,在该段物料的流动已成为粘性流体的流动,物料不仅受到旋转螺杆的挤压作用,同时受到由于机头口模的阻力所造成的反压作用,物料的流动情况很复杂。
通常把物料在螺槽中的流动看成由下面四种类型的流动所组成:(1)正流:是物料沿螺槽方向向机头的流动,这是均化段熔体的主流,是由于螺杆旋转时螺棱的推挤作用所引起的,从理论分析上来说,这种流动是由物料在深槽中受机筒摩擦拖曳作用而产生的,故也称为拖曳流动,它起挤出物料的作用。
(2)逆流:沿螺槽与正流方向相反的流动,它是由机头口模、过滤网等对料流的阻碍所引起的反压流动,故又称压力流动,它将引起挤出生产能力的损失。
(3)横流:物料沿x轴和y轴两方向在螺槽内往复流动,也是螺杆旋转时螺棱的推挤作用和阻挡作用所造成的,仅限于在每个螺槽内的环流,对总的挤出生产率影响不大,但对于物料的热交换、混合和进一步的均匀塑化影响很大。
(4)漏流:物料在螺杆和料筒的间隙沿着螺杆的轴向往料斗方向的流动,它也是由于机头和口模等对物料的阻力所产生的反压流功。9.分析挤出成型时,螺杆均化段末端黏流态物料的压力与哪些因素有关?
10.各种挤出成型制品的生产线由各自的主、辅机组成,请归纳它们的工艺过程,用框图表示
11.塑料薄膜挤出生产工艺方法有哪几种?简要分析各种方法的工艺特点。不同成型方法所得的塑料薄膜性能有何不同的特点及应用情况如何?
12.管材挤出的工艺过程是什么?挤出管材如何定径?
答:管材挤出的基本工艺是:由挤出机均化段出来的塑化均匀的塑料,经过过滤网、粗滤器而达分流器,并为分流器文架分为若干支流,离开分流器文架后再重新汇合起来,进入管芯口模间的环形通道,最后通过口模到挤出机外而成管子,接着经过定径套定径和初步冷却,再进入冷却水槽或具有喷淋装臵的冷却水箱,进一步冷却成为具有一定口径的管材,最后经由牵引装臵引出并根据规定的长度要求而切割得到所需的制品。
管材挤出装臵由挤出机、机头口模、定型装臵、冷却水槽、牵引及切割装臵等组成,其中挤出机的机头口模和定型装臵是管材挤出的关键部件。
管材挤出后,温度仍然很高,为了得到准确的尺寸和几何形状以及表面光洁的管子,应立即进行定径和冷却,以使其定型。
外径定型是使挤出的管子的外壁与定径套的内壁相接触而起定型作用的,为此,可用向管内通入压缩空气的内压法或在管子外壁抽真空法来实现外径定型。
内压法进行外径定型的定径套如图所示。定型时,可通过分料筋的孔道通入一定压力的压缩空气(一般为0.05--0.3MPa表压)。并在挤出的管端或管内封塞。定径套的外壁为夹套,内通冷却水以冷却管子,经定径后的管子离开定径套时不再变形。
第九章
1.何谓注射成型,它有何特点?请用框图表示一个完整的注射成型工艺过程。
答:塑料的注射成型又称注射模塑,或简称注塑,是塑料制品成型的重要方法。目前注射制品约占塑料制品总量的30%。在工程塑料中有80%是采用注射成型。
注射成型是间歇生产过程,除了很大的管、棒、板等型材不能用此法生产外,其他各种形状、尺寸的塑料制品都可以用这种方法生产。它不但常用于树脂的直接注射,也可用于复合材料、增强塑料及泡沫塑料的成型,也可同其他工艺结合起来,如与吹胀相互配合而组成注射—吹塑成型。
塑料的注射成型是将粒状成粉状塑料加入到注射机的料筒,经加热熔化呈流动状态,然后在注射机的柱塞或移动螺杆快速而又连续的压力下,从料简前端的喷嘴中以很高的压力和很快的速度注入到闭合的模具内。充满模腔的熔体在受压的情况下,经冷却(热塑性塑料)或加热(热固性塑料)固化后,开模得到与摸具型腔相应的制品。
2.塑料挤出机的螺杆与移动螺杆式注射机的螺杆在结构特点和各自的成型作用上有何异同?
答:注射螺杆与挤出螺杆在结构上有如下区别: 1)注射螺杆的长径比较小,在10 15之间。2)注射螺杆压缩比较小,在2 2.5之间。
3)注射螺杆均化段长度较短,但螺槽深度较深,以提高生产率。为了提高塑化量,加料段较长,约为螺杆长度的一半。4)注射螺杆的头部呈尖头型,与喷嘴能很好的吻合。
注射螺杆起预塑化和注射作用,是间歇操作过程,它对物料的塑化能力、稳定以及操作连续性等要求没有挤出螺杆那么严格。
注射机的螺杆功能为加料、输送、塑化和注射;而挤出机的螺杆功能则是加料、输送、塑化和挤出。
注射机螺杆的运动方式为:旋转、轴向运动;而挤出机的螺杆运动方式为旋转。
注射机的螺杆头部为尖头;而挤出机的螺杆头部为圆头、平头。3.请从加热效率出发,分析柱塞式注射机上必须使用分流梭的原因。
答:分流梭装在料筒前的中心部分,是两端锥形的金属圆锥体,形如鱼雷,因此也叫鱼雷头。分流梭的作用是将料筒内流经该处的料成为薄层,使塑料流体产生分流和收敛流动,以缩短传热导程。既加快了热传导,也有利于减少或避免塑料过热而引起的热分解现象。同时,塑料熔体分流后,在分流梭与料简间隙中流速增加,剪切速度增大,从而产生较大的摩擦热,料温升高,粘度下降,使塑料得到进一步的混合塑化,有效提高柱塞式注射机的生产率及制品质量。
柱塞式注射机必须采用分流梭,移动螺杆式注射机的塑化效果好,不采用分流梭。
4.注射机的喷嘴有哪几种类型?各适合何种聚合物材料的注射成型?
答:在料筒的前部,是连接料筒和塑模的通道,其作用是引导塑化料从料筒进入棋具,并使有一定的射程。喷嘴的内径一般都是自进口逐渐向出口收敛,以便与模具紧密接触,由于喷嘴的内径不大,当塑料通过时,流速增大,剪切速度增加,能使塑料进一步塑化。热塑性塑料的注射喷嘴类型很多,结构各异,使用最普遍的有如下三种形式:
1)通用式喷嘴:是最普遍的形式,制造方便,无加热装臵,注射压力损失小,常用于聚乙烯、聚苯乙烯、聚氯乙烯及纤维素等的注射成型。2)延伸式喷嘴:是通用式喷嘴的改进型,制造方便,有加热装臵,注射压力降较小,适用于有机玻璃、聚甲醛、聚砜、聚碳酸酯等高粘度树脂。
3)弹簧针阀式喷嘴:是一种自锁式喷嘴,结构较复杂,制造困难,流程较短,注射压力降较大,较适用于尼龙、涤纶等熔体粘度较低的塑料注射。
5.以柱塞式注射机成型聚丙烯制品时,注射机料筒的加热效率为0.8,如果聚丙烯预热温度50℃,注射料温230℃,注射机的料筒最高温度应控制几度? 答:
TTOE,TO50℃,T230,E0.8,代入得TW275℃TwTO
6.试分析注射成型中物料温度和注射压力之间的关系,并绘制成型区域示意图。
答:在同一塑料的摩擦因数和熔融黏度是随料筒温度和模具温度而变动的,故注射压力与料温是相互制约的,料温高时,注射压力减小;反之,所需注射压力加大。
7.保压在热塑性塑料注射成型过程中的作用是什么?保压应有多少时间?何谓凝封?
答:保压阶段。是熔体充满模腔时起至柱塞或螺杆撤回时为止的一段时间。在这段时间内,塑料熔体会因受到冷却而发生收缩,柱塞或螺杆需保持对塑料的压力,使模腔中的塑料进一步得到压实,同时料筒内的熔体会向模腔中继续流入以补足因塑料冷却收缩而留出的空隙。随模腔内料温下降,模内压力也因塑料冷却收缩而开始下降。保压时间一般约20-100s,大型和厚制品可达2-5min。塑料注射充模保压时,浇注系统的熔体先行冷却硬化的现象叫“凝封”,凝封可防止模腔内尚未冷却的熔体向喷嘴方向倒流。8.试述晶态聚合物注射成型时温度(包括料温和模温)对其结晶性能和力学性能的影响。
答:料筒的温度的高低主要决定与塑料的性质,必须把塑料加热到黏流温度(Tf)或熔点以上,但必须低于其分解温度。?????不会 模具温度不但影响塑料充模时的流动行为,而且影响制品的物理机械性能和表观质量。实际上冷却速度的大小取决于塑料熔体温度(Tm)与冷却介质温度(Tc)的温差;当Tc<Tg为骤冷,Tc≈Tg为中速冷,Tc>Tg为缓冷。结晶型塑料注射入模具后,将发生相转变,冷却速率将影响塑料的结晶速率。缓冷,即模温高,结晶速率大,有利结晶,能提高制品的密度和结品度,制品成型收缩性较大,刚度大,大多数力学性能较高,但伸长率和冲击强度下降;反过来,骤冷所得制品的结晶度下降,韧性较好。但骤冷不利于大分子的松弛过程,分子取向作用和内应力较大。中速冷塑料的结晶和取向较适中,是用得最多的条件。实际生产中用何种冷却速度,还应按具体的塑料性质利制品的使用性能要求来决定。、9.聚丙烯和聚苯乙烯注射成型时,考虑到产品的性能和生产效率,它们的模具温度应分别控制在哪个温度范围最适宜?为什么?(PP:Tg=-10℃左右,PS:Tg=80℃左右)
答:聚丙烯的结晶能力较强,提高模具温度有助于改善熔体在模内的流动性,减小内应力和分子的定向作用,增强制件的密度和结晶度甚至能够提前脱模;但制件的冷却时间、收缩率和脱模后的翘曲变形将增大。制品结晶度的增加,制件的表面粗糙度值也会随之减小。综合考虑PP 模具温度Tc>Tg,生产上常用温度为40-90℃
无定形塑料注射充模后无相转变,故模温高低主要影响充模时间长短,较低的模温,冷却快,生产效率提高。PS 熔融黏度较低,采用偏低的模温Tc 11.试分析注射成型过程中快速充模和慢速充模各有什么利弊。 答:充模速度↑,物料受剪切↑,生热↑,T ↑,黏度下降,充模压力↑,充模顺利,能提高制品的熔接缝强度,生产周期缩短;但速度↑↑,料流为湍流,严重时引起喷射用,卷入空气,可引起塑料局部烧伤及分解,使制品不均匀,内应力较大表面常有裂纹。慢速充模时,熔体以层流状态流动,顺利将模腔内的空气排出,制品质量较均匀;但充模过慢,会使熔体在流道中冷却降温,引起黏度提高,流动性下降,引起充模不全,并出现分层和结合不好的熔接痕,影响制品强度和表面质量。 12.简述热固性塑料和橡胶的注射成型原理。答:热固性塑料注射成型原理:其主要组分是线型或带有支链的低分子量聚合物,而且聚合物分子链上存在可反应的活性基团,因此,热固性塑料受热成型过程中不仅发生物理状态的变化,而且还发生不可逆的化学变化。加进料筒内的热固性塑料受热转变为黏流态,而成为具有一定流动性的熔体,但有可能因发生化学反应而使黏度升高,甚至交联硬化为固体。所以为了便于注射成型能顺利进行,要求成型物料首先在温度相对较低的料筒内预塑化到半熔融状态,注入高温模腔后继续加热,物料就通过自身反应基团或反应活性点与加入的固化剂作用,经一定时间的交联固化反应,使线性树脂逐渐变成体型结构。 橡胶的注射成型原理:橡胶注射成型是将胶料通过注射机进行加热,然后在压力作用下从机筒注入密闭的模型中,经热压硫化而成为制品的生产方法,其注射模具是直接装在注射机上,生产时将带状胶料喂入加料口,经预热、塑化后由注射机的螺杆或柱塞直接注入模型就地硫化。 1助剂是某些材料和产品在生产或加工过程中所需要添加的各种辅助化学品用以改善生产工艺和提高产品性能,树脂和生胶加工成塑料和橡胶制品这一过程中所需要的各种辅助化学品。 2喷聚:固体助剂的析出; 发汗:液体助剂的析出。 3焦烧现象:是指橡胶胶料在加工过程中产生的早期硫化的现象。 4促进剂的后效应:在硫化温度以下,不会引起早期硫化达到硫化温度时则硫化活性大的这种性质。5色母粒:是一种把超常量的颜料或染料均匀载附于树脂之中而制得的聚集体。 6增塑剂:是加进塑料体系中增加塑性同时又不影响聚合物本质特性的物质。 外增塑剂:一般为外加到聚合体系中的高沸点的较难挥发的液体或低熔点固体物质。 内增塑剂:在聚合物的聚合过程中引入能降低了聚合物分子链的结晶度增加了塑料的塑性第二单体物质。主增塑剂:分子既能插入聚合物的无定形区域同时又能插入结晶区域的增塑剂。 辅助增塑剂:分子仅能插入部分结晶的聚合物的无定形区域的增塑剂,此增塑剂又叫非溶剂型增塑剂。7相容性:增塑剂与树脂相互混合时的溶解能力,是增塑剂最基本要求之一。 8聚能密度(CED):单位体积溶剂的蒸发能。9溶解度参数:单位体积溶剂的蒸发能的平方根所得值。1浊点(Tc):聚合物与增塑剂的稀均相溶液,在冷却下变成浑浊时的温度。 2塑化效率:使树脂达到某一柔软程度的增塑剂用量称为该增塑剂的塑化效率。 3聚合物的氧化是指随着时间的增加聚合物的性能降低,又称为自动氧化。分为诱导期、强烈氧化期。4抗氧剂:是指对高聚物受氧化并出现老化现象能起到延缓作用的一类化学物质。 主抗氧剂:主抗氧剂被认为是一种自由基的清洗剂,它通过偶合反应(即终止反应)或给出一个氢原子来阻止聚合物中的自由基的破坏作用。辅助抗氧剂:助抗氧剂的作用是可分解聚合物氧化所产生的过氧化物。5金属离子钝化剂:具有防止重金属离子对聚合物产生引发氧化作用的物质。 6稳定剂:是防止或延缓聚合物在加工、贮藏和使用过程中老化变质的化学药品。 热稳定剂:主要用于PVC和其他含氯的聚合物,既不影响其加工与应用,又能在一定程度上起到延缓其热分解的作用的一类助剂。光稳定剂:凡能抑制或减缓光氧老化进行的的物质称为光稳定剂或紫外光稳定剂。7自由基捕获剂:是一类具有空间位阻效应的哌啶衍生物类光稳定剂,简称为受阻胺类光稳定剂(HALS)。8光氧老化或光老化:分子材料长期暴露在日光或短期置于强荧光下,由于吸收了紫外线能量,引起了自动氧化反应,导致了聚合物的降解,使得制品变色、发脆、性能下降,以致无法再用。 9阻燃剂:能够增加材料耐燃性的物质叫阻燃剂。0燃烧速度:指试样单位时间内燃烧的长度。1协同效应:指两种或两种以上的助剂配合使用时,其总效应大于单独使用时各个效应的总和。 协同作用体系:阻燃剂的复配是利用阻燃剂之间的相互作用,从而提高阻燃效能,称为协同作用体系。2燃烧速度:是指试样单位时间内燃烧的长度。燃烧速度是用水平燃烧法和垂直燃烧法等来测得。3氧指数:是指试样像蜡烛状持续燃烧时,在氮-氧混合气流中所必须的最低氧含量。 4外摩擦:高分子材料在成型加工时,聚合物熔体与加工设备表面间的摩擦。内摩擦:高分子材料在成型加工时,熔融聚合物分子间存在的摩擦。5润滑剂:为减少高分子内摩擦和外摩擦,改进塑料熔体的流动性,防止高分子材料在加工过程中对设备的粘附现象,保证制品表面光洁度而加入的物质称为润滑剂。6脱模剂:对加工模具和被加工材料完全保持化学惰性的物质称为脱模剂。 7发泡剂:是一类能使处于一定粘度范围内的液态或塑性状态的橡胶、塑料形成微孔结构的物质。 发泡助剂:发泡过程中,能与发泡剂并用并能调节发泡剂分解温度和分解速度的物质,或能改进发泡工艺,稳定泡沫结构和提高发泡体质量的物质。物理发泡剂:依靠在发泡过程中本身物理状态变化来达到发泡目地的一类化合物;化学发泡剂:在一定温度下会热分解而产生一种或多种气体,使聚合物发泡。 8抗静电剂:添加在树脂、燃料中或涂附在塑料制品、合成纤维表面的用以防止高分子材料和液体燃料静电危害的一类化学添加剂统称为抗静电剂。外用抗静电剂:采用涂布、喷雾、浸渍等方法使它附在塑料、纤维表面,耐久性较差,所以又叫做暂时性抗静电剂。内用型抗静电剂(或混炼型抗静电剂):在树脂加工过程中(或在单体聚合过程中)添加到树脂组成中的抗静电剂,因其有较好的耐久性,又称为永久性抗静电剂。9偶联剂:是能改善填料与高分子材料之间界面特性的一类物质。 0着色剂:在聚合物中加入的改变制品颜色,提高制品美观性的助剂。 着色力:指颜料影响整个混合物料颜色的能力,着色力大,使用着色剂量就小,成本也低。 1遮盖力:指着色剂阻止光线穿透着色制品的能力。2增透剂:能改善结晶聚合物透明性的助剂。3迁移性:指着色剂向介质渗色或向接触的物质迁移的现象。一般地说,有机酸的无机盐(色淀性颜料)迁移性比较小;分子量较高者比较低者迁移性小。4防霉剂:(生物抑制剂)有抑制霉菌生长和杀灭霉菌的功能。5荧光增白剂:能增加塑料制品的白度、亮度使色彩更加鲜艳夺目的物质。 6防雾剂:又称流滴剂,是防止透明材料雾害的一类添加剂。 7老化:高分子材料在成型、贮存、使用过程中发生结构变化,逐渐地失去使用价值的现象。 B、C钢筋进场、堆放、加工、成型、绑扎 操作程序及管理办法 一般钢筋出厂时,都有标牌,标牌上标明等级。当没有时,螺纹钢上都有标记(厂名)、规格、等级; 等级:Ⅰ、Ⅱ、Ⅲ、Ⅳ ; 代号:A、B、C、D。一般表示为:等级标记规格。 建筑工程使用的钢筋主要是按照抗拉强度划分: 抗拉强度2400kg/cm²称1级钢筋,图纸上用A表示; 抗拉强度3400kg/ cm²的16Mn钢属2级钢筋,图纸上用下加一横的B表示; 抗拉强度3800kg/ cm²的25MnSi钢属3级钢筋,图纸上用中间两竖、下加一横的C表示。 因为Ⅱ、Ⅲ(B、C)级从外观上看区别不是很大,容易混淆,所以在 钢筋进场、堆放、加工成型、绑扎时要注意一下事项: 1、进场:根据材料进场计划,收料员要认真核对进场钢筋的规格、数量、型号。马上通知施工员安排有关人员根据进场钢筋的规格、数量、型号分类堆放整齐。及时插好标牌、标牌上要写明规格、型号生产厂家书写必须认真(标牌由后勤部门负责制作)。 2、加工成型:操作人员必须认真阅读图纸、熟悉施工规范、相关图集、以及作业指导书。根据钢筋配料单将加工好的钢筋用废旧橡胶内胎剪成小方块记好钢筋使用在什么构件上,如(KL- 1、LL- 3、TL-4)以20#铁丝缠在钢筋端(部由班组施工工长负责督促完成)。 3、绑扎:根据图纸、对照钢筋配料单由钢筋工长发料,对绑扎班组进行现场交底,班组施工工长要求对图纸、钢筋配料单了如指掌,确保操作层钢筋绑扎符合设计要求及施工规范要求。 4、检查:由质量员对钢筋进场、加工、成型、绑扎的全过程进行全面控制,发现问题及时整改杜绝B、C混淆使用。 5、处罚:对施工过程中麻麻蛮干的,除对其进行批评教育外,还要进行经济处罚(具体有栋号长、质量员执行)。 6、如果条件允许可以加将B、C分在两个加工区进行加工,再进行分类标识。 (钢筋工程作业指导书) 龙信建设集团连云港金鹰国际项目部 2011年3月8日 《高分子材料加工成型原理》主要习题 第二章 聚合物成型加工的理论基础 1、名词解释:牛顿流体、非牛顿流体、假塑性流体、胀塑性流体、拉伸粘度、剪切粘度、滑移、端末效应、鲨鱼皮症。 牛顿流体:流体的剪切应力和剪切速率之间呈现线性关系的流体,服从牛顿黏性定律的流体称为非牛顿流体。 非牛顿流体:流体的剪切应力和剪切速率之间呈现非线性关系的流体,凡不服从牛顿黏性定律的流体称为非牛顿流体。 假塑性流体:是指无屈服应力,并具有黏度随剪切速率或剪切应力的增大而降低的流动特性的流体,常称为“剪切变稀的流体”。 胀塑性流体:是指无屈服应力,并具有黏度随剪切速率或剪切应力的增大而升高的流动特性的流体,常称为“剪切增稠的流体”。P13 拉伸粘度:用拉伸应力计算的粘度,称为拉伸粘度,表示流体对拉伸流动的阻力。 剪切粘度:在剪切流动时,流动产生的速度梯度的方向与流动方向垂直,此时流体的粘度称为剪切粘度。 滑移:是指塑料熔体在高剪切应力下流动时,贴近管壁处的一层流体会发生间断的流动。P31 端末效应:适当增加长径比聚合物熔体在进入喷丝孔喇叭口时,由于空间变小,熔体流速增大所损失的能量以弹性能贮存于体系之中,这种特征称为“入口效应”也称“端末效应”。 鲨鱼皮症:鲨鱼皮症是发生在挤出物表面上的一种缺陷,挤出物表面像鲨鱼皮那样,非常毛糙。如果用显微镜观察,制品表面是细纹状。它是不正常流动引起的不良现象,只有当挤出速度很大时才能看到。 6、大多数聚合物熔体表现出什么流体的流动行为?为什么?P16 大多数聚合物熔体表现出假塑性流体的流动行为。假塑性流体是非牛顿型流体中最常见的一种,聚合物熔体的一个显著特征是具有非牛顿行为,其黏度随剪切速率的增加而下降。此外,高聚物的细长分子链,在流动方向的取向粘度下降。 7、剪切流动和拉伸流动有什么区别? 拉伸流动与剪切流动是根据流体内质点速度分布与流动方向的关系区分,拉伸流动是一个平面两个质点的距离拉长,剪切流动是一个平面在另一个平面的滑动。 8、影响粘度的因素有那些?是如何影响的? 剪切速率的影响:粘度随剪切速率的增加而下降; 温度的影响:随温度升高,粘度降低; 压力的影响:压力增加,粘度增加; 分子参数和结构的影响:相对分子质量大,粘度高;相对分子质量分布宽,粘度低;支化程度高,粘度高; 添加剂的影响:加入增塑剂会降低成型过程中熔体的粘度;加入润滑剂,熔体的粘度降低;加入填料,粘度升高。 12、何谓熔体破裂?产生熔体破裂的原因是什么?如何避免? 高聚物熔体在挤出过程中,当挤压速率超过某一临界值时挤出物表面出现众多的不规则的结节、扭曲或竹节纹,甚至支离和断裂成碎片或柱段,这种现象称为熔体破裂。 原因:一种认为是由于熔体流动时,在口模壁上出现了滑移现象和熔体中弹性恢复所引起;另一种是认为在口模内由于熔体各处受应力作用的历史不尽相同,因而在离开口模后所出现的弹性恢复就不可能一致,如果弹性恢复力不为熔体强度所容忍,就会引起熔体破裂。 避免熔体破裂需注意:控制剪切应力与熔体温度;设计口模模唇时,提供一个合适的入口角,使用流线型的结构是防止聚合物熔体滞留并防止挤出物不稳定的有效方法。 第三章 成型用的物料及其配制 4、简述增塑剂的增塑机理,如何选用增塑剂? 增塑剂在加入聚合物大分子后,增塑剂的分子因溶剂化及偶极力等作用而“插入”聚合物分子之间并于聚合物分子的活性中心发生时解时结的联结点,由于有了增塑剂-聚合物的联结点,聚合物之间原有的联结点就会减少,从而使其分子间的力减弱,并导致聚合物一系列性能的改变。选用增塑剂要选择与树脂的相容性好、增速效率高、增塑效果持久、低温柔韧性好、电绝缘性好、耐老化性好、阻燃性好、毒性低等。 5、何谓稳定剂?简述热稳定剂的稳定机理。 凡在成型加工和使用期间为有助于材料性能保持原始值或接近原始值而在塑料配方中加入的物质称为稳定剂。热稳定剂的作用机理归纳如下:(1)捕捉降解时放出的HCL。(2)置换不稳定的氯原子(3)钝化具有催化作用的金属氯化物(4)防止自动氧化(5)与共轭双键结构起加成作用(6)能与自由基起反应。 8、何谓润滑剂?为什么润滑剂有内、外之分? 为改进塑料熔体的流动性能,减少或避免对设备的摩擦和粘附以及改进制品表面光亮度等,而加入的一类助剂称为润滑剂。 润滑剂中有一类与高聚物有一定的相容性,加入后可减少高聚物分子的内聚力,降低其熔融粘度,从而减弱高聚物分子间的内摩擦,此类润滑剂为内润滑剂。还有一类与高聚物仅有很小的相容性,它在加工机械的金属表面和高聚物表面的界面上形成一润滑层,以降低高聚物与加工设备之间的摩擦,此类润滑剂为外润滑剂。不同的相容性让润滑剂有了内外之分。 第五章 挤出成型 2、普通螺杆在结构上为何分段,分为几段?各段的作用如何? 螺杆的主要功能包括输送固体物料,压紧和熔化固体物料,均化、计量和产生足够的压力以挤出熔融物料,所以根据物料在螺杆上运转的情况可将螺杆分为加料、压缩和计量三段。 加料段是自物料入口向前延伸约4~8D的一段,主要功能是卷取加料斗内物料并传送给压缩段,同时加热物料;压缩段(又称过渡段)是螺杆中部的一段,在这段中物料除受热和前移外,主要是由粒状固体逐渐被压实并软化为连续的熔体,同时还将夹带的空气排出;计量段是螺杆的最后一段,其长度约为6~10D,主要的功能是使熔体进一步塑化均匀,克服口模的阻力使物料定量、定压的由机头和口模流道中挤出,所以这一段也称为均化段。 3、根据固体输送率的基本公式,分析当螺杆的几何参数确定之后,提高固体输送率的途径及工业实施方法。 提高固体输送率可从挤出机结构和挤出机挤出工艺两个方面采取措施。从挤出机结构角度来考虑,可增加螺槽深度;其次,可降低塑料与螺杆的摩擦系数,这就需要提高螺杆的表面光洁度;再者,可增大塑料与料筒的摩擦系数,料筒内表面要尽量光洁。 从挤出工艺角度来考虑,关键是控制送料段料筒和螺杆的温度。 9、何谓螺杆压缩比?为什么要有压缩比?在螺杆结构上如何实现? 通常将加料段一个螺槽的溶剂与计量段一个螺槽容积之比称为螺杆的压缩比。 压缩比对塑料挤出成型工艺控制有重要影响。挤出不同的塑料,根据塑料的物理性能选择螺杆的压缩比。 实现压缩比的途径:变动螺纹的高度或导程;螺杆根径由小变大或外径由大变小;螺纹的头数由单头变成二头或三头。 13、用方框图表示出挤出成型工艺,并注明各工艺环节所用的设备。 各工艺环节所用的设备: 原料的预处理和混合:烘箱或烘房; 挤出成型:挤出机、挤出机机头口模; 定性装置:真空定径(真空定径套、冷却水槽、真空泵等)和内压定径; 冷却装置:浸浴式冷却水箱或喷淋式冷却水箱; 牵引装置:滚轮式牵引机或履带式牵引机; 切割装置:圆盘锯切割机或自动星型锯切割机。 第六章 注射模塑 1、名词解释:塑化、塑化压力、注射压力 塑化是注射成型的准备过程,是指物料在料筒内受热达到流动状态并具有良好的可塑性的全过程。 塑化压力:采用螺杆式注射机时,螺杆顶部熔料在螺杆转动后退时所受到的压力称为塑化压力,亦称背压。 注射压力:是指柱塞或螺杆顶部对塑料所施加的压力,由油路压力换算而来。 2、注射成型方法适合于何种制品的生产?为什么?请用框图形式表示一个完整的注 射成型工艺过程。 适合于热塑性塑料及多种热固性塑料制品的生产。 注射成型的成型周期短、生产效率高,能一次成型外形复杂、尺寸精准、带有嵌件的制品;生产热固性塑料时,不仅使其制品质量稳定、尺寸精准和性能提高,而且使成型周期大大缩短,劳动条件也得到改善。 6、与挤出机的螺杆相比,注射机的螺杆在结构上、运动上及功能上有何特点? (1)注射螺杆在旋转时有轴向位移,因此螺杆的有效长度是变化的;(2)注射螺杆的长径比较小,一般为10-15之间;(3)注射螺杆的压缩比较小,一般为2-2.5之间; (4)注射螺杆因有轴向位移,因此加料段应该长,约为螺杆长度的一半,而压缩段和计量段则各为螺杆长度的四分之一;注射螺杆的螺槽较深以提高生产率; (5)注射螺杆在转动时只需要它能对物料进行塑化,不需要它提供稳定的压力,塑化中物料承受的压力是调整背压来实现的; (6)为使注射时不致出现熔料积存或沿螺槽回流的现象,应考虑螺杆头部的结构。 13、为什么要保压?保压对制品性能有何影响? 熔体注入模腔后,由于模具的低温冷却作用,使模腔中的熔体产生收缩。为了保证注射制品的致密性、尺寸精度和强度,必须使注射系统对模具施加一定的压力(螺杆对熔体保持一定的压力),对模腔塑件进行补缩,直到浇注系统的塑料冻结为止。 对制品的密度、克服制品表面缺陷、制品的致密性、尺寸精度和强度都有一定的影响。 第七章 压延成型 简述压延机的基本结构和工作原理。 各类压延机除辊筒数目及排列方式不同外,其基本结构大致相同,主要由机座、机架、辊筒、辊距调节装置、润滑系统、传动装置、紧急停车装置等部分组成。 压延成型主要依靠辊筒异向旋转,将熔融塑化的物料带入辊筒间隙,由于辊筒间速比的存在,辊隙间有速度梯度,使料层间产生相对运动。使熔料在辊筒间隙中受到辊筒挤压延展、拉伸而成为具有一定规格尺寸连续片(膜)状制品。 第一章 绪 论 制造业是提高国家工业生产率、经济增长、国家安全及生活质量的基础,是国家综合实力的重要标志。现如今我国制造业面临巨大挑战,因而加强材料成形加工技术与科学基础研究,大力采用先进制造技术,对国民经济的发展具有重要意义。 材料成形加工技术与科学既是制造业的重要组成部分,又是材料科学与工程的四要素之一,对国民经济的发展及国防力量的增强均有重要作用。“新一代材料精确成形加工技术”与“多学科多尺度模拟仿真”是现代两个重要学科研究前沿领域。高新技术材料的出现,将加速发展以“精确成形”及“短流程”为代表的材料加工工艺,包括:全新的成形加工方法与工艺,及传统成形加工方法的改进与工序综合。“模拟仿真”是产品计算机集成制造、敏捷制造的主要内容,是实现制造业信息化的先进方法。并行工程已成为产品及相关制造过程集成设计的系统方法,以计算机模拟仿真与虚拟现实技术为手段的虚拟制造设计将是先进制造技术的重要支撑环境。网络化、智能化是现代产品与工艺过程设计的趋势,绿色制造是现代材料加工技术的进一步发展方向。 面对市场经济、参与全球竞争,必须加强材料成形加工科学与技术的基础和应用研究。只有使用先进的材料加工技术,才能获得高质量产品的结构和性能,这些高性能的先进材料包括传统材料和新材料。发展材料成形加工技术对我国制造业以高新技术生产高附加值的优质零部件有积极作用,可扩大材料及制造范围、提高生产率、降低产品成本、增强企业国际竞争能力。 制造业在过去的几年中发生了巨大变化,而现代高科技及新材料的出现将导致材料成形加工技术的进一步发展与变革,出现全新的成形加工方法与工艺,传统加工方法不断改进并走向工艺综合,材料成形加工技术则逐渐综合化、多样化、柔性化、多科学化。 第二章 现代材料成形加工技术与科学 2.1现代材料成形加工技术的作用与地位 我国已是制造大国,仅次于美、日、德,位居世界第四位。材料成形加工行业则是制造业的重要组成部分,材料成形加工技术也是先进制造技术的重要内容。铸造、锻造及焊接等材料加工技术是国民经济可持续发展的主体技术。目前,在汽车行业中汽车重量的65%以上仍由钢铁、铝及镁合金等材料通过铸造、锻压、焊接等加工方法而成形。材料成形加工技术与科学又是材料科学与工程的四要素之一,它不仅赋予零部件以形状,而且给予零部件以最终性能及使用特性。 制造业在过去的几年中发生了巨大的变化,这种变化还会延续。高速发展的工业技术要求材料加工产品精密化、轻量化、集成化;国际竞争更加激烈的市场要求产品性能高、成本低、周期短;日益恶化的环境要求材料加工原料与能源消耗低、污染少;另外材料成形本身制造好、成品率高。为了生产高精度、高质量的产品,材料正由单一的传统型向复合型、多功能型发展;材料加工技术逐渐综合化、多样化、柔性化、多科学化。 面对市场经济、参与全球竞争,必须加强材料成形加工科学与技术的基础和应用研究。只有使用新近的材料加工技术才能获得高质量产品的结构和性能,这些高性能的先进材料包括传统材料和新材料。发展材料成形加工技术对我国制造业已高新技术生产高附加值的优质零部件有积极作用。 2.2材料成形加工技术的发展趋势 美国在“新一代制造计划”中指出,未来的制造模式将是批量小、质量高、成本低、交货期短、生产柔性、环境友好;未来的制造企业要掌握十大关键技术,其中包括快速产品与工艺开发系统、新一代制造工艺及装备及模拟与仿真三项关键技术。其中新一代工艺包括精确成形加工制造或称净终成形加工工艺。净终成形加工工艺要求材料成形加工制造向更轻、更薄、更强、更韧及成本低、周期短、质量高的方向发展。 轻量化、精确化、高效化将是未来材料成形加工技术的重要发展方向。近年来,随着汽车工业的迅速发展,对通过降低产品的自重以降低能源消耗 和减少污染(包括汽车尾气和废旧塑料)提出了更迫切的要求,轻质、高质量的绿色环保材料将成为人们的首选。镁合金就是被世界各国材料界看好的最具有开发和应用发展前途的金属材料。 镁合金压铸件广泛应用于交通工业(汽车、摩托车及飞机零件等)、IT行业(手机、笔记本等)、小型家电行业(摄像机、照相机及其它电子产品外壳等)。汽车离合器和变速箱壳体采用镁合金压铸件比铝合金重量分别减轻2.6kg和2.5kg。同时,压铸镁铝合金产品在体育运动(自行车架与踏板、滑雪板等)、手工工具(链锯、岩钻等)、国防建设(轻型武器、步兵装备)等领域亦有十分广阔的应用前景。 2.3材料成形加工过程的建模与仿真 随着计算机技术的发展,技术材料科学已成为一门新兴的交叉学科,成为材料研究的重要手段,是除实验和理论外解决材料科学中实际问题的第三个重要研究方法。它可以比理论和实验做得更深刻、更全面、更细致,可以进行一些理论和实验暂时还做不到的研究。因此,基于知识的材料成形工艺模拟仿真是材料科学与工程的前沿领域及研究热点,而高性能、高保真和高效率则是模拟仿真的努力目标。根据美国科学研究院工程技术委员会的测算,模拟仿真可提高产品质量5~15倍,增加材料出品率25%,降低工程技术成本13%~30%,降低人工成本5%~20%,增加投入设备的利用率30%~60%,缩短产品设计和试制周期30%~60%,增加分析问题广度和深度的能力3~3.5倍等。 2.4材料的快速成形与虚拟制造 我国制造业的主要问题之一是缺乏创新产品的开发能力,因而缺乏国际市场竞争能力。随着全球化市场的激烈竞争,加快产品开发速度已成为竞争的重要手段之一。制造业要满足日益变化的用户要求,必须有较强的灵活性,以最快的速度提供高质量产品。 虚拟制造是CAD、CAM和CAPP等软件的集成技术,其关键是建立制造过程的计算模型,虚拟仿真制造过程。虚拟制造以并行方式进行产品设计、加工和装配,对各单元采用分布管理,而且不受时间、空间限制。虚拟制造的基础是虚拟现实技术。所谓“虚拟现实”技术是利用计算机和外观设备,生成与真实环境一致的三维虚拟环境,使用户通过辅助设备从不同的“角度”和“视点”与环境中的“现实”交互。与智能制造、虚拟工厂、网络化制造集成,材料加工过程建模与仿真将成为制造业新产品过程设计的非常有效的工具。 第三章 新一代材料成形加工 3.1材料成形加工技术发展特征 材料成形加工技术在现代发展的过程中,形成“精密”、“优质”、“快速”、“复合”、“绿色”、“信息化”的特征。 1.材料成形加工技术的“精密”特征:成形精度向净成形的方向发展 材料成形加工技术的重要特征是精密化,以制造技术而论,从尺度上看,精密制造技术已经跨越了微米级技术,进入了亚微米和纳米技术领域。材料成形加工技术也在朝着精密化的方向发展,表现为零件成形的尺寸精度正在从近净成形向净成形,即近无余量成形方向发展。“毛坯”与“零件”的界限越来越小。 2.材料成形加工技术的“优质”特征:成形质量向近无缺陷、“零”缺陷的方向发展 如果说净成形技术主要反映的是成形加工技术的尺寸与形状精密的特征,反映了成形加工保证尺寸及形状的精密程度,那么,反映成形加工优质特征的则是近无缺陷、“零”缺陷成形加工技术。这个“缺陷”是指不致引起早期失效的临界缺陷的概念。采取的主要措施有:采用先进工艺、净化熔融金属、增大合金组织的致密度,为得到健全的铸件、锻件奠定基础;采用模拟技术、优化工艺技术,实现一次成形及试模成功,保证质量;加强工艺过程监控及无损检测,及时发现超标零件;通过零件安全可靠性能研究及评估,确定临界缺陷量值等。 3.材料成形加工技术的“快速”特征:成形过程向快速方向发展 为满足现代消费观念的变革以及市场的剧烈竞争化,“客户化、小批量、快速交货”的要求不断增加,需要材料成形加工技术的快速化。 成形加工技术的快速特征表现在各种新型高效成形工艺不断涌现,星星铸造、锻造、焊接方法都从不同角度提高生产效率。 3.2新一代材料成形加工技术 制造技术可分为加工制造和成形制造(以液态铸造成形、固态塑性成形及连接成形等为代表)技术,其中成形制造不仅赋予零件以形状,而且决定了零件的组成。 3.2.1精确成形加工技术 近年来出现了很多新的精确成形加工制造技术。在轿车工业中还有很多材料精确成形新工艺,如用精确锻造成形技术生产凸轮轴等零件,液压胀形技术,半固态成形及三维挤压发等。摩擦压力焊接技术近来也备受人们关注。 以挤压铸造及半固态铸造为代表的精确成形技术由于熔体在压力下充型、凝固,从而使零件具有好的表面及内部质量。半固态铸造是一种生产结构复杂、近净成形、高品质铸件的材料半固态加工技术。半固态铸造铝合金零件在汽车上的应用其区别于压力铸造和锻压的主要特征是:材料处于半固态时在较高压力(约200MPa)下充型和凝固。材料在压力作用下凝固可形成细小的球状晶粒组织。 3.2.2快速原型制造技术 随着全球化及市场的激烈竞争,加快产品开发速度已成为竞争的重要手段之一。制造业要满足日益变化的用户需求,制造技术必须具有较强的灵活性,能够以小批量甚至单批量生产迎合市场。快速原型制造技术以离散和堆积原理为基础和特征,将零件的电子模型按一定方式离散成为可加工离散面、离散线和离散点,然后采用多种手段将这些离散的面、线和点堆积形成零件的整体形状。有人因该技术高度的柔性而称之为“自由成形制造”。近年来快速原型制造已发展为快速模具制造及快速制造,这些技术能大大缩短产品的设计开发周期,解决单件或小批零件的制造问题。 3.3新一代产品制造设计的研究 未来智能制造公司需要一系列核心智能,以便在集成设计、制造和商业服务系统内进行智能商务运作。这一系列的智能核心即可预测性、可生产性和廉价性、污染防治、产品与工艺性能。 研究这些特点已使集成设计、制造和服务成为一个具有竞争力的系统学科。如果将这种集成工程系统理解成为一种科学,就可以将其归为已经成熟的分析方法,然后就可以确定基本参数及如何测量它们,从而可以预测期行为。下面是在材料加工和新一代产品制造设计中将建模与仿真用作智能核心的基本要点: 1.数字产品和工艺建模的可预测性 随着具有竞争力的缩减产品发展与实现周期的蓬勃发展,在产品与工艺合成中的所有决策需要精度的建模与仿真工艺,以使物理基础的或行为基础的设计属性生效。在动力学、热力学、理学、材料和行为系统中有效运用建模工具是未来数字制造的先决条件。这些模型和知识要在网络和协作环境下共享,最新的SGI(美国图形工作站生产厂商)工作站可以在数分钟至数小时内解决极为复杂的工程问题。制造商可以使用高度工程化的仿真模型来帮助供货商改变模型设计和运送近于零缺陷的铸件给消费者,这样会尽量减少返工和缺陷。2.材料的可生产性和廉价性 廉价的制造材料对制造业特别是航空业一直是一个挑战。随着对环境和性能的规范和限制越来越多,各公司正在寻找更好的超级合金高温材料和类似网状的工艺技术,以降低原材料和制造运作过程的成本。现在,研究机构中的多数研究工具和工艺模型对公司在制造过程中预测并验证材料属性是远远不够的。我们必须将着眼点从尺寸精确性扩展到材料性能,以便获得对工艺、机器和零件的品质的全面了解。这将引导我们开创集材料、制造、物理和计算学等交叉学科的研究工作,以推进我们对制造学的了解。 3.绿色生产和工艺的污染防治 我们需要新的规范使传感器和工艺控制这种技术更好的整合,以便更少的发展和安装成本提供更高的能源效率并降低污染。绿色制造系统应改进以使工厂监控工艺参数,并直接、精确和快速的获得真实的工艺信息。另外,需要可代替的化学基础的涂层技术来影响化学自由制造工艺,还需要新型的传感器通过化学手段监控和控制腐蚀环境。正在出现的技术,诸如微电子机械基础的工艺传感器和无线电通信,需要发展和工程化以满足这些挑战性的需求。 4.产品与工艺性能的先进维护技术 服务和维护对于保持产品和工艺的质量及客户的满意度是非常重要的。确定系统失效原因的难点归结为几种因素,包括系统复杂性、不确定性和缺乏足够的纠错工具。当前,许多组织工业正实行的服务和维护就是基于响应的方法。组织我们解决这些问题的基本原因是对制造机器和设备每天的情况了解不足。我们只是不知道如何定量预测零件和机器的性能退化。我们缺乏有效地预测模型和工具,它们可以告诉我们给定工艺参数的具体值时会有什么情况发生。我们要进行研究,以了解产品和机器故障生产的原因,开发智能和可重复配置这些目标,需要智能软件和网络设备来提供预先维护能力,诸如性能退化测量、故障修复、自维护和远程诊断。这些特点允许制造和加工工业能发展预先维护策略,以保证产品和工艺性能,并最终消除不必要的系统瘫痪。 第4章 绿色再制造与材料成形加工的可持 续发展 在当今全球经济发展的同时,对自然资源的任意开发利用带来了全球的生态破坏、资源短缺、环境污染等重大问题。其中,机电产品制造业是最大的资源使用者,也是最大的环境污染资源之一。通过研究再制造工程理论和技术,可以为废旧产品的科学利用提供依据,指导规范当前的再制造市场。 再制造工程是以产品全寿命周期设计和管理为指导,以优质、高效、节能、环保为目标,以先进技术和产业化市场为手段,来恢复或改造废旧产品的一系列技术措施或工程活动的总称。通过再制造的研究,可形成闭环的产品物质及信息流系统,实现由产品的开环处理和材料资源的闭环回收,发展到产品闭环使用的高级阶段,实现高级资源物质流的最优化循环。 4.1再制造过程的设计基础 针对失效的产品进行再制造,首先要对其进行再制造设计,再制造的设计基础包括产品的失效机理及寿命预测、再制造性的评价等内容。 4.1.1产品失效机理及寿命预测 产品服役的环境行为及失效机理研究是实施再制造工程重要的基础理论依据。从宏观和微观上研究零部件在复杂的环境中失效的机理和损伤的规律。主要研究复杂环境中多因素非线性耦合作用下的零部件失效机理,包括腐蚀介质与力学因素联合作用下的零件损伤机理,温度场与应力场耦合作用下的零部件损伤行为,多轴载荷作用下零部件的疲劳破坏行为,以及汽液固多相流环境中零部件的腐蚀、冲蚀、穴蚀交互损伤规律。 产品寿命预测与剩余寿命评估方法建立在零部件失效分析的基础上,应用力学理论建立失效行为的数学模型,并与加速试验结果相结合,以建立产品寿命的预测评估系统,评估新品、再制造产品的寿命及产品的剩余寿命。 4.1.2产品再制造性的评价 废旧产品的再制造性是决定其能否进行再制造的前提,是再制造基础理论研究中的首要问题。再制造性是指将技术、经济和环境等因素综合分析后,废旧产品所具有的通过维修或改造后恢复或超过原产品性能的能力。 4.2再制造材料成形加工关键技术 废旧产品经过再制造论证后,要实施再制造必须依赖于先进的材料成形加工技术。 4.2.1复合表面工程技术 零件的失效多起源于表面,因此表面工程技术是再制造过程中的核心技术。表面过程,是经表面预处理后,通过表面涂覆、表面改性或多种表面工程技术复合处理,改变固体金属表面或非金属表面的形态、化学成分、组织结构和应力状态等,已获得所需要表面性能的系统工程。表面工程是由多个学科交叉、综合而发展起来的新兴学科,它以“表面”为研究核心,在有关学科理论的基础上,根据零件表面的失效机制,以应用各种表面工程技术及其复合为特色,逐步形成了与其他学科密切相关的表面工程基础理论。表面工程的最大优势是能够以多种方法制备出优于本体材料性能的表面功能薄层,赋予零件耐高温、防腐蚀、耐磨损、抗疲劳、防辐射等性能。表面工程的基本特征是综合、交叉、复合、优化。复合表面工程是先进表面工程的重要基础内容。复合表面工程主要包括多种表面技术的复合和多种表面材料的复合两种形式。国外称之为第二代表面工程新技术。 1.多种表面技术的复合 多种表面技术的复合能够形成新的涂层体系,并建立表面工程新领域。单一的表面技术由于其固有的局限性,往往不能满足日益苛刻的工况条件的要求。综合运用多种表面技术的复合可以通过最佳协同效应获得了“1+1>2”的效果,解决了一系列高新技术发展中特殊的工程技术难题。 多种表面技术的复合主要研究内容包括: ⑴ 研究可产生协同效应的多种技术之间的复合和设计;表面复合涂层在恶劣工况下表面或界面之间的协同效应机理。 ⑵ 研究表征功能梯度材料(FGM)性能与组成的梯度变化,应用计算机逆向设计对FGM覆层的组成和结构进行优化;开发热喷涂、电刷镀、气相沉积等工艺制备FGM覆层的技术;研究金属、金属间化合物、陶瓷等FGM涂层性能。 ⑶ 应用物理气相沉积、化学气相沉积和高能束辅助沉积在再制造毛坯上形成超硬膜。研究真空膜层成膜界面行为与膜层性能关系;形核及生长动力学;在晶格错配度较大条件基体强度与超硬膜结合强度的关系;复合膜组元之间的交互作用。 2.多种表面材料的复合 多种表面材料形成的复合涂层不但具有单一结构涂层所具有的性能,还因复合材料的不同而获得特殊性能或具有多功能的性能涂层,复合涂层的研究和应用日益增多。由各种材料复合获得的复合涂层种类主要有:金属基陶瓷复合涂层、陶瓷复合涂层、梯度功能复合涂层等。 4.2.2纳米表面工程技术 纳米表面工程是以纳米材料和其他低维非平衡材料为基础,通过特定的加工技术或手段,对固体表面进行强化、改性、超精细加工或赋予表面新功能的系统工程。纳米涂层及纳米表面自修复材料和技术是以纳米材料为基础,通过特定的工艺手段,对固体的表面进行强化、改性,或者赋予表面新功能,或者对损伤的表面进行自修复。例如: ⑴ 纳米颗粒复合电镀刷技术 ⑵ 纳米颗粒复合原位动态自修复技术 ⑶ 纳米材料热喷涂技术 ⑷ 金属表面纳米晶化技术 纳米表面工程的主要技术基础包括: ① 纳米涂层的制备技术的基础研究,特别是研究纳米材料在介质中的分散和稳定等关键工艺;纳米涂层的高强度、高韧性及其他特殊优异性能;纳米涂层对热疲劳及高温磨损等苛刻条件下的微裂纹萌生、扩展和损伤抑制机理;纳米涂层抗氧化性和热稳定性的机理等。 ② 研究非晶复合纳米晶涂层形成的机理与影响因素,包括材料表面纳米结构和非晶纳米晶复合涂层结构和体相的物理化学现象;涂层显微组织的形成与演化规律、缺陷与热应力的形成机理、界面结合情况等。研究非平衡条件下低维材料的结构与行为以及宏观与微观的一体化,包括“尺度问题”和“表面、界面问题”,为开发纳米电刷镀技术、纳米热喷涂技术、纳米气相沉积等及其复合技术提供技术基础。 ③ 纳米原位动态减摩自修复技术的基础研究。在不停机、不解体的状况下,应用摩擦化学理论,利用纳米颗粒的特性在摩擦微损伤表面原位动态形成自修复膜层的方法及材料。研究内容包括:纳米结构的润滑膜、自修复薄膜等的生长机理和服役特性;纳米润滑添加剂对摩擦表面的强化和对初期磨损表面的原位动态自修复等机制;纳米添加剂的组成、形态、结构、反映活性等与损伤动态自修复功能的关系规律,开发与摩擦表面结合良好、具有优良抗磨损和承载能力的纳米磨损动态自修复技术及摩擦表面原位强化技术。 4.2.3特殊环境下的应急再制造技术 我国有大量的设备服役在苛刻的环境条件下,如在野外环境下石油、天然气设备;水电、公路铁路施工设备等;在严重快速磨损的高原沙漠地区,在高温、高湿、高烟雾海洋环境下的严重腐蚀或磨损等。特殊环境下的装备应急再制造关键技术以恢复服役性能为重点,对再制造的时间、空间、标准、技术条件等有特殊要求,具有现场性、应急性、易噪性等特点。研究内容主要包括: 1.应急快速维修技术 高科技条件下的局部战争及生产线协同运行等作业方式缩短了损伤装备修理的时间和空间,因此应急快速维修的地位和作用也变得更为重要。采用先进技术快速修复损伤的装备,使其迅速恢复战斗力和生产力,是高科技条件下的作战与生产对应急维修技术的要求,也是装备再制造的重要研究方向。主要技术基础: ⑴ 研究军用装备的战伤特点及装备突发故障规律,建立应急维修技术专家系统。 ⑵ 开发适应于高低温、高负荷、强辐射等苛刻条件下使用的耐磨、防腐化学粘涂材料(复合型胶粘剂、纳米胶粘剂、特种功能胶粘剂);研究粘结粘涂层的衰变性能;研究快速固化机理和技术,如紫外线固化、微波固化技术等;重点开发适用于战伤及突发损伤的粘接、冷焊、扣合、堵漏等应急快速抢修技术。 ⑶ 研究提高部队作战和野外施工作业应急机动保障能力的关键技术,开发通用化、小型化、标准化、智能化、数字化的靠前抢修配套工具和仪器,开发多种现场抢修车及方舱等。 2.再制造毛坯快速成形技术 再制造毛坯快速成形技术,是利用原有废旧的零件作为再制造零件毛坯原料,根据离散和堆积成形原理,利用CAD零件模型所确定的几何信息,采用积分原理和先进熔覆技术进行金属的熔融堆积,快速成形。主要技术基础: ⑴ 建立产品结构、零部件及表面涂层体系的再制造计算机辅助工程系统(RCAE),研究零件受损检测和几何特征定位,开发再制造毛坯表面三维几何参量测试及再制造建模系统。 ⑵ 研究适宜快速成形的高熔点材料,解决金属直接快速成形的致密性、成形材料与基体的结合强度、成形材料间的内聚强度等问题。 结 论 本文指出我国制造业的基础共性技术领域材料成形加工技术与科学的发展方向,以推动该领域的发展和进步。 新一代制造工艺及装备、建模与仿真及快速产品与工艺开发系统是面向现代的三项关键先进制造技术。轻量化、精确化、高效化将是新一代成形加工技术的重要发展方向,材料成形加工向更轻、更薄、更精、更强、更韧、质量高、周期短及成本低的方向发展。 在新一代成形加工技术与材料成形加工的发展中不断面临的环保、资源、市场竞争等问题上,绿色再制造又成为了成形加工技术的进一步发展趋势。绿色再制造材料成形加工关键技术基础的研究目标和内容涉及材料学科和机械学科的前沿,符合废品资源化和我国可持续发展战略的原则和内容,其中许多技术基础的研究内容优又是根据我国废旧产品再制造的需求提出的,具有较强的学科创新性、前瞻性以及广阔的应用与发展前景。 参考文献 朱高峰主编.全球化时代的中国制造.北京:社会科学文献出版社,2003 柳百成,李敏贤,吴俊郊等.国家自然科学资金优先资助领域战略研究报告— —先进制造技术基础.北京:高等教育出版社,1998,3456789 石力开.新材料的发展趋势及其在我国的发展状况,1996,师昌绪.高技术新材料的现状与展望.机械工程材料,1994,柳百成,荆涛等.铸造工程的模拟仿真及质量控制.北京:机械工业出版社2001,中国机械工程学会.“九五”机械工业科学技术重大进展,2001 中国环境污染状况备忘录.世界环境,1998 徐滨士,马世宁,刘世参等.21世纪的再制造工程.中国机械工程,2000 周尧和.21世纪需要绿色集约化铸造,1998 成都理工大学 材料成型与加工技术 姓名:陈康 学号:2015050207 专业:机械工程及其自动化 院系:核技术与自动化学院 2016年1月5日第二篇:高分子加工助剂名词解释
第三篇:钢筋分类加工、成型方案
第四篇:高分子材料加工成型原理作业
第五篇:材料成型与加工技术(DOC)