第一篇:电厂废水处理控制系统的设计与研究范文
电厂废水处理控制系统的设计与研究
一、项目简介
本电厂废水处理控制系统项目所在地位于山西省霍州市。霍州发电厂于1967年1月由水利电力部批准筹建,采用火力发电,装机容量40万千瓦,年发电量25亿千瓦·时,主要担负着山西中南部地区工农业生产及人民生活用电,是山西电网的主力电厂。
霍州发电厂建设时正处于中国发展的特殊年代,在选厂、设计、设备选购、施工、安装和投产发电等方面追求简易发电,给安全经济生产留下先天缺陷。由于火力发电厂是工业用水大户,因此每天的工业废水如果直接排放,不仅浪费水资源,而且会造成严重的环境污染。
以 往的废水处理系统采用人工手动控制,造成人员工作强度大,控制效率低,控制工艺落后。本次项目采用全新的自动控制系统和监控技术可以克服以前人工控制精度 低、运行操作繁琐、误操作可能性大等缺点,该系统的废水处理工艺流程具有一定的先进性,达到了电厂废水零排放,大大提高了水的利用率。同时可以通过网络把 监控数据融入整个电厂的自动化管理中,节省人力物力,便于集中管理。通过本自动控制系统把处理过的废水再纳入整个电厂的水循环中,提高电厂用水的效率,节 约成本,提高了整体的经济效益。使电厂的自动化管理和自动化控制生产方面达到一个新的高度。
图1 霍州发电厂污水处理池外景
二、系统介绍
1. 项目工艺简介
本次项目的主要任务包括含煤废水的回放、化学再生废水收集、主厂房内系统优化消防、生活水系统隔离、生活污水及工业废水回用工程。采用一定的污水处理工艺,并通过自动化控制达到预期规定的控制指标。整个废水处理系统由收集池、调节水池、净化器、污泥池、清水池等部分组成,在废水处理过程中,我们将系统划分为五个子系统来处理,分别为:净水系统、储药系统、过渡调节系统、清水回用系统以及污泥浓缩系统。电厂的废水处理系统工艺流程图如图2所示:图中的圆代表收集水泵;长方形代表集水池;长圆罐代表一体化净化器,系统中共有四个净化器,其余三个在图中省略。箭头的指向代表废水的流向,其流向为从左往右。
图
2电厂废水处理系统工艺流程图
2.项目方案
为保证废水处理系统安全稳定的运行,该项目中控制器、执行器、监控组态部分均采用西门子系列产品,主要有以下几部分:
a.负载电源模块(PS):PS 307 b.接口模块(IM):IM360,IM361 c.中央处理单元(CPU):CPU315-2DP
d.信号模块(SM):数字量输入模块SM321,数字量输出模块SM322,模拟量输入模块SM331,模拟量输出模块SM332
e.执行器:MicroMaster430/420变频器
f.监控组态软件:WINCC(Windows Control Center)6.0
三、控制系统构成
控制系统的设计包括PLC控制系统部分,系统采集与执行器控制部分以及上位机的监控系统部分。系统结构设计图如图3所示。
图
3系统结构设计图
1. 系统硬件配置
在电厂污水处理控制系统中,根据用户要求及实际情况分析,我们采用西门子公司的S7-300系列产品来完成此项目。参照西门子公司提供的产品技术参数,以S7-300系列中的CPU315-2DP实现控制功能,由于该系统模拟及数字输入输出量较多,采用接口模块IM360、IM361(主机架使用IM360,扩展机架使用IM361)连接扩展的信号模块满足系统要求,其中信号模块包括若干数字量输入模块 SM321,数字量输出模块 SM322,模拟量输入模块SM331,模拟量输出模块SM332。
现场多台工作泵采用西门子MicroMaster430变频器,MicroMaster430变频器除了具有第四代变频器的特点以外,还具有应用于风机和泵类的硬件和软件特征,尤其适合用于风机和水泵负载的控制。使用此种型号的变频器可以节约能源消耗,降低运行噪声,对环境起到很好的保护作用。
电厂污水处理控制系统的输入输出信号主要分成4个部分,放在三个相连的导轨上:
模拟量输入:一站集水池液位,二站集水池液位,清水池液位,污泥池液位,过渡水池液位,溶药箱液位,流量计和四个进化器的浊度和压差。
模拟量输出:四个控制变频器(一站收集水泵、回用水泵、加药计量泵a、加药计量泵b)。 数字量输入:分为各个水泵风机的运行,故障反馈信号,手/自动选择信号;各个阀门的手动开,关控制信号,故障反馈信号和手/自动选择信号。
数字量输出:分别为对各个水泵、风机的开、关、复位输出控制信号;各个阀门的开,关输出控制信号;变频器的启动,复位控制信号。
系统配置了操作员站和工程师站,操作员站的上位机采用研华科技的610H工控机,监控系统使用西门子WINCC监控组态软件,它不仅能很好的支持S7系列的CPU,还集成了多种网络连接方式,使上位机与自动化系统的连接工作非常方便。而且它提供了适用于工业的图形显示、消息报警、过程值归档以及报表打印等模块,具有高性能的过程耦合、快速的画面更新、以及可靠的数据管理功能。图4所示为WINCC组态示意图。
图4 WINCC组态示意图
2.控制方案选择
在采用本系统实施方案前,客户拟采用CPU315模块及通信处理器模块CP343-1实现系统要求,由于CP343-1有其自身的处理器可连接SIMATIC S7-300和工业以太网等,可独立处理数据通信,这样使得系统可扩展性增强。由于考虑到项目总体预算及成本,本方案将前方案中CPU315模块换为CPU315-2DP,并省去通信处理器模块CP343-1,这样既满足了系统要求,又减少了系统模块,综合计算后为项目开发节约了不少硬件开支。
四、控制系统完成的功能
1.控制系统功能及指标(1)软件实现
根据工艺,整个系统的程序由下列几个部分组成:1#集水池、2#集水池、清水池、调节水池、净化器正洗、净化器反洗、加药、净化器停止。每个程序都可以单独控制和单独运行,同时每个程序又是系统的组成部分,它们之间互相有数据的传输。它们组合在一起动作就构成了完整的PLC控制系统程序。下图5为工业部分现场图:
图5 工业现场
程序中编程采用STEP 7软件。这套软件不仅是一个简单的程序编写软件,还集成了硬件组态、网络组态、系统调试、项目管理等各种功能,使项目的实施更加方便。在本控制系统的完成过程中,主要进行了以下几部分的程序设计(如图6):
图6 项目OB1中程序结构图
图6中:DB11-DB14: 对应四个净化器的正洗背景数据块
DB15-DB18: 对应四个净化器的反洗背景数据块 DB19-DB22: 对应四个净化器的停止背景数据块 由 废水处理的工艺流程可以知道,废水在经过一系列的水池后最终进入四个废水净化器,在净化器里经过工艺的处理后排放到清水池中。从程序角度看,四个废水净化 器的控制流程一致,因此没有必要为每个净化器编写一段代码,只需编写一个函数块,让它们都调用即可。为此,对于在净化器中的正洗、反洗和停止流程都编写了 一个程序块,分别是FB11,FB12,FB13。对于每个净化器来说只要分别调用相同的函数块就行,对于每个净化器中不同状态的数据是利用其不同的数据块来加以区别的。这样在整个程序中即保持了流程的统一性,即减少了程序代码,节约了存储空间,又方便维护和修改。
模拟量信号因为其在传输过程中有可能会受到其它信号的干扰,而可能出现较大幅度的瞬间变化,而这些值对于系统来说是毫无用处的,甚至有些还可能引起系统的异常运行。由于模拟量总是随着时间连续变化的,所以可以利用滤波算法把瞬间变化的干扰信号过滤掉,把有用的数据传输给PLC控制系统处理。在废水处理控制系统中由于所要求数据处理速度不快,精度也是不要求太高,只是为了防止突然间信号的瞬间变化影响到系统中程序对水质,浊度的判断,所以在系统中使用算术平均滤波算法,算法处理简单,可靠性高,程序编写方便。在程序中定义了FB21作为滤波处理算法的功能块,相当于函数一样,参数的传递是Analog_in变量,返回值是Analog_out变量。事实证明这种算法已经能够满足现场的实际需要,取得了良好的效果。
本控制系统使用的CPU 315-2DP中没有集成相应的系统功能块,故程序中使用FB41 “CONT_C”作为PID控制功能块。CONT_C可以在S7系列PLC中实现对于连续输入输出变量的PID控制。CONT_C中的PID控制环节为增量式PID环节,相关参数可以通过输入参数进行实时调整。PID控制程序块与模拟量滤波算法一样都放在定时中断OB35中,它们一个是输入滤波,一个是输出控制,这样可以准确地掌握程序运行时间,提高控制精度。
(2)硬件实现
电厂污水处理控制系统的输入输出信号主要分成4个部分,分别为模拟量输入、输出,数字量输入、输出,并放在三个相连的导轨上,如图7所示:
图7 实际系统的机架结构图
输入输出的硬件接口是也是系统设计的一部分,它反映的是PLC输入输出与现场设备之间的连接,只有正确连接安装才能使得PLC读取到数字量和模拟量,连接方法的不同可以有效地防止现场的干扰,保证数据的正确性。对于SM321的数字输入量模块,在15-25V直流电压以内都能检测到信号。由于现场的执行器也是发出的直流信号,因此把其直接和现场的开关设备连接来接收开关信号量,图8给出了的数字量输入模块接口示意图。
图8 数字量输入接线原理图
数字量输出选用晶体管输出模块SM322,晶体管输出的响应时间短、寿命长、输出口密度高,但是其只能带直流负载而且带载能力弱。同时为了使PLC的输出和现场回路之间隔离,在输出端使用了继电器,通过继电器触点控制现场负载。这样使控制器与现场达到了电气隔离的作用,大大提高了系统的安全性,同时也使输出口带载能力得到了大大的增强。在继电器旁边加二极管泄放反电势能量,起到保护输出口的作用。图9给出了数字量输出模块接口示意图。
图9 数字量输出接线原理图
SM331采用4-20mA电流输入连接到传感器上,采集系统模拟量数据。图10给出了模拟量输入模块接口示意图。
图10 模拟量输入接线原理图
SM332输出0-10v电压连接到变频器直接给控制信号。图11给出了模拟量输出模块接口示意图。
图11 模拟量输出接线原理图
2.系统的监控与管理
系统采用WINCC5.2监控组态软件在研华科技的610H工控机上实现监控与管理,为生产与安全带来极大的方便。
经过设计,整个监控系统提供了如下的功能:(1)在线自动监视
系统可对废水处理装置的各项仪表数据实时的在线监视,并且生动直观的反应在监控界面上面。系统的刷新数据是1秒,历史的保存间隔是2分钟。图12为废水处理系统工艺监控界面。
图12 废水处理系统工艺监控界面
(2)在线手动控制
系统可提供在线实时的对参与控制的各电动阀门和泵的手动控制操作。当系统运行中需要进行维护或执行其它控制时,可以在线实时的对各个设备手动的单独控制,而不影响其它设备的正常自动运行。
(3)工艺参数在线实时设定
系统可以提供在线的实时参数修改,当在运行过程中发现工艺需要改进或其它问题,可以由操作员在线改变系统的参数,以使系统工作在最优的控制状态中,如图13。
图13 工艺参数设定
(4)故障诊断和报警 系统可对以下故障自动诊断,并发出预防性的报警。
报警高限:实时参数异常偏大,大于设定值,是该监测点处于高报警。报警底限:实时参数异常偏小,小于设定值,是该监测点处于低报警。
报警:当实时参数出现异常时,相应的监测点通过颜色的变化,提醒操作员注意,进行相关的操作,若需要可以配合声音报警。故障报警界面如图14。
图14 故障报警界面
(5)利用历史曲线查询分析远程模拟量的情况
利用历史曲线,可随时针对各个运行点的情况,结合本时间各监测点的数据,分析系统的运行情况,净水器的运行状态。
运行过程中,系统将自动生成数据报表,并将数据报表保存在历史数据库中,以便随时查询历史记录。图15所示为趋势曲线界面。
图15 趋势曲线界面
(6)报表的打印
报表打印可以根据操作员的要求,生成符合要求的系统报表,并且打印。也可以设定让系统自动的根据间隔的时间实时的打印报表。图16所示为报表打印界面。
图16 报表打印界面
(7)系统指标 系统的数字量输入点为227个 系统的数字量输出点为125个 系统的模拟量输入点为15个通道 系统的模拟量输出点为4个通道 系统监测数据刷新时间为1秒
历史数据的保存及报表显示:根据硬盘存储器的大小来决定保存的时间。保存的间隔为2分钟,初步估计可以有效存储13年左右。
3.项目亮点及难点实现(1)WINCC定时器问题
在定时器的使用过程中,由于设定的定时时间是需要根据实际的工艺来调整的,为此不能在定时器中使用常量定时时间。要新建DB25数据块,建立变量的参数时间选择TIME数据类型,它是一个32位的数据,T#1D_1H_1M_1S_1MS,前面是一个标准的例子,表示定时时间为1天1小时1分1秒1毫秒。使用可变参数是为了和WINCC中通讯,使得现场操作员可以根据当前水质等一系列变化调整时间值,由于在WINCC中没有TIME这个数据类型,只能用DWORD32位整型类型来操作,这就涉及到了两个数据类型的转换的问题。根据实际情况所得TIME中的1s=1000(DWORD型)。为了减少STEP7中数据的处理量,在WINCC中使用C脚本对数据进行了处理。WINCC中的时间以分为单位,因此1M=1s*60=1000*60=60000(DWORD型)。
(2)数据网上发布平台
本项目中设计了系统数据的网上发布平台,在这里有两种方案可以考虑,一是利用西门子公司提供的WINCC Web Navigator软件开发网上的数据传送系统;二是利用Delphi软件来开发网络浏览系统。由于项目经费限制,我们采取了第二种方案。通过这种方案,界面的设计,和本地化系统的集成就都掌握在设计者手中,使得最后的系统能过符合客户的要求,人性化,易用性都比较高,而开发成本也在控制之中。
(3)WINCC中动态报表的设计
在实际项目中虽然WINCC提供了变量趋势显示、报表功能,满足了简单的归档数据访问要求,但不能完成该废水处理工程项目提出的复杂数据处理要求(如:进行有条件的查询和打印,任意时间、任意区段的查询等)。因此,在设计过程中对归档数据复杂查询技术进行了研究。WINCC是一个全面开放的组态软件,它可方便地集成标准Windows应用的对象、函数和文档;提供了访问所有WINCC功能的API编程接口;集成了OLE/OCX和ActiveX对象;它允许通过标准接口(标准SQL数据库)访问归档数据库;通过DDE、OPC接口与其它Windows程序进行数据交换。这些开放性为自行扩展和进一步丰富WINCC软件的功能、解决该工程问题提供了可能。在本项目中应用ActiveX技术实现WINCC归档数据复杂查询解决该工程问题是可行的:根据用户对控制系统有条件查询、打印的要求,运用Delphi设计ActiveX控件,然后在WINCC中调用该控件,最终实现WINCC不能完成的复杂归档数据访问任务。
图ActiveX控件的界面
五、结束语
系统于2004年10月投入运行,两年来系统运行良好,未进行任何维修,电厂废水达到了零排放,大大提高了水的利用率。
六、应用体会
在项目进行的过程中,西门子在工控领域中安全、可靠、成熟、高效的产品及解决方案为项目的顺利进行提供了保证和保障。西门子的TIA理念及产品特点,着眼于整个工厂的控制和管理,采用统一的数据管理、统一的编程组态平台、统一的通讯规范和灵活的结构配置,从另一侧面保证了项目的顺利完成。
本项目使用了WINCC监控软件,由于软件优越的开放性,解决了项目中的监控方面的难点问题,如WINCC中动态报表的设计等功能。而统一的国际标准编程语言及现场总线技术的应用,以及项目中软硬件设计的模块化,更体现了本系统的可扩展性与可维护性。附:参考文献 肖萍.火电厂排放废水的处理与回用.江苏环境科技.1998(3):18-19 2 STEP 7 V5.2 编程手册.SIEMENS AG.2002 S7-300可编程序控制器硬件和安装手册.SIEMENS AG.2004 4 WINCC编程指南.SIEMENS AG.1998 求是科技.Visual Basic 6.0数据库开发技术与工程实践.人民邮电出版社,2004
第二篇:垃圾焚烧电厂控制系统材料
SIEMENS PTD和 I&S集团的产品在垃圾焚烧电厂控
制系统中的应用(一)
2007-09-14 03:51:31
】
一、综述
垃圾焚烧可以实现垃圾处理的减量化、资源化、无害化,回收其热量用于发电、供热等。垃圾焚烧处理已成为一些发达国家处理垃圾的主要方式。某垃圾焚烧处理发电厂是某某市与加拿大建设的一座总投资4.1亿元的垃圾焚烧发电厂,总占地面积3万多平方米。设计有四台垃圾焚烧炉、四台余热锅炉、两台6MW汽轮发电机组。四条生产线共设计日处理垃圾600吨,年发电量为8797千瓦时,1吨垃圾可产生不少于300KWh的电能。
该工程的核心技术为世界第三代CAPS技术,即控气型固体废弃物热分解处理技术,使用此技术建设了4台CAPS热解炉。4台余热锅炉产生的蒸汽供给两台6MW汽轮机发电机组发电,真正实现了变废物为资源。
某某垃圾焚烧电厂概貌
二、垃圾焚烧炉及相关设备
某垃圾焚烧电厂的垃圾焚烧炉采用加拿大制造的顺推、多级机械炉排焚烧炉。焚烧炉应用了世界第三代控气型固体废弃物热分解处理技术(CAPS),可有效减少焚烧产生的有毒
气体。
1.垃圾仓结构
垃圾由汽车运到处理厂后倒入垃圾仓内。垃圾新入仓的垃圾在仓内存放3天后就可入炉燃烧。垃圾在仓内存放时经过发酵、排出渗滤水后可提高进炉垃圾的热值,又使垃圾容易着火燃烧。在仓内,用吊车的抓斗将垃圾送至炉前料斗。
2.一燃室及焚烧炉炉排结构
垃圾焚烧炉为往复式、顺推、多级机械炉排焚烧炉。焚烧炉内有一个给料器和8个燃烧炉排单元组成,包括干燥段的两级炉排、气化燃烧段的四级炉排和燃尽段两级炉排。焚烧炉内温度控制在700℃以内。燃尽的垃圾从最后一级炉排离开焚烧炉落入灰槽中。
1)给料器和防火门
给料器通过给料器(Loading Ram)将落入料斗的垃圾从防火门前推入燃烧室。給料器只负责给料,不提供燃烧空气,并通过防火门与燃烧区隔离。防火门在给料器收回时保持关闭状态。关闭防火门可使炉膛与外界隔开,维持炉内负压。同时,燃烧室的入口处有温度测点,当燃烧室入口的垃圾温度过高时,电磁阀将控制防火门后的喷雾器喷水以防止防火门打开时给料斜槽上的垃圾将料斗中的垃圾引燃。
2)燃烧炉排
八级燃烧炉排分为两级干燥炉排、四级气化燃烧炉排和两级燃尽段炉排。每级炉排下面都有液压驱动的脉冲推动装置。8级推动装置(推床)按一定顺序推动垃圾,使进入焚烧炉的垃圾依次被与各级炉排相配合的的推床推到下一级炉排上。炉排上有均匀分布的小孔,用于喷出燃烧所需一次风。供燃的一次风由炉排下的一次风管供给。垃圾在炉排推送过程中受到燃烧器和炉内的热辐射以及一次风的吹烘,水分迅速蒸发,着火燃烧。
3)燃烧器布置
一燃室有两个主燃烧器,如图二17,18所示。焚烧炉内燃烧炉排上方有温度测点,当焚烧炉启炉时和燃烧温度低于要求时,燃烧器17投油助燃。燃烧器18位于炉膛出口,用于补燃未燃尽的垃圾。燃烧器所需的空气由四台焚烧炉公用的一台燃烧风机(如图二7所示)提供,燃烧器燃烧所需空气为由大气吸入的洁净空气。当燃烧风机故障或供风不足时,由旁路(图二 6所示)取送风机的部分送风供给燃烧器。
3.二燃室烟道
二燃室主要部分为圆筒形烟道,没有管道等造成的烟气死角。设置二燃室的目的是为了使烟气在120~130%的理论空气量下,1000℃左右的条件下停留>2s,使有害气体在炉内分解。在二燃室入口有副燃烧器,当系统检测到二燃室出口烟温小于一定值时将点火补燃。二次风在二燃室入口处进入二燃室。二燃室有上下两个出口通至余热锅炉,两个出口前各
有一个液压驱动的挡板控制烟气的进入。
4.一、二次风系统
每台焚烧炉都配有一台送风机。风机从垃圾池吸入空气,同时也吸入从一燃室推床下部泄露到焚烧炉外部的气体。这样安排送风的来源是为了保证垃圾仓为微负压状态,避免垃圾仓的气体外泄。送风进入余热锅炉,经余热锅炉的两级空气预热器后进入一个大混合集箱(如图二21),然后分别作为一、二次风进入焚烧炉的一燃室、二燃室。集箱还可以接受从不经过余热锅炉的送风旁路返回的送风。离开集箱的一次风又分两条管路:管路1(图二 10-1)通至三条风管,供风给1~3级炉排;另一条管路2(图二 10-2)通至五条风管,供风给4~8级炉排。供给炉排的一次风可以烘干垃圾、冷却炉排并供给燃烧所需的空气。管路1上的风量调节阀应根据焚烧炉入口的温度进行调节。管路2上的风量调节阀则应根据焚烧炉炉膛的温度和氧量进行调节。炉膛的空气量应该为理论空气量的70~80%。二次风则经过管路(图二 25)进入二燃室。二次风供应量为理论空气量的120~130%。
5.排灰系统
由焚烧炉排出的灰渣落入灰槽中。两条相平行的灰槽的布置方向与焚烧炉的布置方向垂直,四台焚烧炉的灰槽横向贯通。液压驱动的分灰器(图二 23所示)选择将灰渣落入某个灰槽中。灰槽底部布置有灰传送带,负责运走四台焚烧炉排出到灰槽中的灰渣。灰槽中
要求保证有一定的水位来浸没灰渣。
6.烟气处理设备
烟气由余热锅炉排出后首先进入半干式洗气塔,塔中利用雾化器将熟石灰浆从塔顶喷入塔内,与烟气中酸性气体中和,可有效清除HCl、HF、等气体。在洗气塔出口管道上有活性炭喷嘴,活性炭用于吸附烟气中的二噁英/呋喃类物质。烟气之后即进入布袋除尘器,使烟气中的颗粒物、重金属被吸附去除。最后将烟气从烟囱排入大气。
垃圾焚烧电厂垃圾焚烧炉工艺示意图
1.由垃圾仓来的空气 2.送风机吸入的洁净空气 3.推床下泄漏出的的空气 4.料斗 5.燃烧器的供燃空气入口 6.由其他焚烧炉送风机来的部分空气 7.供给四台锅炉燃烧器燃烧空气的风机 8.送风机 9.炉下小混合集箱及旁路风门 10.炉排风总管 10-1.前总风门1 10-2.后总风门2 11.手动阀 12.气动阀 13.送风至余热锅炉的送风管道 14.给料器 15.一燃室 16.二燃室 17.主燃烧器1 18.主燃烧器2 19.副燃烧器 20.烟气出口液压挡板 21.空气大混合集箱 22.余热锅炉 23.洗气塔 24.布袋除尘器 25.防火门 26.炉排冷却水 27.出料冷却装置 A.冷却水进口 B.冷却水出口 C.喷水 D.熟石灰供给 E.压缩空气
三、垃圾焚烧电厂垃圾焚烧炉在污染物控制上的优点
生活垃圾焚烧烟气中的二噁英是近几年来世界各国所普遍关心的问题。二噁英类剧毒物质对环境造成很大危害,有效控制二噁英类物质的产生与扩散,直接关系到垃圾焚烧及
垃圾发电技术的推广和应用。
1.二噁英的结构
二噁英的分子结构为1个或2个氧原子连接2个被氯取代的苯环。两个氧原子连结的称为多氯二笨并二噁英(PCDD,Polycholoro diabenzo-p-dioxin),一个氧原子的称为多氯二笨并呋喃(PCDF,Plolycholoro dibenzo-furan)。统称二噁英(dioxin)。毒性最强的2,3,7,8-PCDD的毒性为氰化钾的1000倍。dioxin对哺乳动物有极强的毒性,且易溶于水,热稳定性好。
2.垃圾焚烧炉内二噁英的产生原理
二噁英在焚烧炉内的生成的来源是石油产品、含氯塑料,他们是二噁英的前体。生成方式主要是燃烧生成。生活垃圾中含大量的NaCl、KCl、等,而焚烧物中经常会有S元素,从而产生。和含Cl元素的盐在有氧气存在时反应生成HCl。HCl又和Cu被氧化生成的的CuO反应生成。经研究发现,致使二噁英产生的最终要的催化物就是 和C元素(以
CO为标准)。
3.采用的控气型固体废弃物热分解处理技术的焚烧炉在抑制二噁英产生方面的优势
控气型热解焚烧炉将焚烧过程分为二级燃烧室,一燃室进行垃圾热分解温度控制为700℃以内,让垃圾在缺氧状态下低温分解,这时金属Cu、Fe、Al等金属元素不会被氧化,因而不会有 的产生,会大大减少二噁英的量;同时,由于HCl的产生量受残氧浓度的影响,因而缺氧燃烧会减少HCl的产生;并且 自还原气氛下也难以大量生成。由于控气型垃圾焚烧炉是固体床,所以不会产生烟尘,不会有未燃尽的残碳进入二燃室。垃圾中的可燃成份分解为可燃气体,并引入氧气充足的二燃室燃烧。二燃室温度在1000℃左右并且烟道长度使烟气能够停留2s以上,保证了二噁英等有毒有机气体在高温下完全分解燃烧。
此外,使用布袋除尘器避免了使用静电除尘时Cu,Ni,Fe颗粒对二噁英生成的催化
作用。
四、余热锅炉设备
垃圾焚烧电厂的余热锅炉为烟道式余热锅炉,烟气流动方向在锅炉中进行5次转折。锅炉压力4MPa,蒸发量15t/h。余热锅炉的结构如下图所示。在炉膛、烟道以及高温烟气
入口布置有水冷壁
1.烟气流程
如图三所示,烟气从焚烧炉的二燃室通过上部或下部烟道(烟气从下部经过时不经过水冷壁K)进入余热锅炉。先经过第二级过热器E、第一级过热器F、第二级空气预热器G,然后从下部进入主炉膛与水冷壁换热。之后在炉膛上部出口改变角度后向下依次通过第一级省煤器I、第一级空气预热器H、第二级省煤器J,之后的烟气由烟道N离开余热
锅炉。
2.送风流程
如图三所示,送风机来的风经过管路A进入余热锅炉,在炉内经过两级空气预热器H、G换热,之后由管路离开锅炉。
3.汽水流程
如图三所示,145℃的给水经过两级省煤器J、I(省煤器设置有给水旁路),进入锅炉汽包L、汽包中过冷水由下降管进入下集箱,经炉内水冷壁在4MPa下定压加热,蒸汽进入两级过热器F、E后达到400℃,离开锅炉进入蒸汽总管。
余热锅炉结构图
A.送风入口管道 B.送风出口管道 C.上部高温烟道 D.下部烟道 E.第二级过热器 F.第一级过热器 G.第二级空气预热器 H.第一级空气预热器 I.第二级省煤器 J.第一级省
煤器 K.水冷壁 L.汽包 M.集箱
五、汽轮发电机组及辅机系统
某某垃圾焚烧电厂的四台余热锅炉配有两台汽轮机。主蒸汽系统采用集中母管制,两台汽轮发电机组在厂房内纵向布置。汽轮机采用广州斯科达生产的6MW凝汽式汽轮机。设计进汽压力3.9MPa,进汽温度390℃,额定进汽量35t/h。
机组配备两级射汽抽汽器,一级汽封抽气器。设计一级抽气供除氧器使用。机组的冷凝方式为水冷,采用机械通风冷却塔二次循环水冷系统。循环水的流动由循环水泵保证,循环水系统同时经空气冷却器和润滑油站进行相关的冷却。凝结水由凝结水泵经汽封加热器进入除氧器。除氧器出口的低压给水通过给水泵升压后进入余热锅炉。四炉两机配备两台除氧器,除凝结水进入除氧器外,还有化学补水(温度、流量)以及由疏水泵送来的疏水
箱的疏水。
汽轮机汽水系统示意图
1.除氧器 2.五台给水泵(4用1备)3.余热锅炉 4.汽轮机 5.凝汽器 6.循环水泵 7.凝
结水泵 8.机械通风冷却塔
六、控制方案介绍
1.焚烧炉及锅炉的控制系统方案
焚烧炉及锅炉系统的控制包括公共系统的控制、4个焚烧炉的控制以及4台余热锅炉的控制。
1.1 硬件构成
系统在硬件采构成上采用PROFIBUS + PROFINET结构。采用5块SIEMENS 317-2 PN/DP CPU,分别控制公共系统及四套焚烧炉-余热锅炉系统。CPU 317-2 PN/DP 具有大容量程序存储器,可用于要求很高的应用。可在PROFInet上实现基于组件的自动化中实现分布式智能系统。可作为PROFINET I/O 控制器,用于在PROFINET 上运行分布式I/O。并可与集中式I/O 和分布式I/O 一起,可用作生产线上的中央控制器,可用于大规模的I/O 配置或分布式I/O 结构。此外,CPU对二进制和浮点数运算具有较高的处理能力。
在本系统中,CPU 317-2 PN/DP通过PROFIBUS接口构成PROFIBUS网络的控制设备,读取PROFIBUS总线上各I/O站的数据。同时配有PROFInet接口,可与上位机通过PROFINET通讯,实现与上位机的高速数据监视与控制功能。
I/O站采用了ET200S模块化分布式I/O站,防护等级IP 20,可用于危险区域(Zone 2)。采用按“位”模板化设计,能精确地适配自动化任务的要求。
在对电机的控制上,没有采用传统的控制方式。而是采用了SIEMENS的电动机保护和控制设备3UF5 SIMOCODE-DP。它除了控制电机启停以外,还集成了过载保护、热敏电阻用于电动机的过热保护、接地故障保护、堵转保护、电流值检测功能于一身。3UF5 SIMOCODE-DP通过PROFIBUS通讯口连接到PROFIBUS总线中,成为一个PROFIBUS从站与
PLC通讯。
送风机采用了SIMOVERT MASTERDRIVES变频器控制,可通过变频调节风量,这是电厂
送风系统经常使用的方案。
三相交流传动系统电压源型变频调速SIMOVERT MASTERDRIVES矢量控制的变频器是具有IGBT 逆变器、全数字技术的有电压中间回路的变频器。它同西门子三相交流电动机一起为所有工业领域和所有应用场合提供高性能、最经济的解决方案。SIMOVERT MASTERDRIVES基于系统的传动技术,一种通用和模块式的标准系列装置SIMOVERT MASTERDRIVES矢量控制系列变频器是全系列通用和模块化的产品,标准装置功率范围从0.55 kW~ 2300 kW。覆盖全球的三相交流电网电压,380 V~ 690 V。
操作员站采用5台工控机进行系统的监视与操作。其中一台监视公共系统,另外每套焚烧炉-余热锅炉系统用一台工控机进行监视。工控机与三台PLC通过网线和交换机连入
PROFINET进行数据交换。
1.2 硬件组态
公共系统硬件组态图
焚烧炉-余热锅炉系统组态图
1.3 控制系统的具体控制调节
a)公共系统
公共系统包括四台焚烧炉公共使用的一台燃烧风机,和炉排冷却水系统。
主要需要控制的设备有:燃烧风机启停、3台散热风机启停与连锁(两用一备)、两台冷却水泵启停(一用一备,泵出口管压力低时联启)、以及分灰挡板下两条灰传送电机的控制(两套传送装置的工作切换)。如前面所介绍,系统内电机大多采用SIMOCODE-DP进行启
停控制。
b)系统总图与液压系统
垃圾加载系统由人工操作。不纳入控制系统。
液压系统的控制主要包括三台液压泵的启停控制。
c)1#焚烧炉系统
焚烧炉系统的控制包括:
三台燃烧器的控制:包括锅炉启动时的控制,以及当炉内相应测点温度达不到要求时自动助燃。(二燃室燃烧器根据二燃室出口烟温进行开停判断)
进气风门的控制:炉排下共布置三个用于一次风调节的总风门。供给前三级炉排的前总风管风门开度根据前三级炉排上方烟温进行调节;供给后5级炉排的后总风管风门根据后5级炉排上方烟温进行调节;供给后5级炉排的后总风管风门根据后5级炉排上方烟温进行调节。进入二燃室的二次风风管的风门则根据二燃室的温度和氧量进行调节,保证二燃
室烟气温度和氧量达到要求。
送风机(鼓风机)控制:采用变频器控制。根据炉内压力进行调节,保证炉内微负压运
行。
防火门、给料器及炉排的运动控制:按照开启防火门,给料,各级依次顺推的顺序运行。可切换手/自动操作和炉排运动的循环时间。
d)余热锅炉
余热锅炉的控制包括:
蒸汽出口电动门和紧急放水电动门的控制。减温水PID调节和炉汽水三冲量PID调节。
2.汽轮机和辅机控制DCS系统控制方案
某某垃圾焚烧电厂汽机和辅机控制系统包括以下部分的控制:除氧给水系统、循环水系统、燃油泵房系统、1#,2#汽轮机汽水系统、汽轮机ETS紧急停机保护系统。由DCS负责这些系统的数据采集,以及数字量和模拟量控制。
整个系统从控制规模上属于小型机组。因而DCS系统的自动控制系统(AS)站只采用了一套冗余的SIEMENS 414-4H CPU。AS414H的中央处理器是冗余配置,当主处理器出现故障时,则后备处理器立即无扰切换为主处理器。处于后备的中央处理器与主中央处理器同时更新。I/O系统采用 9个冗余的ET200M 分布式I/O站,通过PROFIBUS DP进行通讯。另外单独为汽轮机ETS保护系统配置了一台414-3 DP CPU 做AS站,以建立独立的ETS系统。ETS还配有SICAM MCP TS及SICAM DI模版,配合SICLOCK TM时钟发生器实现1ms精度的SOE(事件顺序记录)功能。系列配置了一个工程师站(ES),两个操作员站(OS)。AS站通过CP443-1连入工业以太网,ES站与OS站则采用CP1613连入工业以太网。
某某垃圾焚烧电厂汽机及辅机硬件系统示意图
2.1 输入输出点表:
汽轮机紧急停机系统(ETS)通过判断一些危及到汽轮机安全运行的DI信号状态,从而输出汽轮机紧急停机、电磁阀紧急动作、发电机连跳等信号,保护汽轮发电机组在异常状态下的安全。ETS系统包括50DI,20DO,并留25%余量。
2.2 DCS系统硬件构成
DCS系统采用一套冗余的SIMATIC 414-4H CPU,包括两块CPU构成冗余结构。通过集成的冗余PROFIBUS DP接口,与9个ET200M分布式I/O站进行通讯,同时通过冗余的CP443-1卡接入工业以太网。现场变送器、热电阻、热电偶的模拟量输入、模拟控制量输出与现场I/O直接通过电缆接到各个ET200M站的相应I/O模块。
a)自动控制系统AS414-4H
自动系统AS414H用于汽轮机及辅机DCS系统的控制。414-4 H的中央处理器模件集成了PROFIBUS DP接口,可以作为主站直接与PROFIBUS DP现场总线I/O单元(ET200M)连接。AS414H每条开关量指令的执行时间小于0.1us,用户存储器可达64MB,最大I/O数
量可以达到65K开关量/4K模拟量。
AS414H的中央处理器是冗余配置,当主处理器出现故障时,则后备处理器立即无扰切换为主处理器。处于后备的中央处理器与主中央处理器同时更新。并且相互之间不断地按事件同步方式进行信息交换和数据更新,保证了冗余切换时系统的数据、控制功能和保护功能不会因冗余切换而丢失或延迟。电源模件也是冗余配置,并且电源故障也是系统的恢复性故障,重新受电后,中央处理器模件将自动恢复工作,不需工作人员干预。数据总线的故障对中央处理器的正常工作没有影响。
b)分布式 I/O
ET200M是模块化的I/O站,具有IP20的保护等级。ET200M包括:两块IM153-2构成冗余接口模件(连接PROFIBUS DP);I/O模件(最多8个)。PROFIBUS DP和ET200M之间是隔离的;最大传输速率为12Mbps。在ET200M 中,I/O模块可以带电插拔。
http://www.autooo.net/autooo/PLC/PLC-Case/2007-09-14/11807.html
第三篇:焦化废水处理研究现状与进展
焦化废水处理研究现状与进展
焦化废水是炼焦、煤气在高温干馏、净化及副产品回收过程中,产生含有挥发酚、多环芳烃及氧、硫、氮等杂环化合物的工业废水,是一种高CODcr、高酚值、高氨氮且很难处理的一种工业有机废水。其主要来源有三个: ①剩余氨水,它是在煤干馏及煤气冷却中产生出来的废水,其水量占焦化废水总量的一半以上,是焦化废水的主要来源; ②煤气净化过程中产生出来的废水,如煤气终冷水和粗苯分离水等;③在焦油、粗苯等精制过程中及其它场合产生的废水。氨氮和COD是焦化废水的主要污染物。氨氮是导致水体富营养化的重要因素,当含有大量氨氮的污水进入湖泊时,会加快藻类和微生物的繁殖生长,造成水体缺氧,使水质恶化变臭。我国是焦炭生产和消费大国,2011年全国焦炭的产量达
4.28亿吨,同比增长11.78 %。传统废水处理工艺对氨氮的去除率极低,全国有80%以上的焦化企业存在着废水氨氮和COD排放不达标的状况。20世纪90年代以后,国家颁布《污水综合排放标准》(GB8978-1996)和《钢铁工业水污染物排放标准》(GB13456-1992)中,对焦化工业排放废水中的氨氮和COD提出了更高要求(见表1)[1]。如果焦化废水未得到很好的治理,将会对环境造成严重的污染。
表1 氨氮、COD的排放标准
氨氮/(mg/L)
一级二级 25 三级-一级 100 COD/(mg/L)二级 200 三级 1000
1.焦化废水处理技术
焦化废水的水质很差,要达到排放或者回用标准,目前常用的是物理化学工艺、生物处理工艺还有一些废水处理新技术。
1.1物理化学工艺
1.1.1混凝法
化学混凝法主要的作用是去除水中微小悬浮物和胶体杂质。焦化废水经过生化处理后会残留一些微小的固体悬浮物,造成COD和色度不能达到国家或地方规定的排放标准。采用混凝沉淀方法进行后续处理,可有效的降低COD和色度,从而实现焦化废水处理指标全面达标[1]。该法处理费用低,既可以间歇使用也可以连续使用。陈劲松[2]等人对焦化废水生化处理二沉池出水进行氧化处理后投加一定量的混凝剂,焦化废水COD去除率为70.6%,出水水质达到
GB8978-1996《国家污水综合排放标准》一级排放标准,此工艺生产成本低,易于工业化。
1.1.2吸附法
吸附法处理废水,就是利用多孔性吸附剂吸附废水中的一种或几种溶质,使废水得到净化。常用吸附剂有粉煤灰、活性炭、磺化煤、矿渣、硅藻土等。
(1)粉煤灰吸附
粉煤灰主要成分是二氧化硅和硅酸盐。粉煤灰含有多孔玻璃体、多孔碳粒、呈多孔性蜂窝状组织,比表面积较大,一般在2500~5000cm2/g,同时还具有活性基团,具有较高的吸附活性。粉煤灰具有显著地去除COD和脱色效果,其主要成分二氧化硅和具有弱酸性的氧化铝可以与有机物羟基氧上的孤电子形成很强的化学键,发生物化吸附。
周静[3]等人对焦化废水中的氨氮的深度处理进行了一系列研究,考察了pH值、药剂投加量、吸附时间等因素对处理效果的影响。采用粉煤灰-石灰体系作吸附剂,试验结果表明:调节废水pH值为5,每100ml废水中加入粒径为100目以上的粉煤灰15g,生石灰0.25g,吸附时间为1h,处理后焦化废水中的NH3-N可达到污水综合排放标准GB8978-96中的二级排放标准。
(2)活性炭吸附
活性炭吸附对有机物质的去除能力比化学氧化法好,但活性炭价格昂贵且填料塔需经常再生,给生产运行和管理带来一定的困难。
滕济林[4]等研究了褐煤活性炭吸附处理焦化废水的性能,以河南某气化厂的焦化废水为吸附原水进行了静态和动态试验。试验表明,用褐煤活性炭吸附焦化废水酚的去除率可达92%以上,吸附容量为21.38mg/g。白玉兴[5]等用焦炭一活性炭双级吸附法深度处理济南钢铁公司某焦化厂的生化车间出水,其结果表明,本法对COD 和悬浮物的去除效果较好,对硬度、氨氮的去除率较低。
1.1.3光催化氧化法
光催化氧化法是一种新兴的高级氧化技术,通过光激发半导体催化剂产生光电子和光生空穴,进而与吸附在催化剂表面上的物质发生化学反应的过程,对酚类和其他有机物都有较高的去除率[1]。其工艺结构简单、操作条件容易控制、氧化能力强、无二次污染。刘红[6]等人以TiO2为催化剂,H2O2为氧化剂,在紫外
光照射下采用多相光催化氧化法对焦化废水进行处理,结果表明该法可使焦化厂二沉池废水COD从350.3mg/L降至53.1mg/L,COD去除率可达84.8%。光催化氧化法德缺点是光浪费严重,效率相对较低,反应后从水中除去TiO2费用较高。
1.2生物处理工艺
1.2.1SBR工艺
SBR工艺是一种生物降解和除氮脱磷于一体的间歇运行的废水处理工艺,一切过程都在一个设有曝气或搅拌装置的反应池内进行,分为流入、反应、沉淀、排水和闲置五个阶段。我国于20世纪80年代中期开始对SBR工艺进行研究,到现在应用已经比较广泛,昆明、天津、广州等地的污水处理厂都采用次工艺进行污水处理。李春杰[7]等采用SMSBR工艺处理焦化废水,使出水COD达到新的排放标准(<100 mg/L),并提高了脱氮效率。
1.2.2活性污泥法
生物絮凝体及污泥与废水中的有机物充分接触,溶解性的有机物被细胞吸收和吸附,并氧化为最终产物(主要是CO2),非溶解性有机物先被转化为溶解性有机物,然后被代谢和利用。该法最早用于生活污水的处理,经过长期对微生物的驯化和培养,成功用于处理焦化废水。活性污泥法存在污泥结构细碎,絮凝性能低,污泥活性弱,生长缓慢,抗冲击能力差等缺点。同时进水污染物浓度的变化对曝气池微生物生长影响较大,操作运行不够稳定,运行装置复杂,占用体积大。
1.2.3A /O法(厌氧一好氧)
A/O工艺是充分利用微生物的反硝化和硝化作用进行脱氮。利用水中有机物和回流污泥作为碳源,污泥在缺氧和好氧之间往复循环,污泥中既有硝化菌,也有反硝化菌。硝化菌是在好氧条件下发挥作用,在缺氧条件下受到抑制,而反硝化菌则正好相反[8]。彭宗胜[9]等对马鞍山钢铁股份有限公司排出的焦化废水在原有基础上进行A/O法改造,使出水COD和氨氮都得到了有效控制,完全达到国家现行排放标准。
1.2.4A2/O法(厌氧一缺氧一好氧)
A2/O法是在A/O法流程前加一个厌氧段,废水中难以降解的芳香族有机物在厌氧段开环变为链状化合物,链长化合物开链为链短化合物。A2/O法提高了
废水的可生化性,为缺氧段提供了较好的碳源。李捍东[10]等将投菌法与A2/O工艺结合,对石家庄焦化厂焦化废水进行处理了研究。结果表明:通过对焦化废水进行GC-MS分析,选择出焦化废水中含量较高的难降解物质,然后进行单一碳源优势菌培养,获得优势菌群。优势菌群投加于工艺的好氧段。整个中试过程分为污泥的培养及驯化阶段,稳定运行阶段及冲击恢复阶段。经过半年的实验,整套工艺具有较好的稳定性及抗冲击能力。对未经稀释的焦化废水的CODcr平均去除率为94.2%,氨氮平均去除率为85.6%。
1.3其他废水处理新技术
1.3.1催化湿式氧化
催化湿式氧化是在高温、高压下,利用氧化剂将废水中的有机物氧化成二氧化碳和水,达到去除污染物的目的。付迎春[11]等人以过渡金属氧化物CuO为主火星组分,通过对MnO2的复合和掺入电子助剂CeO2的考察,研制出适用于催化湿式氧化处理氨氮废水的复合催化剂。试验表明,新型催化剂可使氨氮去除率达到98%,经处理后的废水达到国家二级排放标准。
1.3.2Fenton试剂技术
亚铁离子与H2O2组合形成的Fenton试剂在处理一些难降解有机物方面有一定的优越性。赵晓亮[12]等人以实际焦化废水经A2/O工艺处理后的出水为研究对象,考察了Fenton试剂氧化法深度处理焦化废水的效果和影响因素。结果表明,出水COD和色度等指标均可达到《城市污水再生利用工业用水水质》的要求。
1.3.3固定化细胞技术
固定化细胞技术是国际上从20实际60年代后期开始迅速发展的一项技术,它是通过化学或物理手段将游离的微生物固定在载体上使其高度密集,并使其保持活性,反复利用,可去除氮和高浓度有机物或某些难降解物质[1]。徐英[13]采用固定化微生物小球技术结合厌氧—好氧工艺处理焦化废水,结果表明,经固定化微生物厌氧酸化24h、好氧曝气24h后,出水COD为132.1mg/L,氨氮为24mg/L,达到国家GB8978-1996二级排放标准。
1.3.4超临界水氧化法
超临界水氧化技术是由Modell提出的一种能够彻底破坏有机物结构的新型氧化技术。其原理是在超临界状态下,将废水中所含的有机物用氧化剂迅速分解
成水、二氧化碳等简单无害的小分子化合物。刘彦华[14]等人采用采用超临界水氧化技术对焦化厂焦化原水进行试验研究,处理后的水氨氮、COD和色度均达到或低于国家一级排放标准。
2.结语与展望
焦化废水处理技术在近几年内发展很快,在传统的物理化学法、生物处理法的基础上又研究出来了很多新技术、新工艺,但焦化废水是一种很难处理的高浓度有机废水,所以其处理技术仍有广阔的发展空间。
(1)在将来的焦化废水处理方法中生化法仍将是主要技术手段,因为它处理量大、成本低、无二次污染。
(2)高级氧化法能高效快速地将有机物氧化为二氧化碳、水以及其他低分子无机化合物,去除率高,氧化速度快,无二次污染。虽然运行成本相对较高,但随着我国经济发展对环境的要求日益严格,所以仍然具有广泛的应用前景。
(3)多种处理工艺相互组合联用也是焦化废水处理技术的发展方向。
参考文献
[1]单明军,吕艳丽,丛蕾.焦化废水处理技术.化学工业出版社.2007.30~211.[2]陈劲松,文一波,王凯等.Fenton氧化混凝沉淀法处理焦化废水研究[J].水科学与工程技术,2009,1:18~20.[3]周静,李素芹,苍大强.粉煤灰深度处理焦化废水中氨氮的研究.能源环境保护,2007,21(6):3~6
[4]滕济林,张猛,李若征等.褐煤活性炭吸附处理焦化废水.环境工程学报
[J].2011.5(1):117~120
[5]Zidovee Davor F, et al.Calcium carbonate scale controlling method [P].US 5 562 830, 1996
[6]刘红,刘潘.多相光催化氧化处理焦化废水的研究[J].环境科学与技术.2006,29
(2)
[7]李春杰,耿琰.顾国维.焦化废水的一体化膜-序批式生物反应器处理[J].上海环境科学.2001,20(1):24~27.[8]张春晖.褐煤提质冷凝水的回用处理工艺研究[D].中国矿业大学博士论文.2009.9~23.[9]彭宗盛,马超,张芳.A/O法处理焦化污水在马钢的成功实践与探讨.冶金动力,2006,115(3):30~32
[10]李捍东,凌海波,王强,等.投菌法应用于A/O工艺处理焦化废水的中试研究.环境工程,2005,23(5):22~25
[11]付迎春,钱仁渊,金鸣林.催化湿式氧化法处理氨氮废水的研究[J].煤炭转化,2004,27(2):72~75.[12]赵晓亮,魏宏斌,陈良才等.Fenton试剂氧化法深度处理焦化废水的研究[J].中国给水排水,2010,26(3):93~95
[13]徐英.固定化微生物厌氧-好氧处理焦化废水中COD及氨氮的研究[J].电力学报,2007,22(2):162~165.[14]刘彦华,申英俊,杨超等.超临界水氧化技术处理焦化废水的试验研究[J].环境工程,2010,28(3):56~59
第四篇:造纸废水处理工艺研究
造纸废水处理工艺研究
目前,造纸行业是世界六大工业污染源之一,它产生的废水量约占国内工业总废水量的10%。造纸废水按其产生环节分为制浆废液、中段水和纸机白水。制浆废液通过常规的碱回收工艺可以得到回收利用;纸机白水通过气浮或多盘真空过滤等处理后可直接回用于生产;通常所说的造纸废水主要指的是中段水,它含有木素、半纤维素、糖类、残碱、无机盐、挥发酸、有机氯化物等,具有排放量大、COD高、pH变化幅度大、色度高、有硫醇类恶臭气味、可生化性差等特点,属于较难处理的工业废水。为有效控制造纸行业带来的水环境恶化和缓解水资源日趋紧缺的局面,世界各国不断加大对造纸行业的环境执法力度,既要求排放废水水质达标、主要污染物排放总量达标,又要对吨产品新鲜水用量进行控制。
为了降低造纸废水处理的运行成本,提高去除效果众多学者在造纸废水处理技术方面进行了大量研究,其中常用于造纸废水处理的工艺有以下几种。吸附法
吸附法具有处理效果好、操作简单、运行费用低等优点。田淑卿等通过正交试验,对粉煤灰处理造纸废水的影响因素进行了研究,结果表明:对粉煤灰进行活化,能增加其对造纸废水化学需氧量(COD)的去除效果;最佳的试验设计方案为:粉煤灰经40%硫酸活化、粒度160—200目、投加量为30g/100ml;影响COD去除率的大小顺序为:投加量影响最大,粒度次之,活化方式影响最小。絮凝沉淀法
絮凝沉淀法具有工艺简单、易于操作管理、有较高COD去除率,又可以避免二次污染,成本低且处理效果好,具有较好的经济效益和环境效益。张福宁等将壳聚糖与硫酸铝进行配比制得复合净水剂处理废水,COD的去除率可达85%以上。高飞等用复合聚铁絮凝剂FPAS处理造纸厂中段废水,结果表明COD去除率可达88%左右,优于传统的絮凝剂。
在最佳混凝效果控制方面,李臻采用聚硅酸铝混凝剂处理COD为860~920 mg/L的造纸废水,在pH 7.80、100 mL废水中加人质量分数1%的聚硅酸铝水溶液0.2 mL、搅拌速率45 r/min、搅拌时间15 s、沉降时间15min的最佳条件下,COD去除率达88% ;石中亮等采用壳聚糖处理造纸废水,在50mL废水中加入2 mL质量分数1% 的壳聚糖醋酸溶液、pH 6.5~6.7、搅拌速率120 r/rain、絮凝时间12 h的最佳条件下,COD去除率达65%。高级氧化技术
乔维川等研究了用臭氧法深度处理制浆造纸废水的工艺条件,结果表明:臭氧与废水接触时间为5min、pH值8左右、臭氧的浓度为42.55mg/L时,废水CODCr的去除率为80%以上,色度的去除率为93.34%。刘剑玉等采用臭氧预氧化一曝气生物滤池(BAF)工艺对某钞票纸厂废水进行深度处理。结果表明,臭
氧预氧化处理能提高废水的可生化性,废水经臭氧预氧化BAF工艺处理后(臭氧用量l00mg/L,臭氧与废水接触时间5min,BAF水力停留时间2.0h)出水CODCr浓度约40mg/L,色度几乎完全去除,能够达到较高的废水排放标准或作为中水回收利用。
王兆江等采用Fenton体系氧化一絮凝工艺深度处理制浆造纸废水,废水经UV/Fenton体系氧化一絮凝处理后,色度、COD、BOD污染负荷基本去除,达到制浆造纸工业水污染物排放标准,红外光谱分析表明:废水中木素结构被UV/Fenton氧化降解,苯环结构开裂转化为脂肪族羧酸类物质。
刘学文等以过渡金属氧化物CuO为活性组分,采用催化湿式氧化法处理造纸废水,考察Cu负载量、催化剂用量、反应温度对废水COD去除率的影响。结果表明:固定氧气分压在2.5MPa和反应时间3h,催化剂用量为3g,Cu负载量为4%,反应温度为220℃,500mL浓度为3250mg/L造纸废水的COD去除率为90%,色度去除率为89%,pH值由9.6变为7.8。
欧阳明等以复合表面活性剂为模板剂,微波法制备不同Ce掺杂量的介~Lwo3光催化剂,采用X射线衍射(XRD)、透射电子显微镜(TEM)、UV—VisDRS和BET等对所得样品进行表征。实验表明,当Ce掺杂量为1%时,造纸废水的光催化降解效果最佳。以1%Ce/W03为催化剂,光催化降解造纸废水12h,废水的色度和COD去除率分别为100%和83.4%。生态废水处理技术
基于生态学原理的人工湿地污水处理技术是一项新型的废水处理技术,通过对人工湿地系统的合理规划与设计,可以实现污染的零排放,并最终使污水资源化。李丽娜等利用垂直复合流模拟人工湿地系统对废纸造纸废水进行处理实验研究,结果表明,废纸造纸废水经氧化塘系统处理后的pH值7.2~7.4,BOD5、CODCr、SS平均浓度分别为416mg/L、543mg/L、429mg/L,水负荷0.053m3/(m2.d)的条件下,经人工湿地处理后BOD5、CODCr、SS的去除率分别为94.9%、91.4%、98.0%,系统性能稳定,连续稳定运行12个月,处理后的尾水主要指标达到制浆造纸工业水污染物排放标准,可用于农灌。
发达国家从20世纪9O年代起广泛采用人工湿地处理工业废水,出水COD、BOD 分别能达30 mg/L和10 mg/L以下。江苏双灯纸业有限公司利用当地沿海滩涂资源优势,河南聚源纸业有限公司利用厂区闲置土地较多的优势,均采用生态法对造纸废水进行深度处理,取得了良好的环境效益和经济效益。生物法
好氧法主要包括活性污泥法和生物膜法等两种方法。
SBR活性污泥废水处理制装造纸SBR(Sequencing Batch Reactor)即序批式反
应器,是一种间歇式活性污泥处理系统,它已经成为一种简单可靠、经济有效和多功能的生化处理工艺,普通活性污泥法的BOD和悬浮物去除率都很高,达到90~95%左右,COD去除率达80%以上。
胡维超采用浸没式膜生物反应器S-MBR进行了造纸废水的中试处理试验,结果表明COD去除率高达95%。季明采用膜生物反应器对造纸废水生化池出水进行深度处理。研究发现,将生化池的出水直接进入反应器,解决由于营养低而难以提高污泥浓度的问题,从而提高了CODCr,去除效率;提出了优化运行参数,在停留时间l 0小时,污泥浓度89/1时,CODCr,去除效率可以达到45%以上。
厌氧生物处理技术是对普遍存在于自然界的微生物过程的人为控制与强化技术,是处理有机污染和废水的有效手段。造纸废水含大量有机物及难降解物质,适宜用厌氧法进行预处理。IC反应器是在UASB反应器的基础上发展起来的第三代高效厌氧反应器,它具有处理量大,投资少,处理效率高,抗冲击能力强,能耗低,占地省等优点,拥有良好的产业化发展前景,通过采用强制外循环IC反应器完成了造纸废水的启动研究,其COD去除率维持在73%一75g之间,其应用范围已成为废水厌氧生物处理的热点之一。
李燕,刁智俊采用爆破制浆工艺生产高墙瓦楞纸,具有浆得率高、污染物排放少的特点,排放的造纸废水含有较高的糖类物质,BOD/COD较高,可采用UASB一好氧的废水处理工艺,提高废水排放的水质标准,可达到了《污水综合排放标准》一级排放标准。
吴香波等研究了白腐菌采绒革盖菌Coriolusversicolor漆酶对木素聚合的影响,在有氧条件下,通过添加漆酶和少量ABTS介体到水样中,用紫外分光光度计测定了其中木素浓度变化,利用凝胶色谱法分析了酶催化聚合木素前后的分子量的变化,结果表明:酶处理6h以后,废水中木素浓度从93.1mg/L下降到17.2mg/L,酶处理2h以后,从造纸厂污水分离的木素的分子量从31251上升到586l0,造纸废水中木素及其衍生物被聚合后通过絮凝沉淀除去,从而实现废水色度与COD降低,进而为造纸废水回用提供可能。组合工艺
目前造纸废水的联合处理法较多。Alfred等 采用臭氧氧化一固定床生物膜反应器工艺提高外排水的水质,发现该工艺对COD、色度和AOX的去除效果较好,且需要的臭氧量较少。化学絮凝一气浮串联生物接触氧化工艺处理再生纸生产废水的研究结果表明,该工艺能够将中段水的回用率提高至88%。李颖等采用还原铁床与固定化曝气生物滤池联合工艺深度处理中段水,COD由320 mg/L降至30 mg/L左右,色度由251倍降至18倍。
毕芳等采用ABR(折流板反应器)&BAF(曝气生物滤池)组合工艺处理造纸废
水,运行结果表明:在进水CODcr400~500mg/L,BOD5200~300mg/L时,处理后出水水质可达到 制浆造纸工业水污染物排放标准(GB3544—2008)第二时段一级标准之现有企业水污染排放限值:CODcr≤100mg/L,BOD5≤30mg/L,该工艺简单,占地面积小,运行方便,运行费用低。广纸南沙污水处理厂采用“IC(内循环)厌氧反应器-SBR一气浮”三级处理工艺处理制浆造纸废水,处理效果稳定,各项出水考核指标(BOD、COD、SS)均能够达到设计值,就目前污水处理的技术水平来说,是较理想的处理工艺。
综上所述,造纸废水处理技术较多,各种技术都有一定的不足之处,在实际应用中多采用组合工艺,取长补短,达到经济性和实用性的统一,随着现代科技水平的不断发展,将有更多更先进的造纸废水处理技术应用于实践,这些处理技术,必将对造纸废水处理技术的系统研究奠定坚实的基础。
第五篇:燃气电厂电气控制系统设计要点论文
【摘要】燃气发电机组是燃气电厂中的重要设备之一。电气控制系统的合理设计能够有效保障燃气电厂机组的正常运行。因此,加强电气控制系统设计的研究能够促进燃气电厂的良性发展。本文从燃气电厂的生产过程入手,对燃气电厂电气控制系统设计要点进行分析。
【关键词】燃气电厂;电气控制系统;设计要点
前言
近年来,我国各个行业的电能需求发生了显著增加,这种现象为燃气电厂带来了一定的压力。为了保证电能提供的稳定性、安全性,需要将电气控制系统应用在燃气电厂中,该系统的作用是能够保障机组处于正常运行状态。在设计电气控制系统的过程中,应该充分考虑燃气电厂的实际需求。
1燃气电厂
1。1燃气电厂的生产过程
在燃气电厂中,天然气等相关燃料在燃气轮机中发生燃烧,这个过程会产生大量的蒸汽,并完成化学能向内能的转化。当产生蒸汽达到一定数量之后,蒸汽会对汽轮机产生推动作用,进而实现内能向动能的转化。当上述步骤完成之后,发电机会将动能转化为电能,供给人们使用。
1。2燃气电厂的优点
与燃煤电厂相比,燃气电厂的优点主要表现为其生产过程中产生的污染少。燃气电厂的发展有助于可持续发展目标的实现。
2燃气电厂对电气控制系统的要求
燃气电厂对电气控制系统的要求主要集中在实用性方面,具体要求主要包含以下几种:
2。1反应速度
为了保证电气控制系统作用的合理发挥,需要保证所设计的电气控制系统具备极快的反应速度。需要将电气控制系统快速保护功能的实现时间控制在100ms以下。
2。2电气设备
从操作角度来讲,电气控制设备的信息收集量相对较小,因此其操作程序较为简单。但该系统需要对整个燃气电厂的机组进行控制,这种特点对组成电气控制系统的电气设备提出了更高的要求。为了保证电气控制系统控制功能、保护功能等相关功能的有效发挥,需要加强对所应用电气设备的安全性和可靠性方面的控制。
3电气控制系统的组成部分
电气控制系统主要是由以下两部分组成的:
3。1网络结构
网络结构的存在能够实现燃气电厂相关信息的实时监控。网络结构主要包含以下两部分:3。1。1实时监控网该部分主要是由电器网络监控系统网等组成的。在燃气电厂中,这种网络结构的作用是为电气控制系统捕捉相关设备控制信息。3。1。2厂级监控信息网就厂级监控信息网而言,它的作用是完成对燃气电厂在生产活动中产生相关信息的储存和分析。该网络结构的作用使得其应该具有一定数量的通信接口。在实际应用过程中,当生产活动发生后,厂级监控信息网需要将其所收集和处理的信息分别传送至相应的机组控制系统中,进而实现合理的控制作用。
3。2相关硬件设备
就我国目前的燃气电厂机组特点而言,单元制机组较为常见。根据燃气电厂生产活动的特点,电气控制系统的硬件设备应该包含汽机———燃机控制系统以及分散控制系统。在这些硬件设备之间,运用一定数量的通信和硬接线进行连接,进而实现不同系统之间信息的有效传输。
4燃气电厂电气控制系统设计要点
燃气电厂电气控制系统的设计要点主要包含以下几种:
4。1燃气电厂电源系统模块设计
该模块主要包含以下两部分设计要点:4。1。1燃气电厂用电源系统燃气电厂用电源系统是电气控制系统中的基础部分。为了保证通过该系统的设计使电气控制系统产生良好的控制功能,需要应用事故保安电源系统、6kV厂用电源系统以及380V厂用电源系统组成整个燃气电厂用电源系统。其中,事故保安电源系统的作用是保证燃气电厂机组的运行安全。由于该系统的重要作用,需要将该系统控制在热备用状态中,便于燃气电厂相关人员对该系统的快速启用。就6kV厂用电源而言,其手动合闸指令是通过键盘进行传递的。当该指令发出后,键盘会将其传递至快切装置中,当系统判断结果显示满足通气条件时,该指令才会被执行。在指令执行的同时,信号会被显示在屏幕中。380V电源系统中包含多台机组,每台机组都包含两段保安母线。保安电源、工作电源以及备用电源是保安母线的主要组成部分。其中,保安电源的供电对象主要是指UPS系统等。该部分设计的合理性直接对电气控制系统的功能产生影响,因此需要对所有组成部分的设计和应用加以重视。4。1。2燃气电厂用电源的切换装置人们用电量的增加对燃气电厂的电能供应提出了更高的要求。为了保证高压厂用电源的连续、稳定、安全供电,需要将厂用电源切换装置融入电气控制系统中。在安装该装置的过程中,既要保证装置切换功能的合理发挥,还要保证且安装位置不会对其他设备的运行产生影响。从综合角度考虑,可以将该切换装置安装在高压电源系统中工作电源位置的进线开关周围。该装置具有一定的独立性特点,为了保证该装置的正常运行,需要利用硬接线实现厂用电源切换装置与电气控制系统之间的有效信息传输]。
4。2燃气电厂电源系统控制模块设计
就燃气电厂的运营特点而言,对电源系统进行控制具有一定的必要性。在该设计要点中,组成部分主要包含以下几种:4。2。1UPS不停电电源系统UPS不停电电源系统是电源控制系统中的重要组成部分。该系统中主要包含静态开关、逆变器以及整流器。在燃气电厂中,UPS系统可以不间断为其提供交流电源。其中,逆变器的作用主要是保证电压波形的稳定,逆变器和整流器的作用是完成电能的提供。4。2。2直流电源系统在我国目前的燃气电厂中,常见的直流电源系统主要包含DC220V和DC110V。就DC220V直流电源系统而言,该系统是由三组整流器和一组直流母线组成的。交流保安段负责为该系统中的整流器提供电源;为了保证直流母线作用的正常发挥,需要在不同的直流母线之间加设一定数量的联络切换开关。就DC110V系统而言,其中包含两组母线、整流器以及蓄电池组。为了保证不同母线之间能够进行有效联系,需要设置一定数量的网络开关。直流电源系统的作用对象主要是事故照明等燃气电厂中的常见负荷,该系统需要对这些常见负荷进行合理的控制和保护[5]。4。2。3保安段电源系统机组厂用电故障会为燃气电厂带来一定的经济损失。为了保证电能的正常供应,需要将保安段电源系统加入电气控制系统设计要点中。在燃气电厂机组的正常运行过程中,当发生用电故障时,保安段电源系统会对直流电源系统等进行有效控制和保护,进而实现机组的正常运行。除此之外,机组厂用电断故障的发生频率相对较高,电气控制系统的应用可以有效降低其发生概率。对此,应用电气控制系统之后,当燃气电厂机组厂用电再次发生断开故障时,保安段电源系统通过自身功能的发挥可以实现柴油发电机组的快速启动,进而保证供电的连续性、安全性。
4。3燃气电厂发电机和变压器组系统模块设计
该模块包含的元件数量较多、种类较为复杂,这种特点为电气控制系统的设计带来了一定的难度。为了保证电气控制系统设计的合理性,需要运用机岛控制系统对发电机进行控制。在这种控制方式中,可以在在线控制系统与信号源以及发电机保护系统等相关控制模块之间建立有效的连接。发电机的实际运行状态监控主要是通过DCS系统完成的。
5结论
电气控制系统的作用主要是对燃气电厂机组进行有效保护和控制。根据燃气电厂生产活动的特点,可以将电气控制系统的设计要点集中在燃气电厂用电源系统、电源切换装置以及保安段直流电源系统等方面。在设计电气控制系统的过程中,应该注重所使用电气设备的安全性、以及反应速度的快速性等要求。