第一篇:材料成型(本站推荐)
1.固态金属加热膨胀,液态金属的粘度,表面张力的本质是什么?
从一个晶格常数变成另一个晶格常数,晶体尺寸增大,即膨胀;粘度是原子间结合力;表面张力是质点间作用力不平衡引起的质点间作用力。
2.金属的熔化过程是一熵值增大的过程,为什么?
金属的熔化过程是金属原子由规则排列变成不规则排列的过程,熵值变化是系统结构紊乱性变化的量度,原子规则排列熵值小,不规则排列熵值大。
3.液态金属的结构是什么(理想和实际)
理想:原子集团、游离原子、空穴;实际:原子集团、游离原子、空穴、夹杂物及气泡等
4.液态金属的结构瞬息万变,存在的三个相起伏是什么?
温度(能量)起伏、结构(相)起伏、成分(浓度)起伏。
5.粘度,表面张力的影响因素和在材料成型中的意义;
一、粘度:影响因素是化学成分(难溶化合物的液体粘度较高,熔点低的共晶成分合金的粘度低)、温度(液体金属的粘度随温度的升高而降低)和夹杂物(液态金属中呈固态的非金属夹杂物使液态金属的粘度增加)。意义:1)、对液态金属净化的影响,液态金属中存在各种夹杂物及气泡等,必须尽量除去。2)、对液态合金流动阻力的影响,粘度对层流影响大。3)、对凝固过程中液态合金对流的影响,粘度越大,对流强度越小。
二、表面张力:影响因素是熔点(表面张力的实质是质点间作用力,故原子间结合力大的物质,其熔点、沸点高,则表面张力往往越大)、温度(大多数合金和金属,其表面张力随着温度升高而降低)和溶质元素(溶质元素对液态金属表面张力影响有两大类,是表面张力降低的溶质元素叫表面活性元素;使表面张力增大的溶质元素叫非表面活性元素)。意义:在材料加工工艺中经常遇到的毛细现象,主要是受表面张力所控制。表面张力对铸件的凝固过程的补缩状况对是否出现热裂缺陷有重大影响,界面现象影响到液态成型加工的整个过程,晶体成核及生长、缩松、热裂、夹杂及气泡等铸件缺陷都与表面张力关系密切。
6.界面润湿角越小,则界面张力越小,界面越稳定,界面结合力越大,请说明本质原因
润湿角是衡量界面张力的标志,界面张力达到平衡时,存在以下关系σLS=σCS+σCLCOSθ,即界面原子配位度大,晶
格畸变小,界面张力小,界面结合力越大。
7.影响充型能力的因素有哪些?怎样影响?
第一类因素:金属性方面的因素①金属密度ρ②金属的比热容C③金属的热导率λ④金属的粘度η⑤金属的结晶潜热L⑥金属的表面张力σ⑦金属的结晶特点。第二类因素:铸型方面的因素①铸型的蓄热系数②铸型的密度ρ③铸型的比热容C④铸型的导热率λ⑤铸型的温度⑥铸型的涂料层⑦铸型的发气性和透气性。浇注条件方面的因素:①液态金属的浇注温度②液态金属的静压头H③浇注系统中压头损失总和④外立场。第四类因素:铸件结构方面的因素①铸件折算厚度②由铸件结构所规定的型腔的复杂程度引起的压头损失。
8.为什么说过冷度是液态金属凝固的驱动力?
固相自由能为Gs,液相自由能为 GL,当 T=Tm时,GL=Gs,固液相为热力学平衡状态;当T>Tm时,GL
9.根据凝固中的溶质再分配的程度或凝固速度的快慢,将金属的凝固分为哪三种?与凝固速度有何关系?
分为以下三种:①平衡凝固:溶质在固相和液相中都充分均匀扩散,凝固速度十分缓慢。②近平衡凝固:
1、固相无扩散,液相均匀混合的溶质再分配;
2、固相无扩散,液相无对流而只有有限扩散的溶质再分配;
3、固相无扩散,液相有对流的溶质再分配。凝固速度较快。③非平衡凝固,凝固速度很快。
10.为什么金属的凝固不能瞬时完成?金属要凝固必须要克服哪两个能障?
金属凝固必须克服动力学能障和热力学能障,它们都与界面状态密切相关。凝固过程中产生固液界面使体系的自由能增加,导致凝固过程不能瞬时完成,也不可能在很大范围内进行,只能逐渐形核生长,依靠三个相起伏的作用克
服这两个能障,才能完成液体到固体的转变。
11.什么叫形核率?过冷度越大,形核率越大,这句话对么?异质形核的形核率与金属的温度及在该温度的保持时
间有何关系?
(1)形核率:为单位时间、单位体积生成固相核心的数目。(2)这句话不对。随过冷度增加,形核率增加,达到最大值后,则不但不增加,反而下降,在实际生产条件下,过冷度不是很大,故形核率随过冷度的增加而上升。(3)
异质核心的熔点比液态金属的熔点高。当液态金属过热温度接近或超过异质核心的熔点时,异质核心将会融化或使其表面的活性消失,失去夹杂物应有的特性。从而减少活性夹杂物数量,形核率降低。
12.纯金属晶体生长的方式(宏观和微观)如何?
宏观:平面方式长大(正温度梯度),树枝晶方式生长(负温度梯度)。微观:①连续生长,即垂直生长(粗糙界面)②晶体的二维生长(光滑界面)③晶体从缺陷处生长(二维生长的另一种形式,光滑平整界面)1)、螺旋位错生长
2)、旋转孪晶生长3)、反射孪晶生长。
13.只要固液界面前沿的温度梯度大于0,金属的平面生长始终会保持,对吗?
不对,前提是不产生成分过冷。
14.固液界面的结构从微观上氛围哪两种?融化熵值与界面微观结构,金属与非金属间的关系如何?金属、非金属
与微观生长方式之间的关系?微观生长速度及之间的关系?
①非小平面(粗糙界面)②小平面界面即平整界面
α=(∆Sm/R)(n/V),α取决于∆Sm熔化熵值,α≤2时为粗糙界面,α>2时为光滑界面。即∆Sm越大,界面越光滑,∆Sm
越小,界面越粗糙。绝大多数金属融化熵值均小于2,因此α值也小于2,为粗糙界面,非金属相反,为平整界面。
15.凝固动态曲线?体积凝固,逐层凝固以及与结晶温度范围,温度梯度,缩松等缺陷间的关系?
液相线边界曲线和固相线边界曲线组成动态凝固曲线;具有层状凝固方式的铸件,凝固过程中容易补缩,组织致密,性能好;具有体积凝固方式的铸件,不易补缩,易产生缩松,夹杂,开裂等缺陷,铸件性能差。
16.凝固时间与冶金的结晶潜热,比热容,浇注温度及铸型的蓄热系数间的关系。
凝固时间与液态金属的结晶潜热,比热容,浇注温度成反比,与铸型的蓄热系数成正比。
17.什么是平方根定律?根据其计算的时间与实际结晶时间的关系如何?平方根定律适合那些铸件的计算?为什
么?
ε=k√t即平方根定律,指出铸件凝固厚度ε与凝固时间t的平方根成正比。平方根定律对大平板,球体和长圆柱体铸件比较准确,比较适合大平板和结晶间隔小的合金铸件,对于短而粗的杆和矩形,由于边角效应影响,计算结果
一般比实际长10%~20%。
18.为什么液相有对流时的CL*、Cs*均小于液相仅有有限扩散时的?
有对流时密集在界面的溶质有一部分被冲刷到其他地方了。
19.晶体在生长时与液相接触的面通常为非密排面,为什么?
密排面能量小,界面能小的面跟液态金属相接触。
20.枝晶间距与生长速度和凝固温度范围间的关系?凝固温度范围和流动性有何关系?为什么?
一次枝晶间距d1=A1Gl-1/2V-1/2,温度升高,温度梯度大,则凝固速度减小,支晶间距小,生长速度大,支晶间距越小。凝固温度范围大,树枝晶生长时间长,长的粗大,枝晶间易接触,流动性差。
21.决定层片状共晶和棒状共晶的因素是什么?要获得100%的共晶组织,合金必须是共晶成分的合金,对吗? 层片状:共晶体中两相体积分数的影响,界面能大小,第三组元对共晶结构的影响。不对、非共晶成分合金发生共晶凝固也可获得共晶组织。
22.在相图中共晶共生区一般偏向于高熔点组元一侧,对吗?为什么?共晶晶粒的形态如何?(空间结构)
在凝固时,高熔点的组元先析出,使生成共晶组织,共生区偏向高熔点一侧。层片状共晶通过搭桥分枝形成由中心向外散射状得球形共晶。
23.片状共晶生长中两相前沿的成分分布、过冷度如何?成分过冷和曲率导致的过冷,与λ的关系如何?规则与非
规则共晶组织分别是哪类合金的组织?
规则共晶组织(非小平面-非小平面共晶合金),金属与金属,金属与金属间化合物;非规则共晶组织(非小平面-小平面共晶合金),金属与非金属,金属和亚金属。
24.铁合金中的石墨和铝硅合金中的硅相为什么会长成板片状?
石墨长成板片状与它的晶体结构有关,而铝硅合金中的硅相受第三组元的影响形成旋转孪晶台阶。
25.偏晶合金凝固组织的结构与各相间界面能的关系?包晶合金的晶粒通常比较小,为什么?
1)σαL1=σαL2+σL1L2COSθ,凝固后的最终组织为在α相得基底上分布着棒状和纤维状。2)σαL2>σαL1+σL1L2①如果液滴L2的上浮速度大于固液界面的推进速度R,下部全为α相,上部全为β相。②如果固液界面的推进速度大于液滴的上升速度时,最后组织将是在α相得基体上分布着的棒状成纤维状的β相晶体,β相纤维之间的距离正如共晶组织中层片间距一样,取决于长大速度。3)σαL1>σαL2+σL1L2(θ=0,α相和L2完全润湿)且最终将是α相与β相得交替分层组织。因为:包层对溶质组元扩散有屏障作用,使得包晶反应不易继续下去,也就是包晶反应产物α相不易继续长
大,因此得到细小的α相晶粒组织。
26.复合材料的晶粒比较细小,请分析原因。
复合材料的空间狭小,有增强相,阻碍晶界迁移。
27.共晶自生复合材料要求相界要匹配,其含义和意义是什么?
σαβ<<σαL+σβL①有助于平面凝固生长②复合材料有高的热稳定性,抗高温。
28.在制备非共晶自生复合材料中,固液相中溶质浓度的变化,晶体形态如何?
(1)第一阶段开始后,液相温度稍低于T0时析出初生单相α,成分为K0C0;当液相线的成分达到共晶成分CE时,与之平衡的固相α相的成分为Cam。第二阶段,当固液界面达到共晶温度TE,液相成分为CE时,α、β两项同时析出,β相的量增多直至达到平衡。稳定生长阶段:固相平均成分由Cam增加到合金成分C0,液相成分也是C0。(2)
愈接近共晶成分易得到层片状共晶,反之,易形成棒状共晶。
29.铸件从表面到中心,其宏观组织有何变化?三个区的形成机理?
表面细晶区(①激冷作用,极短时间产生产生大量的核②晶粒游离③壳层形成扩大细晶区)→柱状晶区(主要由表面细晶粒区发展而来,细晶区形成后,有单向热流形成)→中心等轴晶区(①过冷熔体非自发形核理论②激冷形成的晶核长大理论③型壁晶粒脱落和枝晶熔断理论④结晶角游离理论)
30.如何获得细小的等轴晶组织?
凡是有利于小晶粒的产生、游离、漂移、沉积、增殖的各种因素和措施,均有利于扩大等轴晶区得范围,抑制晶区的形成与发展,并细化等轴晶组织。①向熔体中加入强生核剂:1)、直接作为外加晶核的生核剂2)、能形成较高熔点稳定化合物的生核剂3)、通过在液相中微区富集使结晶相提前弥散析出形成的生核剂4)、含强成分过冷元素的生核剂。②控制浇注工艺和增大铸件冷却速度:1)、采用较低的浇注温度2)、采用合适的浇注工艺3)、改进铸型激冷倾向和铸型结构(铸型激冷能力的影响和液态金属与铸型表面的润湿角及铸型表面的粗糙度)4)、动态结晶细化等轴晶(振动和搅拌)
31.铸件中常存在的缺陷有哪些?
①气孔:减少金属的有效承载面积,造成局部应力集中,使金属的强度下降和抗疲劳能力降低②夹杂物:降低铸件的塑性、韧性和疲劳性能,产生热裂,促进微观缩孔形成③缩孔和缩松:减少逐渐受力面积,在尖角处产生应力集中,使铸件力学性能显著降低,降低铸件的气密性和物理化学性能④冷、热裂纹:裂纹扩展容易导致断裂。其他的还有应力、变形、偏析等。
32.什么是深过冷凝固技术?如何获得单晶?
深过冷凝固技术就是在熔体中形成尽可能接近均质形核的凝固条件,从而获得大的凝固过冷度。获得单结晶的方法:区熔法、拉拔法、正常凝固法。
33.均质形核,异质形核功的计算,其表达式的物理含义是什么?两者之间的关系如何?为什么?
体积自由能的减少只能提供2/3的临界形核功,其余能量由液态金属的相起伏提供。
34.平衡凝固,近平衡凝固中固液相中的溶质的分布曲线如何?为什么会形成这样的曲线?请推导Scheil公式。
35.推导液相只有有限扩散时的成分过冷判据。影响成分过冷去的因素?成分过冷区与晶体生长的关系?
第二篇:材料成型小结
本章小结
第2章
铸造
铸造的定义、优点、缺点
充型能力的定义、影响它的三个因素
影响流动性的因素;纯金属和共晶成分合金呈逐层凝固流动性最好;影响充型能力的铸型的三个条件;浇注温度和压力对充型能力是如何影响的。
铸造时液态和凝固收缩易产生缩孔和缩松;固态收缩易产生应力、变形和裂纹。
何种合金易缩孔,何种合金易缩松;多出现于铸件的哪些部位?
缩孔和缩松的防止措施。顺序凝固的定义和应用场合。
收缩应力的危害和减小措施。
热应力产生的原因。能正确判断出铸件上何处产生拉应力、何处产生压应力。
减小和消除热应力的方法。同时凝固的定义和应用场合。
能正确判断出铸件上何处产生何种变形,防止铸件变形的两种措施。
冷裂纹和热裂纹的特征,何时产生、防止措施。
合金的铸造性能的定义,常用铸铁和钢的铸造性能及用其 生产合格铸件需采取的措施
砂型铸造的造型方法可分为手工造型和机器造型两大类,各自的应用场合。
铸造工艺图定义和作用、铸件图和铸型装配图的作用。
浇注位置和分型面的定义、选择原则,能正确选择。
铸造工艺参数:铸件尺寸公差、要求的机械加工余量(RMA)、铸造工艺参数:铸件尺寸公差、要求的机械加工余量(RMA)、铸件线收缩率、起模斜度、最小铸出孔和槽尺寸、芯头和芯座
能正确绘制铸造工艺图
合金的铸造性能和铸造工艺对零件结构各有何要求,具有改错
能力。
第3章
金属的塑性成形
塑性成形的定义、优点、缺点
单晶体塑性变形:滑移;
多晶体塑性变形:晶内滑移;晶粒间的相对滑动和转动。
回复、再结晶定义、再结晶温度
冷成形、热成形、温成形的温度界限及应用
镦粗与拔长的锻造比的计算式,锻造流线的形成原因,设计零件流线如
何分布会较合理
塑性成形性的衡量标准,影响因素。
自由锻造的特点、应用范围。
正确绘制自由锻造的锻件图。正确选择变形工步。
自由锻造零件结构设计:改正错误结构
模型锻造的特点和应用范围。
锤模锻的锻模模膛分为制坯模膛和模锻模膛,模锻模膛可分为预锻和终锻模膛,各自作用。飞边槽的作用,模锻件图是在零件图的基础上,考虑哪些因素绘制出来的。正确绘制模锻件图。正确选择变形工步。
锤模锻零件的结构设计:改正错误结构
板料冲压的特点和应用范围。
冲裁分为冲孔和落料。
冲孔和落料的落下部分分别为成品还是废料
模型冲裁间隙按大小可分为:大、中、小间隙的单边间隙值。
弯曲的定义,影响最小弯曲半径的因素。回弹角的概念
拉深的定义,拉深系数、极限拉深系数的概念
弹壳、深筒多次拉深,中间插再结晶退火。
拉深的两种缺陷。
缩口、起伏、翻孔、胀形的概念。
正确计算落料模和冲孔模的刃口尺寸。
正确选取冲压基本工序。
区分连续模和复合模。
零件结构的冲压工艺性:正确选择冲压件材料、改正错误结构
第4章
连接成形
连接成形的定义、优点、缺点
连接成形可分为:焊接、胶接和机械连接等三大类
焊接可分为等三大类:熔焊、压焊、钎焊,各类的定义
熔焊液相冶金的特点:反应温度高、比表面积大、反应时间短
焊接接头各组成部分的名称,哪部分质量最好,哪部分质量最差
调节焊接残余应力的措施改正图,焊接残余应力的消除方法4种
焊接残余变形的类型5种,控制焊接残余变形的措施,改正图
各种焊接方法的运用场合,能正确选择焊接方法
各种焊接方法的运用场合,能正确选择焊接方法
碳当量与焊接性能的关系
低碳钢、中碳钢、高碳钢、低合金结构钢的焊接性能比较
铸铁的焊接特点,热焊、冷焊定义与运用场合焊接结构设计与工艺设计:
会正确选择结构材料
焊缝布置,错误的图改正 ;
会正确选择焊接方法;
焊接接头的形式的特点及应用场合;
会正确选择坡口形式。
第5章
粉末冶金成形
常用的粉末冶金材料的名称及用途(书P36):
硬质合金、烧结减摩材料、烧结摩擦材料、烧结钢
粉末冶金工艺过程(书P193~):
金属粉末的制取→预处理→(坯料的)成形→烧结→后处理等
(坯料的)成形、烧结是粉末冶金制品成形的重要工序
粉末冶金工艺过程(书P193~):
金属粉末的制取→预处理→(坯料的)成形→烧结→后处理等
(坯料的)成形、烧结是粉末冶金制品成形的重要工序 粉末冶金制品的后处理方法(书P198):
复压、浸渍、热处理、表面处理
粉末冶金零件结构的工艺性:错误的图会改正(书P198~)
第6章
非金属材料成形
塑料按用途可分为:通用塑料和工程塑料;
按受热时的性能可分为:热塑性塑料和热固性塑料
塑料成形方法:挤出、注塑、压塑、压延、注坯吹塑、反应注塑
塑料零件结构的工艺性:错误的图会改正
第7章
复合材料成形
复合材料由基体材料和增强材料组成。
影响复合材料性能的因素:基体材料性能、增强体特征、组成物比例、界面性质、成形方法和工艺参数
复合材料成形的工艺特点:
材料制备与制品成形同时完成、材料性能的可设计性
原材料到形成制品一般都要经过:原材料制取、生产准备、制品成形、固化、脱模和修整、检验等阶段。
树脂基复合材料是以树脂为基体、纤维为增强体复合而成的。
树脂基复合材料成形方法:手糊法、喷射法、袋压法、缠绕
法、模压法
金属基复合材料以金属为基体,采用纤维、颗粒等作为增强体经
复合而成的。
金属基复合材料成形方法:等离子喷涂法、液态渗透法、热压扩
散结合法
第八章
机械零件毛坯的选择 机械零件毛坯选择的原则:
适用性原则
工艺性原则
经济性原则
兼顾现有生产条件原则
不同工作条件下的轴杆类零件、盘套类零件、箱体支架类零件材料及成形方法的选择
第三篇:成型自荐书
自荐书
尊敬的领导:
您好!感谢您在百忙之中审阅我的自荐书,这对一个即将迈出校门的学子而言,将是一份莫大的鼓励。相信您在给予我一个机会的同时,您也多一份选择!即将走向社会的我怀着一颗热忱的心,诚挚地向您推荐自己!我叫何亚琼,是云南师范大学人文教育专业(地理方向)即将毕业的一名本科生,我怀着一颗赤诚的心和对事业的执著追求,真诚地向您推荐自己。
在校的几年里,我不断充实自己,全面发展,以锐意进取和踏实诚信的作风及表现赢得了老师和同学的信任和赞誉。我有较强的管理能力和人际交往能力。在学校的几年时间里一直担任宿舍长,作为学生干部,我工作认真,学习刻苦,成绩优异,得到老师、同学的一致认可和好评。在校获得校“优秀共青团员”的荣誉称号。作为师范生,我对基本功尤为重视,平时坚持勤练书法,钢笔字、粉笔,基本功扎实,三笔一画考核全部过关;通过努力,我顺利通过了全国普通话等级考试,大学期间,我积极参加各种学校活动和社会活动,丰富多彩的社会生活和井然有序而又紧张的学习气氛,使我得到多方面不同程度的锻炼和考验;正直和努力是我做人的原则;沉着和冷静是我遇事的态度;爱好广泛使我非常充实;众多的朋友使我倍感富有!我很强的事业心和责任感使我能够面对任何困难和挑战。
作为一名即将毕业的学生,我的经验不足或许让您犹豫不决,但请您相信我的干劲与努力将弥补这暂时的不足,也许我不是最好的,但我绝对是最努力的。我相信:用心一定能赢得精彩!
再次感谢您为我留出时间,来阅读我的自荐书,祝您工作顺心!期待您的希望!
此致
敬礼!
自荐人:何亚琼2013年2月26日
第四篇:材料成型及控制工程
材料成型及控制工程
学科:工学
门类:机械类
专业名称:材料成型及控制工程
业务培养目标:本专业培养具备机械热加工基础知识与应用能力,能在工业生产第一线从事热加工领域内的设计制造、试验研究、运行管理和经营销售等方面工作的高级工程技术人才。
业务培养要求:本专业学生主要学习材料科学及各类热加工工艺的基础理论与技术和有关设备的设计方法,受到现代机械工程师的基本训练,具有从事各类热加工工艺及设备设计、生产组织管理的基本能力。
毕业生应获得以下几方面的知识和能力:
1.具有较扎实的自然科学基础,较好的人文、艺术和社会科学基础及正确运用本国语言、文字的表达能力;
2.较系统地掌握本专业领域宽广的技术理论基础知识,主要包括力学、机械学、电工与电子技术、热加工工艺基础、自动化基础、市场经济及企业管理等基础知识;
3.具有本专业必需的制图、计算、测试、文献检索和基本工艺操作等基本技能及较强的计算机和外语应用能力;
4.具有本专业领域内某个专业方向所必需的专业知识,了解科学前沿及发展趋势;
5.具有较强的自学能力、创新意识和较高的综合素质。
主干学科:机械工程、材料科学与工程。
主要课程:工程力学、机械原理及机械零件、电工与电子技术、微型计算机原理及应用、热加工工艺基础、热加工工艺设备及设计、检测技术及控制工程、CAD/CAM基础。
主要实践性教学环节:包括军训,金工、电工、电子实习,认识实习,生产实习,社会实践,课程设计,毕业设计(论文)等,一般应安排40周以上。
修业年限:四年
授予学位:工学学士
开设院校
全部高校>> 哈尔滨工业大学 湖南大学 天津大学 新疆大学 天津农学院 长安大学 北京航空航天大学 郑州大学 天津理工大学 广西大学 西北大学 西南交通大学 合肥工业大学 天津科技大学 四川大学 武汉大学 河北科技大学 安徽工业大学 天津职业技术师范大学 福州大学
第五篇:材料成型及控制工程
材料成型及控制工程 Material forming and control engineering 1.专业信息
材料成型及控制工程专业研究通过热加工改变材料的微观结构、宏观性能和表面形状,研究热加工过程中的相关工艺因素对材料的影响,解决成型工艺开发、成型设备、工艺优化的理论和方法;研究模具设计理论及方法,研究模具制造中的材料、热处理、加工方法等问题。本学科是国民经济发展的支柱产业。
培养目标
本专业培养具备材料科学与工程的理论基础、材料成型加工及其控制工程、模具
材料成型及控制工程
设计制造等专业知识,能在机械、模具、材料成型加工等领域从事科学研究、应用开发、工艺与设备的设计、生产及经营管理等方面工作的高级工程技术人才和管理人才。本专业分为两个培养模块:
(一)焊接成型及控制:
培养能适应社会需求,掌握焊接成型的基础理论、金属材料的焊接、焊接检验、焊接方法及设备、焊接生产管理等全面知识的高级技术人才。
(二)铸造成型及控制
这是目前社会最需要人才的专业之一。主要有砂型铸造、压力铸造、精密铸造、金属型铸造、低压铸造、挤压铸造等专业技术及专业内新技术发展方向。
(三)压力加工及控制
分为锻造和冲压两大专业方向,在国民经济中起到非常重要的作用。
(四)模具设计与制造:
掌握材料塑性成型加工的基础理论、模具的设计与制造、模具的计算机辅助设计、材料塑性加工生产管理等全面知识的高级技术人才。
2.课程设置
在学习高等数学、大学物理、大学英语、计算机技术基础等基础课程的基础上,本专业主要学习机械制图、工程力学、机械设计基础、金属学与热处理原理、材料分析测试技术、材料性能学、工程材料学、表面工程学、焊接冶金学、金属材料焊接、焊接方法与焊接设备、焊接检验、焊接结构失效分析及质量控制、塑性成型理论、橡塑材料成型工艺学、橡塑成型模具、金属冲压工艺与模具设计、模具CAD/CAM、模具制造技术等专业基础和专业课程知识。本专业在加强专业基础课的同时,加大专业选修课和实验课的比例,使学生具有扎实宽广的专业理论知识和较强的专业技能。
3.培养特色
本专业涉及的知识面广、信息量大,注重英语能力、计算机能力和实际动手能力的培养,使学生具有很强的适应能力、创新能力、分析和解决问题的能力。另外还注重学生的素质教育,培养富有创新精神的高素质复合型人才。
就业去向
本专业具有工学学士、工学硕士和工学博士学位的授予权,学生可以选择进一步深造。学
相关书籍
生毕业后可以到机械制造业、汽车及船舶制造业、金属及橡塑材料加工业等领域从事与焊接材料成型、模具设计与制造等相关的生产过程控制、技术开发、科学研究、经营管理、贸易营销等方面的工作。本专业择业面广,市场需求量大,就业情况良好。
主干学科:机械工程、材料科学与工程。
主要课程:工程力学、机械原理及机械零件、电工与电子技术、微型计算机原理及应用、热加工工艺基础、热加工工艺设备及设计、检测技术及控制工程、CAD/CAM基础。
主要实践性教学环节:包括军训,金工、电工、电子实习,认识实习,生产实习,社会实践,课程设计,毕业设计(论文)等,一般应安排40周以上。
主要专业实验:塑性成型工艺过程综合实验、铸造工艺过程综合实验、焊接工艺过程综合实验、材料性能及检证、CAD上机实验。
培养目标:本专业培养具备机械热加工基础知识与应用能力,能在工业生产第一线从事热加工领域内的设计制造、试验研究、运行管理和经营销售等方面工作的高级工程技术人才。
培养要求
本专业学生主要学习材料科学及各类热加工工艺的基础理论与技术和有关设备的设计方法,受到现代机械工程师的基本训练,具有从事各类热加工工艺设备设计、生产组织管理的基本能力。?
业务培养要求:本专业学生主要学习材料科学及各类热加工工艺的基础理论与技术和有关设备的设计方法,受到现代机械工程师的基本训练,具有从事各类热加工工艺设备设计、生产组织管理的基本能力。
毕业生应获得以下几方面的知识和能力:1.具有较扎实的自然科学基础,较好的人文、艺术和社会科学基础及正确运用本国语言、文字的表达能力;2.较系统地掌握本专业领域宽广的技术理论基础知识,主要包括力学、机械学、电工与电子技术、热加工工艺基础、自动化基础、市场经济及企业管理等基础知识; 3.具有本专业必需的制图、计算、测试、文献检索和基本工艺操作等基本技能及较强的计算机和外语应用能力;4.具有本专业领域内某个专业方向所必需的专业知识,了解科学前沿及发展趋势;5.具有较强的自学能力、创新意识和较高的综合素质。
主干学科:机械工程、材料科学与工程
主要课程:工程力学、机械原理及机械零件、电工与电子技术、微型计算机原理及应用、热加工工艺基础、热加工工艺设备及设计、检测技术及控制工程、CAD/CAM基础等
主要实践性教学环节:包括军训,金工、电工、电子实习,认识实习,生产实习,社会实践,课程设计,毕业设计(论文)等,一般应安排40周以上。
主要专业实验:塑性成型工艺过程综合实验、铸造工艺过程综合实验、焊接工艺过程综合实验、材料性能及检证、CAD上机实验等
修业年限:四年
授予学位:工学学士
相近专业:机械设计制造及其自动化
历史沿革
新中国50余年的发展历史中,本科教育长期居于绝对的主导地位,国民经济和社会发展所需要的大批应用型、技术型和职业型人才主要是由本科教育培养的。20世纪50年代初期,中国在全面学习苏联的做法中,形成了“专业对口”、“学以致用”的本科教育思想。各学校纷纷成立了铸造、锻压、焊接、热处理等按行业领域划分专业。在当时特定的历史时期,这种做法对推动中国高等教育的发展和为国民经济建设培养人才起到了重要的作用。但由此也产生了很多问题,诸如:专业设置过窄、人文素质教育薄弱、教学内容陈旧、教学方法偏死、培养模式单一等。这些问题随着中国高等教育由精英教育快速向大众化教育发展而变得愈益突出。
80年代初期,随着材料科学与工程学科的建立,中国一些高等院校的热加工类专业转向材料类学科发展,并由此形成了热加工类专业在材料学科和机械学科各占半壁江山的局面。原金属材料及热处理专业大多转入材料学科,而铸、锻、焊专业有相当数量保留在机械学科。1998年教育部进行高等院校本科专业目录调整时,设立了材料成形与控制工程这样一个新的本科专业,其范围涵盖原来的部分机械类专业和部分材料类专业。目前,中国有百余所高等学校办有材料成形与控制工程专业,其中多数以原来的热加工类专业(如铸造、塑性加工、焊接、热处理等)为主体。由于各院校原有的专业基础不同,专业的定位及发展目标也不尽相同,因此在培养模式及培养计划方面也存在较大差异。
2002年材料成形及控制工程教学指导分委员会曾在西宁召开会议,对中国各高校中材料成形及控制工程专业的现状进行了分析,认为目前该专业大体上有三种主要的培养模式,一类是以原热加工类专业为基础,在拓宽基础的前提下,为适应国内人才需求的行业特色,采用有专业方向的培养模式;另一类也是以原热加工类专业为基础,但取消专业方向,加强基础知识,扩展适应领域,进行宽口径的通才式培养模式;第三类是以原机械类专业为基础,涵盖热加工领域,形成机械工程及自动化类型的专业人才培养模式。除上述三种培养模式之外,由教育部批准的焊接技术与工程目录外本科专业,其专业领域也应隶属于材料成形与控制工程的专业范畴。对于上述情况,材料成形与控制工程教学指导分委员会曾责成哈尔滨工业大学、西安交通大学、合肥工业大学等单位牵头制定了针对上述四种情况的指导性专业培养计划,并于2003年4月报送教育部高教司和机械类教学指导委员会。
发展趋势
材料成形及控制工程专业既不完全是按照行业特点设立的专业,也不是按照学科特征设立的专业,因此其发展具有其特殊性。按照对目前本专业的情况及市场需求情况进行分析,估计本专业今后的发展将主要表现为以下几个方面:
1.先进制造技术将成为本专业今后的主导技术发展方向
先进制造技术是传统制造业不断吸收机械、电子、信息、材料及现代管理等方面的最新成果,将其综合应用于制造的全过程,以实现优质、高效、低消耗、敏捷及无污染生产的前沿制造技术的总称。当今制造技术的主要发展趋势是:制造技术向着自动化、集成化和智能化的方向发展
;制造技术向高精度方向发展;综合考虑社会、环境要求及节约资源的可持续发展的制造技术将越来越受到重视。铸、锻、焊技术目前正向着近净成形、近无余量加工、精密连接、微连接与微成形等方向发展,并由此构成先进制造技术的重要组成部分。
2.厚基础、宽专业将成为本专业人才培养的主要模式
材料成形及控制工程专业是一个具有典型材料学科特征的机械类学科,机械学科和材料学科的基础知识构成了本学科的基本知识体系。这一特点决定了材料成形及控制工程专业人才培养必然是宽口径的,而由机械学科和材料学科的基础知识共同构架的材料成形及控制工程专业基础也必然是雄厚的。随着老专业的融合和科学技术的发展,本专业人才培养必然走向厚基础、宽专业的模式。
3.在今后一段时期内,分类培养仍将占据主要的地位
目前,大多数高等院校的材料成形及控制工程专业还按照区分不同的专业方向的模式进行人才培养,这一方面是由于在由老的铸、锻、焊专业向新的材料成形专业转型时还难以完全摆脱原有的专业痕迹,另一方面,市场对人才的需求也还没有适应专业的变化,仍然按照行业特征来招聘人才。这种情况还将持续一段时间,并将随着社会和工厂企业的专业人才培训功能的建立和完善而逐渐发生变化。
存在问题
就材料成形及控制工程专业目前的现状来看,存在以下几方面的问题:
1.专业教学改革理论准备不足
虽然中国高等教育改革的指导思想包括了“教学改革是核心”的内容,但由于体制改革任务繁重,涉及到众多大学,且实效性极强,加上其他多方面的原因,本科教学改革始终未成为高等教育研究的热点。因此,各校的本科教学改革大都是在没有充分理论研究的情况下开展起来的,改革的方向不够清晰明确,往往是边研究边试点,在试点中积累经验、探索理论。从各校本科教改立项来看,项目或课题组基本由各学科专业的学者组成,不但没有相关学科的学者参加,甚至连高等教育专业理论工作者也很少参与。没有理论指导的改革可能是盲目的,成效难以预料。这一问题已引起有关部门的关注。教育部已在“新世纪高等教育教学改革工程本科教育教学改革立项项目”中确立了一批教学指导思想研究项目,相信它能对本科教学改革产生重要的影响。
2.教学改革的总体目标不明确
从改革思路和做法看,少数学校进行了打通部分学科专业基础教学的改革实验,个别学校在全校开展了通识教育教学改革实验,大多数学校把本科教学改革的重点放在各学科专业内部,所追求的目标一般是基础的加宽、课程结构的调整、知识的更新、教学方法的转变,以及教学设施和实验实习条件的改善等。这表明,人们没能从根本上认清现行的本科教学的痼疾,现在所做的只是在维持现行本科教学基本模式的前提下,修修补补,并没有看到中国大学本科教学改革的总体目标应当是重建本科教学体系。
3.专业内涵不够明晰
由于各高校的材料成形及控制工程专业原来的基础不尽相同,在专业人才培养规格方面的要求也不尽相同,各院校还没有完全摆脱老专业的框框,而只是在老专业的基础上进行调整和修改。由于这种调整和修改往往缺乏对专业内涵和对专业发展前瞻性的准确把握,所以表面上虽然形成了一种“百花齐放”的局面,但实际上却是一种低层次的、不完善的临时措施,并且与原来的老专业对比来看,有一种“新瓶装旧酒”的印象。这种情况是由于专业内涵尚不够明晰造成的。
4.专业人才培养的目标和规格缺乏层次
从目前收集到的数十所高校的材料成形及控制工程专业的培养计划来看,无论是研究型大学、教学研究型大学或普通院校,对培养目标基本上都定位于“培养高级工程技术人才”。培养目标的这种高度一致,不能满足市场对各类人才的需求,同时也不利于学校特色的发挥。在科学技术高速发展的今天,工科专业不仅需要培养高级工程技术人才,同时也需要培养科学研究型人才和职业型人才。但各类院校在人才培养类型上尚未形成比较明确的分工。在培养规格方面,各学校对人才的知识结构比较重视,对能力结构和素质结构则缺乏详尽的要求,并且各类院校在培养规格上也同样缺乏层次上的定位。5.拓宽口径与专业素质教育的关系尚未解决
针对中国人才培养专业口径过窄的问题,拓宽专业面向无疑是正确的,特别是几年来取得的成效也是明显的。妥善处理拓宽专业口径与保持专业特色的关系在具体操作中拓宽的程度是很难把握的。一般说来,不同类型的学校之间,人才培养目标的定位、研究生与本科生的比例、师资整体水平、办学传统和学风状况、学生早期介入科研的可能性、课外文化和科技活动的环境、实验实习条件、学生独立学习的能力以及毕业生的实际出口流向等方面都存在着较大的差异,因此,不同类型的学校应当设置不同的专业口径,不应做盲目的攀比。当前,在人才培养方案设计中存在的主要问题,除了“培养模式单一,教学内容陈旧”等以外,还有两个值得注意的问题:一个是在方案中培养目标定位不明确,文字表述“口号化”,目标定位过高过泛,缺乏针对性的特色;另一个是课程体系、特别是专业基础课、专业课以及实践教学环节的设置与培养目标不对应,无法实现培养目标。拓宽专业口径是改革的总趋势,办出特色是专业的立足之本,而专业口径宽窄设置上“度”的把握是两者的结合点。
几点思考
本科教育不是单纯的专业教育。本科教育习惯于按专业招生,分专业培养。所谓的拓宽专业面,也是在专业范围内做文章。尽管本科教育不可能不包括专业教育,但不等于专业教育,其内涵比专业教育更深刻,外延比专业教育更宽泛,本科教学应有更广泛的领域,应当在人文、社会、科学、工程和技术等众多方面为学生打下坚实而宽广的基础,为学生的多样化和个性化发展铺平道路。
本科教育不是职业培训。在一个时期里,本科教学强调专业开办应当与社会生产相一致,课程设置应当考虑实际应用价值,教学内容要有助于学生胜任具体工作,教学方法强调实际生产现场教学。虽然不可能把本科教育与职业需要之间的联系完全割断,但区别本科教育与职业培训对于我们正确认识本科教育的特征是很有帮助的。本科教育可以、应当为学生毕业后直接就业提供一定的准备,但这不是其主要使命。其主要使命是为学生奠定一种发展的基础,使他们在毕业后能够有新的、更大的发展
相关书籍
。因此,本科教学应当淡化职业倾向性,重视学生科学思维、科学方法、科学精神的培养,不仅要让学生学会学习,学会工作,还要使学生学会探索,学会创造。
本科教育不是守成教育。本科教育长期缺少一种面向未来的精神,过于守成,缺乏创新。本科教学的现状是,讲理论,重视要求学生掌握已知,在考试中不能考有争议的问题,教给学生“正确的”知识和方法,有分歧的理论或观点应当回避,教师个人的见解不得轻易在课堂上亮出,以免误导学生。由此所带来的后果是,教学缺少生机与活力,读死书,死读书,教学气氛压抑、沉闷。这样是难以培养出能够为人类文明做出创造性贡献的人才的。因此,本科教育必须由导向过去的教育转变为导向未来的教育,要培养能够适应未来社会发展要求的、具有创新能力和创新精神的高素质人才。本科教学应当根据未来知识社会人的发展需要来设计课程体系、教学内容、教学方法和教学手段,要在使学生掌握人类优秀文化科学成就的基础上,特别注重培养学生的批判精神、进取精神,使学生养成积极的人生观,引导学生乐观地面对现实,增强迎接挑战,开创未来的信心和勇气。
另外,课程的国际化也是一个不容回避的问题,因为未来学生培养的业务质量标准是没有国界的,必须处理好课程的国际化和本土化问题。对于一些有中国特色的课程,还可以考虑加大教学方法改革的力度。比如,处理好理论教学与实践教学的关系、教师讲授与引导讨论及研究式学习的关系,等等。
研究问题
1.明晰专业内涵,确定发展方向
材料成形及控制工程专业作为1998年专业调整时设立的一个新的专业,由于其涵盖范围较广泛,涉及的内容较繁杂,因而使其专业内涵不够明确。
材料成形及控制工程专业是以成形技术为手段、以材料为加工对象、以过程控制为质量保证措施、以实现产品制造为目的的工科专业。材料成形及控制工程专业与机械设计制造及自动化专业、工业设计专业和工程装备与控制工程专业均隶属于机械学科,要求共同的机械工程基础理论。以材料为加工对象的特点决定了材料科学也成为本专业的基础知识,而以过程控制为质量保证措施这一特点,决定了控制理论也成为本学科基础知识的重要组成部分。因此,材料类学科专业和自动化专业及计算机科学与技术专业等都成为与本专业密切相关的学科。此外,随着科学技术的发展和学科交叉,本专业比以往任何时候都更紧密地依赖诸如数学、物理、化学、微电子、计算机、系统论、信息论、控制论及现代化管理等各门学科及其最新成就。
材料成形及控制工程这一隶属于机械学科、具有机械类学科典型特征的专业,同时还具有浓厚的材料学科的色彩,成为一个业务领域宽、知识范围广的名副其实的宽口径专业。继续进行深入研究,准确界定专业内涵,对专业的发展具有重要的意义。
2.培养目标的定位
培养目标定位很重要,涉及到材料成形及控制工程专业的发展和人才培养适应市场需求的问题。尽管中国的高等教育已由精英教育迈入大众化教育阶段,但这并不意味着社会市场只需要通才,而不需要专才。并且科学研究和工程应用这两方面的需求也要求培养不同类型的专业人才。因此,不同类型学校应根据市场的需求和自身的特点来培养不同类型的人才。一部分高等院校应该担负起精英教育的责任,以培养材料成形及控制工程学科的科学研究型和科学研究与工程技术复合型高层次人才为主,本科阶段应是以通识为主的专业教育;另一部分学校应以普及高等教育为主,负起大众化教育的责任,以培养本学科的工程技术型、职业应用复合型人才为主,本科是通识与专业并重的教育;高等职业技术学院则以培养职业应用型、职业应用复合型人才为主,专科是完全职业专业教育。各学校可根据学校自身的层次来确定专业培养目标。
在材料成形及控制工程专业培养目标的定位中,还应考虑市场需求。本科教育培养通才还是专才,是以普通教育为中心还是以职业教育或专业教育为中心,历来是高等教育激烈争辩的问题。西方国家本科通才教育是建立在完善的继续教育基础上的,中国在这方面还有较大的差距。一方面是一些大型企业公司已有完善的教育培训体制和充足的教育经费,而另一方面是大量的中小企业仍然需要行业背景强的毕业生,因而高校应进一步适应市场的需求,根据不同的培养目标,调整通识教育与专业教育的比例,拓宽专业口径,灵活专业方向,建立和健全第二学位、主副修制度等。
3.创新精神和能力培养的实践落脚点
当前,就高校自身来说,首先应抓好以下工作:(1)教师队伍建设是关键。教师的真本事,主要不是课堂上的公式运用和解题技巧,而是在于提出的解决问题的思路。教师过教学关、过外语关、过现代信息技术关、接受科研训练以及参加国内外的各种学术交流等,在当前显得特别重要。(2)在教学领域应当全方位地“联合行动”,即:突破传统观念,强化创新意识;提倡教育民主,尊重创新精神;改革评价方式,建立创新机制;关注个性培养,营造创新氛围;拓宽知识视野,夯实创新基础;开发情感智力,培养创新品质等等。(3)当前应特别注意加强教学方法和考试方法的改革,根据学生的不同年级,逐渐使学生从以教师、书本和课堂为中心的教学模式中“向外突围”,通过教学管理制度的改革,增加学生的自学时间,组织学生参加有指导的小型课堂讨论(Seminar),引导学生参加教师的科研工作,鼓励学生参加课外科技和实践活动等等。(4)建设和改造一批能够培养学生动手能力的实践训练中心(基地),克服困难,保证实践和实验教学环节的落实。
4.关注大学后教育问题
根据十六大提出的形成全民学习、终身学习的学习化社会的要求,高等学校必须研究终身教育观念对高等教育全方位的影响,探索在终身教育这一大系统中自己的位置。因此,研究大学后教育对高等学校确定人才培养规格和培养模式具有直接的意义。
研究生教育是以受过大学教育的优秀人才为对象,以培养精英型科学研究人才为目标的教育。尽管中国研究生招生人数在不断增长,但相比于大学生的招生数量来说,仍然是一少部分,而研究生的培养对中国的科学研究和国民经济建设都具有重要的意义,因此,部分高等院校,特别是研究型大学和教学研究型大学,应该把满足研究生培养的需求纳入到本科阶段的教育中去。
大学后的职业技能教育一般是以行业学(协)会或工厂企业来进行的。西方发达国家在这方面已经形成了完善的体系,而中国在这方面尚存在较大的差距。针对中国目前的现状,高等学校在人才培养过程中不仅要考虑使学生毕业后能尽快适应实际工作的需求,而且要注意使大学教育与不断发展的职业技能教育相适应。在近期一段时间内,大学教育还应该注意加强专业知识与技能的训练,以适应中国当前的情况,待职业技能教育体系逐渐完善后,将大学教育的重点逐渐转变到通才教育。
未来方向
分析材料成形及控制工程专业的现状及存在的问题,在今后一段时间内应开展以下几方面的研究工作:
(1)材料成形及控制工程专业的知识结构及课程体系建设。
(2)机械、材料、控制、信息等多学科融合与本专业建设的关系。
(3)强化实践性教学环节,建设专业实习基地的问题。
(4)人才培养模式与市场需求的关系。
(5)专业教材建设的问题
英文名称:Material forming and control engineering
材料成型及控制工程专业研究通过热加工改变材料的微观结构、宏观性能和表面形状,研究热加工过程中的相关工艺因素对材料的影响,解决成型工艺开发、成型设备、工艺优化的理论和方法;研究模具设计理论及方法,研究模具制造中的材料、热处理、加工方法等问题。本学科是国民经济发展的支柱产业。
培养目标:
本专业培养具备材料科学与工程的理论基础、材料成型加工及其控制工程、模具设计制造等专业知识,能在机械、模具、材料成型加工等领域从事科学研究、应用开发、工艺与设备的设计、生产及经营管理等方面工作的高级工程技术人才和管理人才。本专业分为三个培养模块:
(一)焊接成型及控制:
培养能适应社会需求,掌握焊接成型的基础理论、金属材料的焊接、焊接检验、焊接方法及设备、焊接生产管理等全面知识的高级技术人才。
(二)模具设计与制造:
掌握材料塑性成型加工的基础理论、模具的设计与制造、模具的计算机辅助设计、材料塑性加工生产管理等全面知识的高级技术人才。
课程设置:
在学习高等数学、大学物理、大学英语、计算机技术基础等基础课程的基础上,本专业主要学习工程力学、机械设计基础、金属学与热处理原理、材料分析测试技术、材料性能学、工程材料学、表面工程学、焊接冶金学、金属材料焊接、焊接方法与焊接设备、焊接检验、焊接结构失效分析及质量控制、塑性成型理论、橡塑材料成型工艺学、橡塑成型模具、金属冲压工艺与模具设计、模具CAD/CAM、模具制造技术等专业基础和专业课程知识。本专业在加强专业基础课的同时,加大专业选修课和实验课的比例,使学生具有扎实宽广的专业理论知识和较强的专业技能。
培养特色:
机械学科和材料学科均为国家重点学科,本专业涉及的知识面广、信息量大,注重英语能力、计算机能力和实际动手能力的培养,使学生具有很强的适应能力、创新能力、分析和解决问题的能力。另外还注重学生的素质教育,培养富有创新精神的高素质复合型人才。
就业去向:
本专业具有工学学士、工学硕士和工学博士学位的授予权,学生可以选择进一步深造。学生毕业后可以到机械制造业、汽车及船舶制造业、金属及橡塑材料加工业等领域从事与焊接材料成型、模具设计与制造等相关的生产过程控制、技术开发、科学研究、经营管理、贸易营销等方面的工作。本专业择业面广,市场需求量大,就业情况良好。
(三)铸造成型及控制:
铸造是将金属熔炼成符合一定要求的液体并浇进铸型里,经冷却凝固、清整处理后得到有预定形状、尺寸和性能的铸件的工艺过程。铸造毛坯因近乎成形,而达到免机械加工或少量加工的目的降低了成本并在一定程度上减少了时间.铸造是现代制造工业的基础工艺之一。
铸造种类很多,按造型方法习惯上分为:①普通砂型铸造,包括湿砂型、干砂型和化学硬化砂型3类。②特种铸造,按造型材料又可分为以天然矿产砂石为主要造型材料的特种铸造(如熔模铸造、泥型铸造、铸造车间壳型铸造、负压铸造、实型铸造、陶瓷型铸造等)和以金属为主要铸型材料的特种铸造(如金属型铸造、压力铸造、连续铸造、低压铸造、离心铸造等)两类。铸造工艺通常包括:①铸型(使液态金属成为固态铸件的容器)准备,铸型按所用材料可分为砂型、金属型、陶瓷型、泥型、石墨型等,按使用次数可分为一次性型、半永久型和永久型,铸型准备的优劣是影响铸件质量的主要因素;②铸造金属的熔化与浇注,铸造金属(铸造合金)主要有铸铁、铸钢和铸造有色合金;③铸件处理和检验,铸件处理包括清除型芯和铸件表面异物、切除浇冒口、铲磨毛刺和披缝等凸出物以及热处理、整形、防锈处理和粗加工等。
铸造工艺可分为三个基本部分,即铸造金属准备、铸型准备和铸件处理。铸造金属是指铸造生产中用于浇注铸件的金属材料,它是以一种金属元素为主要成分,并加入其他金属或非金属元素而组成的合金,习惯上称为铸造合金,主要有铸铁、铸钢和铸造有色合金。
行业趋势:铸造产品发展的趋势是要求铸件有更好的综合性能,更高的精度,更少的余量和更光洁的表面。此外,节能的要求和社会对恢复自然环境的呼声也越来越高。为适应这些要求,新的铸造合金将得到开发,冶炼新工艺和新设备将相应出现。
铸造生产的机械化自动化程度在不断提高的同时,将更多地向柔性生产方面发展,以扩大对不同批量和多品种生产的适应性。节约能源和原材料的新技术将会得到优先发展,少产生或不产生污染的新工艺新设备将首先受到重视。质量控制技术在各道工序的检测和无损探伤、应力测定方面,将有新的发展。
铸造业的发展铸造是现代机械制造工业的基础工艺之一,因此铸造业的发展标志着一个国家的生产实力。我国目前已经成为世界铸造机械大国之一,在铸造机械制造行业近年来取得了很大的成绩。
材料成型及控制工程(轧钢方向)培养目标:培养从事材料成型生产、管理、设计、服务等领域的高素质技能型人才。主要专业课程:机械设计基础、机械制图、型材生产及孔型设计、板带材生产、线材生产、液压传动、电工电子学、机械设计基础、金属学与热处理、材料成形原理、材料力学、理论力学、材料成型工艺及设备、PLC编程与控制、材料加工CAD/CAM、等。
主要就业去向:材料成型工艺规程的设计及相关设备的维修调试,材料成型生产、组织、管理,相关产品销售。可在汽车制造、模具、造船、锻压、铸造等各类机械行业中广泛就业。