材料成型原理 重点整理

时间:2019-05-13 11:48:53下载本文作者:会员上传
简介:写写帮文库小编为你整理了多篇相关的《材料成型原理 重点整理》,但愿对你工作学习有帮助,当然你在写写帮文库还可以找到更多《材料成型原理 重点整理》。

第一篇:材料成型原理 重点整理

液态金属结构可以这样描述:液态金属由许多近程有序的原子集团组成,这些原子集团原子排列规则,有激烈的原子热运动和大量空穴,存在较大的能量起伏。同时,这些原子集团和空穴时聚时散,时大时小,处于瞬息万变的状态。

液态金属冷却到冷却到平衡结晶温度Tm(熔点)时,并没有开始结晶,而是冷却到低于Tm时,固相才开始结晶析出(形核并长大),这种现象叫做过冷

平衡结晶温度Tm与实际结晶温度T之间的温度差称为过冷度(△T),△T= Tm –T。金属凝固的驱动力,主要取决于过冷度△T。过冷度越大,凝固的驱动力越大。

液相内部出现晶核时系统自由能对变化:

当过冷液体中出现晶核时,系统自由能将产生变化。系统自由能的变化由两部分组成,一部分是体积自由能变化,即固、液相之间的体积自由能差△GV。它使系统的自由能降低,它是相变的驱动力;另一部分是界面能变化,由于晶核形成的同时,也形成了新的液一固相界面,因而产生了新的界面能△Gi。这部分能量将导致系统的自由能增大,它是相变的阻力。

图为在三种曲率不同的表面上形核的示意图,它们具有相同的润湿角和晶核曲率半径,但是显然包含的原子数不同。显然在凸面上形成的晶核包含原子数最多,平面上次之,凹面上最少。可见,即使是同一种物质作为形核基底,起形核能力也不同,跟界面的曲率方向和大小有关,凹面的形核能力最强。

一般来说形核剂应该满足以下几个条件:

1.失配度小、完全共格对应,方式的界面能最低,促进非自发形核的能

力最强,形核率也最大。

2.粗糙度大、在基底上存在凹坑时,形核能力较强。故表面粗糙不平的形核剂对促进形核有利。

3.分散性好、若形核剂聚集成团,大大降低了有效基底面积,对形核有

不利影响。

4.高温稳定性好,形核剂在高温熔体中使用,如发生分解、氧化,或者

与熔体发生一些化学反应,形核剂将发生变质,不能起到促进形核的作用。

金属结晶为什么需要过冷度呢?结晶在什么条件下才能自发进行呢? 这是由结晶的热力学条件所决定的。从热力学观点来看,物质状态的稳定性取决于该状态的自由能高低:自由能越高,状态越不稳定;自由能越低,状态越稳定。物质总是自发地从自由能较高的状态向自由能较低的状态转变。所以,只有伴随着自由能降低的过程才能自发进行。对于凝固而言,只有当固态金属的自由能低于液态金属时,结晶过程才可能进行。

液相和由它析出的固相具有不同的成分,这种由于合金在结晶过程中,析出固相的溶质含量不同于液相,而使界面前沿溶质富集或者贫化的现象,叫做溶质再分配。

在一般凝固条件下,固—液界面前沿将发生溶质富集(k0 <1时),这种溶质富集,将导致液相凝固温度TL发生变化,与界面前沿实际温度Ta存在差别,从而引起过冷。引起这种凝固温度变化是由相图中的液相线决定的。相图中的液相线就是合金的平衡结晶温度(熔点),该温度随合金中溶质的含量而变化,对于k0 <1的合金,界面前沿液相中的溶质富集将引起液相线温度的降低,若熔体温度低于该合金的液相线温度时,则处于过冷状态,过冷度等于液相线温度与实际温度之差。

由溶质再分配导致界面前沿平衡凝固温度发生变化而引起过冷称为成分过冷。

成分过冷判据

宏观偏析通常指整个铸锭或铸件范围内产生的成分不均匀现象。一般将宏观偏析分为正偏析、逆偏析、比重偏析、V形偏析和逆V形偏析、带状偏析、区域偏析、层状偏析等

在不同的合金体系中,由于共晶两相在析出过程表现的相互关系不同,其结晶方式可分为共生生长和离异生长两种。

砂型铸造时,固、液边界线的间距很宽,在很长一段凝固时间内,固液共存的两相凝固区几乎贯穿了整个铸件断面,这种凝固方式称为糊状凝固; 金属型铸造时,固、液边界线的间距很窄,整个凝固过程中,仅有很薄一层两相共存区,凝固层由表面向中心逐渐加厚,这种方式称为逐层凝固。这两种凝固方式没有明显的界限,介于两者之间的称为中间凝固方式。

最初各枝晶的取向是很乱的,只有那些主干平行于热流方向的枝晶才能向前延伸,而将取向不的枝晶逐渐淘汰,这样柱状晶的生长方向越来越一致。晶体的这种相互竞争、相互淘汰的生长过程称为择优生长;

欲控制获得细等轴晶组织,采取的工艺措施有如下几条:(1)适当降低浇注温度

(2)合理运用铸型对液态合金的强烈激冷作用(3)孕育处理(4)动态晶粒细化

焊接过程中,改善凝固组织,防止粗晶产生的主要措施有:(1)变质处理。(2)振动结晶。(3)优化焊接工艺参数。

焊接热源有许多种,如电弧、气体火焰、摩擦热、电渣焊的熔渣电阻热等等。热源的性质不同,焊接时的温度场也不同。

在电弧焊条件下,25mm以上的钢板焊接时,就可以认为是点状热源;而100mm以上大厚度工件电渣焊时,只能认为是线状热源。

塑性加工 利用金属材料的塑性变形特性,用工模具加金属材料施加机械作用,使其发生塑性变形,达到所要求的形状、尺寸、精度和组织性能。该过程中尺寸形状和组织性能都同时改变。主要有: 成材的塑性加工:如轧制、挤压、拉拔等 成形的塑性加工:主要有锻造、拉深、冲压等 先进的塑性成形:主要有超塑性成形、液压胀形、电磁成形等

主应力图示

变形体某方向上一个线段(如长、宽、高)的起点和终点在垂直于该方向上也可能有位移差(切变量),与线段原始长度之比,也是衡量变形程度的物理量。叫工程切应变。

《材料成形技术基础》第页第9、11、14、17题

变形机制:滑移、孪生、晶界滑动、扩散蠕变 组织性能演变:冷变形-、热变形-中 塑性与变形抗力:塑性与塑性变形、影响塑性的因素、超塑性、变形抗力的组成、应力状态对抗力的作用、应力应变关系曲线

1.每个晶粒都处于不同位向的晶粒的包围之中,晶粒在周围(邻居)的约束下变形,晶粒所受的应力状态发生变化;

2.各个晶粒的取向不同,受力状态不同,造成各晶粒之间变形的不同

时性和不均匀性;

3.相邻晶粒之间的变形在晶界上需要协调配合;造成晶界处多系滑移的提前开始和晶界上变形困难,造成晶界和晶内变形的不均匀。

孪生:晶体在外力的作用下,其一部分沿着一定的晶面和该晶面(孪生面)上的一定晶向(孪生方向),产生均匀切变。孪生后,晶体的变形部分与未变形部分形成关于孪生面的镜面对称。镜面两侧晶体的相对位向发生了改变,但不改变晶体的晶格点阵类型。孪生变形部分称为“机械孪晶”。

滑移 孪生 原子相对移动距离: 等于 小于(变形方向上一个原子间距 金属在其再结晶及其以上(通常>0.5Tm)温度进行的加工叫热加工。其特点是:

生产变形的位错: 全位错 不全位错 原子移动方向: 双向 单向/有极性 变形均匀性: 集中在 在整个孪晶

滑移面上 带上均匀

移动部分晶体取向: 不变 改变/镜面对称 开动应力服从: H-P关系 H-P关系 开动条件服从: Schmid定律 Schmid定律

冷变形中金属组织变化

一、形成纤维组织

二、产生结构缺陷

三、产生晶体学择优取向

四、晶粒超细化、甚至非晶化,形成非平衡材料

冷变形中金属性能变化

一、加工硬化(应变强化):随着变形程度的增加,金属的强度指标上升,塑性指标下降。这就是加工硬化。

二、各向异性

三、其他性能变化:冷加工还会造成:密度降低、导电性降低、导热性降低、耐蚀性变差以及磁性变化等多种物理、化学性能的变化。

拉深:法兰区坯料在切向压应力、径向拉应力作用下向直壁流动,形成筒形或带法兰的筒形零件的板成形过程。

1.变形温度高,加工硬化小; 2.变形抗力低、耗能少; 3.塑性好;加工变形量大; 4.不易产生裂纹等加工缺陷。

但:加工精度低;组织性能不均匀性大。

热塑性变形过时的基本软化过程包括:动态回复、动态再结晶、静态回复、静态再结晶、亚动态再结晶等。

动态回复、动态再结晶是发生在变形过程中的回复和再结晶过程; 而静态回复和静态再结晶则在变形的间歇期间或热变形后发生。

热变形时金属组织性能变化:

1.消除缺陷:消除某些铸造缺陷,如使气孔、疏松锻合;消除或减轻

铸造偏析;

2.改善晶粒组织:均化和细化晶粒使性能(强度、塑性等)提高。3.改善第二相分布:破碎粗大第二相和化合物,改善夹杂物与脆性相的分布形态。

4.形成流线: 金属中存在的不溶性物质沿着主应变方向拉长,形成流线。沿着流线方向材料性能提高。5.形成带状组织:铸锭中原来存在枝晶偏析——合金元素的贫区与富

区。热加工时,这些沿主应变方向扩展,形成带状。合金元素含量的不同造成相变温度的差别,如贫锰区比富锰区发生A——F转变,将碳抛向富锰区,造成贫锰的带状区F比例大,而富锰的带状区P比例大,形成带状组织。塑性:材料在外力作用下能连续地生产塑性变形而不断裂的能力

溶质原子溶入溶剂点阵中,造成强度的提高,这就是固溶强化。

当合金中含有细小弥散的颗粒时,就会对位错运动造成障碍。运动的位错必须与其滑移面上的弥散颗粒交互作用,从而引起变形抗力的提高。这种作用叫作弥散强化。

手工电弧焊原理:用手工操作焊条进行焊接的一种电弧焊方法。手工电弧焊特点(优点):手工电弧焊的简便灵活,适应性强,手工电弧焊特点(不足之处): 手工电弧焊对焊工的操作技术要求较高,焊接质量在一定程度上决定于焊工的操作技术。此外,手工电弧焊劳动条件差,生产率低。因此,手工电弧焊适用于焊接单件或小批量产品,短的和不规则的、各种空间位置的以及其它不易实现机械化焊接的焊缝。

埋弧自动焊特点(优点)

(1)生产率高 由于可用较大焊接电流,加上焊剂与熔渣的隔热作用熔深也大。不开坡口单面一次焊,熔深可达20mm。(2)焊缝质量高 熔渣隔绝空气的保护效果好。熔池金属与熔化的焊剂之间有较充分的时间进行冶金反应,较大限度地减少了焊缝中产生气孔、裂纹的可能性。

(3)劳动条件好 既无弧光辐射又无烟尘,劳动环境好。埋弧自动焊特点(不足之处)

埋弧自动焊的主要缺点一是由于采用颗粒状焊剂堆积形成保护条件,因此,一般只适用于平焊位置。其它焊接位置需采用特殊措施才能保证焊剂覆盖焊接区。二是焊接设备比手工电弧焊设备复杂,灵活机动性也较差,所以较适合于长焊缝的焊接,短焊缝显示不出生产率高的特点。

钨极氩弧焊特点(优点)

1)氩气本身不和金属产生化学反应又不溶于金属,且比空气重25%,能有效地隔绝电弧周围空气。因而可成功地焊接易氧化、氮化及化学活泼性强的有色金属、不锈钢和各种合金。

2)直流正极性电弧(工件接直流电源正极,钨电极接电源负极)稳定,即使在很小的焊接电流(<10A)下仍可稳定燃烧,特别适用于薄板,超薄板的焊接。

3)明弧无渣,熔池可见度好,便于控制,易于实现机械化、自动化和全位置焊接。

4)电弧热源与填充焊丝分别控制,易于实现单面焊双面成形,并由于填充焊丝不通过电弧,故不会产生飞溅,焊缝成形美观。钨极氩弧焊特点(不足之处)

1)钨电极承受电流能力有限,所以熔深浅,熔敷率小,生产率低。2)焊接所用惰性气体(氩气、氦气)较贵,与其它电弧焊方法(手工电弧焊,埋弧焊,CO2气体保护焊)相比,生产成本较高。

3)由于此焊接方法是依靠氩气机械排开空气进行保护,所以焊前对焊件表面的清理工作要求严格。钨极氩弧焊用途

钨极氩弧焊几乎可以焊所有的金属和合金,但由于生产成本较高,一般仅用于不锈钢、耐热钢以及铜、钛、铝、镁等有色金属的焊接。对于低熔点(低沸点)和易蒸发的铅、锡、锌等金属则难以焊接。由于钨电极承受电流能力有限,从生产率考虑所焊板材范围以3mm以下为宜。对于某些厚壁重要构件(压力容器和管道)要求焊透的坡口打底焊、全位置焊和窄间隙焊也可采用钨极氩弧焊。

熔化极氩弧焊的特点(优点)

1)与钨极氩弧焊一样,它几乎可以焊接所有金属,尤其适合于焊接铝及铝合金,铜合金以及不锈钢等材料。

2)由于用焊丝作电极,电流密度大,因而焊接熔深大,填充金属熔敷速度快,用于焊接厚板铝、铜等金属时生产率比钨极氩弧焊高,焊件变形也小。3)常采用直流反接,焊接铝及铝合金时有良好的阴极雾化作用。

熔化极脉冲氩弧焊(MIGP)1)具有较宽的电流调节范围

2)可用较小的平均电流进行焊接,有利于实现全位置焊 3)可有效控制输入热量,改善接头性能

CO2气体保护焊的特点(优点)

1)生产率高。2)成本低。3)能耗低 4)适用范围广。5)抗锈能力强。

6)明弧无渣,熔池便于监视和控制,有利于实现焊接过程的机械化和自动化。

目前,CO2电弧焊由于有氧化性,合金元素易烧损主要用于低碳钢及低合金钢等黑色金属的焊接。对于不锈钢,由于对焊缝金属有增碳现象,影响抗晶间腐蚀性能。因此,用于对焊缝性能要求不高的不锈钢焊件。

热轧钢及正火钢的焊接要点是: ①抗热裂性比较好。②有一定的冷裂倾向。

③沉淀强化的钢种(15MnTi、15MnVN、14MnMoV、18MnMoNb等)有产生再热裂纹的倾向。

④热轧钢在制造厚大件时,有层状撕裂的危险

⑤这类钢不存在热影响区软化问题,但有过热区脆化问题。

低碳调质钢的焊接要点是:

①一般含碳量低,而含锰量高,因此热裂倾向小。高镍低锰类低合金高强钢对液化裂纹比较敏感。

②冷裂纹倾向比较大,但只要工艺合适,冷裂纹是呵以避免的。

③有一定的再热裂纹敏感性(如14MnMoNbB钢中碳化物形成元素Mo、Nb、B共同作用结果使其易产生再热裂纹)。④对层状撕裂不敏感。

⑤有过热区脆化和热影响区软化问题。

以k0 <1的合金为例说明成分过冷的形成原因

在一般凝固条件下,固—液界面前沿将发生溶质富集(k0 <1时),这种溶质富集,将导致液相凝固温度TL发生变化,与界面前沿实际温度Ta存在差别,从而引起过冷

对于k0 <1的合金,界面前沿液相中的溶质富集将引起液相线温度的降低,若熔体温度低于该合金的液相线温度时,则处于过冷状态,过冷度等于液相线温度与实际温度之差。

由溶质再分配导致界面前沿平衡凝固温度发生变化而引起过冷称为成分过冷。石墨形态对灰口铸铁性能的影响

除微量溶于铁素体以外,绝大部分以石墨形式存在,断口呈灰色,是应用最广的铸铁。根据石墨形态不同又可分为普通灰口铸铁(片状)、蠕墨铸铁(蠕虫状)、可锻铸铁(团絮状)、球墨铸铁(球状)

普通灰口铸铁通常指具有片状石墨的铸铁,显微组织是由金属基体(铁素体及珠光体)与片状石墨组成。其抗拉强度、弹性模量比钢低,塑韧性接近于零,为脆性材料,不可锻、冲和焊接成形。但具有优良的铸造性能和切削加工性能。

球墨铸铁不仅具有与钢相近的力学性能,而且也具有良好的铸造性、减摩性及低的缺口敏感性等。

蠕墨铸铁石墨呈短片状,片端钝而圆,类似蠕虫,是介于片状和球状之间的一种过渡形态。承载时应力集中比灰口铁要小得多,但比球墨铸铁大。力学性能介于灰铁和球铁之间。导热性、抗高温生长及抗氧化性比其它铸铁好。

可锻铸铁石墨呈团絮状,大大减轻了石墨对基体的割裂及应力集中作用,因此强度和韧性较灰口铸铁有了很大提高,其抗拉强度最高可达700MPa,伸长率最高达12%,可锻铸铁因此而得名。

形核剂条件(1)失配度小(2)粗糙度高(3)分散性好(4)高温稳定性好

在设计铸件时,应考虑以下几个方面。1.合理设计铸件壁厚 2.铸件壁厚应尽可能均匀 3.铸件的转角应采用圆角联接 4.增设防裂筋

5.注意缓解收缩应力

铸造工艺图是在零件图上用各种工艺符号表示出工艺方案的图纸,主要包括:铸件的浇注位置、铸型分型面、型芯的数量、形状及其固定方法、加工余量、拔模斜度、收缩率、浇注系统、冒口、冷铁的尺寸和布置等。

第二篇:铸造成型原理重点知识总结

第一章

1、可以通过哪些途径来研究液态金属的结构? 间接方法:通过固---液、固---气态转变后,一些物理性质的变化判断液态的原子结合情况。直接方法:通过液态金属的X射线或中子线的结构分析研究液体的原子排列情况。

2、如何理解液态金属的“远程无序”“进程无序”结构?

从X射线衍射分析对液态金属铝结构的认识中可以看到,液态铝中的原子排列在几个原子间的小范围内,与其固态铝原子的排列基本一致,呈现一定的规则排列,而距离远的原子排列就不同于固态?了表现为无序状态,称为“远程无序”“进程无序”结构。3.试阐释实际液态金属的结构及能量结构及浓度等三种起伏特征

处于热运动的原子能量有高有低,同一原子的能量也随时间不停变化,时高时低,这种现象称为“能量起伏”。另外,液态金属中存在由大量不停“游动”着原子团组成,原子集团不断分化组合,这种现象称为“结构起伏”。由于同种元素及不同元素之间的原子结合力是不同的,即游动集团之间存在着成分不均匀性,称之为“浓度起伏”。4.液态金属黏涝性的本质及影响因素有哪些方面?

本质:是质点间结合力的大小,即原子间做相对运动时产生的阻力。影响因素:温度。熔点。夹杂。

5、影响充型能力的因素及提高充型能力的措施都有哪些?

(1)金属性能方面的因素:合金的化学成分。结晶潜热。金属的热处理性能(比热容,密度和热导率)④黏度。⑤表面张力。措施:正确选择合金成分。合理的熔炼工艺。

(2)铸型性质方面的因素:铸型的蓄热系数。铸型的温度。铸型中的气体。措施:适当降低型砂中的含水量和发气物质的含量。提供砂型的透气性。

(3)浇筑方面的因素:浇筑的温度。充型压头。浇筑系统的结构。措施:在一定范围内提高温度。增发液态金属在流动方向上所受的压力。铸件结构方面的因素是铸件的折算厚度和复杂程度。

6、你认为可以采用哪些工艺措施来提高该铸件的成品率?

利用高温出炉低温浇筑工艺。预热铸型。增加金属液静压头。④分析浇筑系统,合理安排内浇道在铸件上的位置,选择恰当的浇筑系统结构和各组元的断面积,尽量简化浇筑系统。⑤选择正确的浇筑位置。⑥适当提高浇筑温度。

7、铸件的凝固方式及其影响的因素?

铸件凝固方式:逐渐凝固方式。体积凝固方式。中间凝固方式。影响因素:凝固区域的宽度,即铸件的凝固方式是由合金的结晶温度范围ΔT与温度降低ξt(可以近似的表示为温度梯度)的比值确定。第二章

1、论述均质形核与非均质形核之间的区别与联系,并分别从临界形核半径,形核功这两个方面阐述外来衬底的湿润能力对临界形核过冷度的影响。

区别与联系:相同点1)形核的驱动力和阻力相同;2)临界晶核半径相等;3)形成临界晶核需要临界功;4)结构起伏和能量起伏是形核的基础;5)形核需要一个临界过冷度;6)形核率在达到极大值之前,随过冷度增大而增加;

与均质性和相比,非均质性和的特点:1)非均质形核与固体杂质接触,减少了表面自由能的增加;2)非均质形核的晶核体积小,形核功小,形核所需结构起伏和能量起伏就小,形核容易,临界度过小;3)非均质形核时晶核形状和体积由临界晶核半径和接触角共同决定,临界晶核半径相同时,接触角越小,晶核体积越小,形核越容易;4)非均质形核的形核率随过冷度增加而增大,当超过极大值后下降。

2、从原子角度看,决定固——液界面微观结构的条件是什么? 热力学因素:a(L/kT00)(/)(Sm/R)(/)

a作为固态围观界面结构的判据

a<2形成粗糙界面a>2半整界面

动力学因素Tk大→连续生长——粗糙平面结构

Tk小→平整界面生长。

3、阐述各种界面微观结构与其生长机理和生长速度之间的联系,并指出它们的生长表面和生长方向各有的特点。(1)粗糙界面是连续生长方式

R1DL0Tk/RT0Tk生长过程中几乎不存在21热力学能障 易为较小的动力学过冷所驱动(2)完整平整界面的生长是二维形核生长方式R22eb/Tk

动力学能障 大需较大的动力学过冷驱动(3)非完整界面的生长是从缺

23陷处生长方式

大大减少热力学能障 R3TK

螺旋式的台阶在生长过程中不会消失,加快生长速度。

4、试述成分过冷与热过冷的含义以及它们之间的区别与联系。

成分过冷的含义:合金在不平衡凝固时,使凝固界面前沿的液相中形成溶质富集层,因富集层中各处的合金成分不同,具有不同的熔点,造成凝固前沿的液相处于不同的过冷状态,这种由于液固界面前沿合金成分不同造成的过冷。

热过冷的含义:界面液相侧形成的负温度梯度,使界面前方获得大于Tk的过冷度

区别:热过冷液固界面前沿的液相具有正的温度梯度液相中各微区的熔点和实际温度之间产生的并且与溶质浓度相关的过冷称为成分过冷。

热过冷:纯金属实际开始结晶的温度总是低于理论结晶温度,这种现象称为热过冷。

5、论述成分过冷对单相合金结晶的影响

1)在传质过程的无成分过冷或负温度梯度时合金同纯金属一样,界面为平面和树枝状形态: 2)在正的温度梯度时,晶体的生长方式产生多样性:当稍有成分过冷时为胞状生长;随着成分过冷的增加(即温度梯度下降),晶体由胞状晶变为柱状晶、柱状枝晶和自由树枝晶(等轴晶)。

6、细化枝晶间距与提高铸件质量之间有何联系 枝晶间距是相邻同次分枝之间的垂直距离,它是树枝晶组织细化程度的表征,枝晶距离越小,组织就越细密,分布于其间的元素偏析范围也就越小,故铸件越容易通过热处理而均匀化,因而也就越有利与铸件质量的提高。第三章

1、典型铸件的宏观组织包含那几个部分?他们形成的机理如何?

①典型铸件的宏观组织包含:表面细晶粒区、柱状晶区、内部等轴晶区②表面细等轴的形成机理:非均质形核和大量游离晶粒提供了表面细等轴晶区的晶核,型壁附近产生较大过冷面大量生核,这些晶核迅速长大并且无相接触,从而形成无方向性的表面细等轴晶区。中间柱状晶的形成机理:柱状晶主要从表面细等轴晶区形成并发展而来,稳定的凝固壳层一旦形成处于在凝固界面前沿的晶粒在垂直于型壁的单向热流的作用下,便转而以枝晶狀延伸生长,由于择优生长,在逐渐淘汰掉取向不利的晶粒过程中发展成柱状晶组织。内部等轴晶的形成是由于剩余熔体内部晶核自由生长的结果。

2、产生晶粒游离的途径有哪些?在实际应用中,如何采取工艺措施来强化晶粒游离作用? ⑴①液态金属流动的作用②直接来自过冷熔体的非均质生核③型壁晶粒的脱落④枝晶熔断和增值⑤液面晶粒沉积 ⑵一,合理控制热学条件①低的浇注温度及合适的浇注工艺②合理控制冷却条件二,孕育处理①孕育剂的作用机理合理选用②合理确定孕育工艺三,动态晶粒细化

3、解释枝晶缩颈现象产生的原因及对晶粒游离作用的影响

⑴①晶粒生长过程中界面前沿液态金属凝固点降低从而使其实际过冷度减小,生长速度减慢,又由于晶体根部紧靠型壁,富集的溶质不易排出,生长受到抑制②远离根部的其他部位面临较大过冷,生长速度快点多⑵缩颈极易断开,晶粒自型壁脱落而导致晶粒游离

4、等轴晶组织有何特点?在应用过程中,可从哪些方面来获得及细化完全等轴晶组织? ㈠特点:等轴晶去的晶界面积大,杂志和缺陷分布比较分散,呈各向同性,故性能均匀又稳定,缺点是枝晶比较发达,显微缩松较多,凝固后组织不够致密。㈡①向熔体加入强生核剂——孕育处理;②控制浇注条件:采用较低的浇注温度和合适的浇注工艺;③采用金属型铸造,提高铸型的激冷能力;④增大液态金属与铸型表面的湿润角,提高铸型表面的粗糙度;⑤采用物理方法动态结晶细化等轴晶:震动、搅拌、旋转铸型、撞击等等均可引起固液相对运动,有效减少消除柱状晶区,细化等轴晶。第四章

1、何谓偏析现象?它对铸件质量有何影响?

合金在凝固过程中发生化学成分不均匀的现象称为偏析。偏析会对铸件的力学性能切削性能耐腐蚀性能产生不同程度的不利影响。偏析的有利方面,可以用它净化提纯金属。

2、微观偏析有哪些表现形式?并解释共形成机理及消除措施?

枝晶偏析:因冷却速度过快,扩散过程难以充分进行,使凝固过程偏离平衡条件,形成不平衡结晶。

胞状偏析:胞壁处的溶质的量过多或过少,这种化学不均匀性称为胞状偏析。

晶界偏析:第一种,两个晶粒并排生长,在晶界与液相交界的地方出现一个凹槽有利于原子的富集,凝固后就形成晶界偏析。第二种,两个晶粒面对面生长,溶质被排出,晶界再相遇时他们之间富集大量溶质造成晶界偏析。消除措施:对晶界偏析用均匀化退火方法,对氧化物和硫化物引起的晶界偏析采用减少合金的氧、硫含量。

3、举例说明常见的宏观偏析及其形成机理,并进一步说明在生产中如何采取措施防止。正常偏析:由于溶质再分配,当合金的溶质分配系数K0<1时,温度降低则溶质的浓度增加,后结晶的固相溶质浓度高于先结晶部分,当K>1时与此相反,这种符合溶质再分配规律的偏析称为正常偏析。

逆偏析:与正常偏析相反的溶质分布情况,当K<1时,表面或底部含溶质元素多,面中心部分或上部含溶质较少,这种现象称为逆偏析。防治措施:在合金中加入细化一次分枝的元素,采用细化晶粒的措施,减少合金液的含气量。带状偏析:当固界面过冷度降低,固液界面推进收到溶质偏析的阻碍时,由于界面前方的冷却,从侧壁上可能产生新的晶粒并继续长大,从前方横切溶质浓化带。

防治措施:减少溶质的含量,采取孕育措施细化晶粒,加强固液界面前的对流和搅拌。密度偏析:密度偏析时金属凝固前或刚开始凝固时,当液体和固体共存或者是互相不混合的液相之间存在着密度差产生的偏析。防治措施:增加铸件冷却速度,加入第三种合金元素,尽量降低合金的浇注温度和浇筑速度。

4、简述析出性气孔的特征,形成机制及主要的防治措施 特征:析出性气孔数量多,尺寸小,形状呈圆形、椭圆形或针状,在铸件断面呈大面积均匀分布,主要是氢气孔和氮气孔

形成机制:金属在凝固过程中,结晶前沿,被枝晶封闭的液相内气体的饱和浓度值更大,有大的析出压力,而液固面气体的浓度最高,易产生金属夹杂物,所以液固界面更容易析出气泡,凝固后形成气孔 防止措施:①减少金属液的吸气量②对金属液进行除气处理③阻止金属液中气体析出,提高铸件冷却速度④型(芯)砂处理,减少砂(芯)型在浇注时的发气量

5、说明反应性气孔的形成过程及特征

⑴①氢气说:金属液浇入铸型后,由于金属液—铸型界面处气相中含氢量较高,在凝固过程中,金属液表面的各种氧化物以及铸铁中的石墨固相能使气体附着形成气泡,液相中的氢向气泡扩散,随着金属结晶沿枝晶间长大,形成皮下气泡②氮气说:铸型或铸芯的含氮粘结剂分解造成界面处氮气浓度增加,当含氮量达到一定浓度,就会产生皮下气泡③CO说:CO气泡可依附晶体中的非金属夹杂物形成。这是氢、氮均可扩散进入气泡,气泡沿枝晶生长方向长大形成皮下气孔

6、简述夹杂物的来源及其分类。

来源:原材料本身所含有的夹杂物。金属熔炼时,脱氧,脱硫,孕育,球化等处理过程。液态金属与耐火材料以及熔渣接触。④精炼后转包及浇筑过程形成二次氧化夹杂物。⑤金属凝固过程中的物理化学反应。

分类:(1)按来源:内在夹杂物和外在夹杂物。(2)按化学成分:氧化物。硫化物。硅酸盐。(3)按形成时间:初生和二次氧化物以及偏析夹杂物。

7、分析缩孔的形成过程,说明缩孔与缩松的形成条件及形成原因的异同点。纯金属共晶成分合金和结晶温度范围窄的合金,在一般铸造条件下按由表及里逐层凝固的方式凝固,由于金属和合金在冷却过程中发生的液态收缩和凝固收缩大于固态收缩,从而在铸件最后凝固的部位形成尺寸较大的集中缩孔。形成缩松和缩孔的基本原理是相同的,即金属的液态收缩和凝固收缩之和大于固态收缩。但形成条件是不同的:产生缩孔的条件时铸件由表及里逐层凝固,形成缩松的条件是金属的结晶温度范围较宽,倾向于体积凝固和同时凝固方式。

第三篇:铸造成型原理简答题

1、可以通过哪些途径研究液态的金属的结构

答,间接,通过固液,固气转变后一些物理性能变化判断液态金属原子间结合状况,直接,通过液态金属的X射线或中子线结构分析研究。

2、怎样理解液态金属“进程有序远程无需”

答。液态金属中的原子排列在几个原子间距内,与固态原子排列基本一致,有规律,而距离远的原子排列不同与固态,无序。这称为。

3、阐述实际液态金属结构,能量,结构及浓度三种起伏。

答。实际金属含有大量的杂质,他们存在方式是不同。能量起伏,表现为各个原子间的能量不同各个原子的尺寸不同,浓度起伏,表现为各个原子团成分不同,游动的原子团时聚时散此起彼伏形成结构起伏。

4、液态金属粘滞性本质,及影响因素

答。本质,是质点间(原子间)结合力的大小,影响因素:温度,熔点,杂质。共晶合金粘度低。

5、影响充型能力的因素及提高充型能力的措施。

答:

1、金属性能方面,合金的成分,结晶潜热,金属的热物理性能,粘度,表面张力。

2、铸型性能方面,铸型的蓄热系数,铸型的温度,铸型中的气体,3、浇筑方面、浇注温度,充型压头,浇筑系统的结构

4、铸件结构方面。措施:1正确选择合金成分多少

2、合理的熔炼工艺

3、适当降低砂型中的水量和发起物质含量,增加砂型通气性。

6、某工厂的生产铝镁合金机翼(壁厚3mm,长1500mm)采用粘土砂型,常压下浇筑,常因浇筑不足而报废,怎样提高铸件的成品率。

答:可以采用小蓄热系数的铸型,采用预热,提高浇筑温度,加大充型压力,改变浇筑系统,提高金属液充型能力。

7、如何得到动态凝固曲线及如何利用动态凝固曲线分析铸件的性质 答、先绘制出铸件的温度场,然后给出合金液相线跟固相线温度,...8、如何理解凝固区域的结构中的“补缩边界”、傾出边界 答铸件在凝固的过程中除纯金属和共晶成分的合金外,在断面上一般分为3个区域,即固相区,凝固区,液相区。用傾出发做实验时,晶体能够随液态金属一起被傾出,因此液固部分和固液部分的边界叫傾出边界。固液部分靠近固体的部分固相占绝大部分,已经连接为牢固的晶体,靠近傾出边界的那部分液态占大部分,这两部分中间形成小的熔池,体积收缩,得不到液态的补充叫补缩边界。

9、铸件的凝固方式及其影响因素。

答:方式:逐层凝固方式、体积凝固方式、中间凝固方式,其凝固方式决定于凝固区域的宽度。影响因素:是由合金结晶温度范围tc与温度降t的比值决定的。比值远小于1时,铸件的凝固趋向于逐层凝固方式,大于1时趋向于体积凝固方式 第二章

10、论述均质形核与非均质形核之间的区别与联系。并分别从临界形核半径。形核功这两个方面阐述外来沉底的润湿能力对临界形核过冷度的影响。

答:;均质形核与非均质形核临界半径相等,非均质形核功是均质形核功Xf(o)。非均质形核所需体积小,即相起伏原子少。两种形核都需要克服形核功。但非均质形核小。润视角增大,非均质形核的过冷度增大,f(o)减小,非均质形核功减小,导致能量起伏减小,过冷度减小。

11、从原子角度看,决定固液界面微观结构的条件是什么? 答;热力学因素α<=2粗糙界面α>2时平整界面;动力学因素:动力学过冷度Tk大连续生长,产生粗糙界面,小时平整界面。

12、阐述各种界面微观结构与其生长机理和生长速度之间的关系,并指出他们的生长方向各有什么特点?

答:A,粗糙界面;连续生长R=U△Tk;完整平整界面;二位生核R=Ue(b/△Tk);非平整界面:

1、螺旋生长R=U△Tk²

2、旋转单晶,反射单晶。△Tk上升。B、生长方向:粗糙界面,各项同性的非晶体单晶等,生长方向与热流方向相同。平整界面,密排线相交的小晶面。C、生长表面:粗糙表面,因是各项同行,光滑生长表面。平整界面,棱角分明的秘排小晶面。

13、试述成分过冷与热过冷的含义以及他们之间的区别于联系?

答:只有的当界面液相一侧形成负温度梯度时,才能在纯金属界面前方熔体内获得过冷,这种仅由于熔体实际温度分布所决定的过冷状态称为热过冷,对于一般合金由于存在溶质再分配,界面前方的液相线是随着成分变化而变化的,因此只要实际温度低于同一地点的液相线温度,也能在熔体前方获得过冷。这种由溶质再分配导致界面前方溶体成分及其凝固温度发生变化而引起的过冷,称为成分过冷。区别:热过冷与成分过冷之间的根本区别是前者仅受热传导过程的控制,后者则同时受热传导过程和传质过程的制约。

14、何为成分过冷判据?假设在不同条件下,推导其公式。

答:成分过冷判据:Gl

1、液相只有有限扩散条件下的成分过冷。对上式求导,令x=1的,dTl(x)/dx=-mc。(1-k。)R/Dlk。带入有Gl/R<-mC。(1-k。)/k。Dl;

2、液相部分混合条件下的成分过冷Gl/R<-m平均Cl/Dl(k。/1-k。+e-R/Dl的儿它)。

15、论述成分过冷对单相合金结晶的影响、答;成分过冷对一般单项合金结晶过程与热过冷对纯金属影响本质相同,但由于同时存在着传质过程的制约,再无成分过冷的状态下,界面一平整界面生长,但随着成分过冷的出现和增大,界面前方一次以胞状晶、柱状晶、等轴晶形式进行。

16、阐述内生生长与外生生长的概念以及联系

答;概念:就合金的宏观结晶状态而言,平面生长,胞状生长和柱状枝晶生长皆属于一种晶体自型壁形核,然后由外向内单向延伸生长,称为外生生长,等轴枝晶在熔体内部自由生长的方式称内生生长。联系;成分过冷区的进一步加大,促使了外生生长向内生生长的转变。

17、细化枝晶与提高铸件质量之间有何联系。

答:枝晶间距是相邻同次分支之间的垂直距离,它是树枝枝晶组织细化程度表现,枝晶间距越小,组织就越细密,分布于期间的元素偏析范围也就越小,故铸件越容易通过通过热处理而均匀化,因而也就越利于铸件的质量提高。第三章

18、典型铸件的宏观组织包括哪几部分?它们的形成机理如何?

答:典型的铸件宏观组织包含表面细晶粒去区、柱状晶区、内部等轴晶区、等三个不同形态的晶区。表面细晶粒区形成机理:非均质形核和大游离的晶核提供了表面细晶粒区的晶核,型壁附近产生较大的过冷而大量生核,这些晶核相互接触并迅速长大,形成的无方向性的表面细等轴晶区。柱状晶区形成的机理:柱状晶区开始于稳定的凝固壳层的形成,结束于内部等轴晶区的形成,而稳定的凝固壳一旦形成处于凝固壳前言的晶粒在平行于热流方向下择优生长,逐渐淘汰不利于晶体晶体过程发展的柱状晶粒。内部等轴晶的形成机理:由于剩余熔体内部晶核自由生长的结果。

19、产生晶粒游离的途径有哪些?在实际应用中,如何采取工艺措施来强化晶粒游离的作用?

答:

1、液态金属的流动作用

2、直接来自过冷熔体中的非均质形核所引起的晶粒游离

3、型壁晶粒脱落所引起的晶粒游离

4、枝晶熔断和增殖所引起的晶粒游离

5、液面晶粒沉积所引起的晶粒游离。措施:

一、合理的控制热学条件

1、低温浇筑和采用合理的浇筑工艺。

2、合理的控制冷却条件(小的温度梯度,高的冷却速度)

二、孕育处理

1、孕育剂作用机理的合理选择a、强化形核作用b、强化成分过冷元素孕育剂

2、合理确定孕育工艺

三、动态晶粒的细化

1、机械震动

2、超声波

3、搅拌

4、流变铸造。

20、解释枝晶缩颈现象产生的原因及对晶粒游离作用的影响?

答:原因:晶粒生长过程中界面前沿液态凝固点降低,从而使其实际过冷度减小,生长速度减慢,又由于晶体根部紧靠壁型,富集的溶质不易排出,生长受到抑制,远离根部其它部位面临较大的过冷度,生长速度要快的多,从而产生缩颈现象。影响:生成的头大根小的晶粒,在流液的机械冲刷和温度波动下,熔点低而又脆弱的缩颈极易断开形成游离的晶粒。

21、等轴晶组织有何特点?在应用中,可以从哪些方面来获得及细化完全等轴晶组织? 答:特点:等轴晶区的晶界面积大,杂质和缺陷分布比较松散,成各项同性,故性能均匀且稳定,缺点是枝晶比较发达,显微缩松较多,凝固后组织不够致密。方法:

1、让熔体中加入强生核剂—孕育处理

2、控制浇筑条件,采用较低的浇筑温度和合理的浇筑工艺。

3、采用金属型铸造,提高铸型的激冷能力。

4、增大液态金属与铸型表面的润湿角,提高铸型表面的粗糙度。

5、采用物理的方法动态结晶细化晶粒。第四章

22、何为偏析现象?它对铸件质量有何影响?

答;合金在凝固过程中发生的化学成分不均匀的现象称为偏析。偏析会对铸件的力学性能,切削性能、耐腐蚀性能等产生不同程度的影响,偏析也有有力的方面,比如可利用它来净化和提纯金属。

23、微观偏析有哪些表现形式?并解释其形成机理及消除措施? 答:微观偏析安其形式分为胞状偏析、枝晶偏析、晶界偏析。

枝晶偏析:合金以枝晶形式生长,先结晶的枝干与后续生长的分支也同样存在着成分差异,称为枝晶偏析。胞状偏析:当成分过冷较小时,晶体呈胞状方式生长。胞状结构由一系列平行的棒状晶体所组成,沿凝固方向长大,呈六方断面,由于凝固过程中的溶质再分配,当合金的平衡分配系数小于1则在胞壁处将富集溶质会贫化,这种化学成分不均匀性称为胞状偏析。晶界偏析:第一种两晶粒并排生长,晶界平行于生长方向,由于表面张力平衡条件的要求,在晶界与液相线交界的地方,会出现一个凹槽,此处有利于溶质原子的富集,凝固后就形成了晶界偏析。第二种两个晶粒彼此面对面生长,在固液界面,溶质被排出,此外,其他低熔点的物质也会被排出在固液界面,当界面彼此相遇时,在它们之间富集大量溶质,从而造成晶界偏析。

24、举例说明常见的宏观偏析及其形成机理,进一步说明在生产过程中如何采取措施防止? 答:宏观偏析:正常偏析、逆偏析V形偏析和逆V行偏析,带状偏析,密度偏析。

正常偏析:由于溶质再分配,当合金的溶质分配系数小于1,凝固界面将有一部分溶质被排出。随温度的降低,溶质浓度将逐渐增加,后结晶的固相溶质浓度高于先结晶的。否则相反.逆偏析:铸件凝固后,常常出现和正偏析相反的溶质分布情况,当溶质分配系数小于1时,表面或底部含溶质多,而中心部分,或上部分含溶质少。带状偏析;当固液界面过冷度降低,固液界面推进受到溶质偏析阻碍时,由于界面前方的冷却,从侧壁上可能产生新的晶粒并继续长大,从前方横切溶质浓化带。密度偏析:也称重力偏析,液体与固体共存或者互相混合的液相之间存在着密度差时产生的化学成分不均匀现象,多形成于金属凝固前,或刚刚开始凝固。

防止措施:逆偏析:采取细化晶粒,减小合金液的含气量。带状偏析:减少溶质的含量,采取孕育细化晶粒,加强固液界面前的对流和搅拌。密度偏析:增加铸件的冷却速度,使初生相来不及上下浮动。加入第三种合金,尽量降低合金的浇筑温度和浇注速度。

25、简述析出性气孔的特征,形成机理及主要防止措施? 答:析出性气孔在铸件断面上大面积分布,靠近冒口、热节等温较高的区域,其分布较密集,形状呈团球形,裂纹多角形,断续裂纹状或混合形。机理:

1、凝固时溶质再分配导致气孔形成。结晶前沿特别是枝晶内部液相的气体浓度聚集区将超过它的饱和浓度,被枝晶封闭在液相内,其气体的过饱和度更大,有更大的析出压力,而液相界面处气体的浓度过高,此处有其他溶质偏析,易产生金属夹杂物,所以液固界面容易析出气泡,保留下来的气泡就形成气孔。

2、侵入性气孔形成:将金属浇入砂型中,由于各种原因会产生大量的气体,气体的体积随温度的升高二增大,当满足一定条件,气泡就能在凝固初期侵入金属液成为气泡,气泡上浮时就形成气孔。措施:

1、减少金属液的吸气量

2、对金属液进行除气处理

3、阻止金属液中气体的析出

4、型(芯)砂处理,减少其发气量。

26、说明反应性气孔的形成过程及特征?

答:

1、金属-铸型间反应性气孔。氢气说:金属浇入铸型后,由于金属液-铸型界面处气体含氢量高,是金属液表面氢气浓度增大,凝固过程中,液固表面前沿易形成过饱和气体浓度很高的气体析出压力,金属液中的氧化物,杂质等,能称为载体,表面层气泡一旦形成后,液相中氢气等气体都向气泡扩散,随着金属结晶沿枝晶间长大,形成皮下气孔。氮气说;铸型或型芯采用各种含氮树脂作为粘结剂,分解时造成界面处气相氮气浓度增加。提高树脂 及乌洛托品含量,也会导致含氮量增大,就产生了皮下气孔。CO说:CO气泡可以依附在晶体中的非金属夹杂物形成,这时氮气氢气均可扩散到气泡,气泡沿枝晶方向生长,形成皮下气泡。

2、金属液内反应性气孔。渣气孔液态金属与熔渣相互作用产生的气孔。CO气孔依附在FeO熔渣上就形成了气孔。金属夜中元素间反应性气孔,碳氧化反应气孔,钢液脱氧不全或铁液严重氧化,溶解的氧若与铁液中的碳相遇,将产生CO气泡而沸腾,CO气泡上浮,吸收氢气氧气,长大,凝固时来不及排出,形成气孔。水蒸气反应性气孔:金属液中溶解的[O]和【H】,如果遇见就会产生水气泡,来不及析出,就产生气泡。碳氢反应气孔:铸件最后凝固的部位液相中偏析,含有较高的【H】和【C】凝固中产生CH4形成局部气孔。

27、简述夹杂物的来源及其分类?

答:

1、原材料本身。

2、金属熔炼时,脱氧、脱硫孕育、球化等处理,产生大量MnO2、SiO2、Ai2O3等夹杂物。

3、液态金属与炉衬、浇包的耐火材料及熔渣接触时,会发生相互作用,产生大量MnO2、Al2O3等夹杂物。

4、在精炼后转包及浇注过程中,因金属液表面与空气接触,会形成一层氧化膜,会被卷入金属中,形成二次氧化夹杂物。

5、金属在凝固过程中,进行各种物理化学反应,生成夹杂物。分类:按来源分类:内在夹杂物和外来夹杂物。按夹杂物化学成分:氧化物,硫化物,硅酸盐。按夹杂物其形成时间:初生和二次氧化夹杂物以及偏析夹杂物。

28、分析缩孔形成的过程,说明缩孔与缩松的形成条件及形成原因的异同点?

答:过程:纯金属共晶成分合金和窄结晶温度范围的合金,在一般的铸造条件下,按由表及里的逐层凝固方式凝固,由于其凝固前沿直接与液态金属接触,当液体金属凝固成固体而发生体积收缩时,可以不断得到液体的补充在铸件最后凝固的地方产生缩孔。异同点;形成缩松跟缩孔的原理是相同的,即金属的液态收缩和凝固收缩之和大于固态收缩。形成条件不同;:产生缩孔的条件是铸件由表及里逐层凝固,形成缩松是金属结晶范围较宽,倾向于体积凝固和同时凝固的方式。

名词解释

1、液态金属成型技术是将融融的金属或合金在重力场或其他外力场的作用下注入铸型型腔中,待其凝固后获得与型腔形状相似逐渐的一种方法,这种成型方法叫做铸造。

2、液态成型(铸造)是将融化成型的液态金属浇入住铸型后一次制成所需形状和性能的零件

3、金属塑性成形又称塑性加工,是利用金属的塑形,通过外力获得所需形状,尺寸与内部性能制品的一种加工方法。

4、表面张力:是表面上存在的一个平行于表面且各个方向大小相等的力。

5、表面自由能;是产生新的单位面积表面时自由能的增量。

6、液态金属充填铸型的能力:液态金属充满铸型型腔,获得完整、轮廓清晰的铸件的能力。

7、流动性;液态金属本身的流动性。与金属的成分、温度、杂质含量、铸件结构有关。

8、强迫对流:在凝固过程中可以外在激励使液相产生的流动

9、液态金属结晶:液态金属转变成晶体的过程称为液态金属结晶或金属一次结晶。

10、相变驱动力:只有当TGs时,结晶才可能自发进行,此时液固两自由能只差称为相变驱动力。

11、过冷度:t=t-t0称之为过冷度

12:、热力学能障:由界面原子所产生,能直接影响体系自由能的大小。

13、动力学能障:由原子穿越界面的过程中所引起的,其大小与相变驱动力无关,而决定于界面的结构和性质,前者对形核有影响,后者则在晶体生长过程中起关键作用。

14、均质形核:是在没有任何外来界面的均匀熔体中的形核过程。也成自发形核。

15、非均质形核:指在不均匀的熔体中依靠外来杂质或型壁界面的衬底进行形核的过程,也称非自发形核,异质形核G非=G均f(o),当0

16、晶体生长驱动力:固液界面处,固液两项体积自由能之差。晶体生长主要受界面生长动力学过程,传热过程,传质过程三方面的影响

17、原子角度看微观姑爷界面的结构可分为两大类粗糙界面(非小面界面)、平整界面(小面界面)

18、溶质在分配:从形核开始到结晶结束,整个过程中,固液两项内部进行着溶质元素的重新分布的过程。

19平衡结晶:对于结晶过程中,固液相都能通过充分传质而使成分完全均匀并达到平衡相图所对应的温度的平衡成分。

20、铸件的结晶组织,仅宏观状态而言,指的是铸态晶粒的状态、大小、取向喝和分布等情况。

21、游离晶:铸件结晶过程中,由于各种因素的影响,除直接借助于独立生核以外,还会通过其他方式在熔体内形成大量处于游离状态的自由小晶体,即游离晶。

22、晶体的择优生长:各个枝晶主干方向不同,主干于热流方向相同的枝晶生长更为迅速,他们优先生长并抑制其他方向枝晶生长,这个互相竞争淘汰的晶体生长过程称为晶体的择优生长。

23、通过强化非均质生核和促进晶粒游离以抑制凝固过程中柱状晶区的形成和发展,就能获得等轴晶区。

24、孕育处理;是向液态金属中,添加少量物质以达到细化晶粒,改善组织之目的的一种方法。

25、流变铸造:又称半固态铸造。是在凝固初期利用搅拌使金属液称为半固态的浆料,并进行挤压成型。

26、定向凝固:又称定向结晶,是使金属或合金在熔体中定向生长晶体的一种工艺方法。

27、快速凝固:液态金属在凝固过程中,由液相到固相的相变过程进行的非常迅速,从而获得传统铸件的铸锭无法获得的成分、相结构和显微结构的过程。

28、偏析:合金在凝固过程中发生成分不均匀的现象。

29、偏析按照其范围大小分为:微观偏析和宏观偏析。

30、微观偏析:由称短程偏析,是指小范围内化学成分不均均匀现象。30、宏观偏析:又称长程偏析或区域偏析,是指较大尺寸范围内的化学成分不均匀现象。Cs>C。正偏析否则为逆偏析。Cs各部分的浓度C。原始浓度。按其表现形式分为:正常偏析,逆偏析,密度偏析等。

31、晶内偏析:晶内先结晶的部分溶质含量低,后结晶部分溶质含量高。这种成分的不均匀性就称为晶内偏析。

32、枝晶偏析:合金以枝晶形式生长,先结晶的枝干与后续生长的分支也同样存在着成分差异,称为枝晶偏析。

33、胞状偏析:当成分过冷较小时,晶体呈胞状方式生长。胞状结构由一系列平行的棒状晶体所组成,沿凝固方向长大,呈六方断面,由于凝固过程中的溶质再分配,当合金的平衡分配系数小于1则在胞壁处将富集溶质会贫化,这种化学成分不均匀性称为胞状偏析。

34、晶界偏析:两个晶粒彼此面对面生长,在固液界面,溶质被排出,此外,其他低熔点的物质也会被排出在固液界面,当界面彼此相遇时,在它们之间富集大量溶质,从而造成晶界偏析。

35、气体元素在金属中可以以固溶体,化合物及气态三种形式存在。

36、气孔分为析出性气孔、反应性气孔两类。

37、析出性气孔:金属液在凝固或冷却过程中,因气体溶解度下降,析出来的气体来不及从液面排出而产生的气孔。

38、反应性气孔:金属液和铸型之间或在金属液内部发生化学反应所产生的气孔。

39、收缩:把铸件在液态、凝固态和固态冷却工程中发生的体积减小现象称为收缩。

40、体收缩:金属从液态到常温的体积改变量。线收缩:金属在固态时从高温到常温的线尺寸该变量。

41、液态收缩:具有一定成分的铸造合金从浇注温度冷却到液相线发生的体收缩。

42、凝固收缩:金属从液相线温度到固相线温度间产生的体收缩。

43、固态收缩:金属在固相线一下发生的体收缩。

44、缩孔:铸造合金在凝固过程中,由于液态收缩和凝固收缩的产生,往往在铸件最后凝固的部分出现空洞,称为缩孔,把尺寸较大而且集中的空洞称为集中缩孔,简称缩孔。缩孔的形状不规则,表面不光滑,可以看到发达的树枝晶末梢。尺寸细小的而且分散的空洞称为分散性缩孔,简称缩松。缩松安其形态分为宏观缩松(简称缩松)和微观缩松(或显微缩松)。

第四篇:高分子材料加工成型原理作业

《高分子材料加工成型原理》主要习题

第二章 聚合物成型加工的理论基础

1、名词解释:牛顿流体、非牛顿流体、假塑性流体、胀塑性流体、拉伸粘度、剪切粘度、滑移、端末效应、鲨鱼皮症。

牛顿流体:流体的剪切应力和剪切速率之间呈现线性关系的流体,服从牛顿黏性定律的流体称为非牛顿流体。

非牛顿流体:流体的剪切应力和剪切速率之间呈现非线性关系的流体,凡不服从牛顿黏性定律的流体称为非牛顿流体。

假塑性流体:是指无屈服应力,并具有黏度随剪切速率或剪切应力的增大而降低的流动特性的流体,常称为“剪切变稀的流体”。

胀塑性流体:是指无屈服应力,并具有黏度随剪切速率或剪切应力的增大而升高的流动特性的流体,常称为“剪切增稠的流体”。P13 拉伸粘度:用拉伸应力计算的粘度,称为拉伸粘度,表示流体对拉伸流动的阻力。

剪切粘度:在剪切流动时,流动产生的速度梯度的方向与流动方向垂直,此时流体的粘度称为剪切粘度。

滑移:是指塑料熔体在高剪切应力下流动时,贴近管壁处的一层流体会发生间断的流动。P31 端末效应:适当增加长径比聚合物熔体在进入喷丝孔喇叭口时,由于空间变小,熔体流速增大所损失的能量以弹性能贮存于体系之中,这种特征称为“入口效应”也称“端末效应”。

鲨鱼皮症:鲨鱼皮症是发生在挤出物表面上的一种缺陷,挤出物表面像鲨鱼皮那样,非常毛糙。如果用显微镜观察,制品表面是细纹状。它是不正常流动引起的不良现象,只有当挤出速度很大时才能看到。

6、大多数聚合物熔体表现出什么流体的流动行为?为什么?P16 大多数聚合物熔体表现出假塑性流体的流动行为。假塑性流体是非牛顿型流体中最常见的一种,聚合物熔体的一个显著特征是具有非牛顿行为,其黏度随剪切速率的增加而下降。此外,高聚物的细长分子链,在流动方向的取向粘度下降。

7、剪切流动和拉伸流动有什么区别?

拉伸流动与剪切流动是根据流体内质点速度分布与流动方向的关系区分,拉伸流动是一个平面两个质点的距离拉长,剪切流动是一个平面在另一个平面的滑动。

8、影响粘度的因素有那些?是如何影响的?

剪切速率的影响:粘度随剪切速率的增加而下降; 温度的影响:随温度升高,粘度降低; 压力的影响:压力增加,粘度增加;

分子参数和结构的影响:相对分子质量大,粘度高;相对分子质量分布宽,粘度低;支化程度高,粘度高;

添加剂的影响:加入增塑剂会降低成型过程中熔体的粘度;加入润滑剂,熔体的粘度降低;加入填料,粘度升高。

12、何谓熔体破裂?产生熔体破裂的原因是什么?如何避免?

高聚物熔体在挤出过程中,当挤压速率超过某一临界值时挤出物表面出现众多的不规则的结节、扭曲或竹节纹,甚至支离和断裂成碎片或柱段,这种现象称为熔体破裂。

原因:一种认为是由于熔体流动时,在口模壁上出现了滑移现象和熔体中弹性恢复所引起;另一种是认为在口模内由于熔体各处受应力作用的历史不尽相同,因而在离开口模后所出现的弹性恢复就不可能一致,如果弹性恢复力不为熔体强度所容忍,就会引起熔体破裂。

避免熔体破裂需注意:控制剪切应力与熔体温度;设计口模模唇时,提供一个合适的入口角,使用流线型的结构是防止聚合物熔体滞留并防止挤出物不稳定的有效方法。

第三章 成型用的物料及其配制

4、简述增塑剂的增塑机理,如何选用增塑剂?

增塑剂在加入聚合物大分子后,增塑剂的分子因溶剂化及偶极力等作用而“插入”聚合物分子之间并于聚合物分子的活性中心发生时解时结的联结点,由于有了增塑剂-聚合物的联结点,聚合物之间原有的联结点就会减少,从而使其分子间的力减弱,并导致聚合物一系列性能的改变。选用增塑剂要选择与树脂的相容性好、增速效率高、增塑效果持久、低温柔韧性好、电绝缘性好、耐老化性好、阻燃性好、毒性低等。

5、何谓稳定剂?简述热稳定剂的稳定机理。

凡在成型加工和使用期间为有助于材料性能保持原始值或接近原始值而在塑料配方中加入的物质称为稳定剂。热稳定剂的作用机理归纳如下:(1)捕捉降解时放出的HCL。(2)置换不稳定的氯原子(3)钝化具有催化作用的金属氯化物(4)防止自动氧化(5)与共轭双键结构起加成作用(6)能与自由基起反应。

8、何谓润滑剂?为什么润滑剂有内、外之分?

为改进塑料熔体的流动性能,减少或避免对设备的摩擦和粘附以及改进制品表面光亮度等,而加入的一类助剂称为润滑剂。

润滑剂中有一类与高聚物有一定的相容性,加入后可减少高聚物分子的内聚力,降低其熔融粘度,从而减弱高聚物分子间的内摩擦,此类润滑剂为内润滑剂。还有一类与高聚物仅有很小的相容性,它在加工机械的金属表面和高聚物表面的界面上形成一润滑层,以降低高聚物与加工设备之间的摩擦,此类润滑剂为外润滑剂。不同的相容性让润滑剂有了内外之分。

第五章 挤出成型

2、普通螺杆在结构上为何分段,分为几段?各段的作用如何?

螺杆的主要功能包括输送固体物料,压紧和熔化固体物料,均化、计量和产生足够的压力以挤出熔融物料,所以根据物料在螺杆上运转的情况可将螺杆分为加料、压缩和计量三段。

加料段是自物料入口向前延伸约4~8D的一段,主要功能是卷取加料斗内物料并传送给压缩段,同时加热物料;压缩段(又称过渡段)是螺杆中部的一段,在这段中物料除受热和前移外,主要是由粒状固体逐渐被压实并软化为连续的熔体,同时还将夹带的空气排出;计量段是螺杆的最后一段,其长度约为6~10D,主要的功能是使熔体进一步塑化均匀,克服口模的阻力使物料定量、定压的由机头和口模流道中挤出,所以这一段也称为均化段。

3、根据固体输送率的基本公式,分析当螺杆的几何参数确定之后,提高固体输送率的途径及工业实施方法。

提高固体输送率可从挤出机结构和挤出机挤出工艺两个方面采取措施。从挤出机结构角度来考虑,可增加螺槽深度;其次,可降低塑料与螺杆的摩擦系数,这就需要提高螺杆的表面光洁度;再者,可增大塑料与料筒的摩擦系数,料筒内表面要尽量光洁。

从挤出工艺角度来考虑,关键是控制送料段料筒和螺杆的温度。

9、何谓螺杆压缩比?为什么要有压缩比?在螺杆结构上如何实现?

通常将加料段一个螺槽的溶剂与计量段一个螺槽容积之比称为螺杆的压缩比。

压缩比对塑料挤出成型工艺控制有重要影响。挤出不同的塑料,根据塑料的物理性能选择螺杆的压缩比。

实现压缩比的途径:变动螺纹的高度或导程;螺杆根径由小变大或外径由大变小;螺纹的头数由单头变成二头或三头。

13、用方框图表示出挤出成型工艺,并注明各工艺环节所用的设备。

各工艺环节所用的设备:

原料的预处理和混合:烘箱或烘房; 挤出成型:挤出机、挤出机机头口模;

定性装置:真空定径(真空定径套、冷却水槽、真空泵等)和内压定径; 冷却装置:浸浴式冷却水箱或喷淋式冷却水箱; 牵引装置:滚轮式牵引机或履带式牵引机;

切割装置:圆盘锯切割机或自动星型锯切割机。

第六章 注射模塑

1、名词解释:塑化、塑化压力、注射压力

塑化是注射成型的准备过程,是指物料在料筒内受热达到流动状态并具有良好的可塑性的全过程。

塑化压力:采用螺杆式注射机时,螺杆顶部熔料在螺杆转动后退时所受到的压力称为塑化压力,亦称背压。

注射压力:是指柱塞或螺杆顶部对塑料所施加的压力,由油路压力换算而来。

2、注射成型方法适合于何种制品的生产?为什么?请用框图形式表示一个完整的注 射成型工艺过程。

适合于热塑性塑料及多种热固性塑料制品的生产。

注射成型的成型周期短、生产效率高,能一次成型外形复杂、尺寸精准、带有嵌件的制品;生产热固性塑料时,不仅使其制品质量稳定、尺寸精准和性能提高,而且使成型周期大大缩短,劳动条件也得到改善。

6、与挤出机的螺杆相比,注射机的螺杆在结构上、运动上及功能上有何特点?

(1)注射螺杆在旋转时有轴向位移,因此螺杆的有效长度是变化的;(2)注射螺杆的长径比较小,一般为10-15之间;(3)注射螺杆的压缩比较小,一般为2-2.5之间;

(4)注射螺杆因有轴向位移,因此加料段应该长,约为螺杆长度的一半,而压缩段和计量段则各为螺杆长度的四分之一;注射螺杆的螺槽较深以提高生产率;

(5)注射螺杆在转动时只需要它能对物料进行塑化,不需要它提供稳定的压力,塑化中物料承受的压力是调整背压来实现的;

(6)为使注射时不致出现熔料积存或沿螺槽回流的现象,应考虑螺杆头部的结构。

13、为什么要保压?保压对制品性能有何影响?

熔体注入模腔后,由于模具的低温冷却作用,使模腔中的熔体产生收缩。为了保证注射制品的致密性、尺寸精度和强度,必须使注射系统对模具施加一定的压力(螺杆对熔体保持一定的压力),对模腔塑件进行补缩,直到浇注系统的塑料冻结为止。

对制品的密度、克服制品表面缺陷、制品的致密性、尺寸精度和强度都有一定的影响。

第七章 压延成型 简述压延机的基本结构和工作原理。

各类压延机除辊筒数目及排列方式不同外,其基本结构大致相同,主要由机座、机架、辊筒、辊距调节装置、润滑系统、传动装置、紧急停车装置等部分组成。

压延成型主要依靠辊筒异向旋转,将熔融塑化的物料带入辊筒间隙,由于辊筒间速比的存在,辊隙间有速度梯度,使料层间产生相对运动。使熔料在辊筒间隙中受到辊筒挤压延展、拉伸而成为具有一定规格尺寸连续片(膜)状制品。

第五篇:快速成型技术复习重点

1.快速成型:简称RP,即将计算机辅助设计CAD计算机辅助制造CAM计算机数字控制CNC、激光、精密伺服驱动和新材料等先进技术集于一体,依据计算机上构成的工件三维设计模型,对其进行分层切片,得到各层截面的二维轮廓信息,快速成型机的成形头按照这些轮廓信息在控制系统的控制下,选择性地固化或切割一层层的成形材料,形成各个截面轮廓,并逐步顺序叠加成三维工件。.

快速成形技术全过程步骤:a.前处理b.分层叠加成型c.后处理 快速成形制造流程:CAD模型→面型化处理→分层→层信息处理→层准备→层制造→层粘接→实体模型 2. 什么是快速模具制造技术?该技术有何特点? 快速模具制造就是以快速成形技术制造的快速成型零件为母模,采用直接或间接的方法实现硅胶模、金属模、陶瓷模等模具的快速制造从而形成新产品的小批量制造,降低新产品的开发成本。特点:制模周期短、工艺简单、易于推广,制模成本低,精度和寿命都能满足特定的功能需要,综合经济效益好,特别适用于新产品开发试制、工艺验证和功能验证以及多品种小批量生产

LOM涂布工艺

采用薄片型材料,如纸 塑料薄膜 金属箔等,通过计算机控制激光束,按模型每一层的内外轮廓线切割薄片材料,得到该层的平面轮廓形状,然后逐层堆积成零件原型。

SLS技术(选择性激光烧结成型技术)利用粉末材料如金属粉末 非金属粉末,采用激光照射的烧结原理,在计算机控制下进行层层堆积,最终加工制作成所需的模型或产品。4. 快速成形与传统制造方法的区别?

传统方法根据零件成形过程分为两大类:一类是以成型过程中材料减少为特征,通过各种方法将零件毛胚上多余材料去除,即材料去除法,二类是材料的质量在成型过程中基本保持不变,成型过程主要是材料的转移和毛胚形状的改变即材料转移法,但此类方法生产周期长速度慢。快速成型技术可以以最快的速度、最低的成本和最好的品质将新产品迅速投放市场。

硅胶模及制作方法 硅胶模具是制作工艺品的专用模具胶。

制作工艺 原型表面处理 制作型框和固定型框 硅橡胶计量,混合并真空脱泡 硅橡胶浇注及固化 拆除型框,刀剖并取出原型 7.构造三维模型的主要方法:a应用计算机三维设计软件,根据产品的要求设计三维模型b应用计算机三维设计软件,将已有产品的二维三视图转换为三维模型c防制产品时,应用反求设备和反求软件,得到产品的三维模型d利用网络将用户设计好的三维模型直接传输到快速成形工作站 光固化快速成形(SLA)有那几种形式的支撑?

a.角板支撑b.投射特征边支撑c.单臂板支撑d.臂板结构支撑e.柱形支撑

6.目前比较成熟的快速成型技术有哪几种?它们的成型原理上分别是什么?

液态光固化聚合物选择性固化成形简称SLA,粉末材料选择性烧结成形简称SLS,薄型材料选择性切割成形简称LOM,丝状材料选择性熔覆成形简称FDM

⑦SLA原理:1利用计算机控制下的紫外激光,按预定零件各分层截面的轮廓为轨迹逐点扫描,使被扫描区的光敏树脂薄层产生光聚合反应,从而形成零件的一个薄层截面;2当一层固化完毕,移动升降台,在原先固化的树脂表面上再敷上一层新的液态树脂,刮刀刮去多余的树脂;3激光束对新一层树脂进行扫描固化,使新固化的一层牢固地粘合在前一层上;4重复2、3步,至整个零件原型制造完毕。『或SLA是基于液态光敏树脂的光聚合原理工作的。这种液态材料在一定波长(λ=325nm)和功率(P=30mW)的紫外光照射下能迅速发生光聚合反应,分子量急剧增大,材料也从液态转变成固态』

⑦SLS原理: 1在先开始加工之前,先将充有氮气的工作室升温,温度保持在粉末的熔点之下;2成型时,送料筒上升,铺粉滚筒移动,先在工作台上铺一层粉末材料;3激光束在计算机控制下,按照截面轮廓对实心部分所在的粉末进行烧结,使粉末融化并相互黏结,继而形成一层固体轮廓,未经烧结的粉末仍留在原处,作为下一层粉末的支撑;4第一层烧结完成后,工作台下降一截面层的高度,再铺上一层粉末,进行下一层烧结,如此循环,直至完成整个三维模型 FDM原理:加热喷头正在计算机的控制下,可根据界面轮廓的信息作X—Y平面运动和高度Z方向的运动丝状热塑性材料由供丝机构送至喷头,并在喷头中加热至熔融态,然后被选择性涂覆在工作台上,快速冷却后形成界面轮廓。一层截面完成后,喷头上升一截面层的高度在进行下一层的涂覆,如此循环,最终形成三维产品。

LOM:LOM快速成形系统由计算机原材料存储及送进机构、热粘压机构、激光切割系统、可升降工作台、数控系统、模型取出装置和机架等组成。计算机用于接受和存储工件的三维模型沿模型的成型方向截取一系列的截面轮廓信息发出控制指令原材料存储及送进机构将存于其中的原材料。热黏压机构将一层层成形材料粘合在一起。可升降工作台支撑正在成型的工件并在每层成形完毕之后,降低一个材料厚度以便送进、粘合和切割新的一层成形材料。数控系统执行计算机发出的指令,使材料逐步送至工作台的上方,然后粘合、切割,最终形成三维工件。b 原型制件过程

模型剖分 基底制作原型制作 余料,废料去除 后继处理

8.哪些成形方法需要支撑材料?为什么?

SLA、FDM需要制作支撑,LOM、SLS不需要制作支撑。原因:在SLA成形过程中为了确保制件的每一部分可靠固定,同时减少制件的翘曲变形,仅靠调整制件参数远不能达到目的,必须设计并在加工中制作一些柱状或筋状的支撑结构;LOM:工件外框与截面轮廓间的多余材料在加工中起到支撑作用,故不需支撑材料;SLS:未烧结的松散粉末可以作为自然支撑,故不需要支撑材料。

10.常用的快速成形技术所用的成形材料分别是什么?分别有什么要求?

SLA:材料为光固化树脂。要求:a.成形材料易于固化,且成形后具有一定的粘接强度b.成形材料的粘度不能太高,以保证加工层平整并减少液体流平时间c.成形材料本身的热影响区小,收缩应力小d.成形材料对光有一定的透过深度,以获得具有一定固化深度的曾片。

SLS:材料为所有受热后能相互粘结的粉末材料或表面覆有热塑(固)性黏结剂的粉末。要求:a.具有良好的烧结成形性能,即无需特殊工艺即可快速精确地成形原理b.对直接用作功能零件或模具的原型,其力学性能和物理性能要满足使用要求c.当原型间接使用时,要有利于快速、方便的后续处理和加工工艺。

LOM:薄层材料多为纸材,黏结剂一般多为热熔胶。对纸材要求:a.抗湿性b.良好的浸润性c.收缩率小d.一定的抗拉强度e.剥离性能好f.易打磨g.稳定性好。对热熔胶的要求:a.良好的热熔冷固性b.在反复熔化-固化条件下,具有较好的物理化学稳定性c.熔融状态下与纸材具有良好的涂挂性与涂匀性d.与纸具有足够的粘结强度e.良好的废料分离性能 FDM:材料为丝状热塑性材料。材料要求:a.黏度低b.熔融温度低c.黏结性要好d.收缩率对温度不能太敏感 11.这四种快速成形技术的优缺点分别是什么?

SLA优点:技术成熟应用广泛,成形速度快精度高,能量低。缺点:工艺复杂,需要支撑结构,材料种类有限,激光器寿命短原材料价格高。

SLS优点:不需要支撑结构,材料利用率高,选用的材料的力学性能比较好,材料价格便宜,无气味。缺点:能量高,表面粗糙,成形原型疏松多孔,对某些材料需要单独处理。LOM优点:对实心部分大的物体成形速度快,支撑结构自动的包含在层面制造中,低的内应力和扭曲,同一物体中可包含多种材料和颜色。缺点:能量高,对内部空腔中的支撑物需要清理,材料利用率低,废料剥离困难,可能发生翘曲 FDM优点:成形速度快,材料利用率高,能量低,物体中可包含多种材料和颜色。缺点:表面光洁度低,粗糙。选用材料仅限于低熔点的材料。

12.主要快速成形系统选用原则:A:成形件的用途(a检查并核实形状、尺寸用的样品b性能考核用的样品c模具d小批量和特殊复杂零件的直接生产e新材料的研究)B:成形件的形状C:成形件的尺寸大小D成本(a设备购置成本b设备运行成本c人工成本)E技术服务(a保修期b软件的升级换代c技术研发力量)F用户环境

13.快速成形的全处理主要包括:CAD三维模型的构建、CAD三维模型STL格式化以及三维模型的切片处理等

14.在快速成型的前处理阶段为什么要把三维模型转化为STL文件格式?STL格式文件的规则和常见错误有哪些? 由于产品上有一些不规则的自由曲面,为方便的获得曲面每部分的坐标信息,加工前必须对其进行近似处理,此近似处理的三维模型文件即为STL格式文件

规则:a共顶点规则b取向规则c取值规则d合法实体规则 常见错误:a出现违反共顶点规则的三角形b出现违反取向规则的三角形c出现错误的裂缝或孔洞d三角形过多或过少e微小特征遗漏或出错

分析SLS SLA FOM LOM 质量及精度的影响因素及解决措施

从快速成型三个过程讨论

首先是前处理,四大成型工艺前处理工作基本相似,模型建立和切片。影响精度主要是切片,厚度越厚,叠加后工件侧面的台阶缺陷越明显,厚度越小,精度越高

SLA 1 树脂收缩及原因

树脂会发生收缩 导致零件成型过程中产生变形:翘曲

收缩原因;固化收缩和温度变化的热胀冷缩机器误差

设备自身精度所带来的误差 加工参数设置误差

激光功率 扫描速度 扫描间距设置误差 FDM 1 设备精度误差 由于设备自身有一定的加工范围以及其加工精度,对最后加工工件有一定的误差 2 成型过程的误差a 不一致约束 由于相邻两层的轮廓有所不同 成型轨迹也不同 每层都要受到相邻层的约束 导致内应力 从而产生翘曲 b 成型功率控制不当 功率过大 会导致刮破前一层 同时会烧纸 机器寿命降低 过小 粘结不好c工艺参数不稳定

会导致层与层制件或同层不同位置成型状况的差异 从而导致翘曲 或度不均

SLS 主要是激光的参数 1 激光功率密度过大 扫描速度过小 则局部温度过高 导致粉末气化 烧结表面凹凸不平反之 则粉末烧结不充分甚至不能烧结 建立的制件强度低或者不能成行 2 激光束扫描间距与激光束半径配合会影响激光烧结的质量

LOM 过程中误差造成的缺陷 1 喷头起停误差 2 路间缺陷 解决方法 控制相邻路间的粘结温度使得接触牢固 控制材料的横向流动填补空洞

后处理影响精度主要有 人为修整带来的缺陷 有支持结构的成型工艺在除去支付结构时对工件表面的破坏等

下载材料成型原理 重点整理word格式文档
下载材料成型原理 重点整理.doc
将本文档下载到自己电脑,方便修改和收藏,请勿使用迅雷等下载。
点此处下载文档

文档为doc格式


声明:本文内容由互联网用户自发贡献自行上传,本网站不拥有所有权,未作人工编辑处理,也不承担相关法律责任。如果您发现有涉嫌版权的内容,欢迎发送邮件至:645879355@qq.com 进行举报,并提供相关证据,工作人员会在5个工作日内联系你,一经查实,本站将立刻删除涉嫌侵权内容。

相关范文推荐

    材料成型控制工程基础考试重点

    一、传递函数:对于线性系统,设其输入量为输出量为Xr则它的传递函数X0((tt)),,G(为s)是指初始条件拉氏变换0时,输出量的X0(s)对输入量的拉氏变换Xr=X0(s)/Xr(s)(s)之比,即。Gs )二L[Xr(t)*g(t)......

    行政管理学原理重点

    简答题 1.简述行政管理与行政环境相互作用的基本内容。 1.行政环境制约、影响行政组织,行政组织 适应行政环境 。2.行政环境制约、影响行政目标 3.行政环境变迁决定行政变革 4.行......

    政治学原理重点归纳

    政治学原理重点归纳 1. 根据马克思主义经典作家对政治的论述,我们可以将政治的实质和含义归纳为以下几点: 第一, 政治的根源是经济,政治是经济的集中体现,政治关系归根到底是由经......

    教育学原理重点归纳

    第一章 教育学及其功能 一、选择题 1、教育学:是研究人类教育现象、揭示教育规律的一门科学。 2、教育现象:指人类各种教育活动的外在表现形式。 3、从横向上看,教育的基本形式......

    高分子材料加工成型原理题库--最重要

    高分子材料加工成型原理题库 填空: 1. 聚合物具有一些特有的加工性质,如有良好的__可模塑性__,__可挤压性__,__可纺性__和__可延性__。正是这些加工性质为聚合物材料提供了适于多......

    结构设计原理重点复习内容(合集)

    结构设计原理重点复习内容 1.复合应力状态下的混凝土强度(同时受压或一拉一压的情况)P8-9 2.什么叫混凝土的徐变?影响徐变有哪些主要原因? 答:在荷载的长期作用下,混凝土的变形将......

    管理学原理重点知识范文

    管理学原理期末复习重点(A)管理学名词解释1、决策:是组织为了达到某一目标、目的或企图,在众多方案中选择一个最优的方案或策略,并加以实施的过程。P2042、环境:对组织绩效起着潜......

    大一管理学原理重点

    123 第一章、管理与管理学 1. 管理的职能:决策、组织、领导、控制、创新。 2. 管理的属性:自然属性、社会属性。 3. 管理者的角色:人际角色(代表人角色、领导者角色、联络者角色......