第一篇:电力系统仿真分析技术的发展趋势(本站推荐)
电力系统仿真分析技术的发展趋势
0 引言
随着化石能源逐渐枯竭,发展利用清洁能源和可再生能源成为世界各国的必然选择,也是新能源变革的主要内容。中国新能源变革的目标可以归纳为:以可再生能源逐步替代化石能源,提高化石能源的清洁高效利用水平,实现可再生能源(水能、风能、太阳能、地热能、生物质能)和核能利用在一次能源消耗占较大份额。在新能源变革形势下,电网的使命也将发生变化,智能电网是适应新能源变革和承担电网新使命的新一代电网。
中国自 21 世纪初就提出了建设特高压电网的设想,并逐步加以实施,近两年根据国际电力系统发展的最新动向,又进一步提出了建设智能电网的宏伟蓝图。中国的智能电网是以特高压电网为骨干网架、各级电网协调发展的坚强网架为基础,以通信信息平台为支撑,具有信息化、自动化、互动化特征,包含电力系统的发电、输电、变电、配电、用电和调度各个环节的现代电网。与此同时,随着电网规模的不断扩大,新能源、新设备的不断加入,当今电力系统已经日益变得复杂,这使得运行人员更加难于对其进行监视、分析和控制。近些年,国内外不断发生大规模的停电事故,这些事故都造成了很大的经济损失和社会影响,不断地为人们敲响警钟,也给电网的安全稳定运行提出了更高的要求。
在上述的大停电事故中,电力系统从第一次元件故障,到整个系统崩溃,一般会有一个较长的过程,如果这期间运行人员能够进行正确的处理,大停电是可以避免的。换言之,电网缺乏有效的在线监测和预警系统,不能及时掌握实时电网稳定情况并采取有效的控制措施是导致大停电事故发生的重要原因。
电力系统仿真分析是电力系统规划设计和调度运行的基础,涵盖的范围非常广泛,包括从稳态分析、动态分析到暂态分析的各个方面。根据实时电力系统动态过程响应时间与系统仿真时间的关系,可分为非实时仿真和实时仿真;根据仿真的数据来源,又可分为离线仿真、在线仿真。其中在线仿真是实现在线预警和决策支持的必要手段。
电力系统仿真分析涵盖电力系统、数学、计算机、通信等多学科技术领域,面对智能电网建设提出的要求,需要不断地引入先进的计算机和通信技术以及数学方法等,推动仿真分析技术在仿真的准确性、快速性、灵活性等方面的发展。
具体体现在以下几个方面:
1)可实现更大规模电网的仿真计算,同时仿真数据的粗细程度可根据需要自动调整。
2)仿真计算应具有更快的速度及更高的准 确性。
3)仿真计算应具备更多的功能,并与环境、经济等相关领域相结合。4)仿真建模应具备更大的灵活性,以适应智能电网中层出不穷的新元件、新设备建模的需要。
5)需加强对电力系统智能建模方法的应用以及仿真结果的智能化分析。6)电网自愈对实时决策控制的要求。要求能实时跟踪评价电力系统行为,一旦发生故障,立即进行快速仿真并提供决策控制支持,防止大面积停电,并快速从紧急状态恢复到正常状态。
7)仿真试验应具备更大的灵活性。未来的仿真试验将可实现对多个异地试验设备的同步测试。
8)仿真计算应适应新的计算模式,如云计算、协同计算等。
9)可实现智能人机交互仿真,显著提高用户操作的便捷性和仿真系统的使用效率。
10)数据融合技术在仿真分析中应用,提高对仿真分析中对多源海量数据的整合能力。
本文将依据计算机、网络、通信等技术当前和未来可能的发展,探讨和预测新的先进计算技术(如云计算等)及其在电力系统仿真分析中的应用。发展现状
1.1 电力系统仿真分析技术概述
如图 1 所示,电力系统仿真分析技术可分为电力系统建模、电力系统数字仿真分析方法、电力系统在线仿真分析和电力系统实时仿真等4项技术,其中电力系统建模技术包括建模方法和模型研究技术,电力系统数字仿真分析方法主要指针对各类仿真应用的基础方法,后2种技术则分别针对在线应用和实时应用。其中先进计算技术包括计算机及网络、与电力系统仿真分析相关的计算数学和计算模式这3项技术。下文分别描述上述各项技术的发展现状。
图1 电力系统仿真分析和先进计算技术分类
2)相关计算数学。
与电网仿真分析相关的计算数学领域既有传统的数值计算方法,也包括新兴的人工智能、模糊数学和概率类等方法。
1.2 电力系统建模技术
1)建模方法。
目前,电力系统建模方法研究以机理分析法为主,结合统计学、运筹学及人工智能等理论,又发展了数据分析法、层次分析法、智能建模法等方法。作为机理分析法的重要补充,模型实测是指导建模、进行模型校验及修正的主要手段。目前,模型实测主要在发电机及其调节系统建模、负荷建模、新能源发电建模等方面有所应用。数据分析法主要用于建立电力系统可靠性分析模型及功率预测模型、电力市场分析模型等。层次分析法主要用于负荷预测建模等。
近年来,随着人工智能技术的发展,智能建模方法如专家系统法、神经网络系统法、模糊辨识法以及基于遗传算法的非线性系统辨识法等,在同步机建模、负荷建模、电网规划建模中得到应用。
电力系统模型参数的获取,主要采用取典型值和实际测量 2 种方法。2)模型研究。
①传统发输配用电系统模型
传统发电系统模型包括同步机、励磁系统、调速系统、电力系统稳定器(power system stabilizer,PSS)等模型,均较为成熟,全国范围内绝大部分机组励磁
系统和 PSS 模型已采用实测参数,调速系统模型实测工作正在开展。
交流输电系统模型以等效电路为基础,根据仿真要求的不同进行相应处理。直流输电系统模型包括主电路模型和控制系统模型,可分为机电暂态仿真模型和电磁暂态仿真模型,前者一般为准稳态模型。直流输电系统控制系统模型目前大都采用典型结构和参数,迫切需要建立与实际工程相一致的控制系统模型和参数。
②灵活交流输电元件模型、新型电力系统元件模型。
③新能源发电系统、分布式电源及微电网模型。3)建模技术中尚待解决的问题。
①电力系统模型的精确度有待进一步提高,特别是如何利用 WAMS、WASA 技术进行模型的校验与修正。
②风光发电系统、储能系统等各种新元件的模型有待进一步研究并实用化。
③智能建模方法有待进一步发展,或与传统方法相结合,提升模型的精确性和适应性。
④目前各类仿真软件中模型各自独立,重复建模工作时有发生,有待建立模块化、通用化、标准化程度较高的模型,实现模型的“即插即用”和共享。
1.3 电力系统数字仿真分析方法
电力系统数字仿真分析方法,包括稳态分析(潮流、网损分析、最优潮流、静态安全分析、谐波潮流)、动态和暂态分析(电磁暂态仿真、机电暂态仿真、中长期动态仿真、小干扰稳定计算、电压稳定计算等)等。电力系统潮流计算主要是非线性方程组求解问题,现有算法有牛顿–拉夫逊法、PQ 分解法、保留非线性潮流算法和最优因子法等。其中,牛顿–拉夫逊法因其具有较好的收敛性和较快的收敛速度,应用较为广泛。为提高潮流计算的收敛性,有时将 2 种方法相结合,如 PQ 分解转牛顿法。此外,还提出了潮流计算中的自动调整方法、适合实时计算的直流潮流算法、考虑不确定性因素的随机(概率)潮流方法、适合系统参数不对称情况的三相潮流算法,以及应用于电力系统电压稳定计算的多种病态潮流算法。
电力系统最优潮流计算实质是一个非线性规划问题,主要算法有线性规划法、牛顿法、内点法以及遗传算法、人工神经网络法等智能算法。其中内点法在可行域的内部寻优,收敛性好、收敛速度快,适用于大规模电网的优化计算。智能算法由于具有全局收敛性和擅长处理离散变量而日益得到重视,但还处在发展阶段。研究小扰动电压稳定问题的电力系统静态电压稳定计算方法常用的有奇异值分解法、灵敏度法、崩溃点法、非线性规划法、连续潮流法、非线性动力学方法等,其中连续潮流法应用较多。电压稳定的动态分析方法,包括小干扰分析法和对大扰动电压稳定的时域仿真分析法、能量函数法等。电力系统暂态稳定计算需要求解系统的网络方程和微分方程,一般采用数值积分方法交替迭代求解,有时也采用直接法,应用最多的直接法为扩展等面 积准则法。
电力系统小干扰稳定计算的主要方法有特征值分析法、小干扰频域响应分析、小干扰时域响应分析,其中特征值分析法应用最为广泛。
电力系统中长期动态过程仿真要计入在一般暂态稳定过程仿真中不考虑的电力系统长过程和慢速的动态特性,采用数值积分的方法,主要有隐式梯形积分法和 Gear 类方法,为避免计算时间过长,一般还采用自动变步长计算技术。电力系统电磁暂态仿真通常采用时域瞬时值计算,多采用隐式梯形积分法,计算规模一般不超过百余条母线,计算步长通常为 20~200
s。为提高仿真精度,有学者提出了电磁暂态与机电暂态混合仿真方法。近年来,随着分网并行算法的提出和电磁-机电接口的完善,混合仿真已实现了实用化。
综上,上述针对输电网的电力系统仿真分析方法都较为成熟,为提高仿真分析速度,近年来,并行和分布式计算方法逐渐在电力系统潮流计算、最优潮流、静态安全分析、电磁暂态仿真、机电暂态仿真、小干扰稳定计算等分析方法中得到应用。
1.4 电力系统在线仿真分析
随着电网大停电事故的不断发生,各国对电网安全愈加重视,电力系统在线仿真分析也成为了研究的重点。2005 年的调研报告表明,当时国际上已有 6 个电力系统在线软件生产厂家,可以提供不同程度的在线暂态稳定评估软件。
国内在智能电网建设的新环境下,为确保电 网安全稳定运行,建立和健全电网安全防御体系,中国电力科学研究院、国网电力科学研究院、清华大学等单位就在线仿真分析开展了研究与应用工作。
1.5 电力系统实时仿真
电力系统实时仿真的发展经历了从物理实时仿真、数模混合式实时仿真到全数字实时仿真的3个历史阶段。物理实时仿真由于其仿真规模不大和建模工作复杂,主要用于设备级的仿真和试验,如继电保护装置、安全自动装置、电力电子设备及新技术、新设备的基本原理验证和性能指标检验等。数模混合式实时仿真系统(如 HYPERSIM目前主要用于直流输电控制保护系统试验。RTDS等全数字实时仿真限于仿真算法和计算能力,只能进行小规模系统的实时仿真,主要用于继电保护装置、安全自动装置验证试验,近年来也有应用于电力电子设备验证试验、直流输电控制保护系统试验等方面,加拿大 Opal-RT 公司的 RT-LAB 全数字实时仿真软件在高频电力电子的精确仿真以及分布式并行计算等方面具有优良的性能;新近出现的全数字实时仿真装置 ADPSS,因其具有大电网实时仿真的能力,因此用途较为广泛。先进计算技术发展趋势 2.1 计算机及网络
未来的计算机和网络的发展趋势将是通信技术、网络与计算机技术的进一步融合,朝着超高速、超小型、高性能、平行处理和智能化方向发展。发展高性能计算技术有 2 条途径:一条是通过多核、多机并行计算或分布式计算技术来实现;另一条途径是发展非传统的新技术,包括超导计算、光计算、量子计算、生物计算与纳米计算等。
2.2 相关计算数学
数值计算方法未来的发展主要集中在提高算法效率、计算结果精度和非线性方程求解的收敛性等方面。人工智能方法将与仿真环境结合得更为紧密,从而提高仿真自动化程度和仿真精度。概率类算法在仿真计算领域的进一步发展,主要是增强各种与现有数值仿真计算方法相结合的衍生算法的实用性,降低对参数的要求,提高计算结果的质量,以及计算结果的进一步分析应用。模糊数学将与人工智能技术的各分支进一步结合,求解用经典数值计算方法难以求解的问题,并进一步实用化。
2.3 计算模式
未来高性能计算的发展将呈现以下趋势:一是并行计算和分布式计算 2 种
形态共存并互相结合、相互补充;二是从高性能计算走向高效能计算,提高计算性能、可编程性、可移植性和鲁棒性,降低系统的开发、运行及维护成本随着中国智能电网的建设和发展,分布式计算技术在仿真分析领域的应用将不断深入,分布式计算以及网格计算的应用,可以有效解决电力系统实时、复杂的计算问题。先进计算技术在电力系统仿真分析中应用预测 3.1 概述
先进计算技术(计算机及网络、计算数学、计算模式)的发展和应用,将为电力系统仿真分析技术带来巨大发展变化。本节预测 2050 年电力系统仿真分析技术的发展趋势。
3.2 电力系统建模技术
1)电力系统的建模方法和工具得到长足发展。形成完备的混合仿真建模和智能建模理论。基于WAMS 和 WASA 数据进行仿真模型的修正成为建模的重要手段。
2)建立丰富、精确、模块化和标准化的各类元件模型。模型的模块化、标准化使得系统建模可在任一仿真软件的建模环境下进行,采用通用的输入输出格式,并可在其他仿真软件中进行调用,使模型具备“即插即用”的功能。3)未来的智能电力设备中可自带标准化的模型并具备对局部模型进行仿真的能力,其结构和参数自行维护更新,模型可以是异地分布的。
3.3 电力系统数字仿真分析方法
1)电力系统仿真计算方法在计算的收敛性和鲁棒性、结果的准确性以及对最优结果的搜索等方面都取得较大进步。
2)建立灵活的仿真数据平台和异地分布式仿真分析平台,结合智能电力设备中自带的标准化模型,模型数据的云存储和标准化技术,WAMS、WASA 等先进测量技术,云计算技术,实现仿真数据的自动调整和对电网的按需灵活仿真。根据研究目的不同,电网数据可以不同的精细程度自动组合和调整,形成计算用数据,用户无需关心具体数据的存放位置和获取方式。
3)开辟新的仿真计算领域,如与环境保护、新型电力市场运营相结合。4)建立高度智能化的面向用户、面向问题、面向实验的建模与仿真环境,实现智能人机交互仿真和仿真结果的智能化分析。
5)不同时间尺度的混合仿真技术逐步成熟,实现电磁暂态–机电暂态–中长期动态过程的连续仿真,可获得系统从仿真开始后微秒级到分钟级,甚至小时级时间尺度的动态特性,仿真结果更加贴近系统的实际表现。
6)协同计算将在电力系统仿真分析中逐步应用,使离线仿真分析从以往单地区单人工作的独立模式向多人联合协同计算模式转变,大幅度提高工作效率。7)人工智能、概率和模糊数学方法将会被更多地引入和研究。人工智能算法是大规模非线性系统求解、优化的有效方法,为电力系统计算分析开辟了一条新的路径,而概率算法和模糊数学方法则可以更好地处理仿真计算中的各种随机性和模糊性问题。
8)量子计算机具有应用可能,仿真分析方法将发生重大变革。
3.4 电力系统在线仿真分析
1)建立在线仿真专家系统,挖掘在线数据与系统稳定性之间的联系,根据历史运行数据和电网运行状况找出薄弱环节。
2)将 WAMS 数据引入到数据整合、参数校核和辨识、动态仿真等各个环节,以提高在线仿真结果与实际系统响应的吻合程度。
3)构建描述电网各类不确定性特征(如天气,间歇性能源接入等)的系统模型,建立在线风险评估系统,采用统一的风险评估指标体系,将确定性安全评价拓展到风险评估。
4)应用数据融合技术,提高对调度自动化系统、广域量测系统、继电保护稳控系统、离线方式数据等多系统多信息的整合能力和利用水平。
5)实现基于超实时仿真的在线控制和云控制,利用大规模电力系统的超实时仿真技术,在故障发生后快速判别系统稳定性,并给出控制措施,解决连锁故障期间电网运行状况瞬息变化导致控制措施失效的问题。云控制是云计算技术与基于超实时仿真的在线控制技术的完美结合,是未来在线控制技术的发展方向。
3.5 电力系统实时仿真
1)采用新的并行仿真方法或对既有方法进行改进,结合计算机软硬件技术的发展,实现风力发电、太阳能发电、电压源直流输电、新型 FACTS、储能等新能源新设备的电磁暂态实时仿真。
2)实现机电暂态–电磁暂态–中长期动态一体化实时仿真,建立超大规模电力系统数模混合实时仿真平台,实现超大规模电力系统与数十条直流输电、电力电子装置、新能源新设备等的物理仿真设 备或物理设备的联合实时仿真。
3)建立电网–电厂–变电站联合实时仿真平台,可灵活接入实际的电网二次设备、电厂和变电站监 控设备进行仿真试验分析。
4)分布式实时仿真全面应用,开展远程试验。通过异地多个实时仿真装置的配合和高速的通信网络支持,实现多个物理装置的分布式仿真试验,解决带通道保护的继电保护装置、多个 HVDC 或FACTS 控制器等异地试验设备的同步测试和控制器协调问题。远程试验是分布式实时仿真的特殊应用模式,即大电网的实时仿真在异地高性能服务器上进行,而现场仅需要配备与物理待测设备的输入输出接口,需要高速的通信网络支持。
5)建立真实电力系统的影子系统——大电网在线实时仿真系统,通过实时信息采集与传递系统,实时接受电网运行数据,使系统仿真模型能够及时跟踪大电网运行状态特别是灾害情况下的迅速变化。结束语
随着化石能源逐渐枯竭,发展利用清洁能源和可再生能源成为世界各国的必然选择,也是新能源变革的主要内容。在新能源变革形势下,电网的使命也将发生变化,智能电网是适应新能源变革和承担电网新使命的新一代电网。为适应智能电网的发展,未来的电力系统仿真分析技术在准确性、快速性、灵活性等方面将得到极大发展。本文依据计算机、网络、通信等技术当前和未来可能的发展,探讨和预测了新的先进计算技术的发展趋势,以及新的先进计算技术在电力系统仿真分析中的应用趋势。
第二篇:电力系统仿真
1、潮流计算
电力系统的潮流计算,是指在给定电力系统网络拓扑结构,元件参数和发电负荷参量条件下,计算有功功率、无功功率及电压在电力网中的分布。通常给定的运行条件有系统中各电源和负荷点的功率、枢纽点电压、平衡点的电压和相位角,待求的运行参量包括网络中各母线节点的电压幅值和相角,以及各支路的功率分布、网络的功率损耗等。
2、潮流计算的目的
电力系统潮流计算的最主要目的是为了让电力系统能够安全稳定运行的同时做到经济运行,为电力资源的调度,电网的规划,电力系统的可靠性分析提供支撑。
具体表现:(1)、在电网规划阶段,通过潮流计算,合理规划电源容量及接入点,合理规划网架,选择无功补偿方案,满足规划水平的大小方式下潮流交换控制、调峰、调相、调压的要求。(2)、在编年运行方式时,在预计负荷增长及新设备投入运行基础上,选择典型方式进行潮流计算,发现电网中的薄弱环节,供调度人员日常调度控制参考,并对规划、基建部门提出改进网架结构,加快基建进度的建议。(3)、正常检修及特殊运行方式下的潮流计算,用于日常运行方式的编制,指导发电厂开机方式,有功、无功调整方案及负荷调整方案,满足线路、变压器热稳定要求及电压质量要求。(4)、预想事故、设备退出对静态完全的影响分析及作出预想的运行方式调整方案。
即电力系统在运行方式和规划方案的研究中,都需要进行潮流计算以比较运行方式或规划供电方案的可行性、可靠性和经济性。同时,为了实时监控电力系统的运行方式,也需要进行大量而快速的潮流计算。因此,潮流计算是电力系统应用最广泛,最基本和最重要的一种电气运算,在系统规划设计和安排系统的运行方式时,采用离线潮流计算,而在电力系统运行状态的实时监控中,采用在线潮流计算。
3、本次仿真的目的及任务
通过仿真,了解和熟悉电力系统潮流分析计算的软件的使用方法,结合理论知识,熟悉计算机解潮流分布时的方法,学会分析潮流计算的结果,对功率,电压等作出评价是否符合要求,初步能够运用计算机对一个小型电力系统网络供电的设计。
本次仿真中设计了一个三机五节点的小型交流电力系统网络,主要通过MATPOWER进行电力系统潮流的结算,得到每条支路上的功率流动情况,每个节点的损耗等,分析网络中的损耗情况,损耗过大的话改进算法重新进行潮流的计算,得到更加合理的潮流分布。
第三篇:分析电力系统自动化技术
分析电力系统自动化技术
摘 要: 随着电力电子技术、微电子技术沟迅猛发展,原有的电力传动(电子拖动)控制的概念已经不能充分概抓现代生产自动化系流中承担第一线任务的全部控制设备。而且,电力拖动控制已经走出工厂,在交通、农场、办公室以及家用电器等领域获得了广泛运用。它的研究对象已经发展为运动控制系统,下面仅对有关电气自动化技术的新发展作一些介绍。关键词:电力自动化;现场总线;无线通讯技术;变频器
1.引言
现今,创新的自动化系统控制着复杂的工艺流程,并确保过程运行的可靠及安全,为先进的维护策略打造了相应的基础。
电力过程自动化技术的日新月异和控制水平的不断提高搜企网版权所有,为电力工业解决能源资源和环境约束的矛盾创造了条件。随着社会及电力工业的发展,电力自动化的重要性与日剧增。传统的信息、通信和自动化技术之间的障碍正在逐渐消失。最新的技术,包括无线网络、现场总线、变频器及人机界面、控制软件等,大大提升了过程系统的效率和安全性能。
2.电力自动化的发展
我国是从20世纪60年代开始研制变电站自动化技术。变电站自动化技术经过数十年的发展已经达到一定的水平,在我国城乡电网改造与建设中不仅中低压变电站采用了自动化技术实现无人值班,而且在220kV及以上的超高压变电站建设中也大量采用自动化新技术,从而大大提高了电网建设的现代化水平,增强了输配电和电网调度的可能性,降低了变电站建设的总造价,这已经成为不争的事实。然而,技术的发展是没有止境的,随着智能化开关、光电式电流电压互感器、一次运行设备在线状态检测、变电站运行操作培训仿真等技术日趋成熟,以及计算机高速网络在实时系统中的开发应用,势必对已有的变电站自动化技术产生深刻的影响,全数字化的变电站自动化系统即将出现。
3.电力自动化的实现技术
现场总线(Fieldbus)被誉为自动化领域的计算机局域网。信息技术的飞速发展,引起了自动化系统结构的变革,随着工业电网的日益复杂工业自动化网版权所有,人们对电网的安全要求也越来越高,现场总线控制技术作为一门新兴的控制技术必将取代过去的控制方式而应用在电力自动化中。
4.无线技术
无线通讯技术因其不必在厂区范围内进行繁杂、昂贵的布线,因而有着诱人的特质。位于现场的巡视和检修维护人员借此可保持和集中控制室等控制管理中心的联系,并实现信息共享。此外,无线技术还具有高度灵活性、易于使用、通过远程链接可实现远方设备或系统的可视化、参数调整和诊断等独特功能。无线技术的出现及快速进步,正在赋予电力工业领域以一种崭新的视角来观察问题,并由此在电力流程工业领域及资产管理领域,开创一个激动人心的新纪元。
尽管目前存在多种无线技术汉阳科技,但仅有几种特别适用于电力流程工业。这是因为无线信号通过空间传播的过程、搭载的数据容量(带宽)、抗RFI(射频干扰)/EMI(电磁干扰)干扰性、对物理屏障的易感性、可伸缩性、可靠性,还有成本,都因无线技术网络的不同而不同。因此,很多用户都倾向于“依据具体的应用场合,来选定合适的无线技术”。控制用的无线技术主要有GSM/GPRS(蜂窝)、9OOMHzRadios、wi-Fi(802.lla/b/g)、WIMAX(802.16)、ZigBee(802.15.4)、自组织网络等,其中尤以Wi-Fi和WIMAX应用增长速度最快,这是因为其在带宽和安全性能方面较优、在数据集中和网络化方面具备卓越的安全框架、具有主机数据集成的高度灵活性、高的鲁棒性及低的成本。
5.信息化技术
电力信息化包括电力生产、调度自动化和管理信息化两部分。厂站自动化历来是电力信息化的重点,大部分水电厂、火力发电厂以及变电站配备了计算机监控系统;相当一部分水电厂在进行改造后还实现了无人值班、少人值守。发电生产自动化监控系统的广泛应用大大提高了生产过程自动化水平。电力调度的自动化水平更是国际领先,目前电力调度自动化的各种系统,如SCADA、AGC以及EMS等已建成,省电力调度机构全部建立了SCADA系统,电
网的三级调度100%实现了自动化。华北电力调度局自动化处处长郭子明说,早在20世纪70年代华北电力调度局就用晶体管计算机调度电力,从国产1 2 1机到1 7 6机,再到176双机,华北电力调度局全用过,到1978年已经基本实现了电网调度自动化。
6.安全技术
电力是社会的命脉之一,当今人类社会对电力系统的依赖已到了难以想象的程度。电力系统发生大灾变对于社会的影响是不可估量的,因此电力系统最重要的是运行的安全性,但这个问题在全世界均未得到很好解决,电力系统发生大灾变的概率小但后果极其严重,我国电力系统也出现过稳定破坏的重大事故。由于我国经济快速发展的需求,电力工业将会继续以空前的速度和规模发展。随着三峡电站、西电东送、南北互供和全国联网等重大工程的实施,我国必将出现世界上最大规模的电力系统。
7.传动技术
实现变频调速的装置称为变频器。变频器一般由整流器、滤波器、驱动电路、保护电路以及控制器(MCU/DSP)等部分组成。变频器作为节能降耗减排的利器之一,在电力设备中的应用已经极为广泛而成熟。对于变频器厂商而言,在未来三十年,变频器,尤其是高压变频器在电力节能降耗中的作用极为明显,变频器也成为越来越多电力行业改造技术的首选。
在业内,以ABB为首的电力自动化技术领导厂商,ABB建立了全球最大的变压器生产基地及绝缘体制造中心。自1998年成立以来,公司多次参与国家重点电力建设项目,凭借安全可靠、高效节能的产品性能而获得国内外用户的好评。其公司多种产品,包括:PLC、变流器、仪器仪表、机器人等产品都在电力行业中得到很好的应用。
8.人机界面
发电站、变电站、直流电源屏是十分重要的设备,随着科学技术的不断发展,搜企网,单片机技术的日趋完善,电力行业中对发电站、变电站设备提出了更高精密、更高质量的要求,直流电源屏是发电站、变电站二次设备中非常重要的设备,直流电源屏承担着向发电站、变电站提供直流控制保护电源的作用,同时提供给高压开关及断路器的操作电源,因此直流电源
屏的可靠性将直接关系到发电站的安全运行,直流电源屏的发展已经经历了很长的时间,从早期的直流发电机、磁饱和直流充电机到集成电路可控硅控制直流充电机、单片机控制可控硅充电机、高频开关电源充电机等,至目前直流电源屏已很成熟。直流电源屏整流充电部分仍然采用目前国际最流行的软开关技术,将工频交流经过多级变换,最后形成稳定的直流输出,直流电源屏系统控制的核心部件是V80系列可编程控制器PLC,它将系统采集的输入输出模拟量以及开关量经过运算处理,最终控制高频开关电源模块使其按电池曲线及有人为设置的工作要求更可靠地工作。
9.结束语
电气自动化技术是当今世界最活跃、最充满生机、最富有开发前景的综合性学科与众多高新技术的合成。其应用范围十分广泛,几乎渗透到国民经济各个部门,随着我国科技技术的发展,电气自动化技术也随之提高。
第四篇:电力系统建模仿真作业
风电并网后静态电压稳定性分析的建模与仿真
电力系统经常采用P-V曲线分析法来分析有关静态电压稳定性的问题,P代表穿越传输断面传送的功率或者一个区域的总负荷,V代表代表性节点或关键节点的电压。P-V曲线分析法即是建立一个区域负荷或者传输界面潮流和节点电压之间的关系曲线,从电力系统当前的稳定运行点开始,通过不断增加P,使用潮流计算,描出代表节点的电压变化曲线,用P-V曲线的拐点来表示区域负荷或者传输界面功率的增加导致整个系统临界电压崩溃的程度,即系统静态电压稳定极点。
在把P-V曲线法用于研究风电的接入对电压静态稳定性的影响时,P代表的是风电场输出的有功功率,V为机端电压、风电接入点电压(PCC电压)等其他需要监测的母线电压。
实际上,P-V曲线法是在静态情况下,研究风速变化导致的风电场输出有功功率的变化对电网电压的影响。用风电输出的有功功率引起的电压水平的变化及当前运行点到电压崩溃点的“距离”,反映风电接入的电网的电压稳定裕度。
在求取风电接入系统的P-V曲线时 ,除了系统平衡节点外,一般不考虑网内其他常规机组的有功功率的变化以及网内负荷的变化情况。
综上,电网基于静态电压稳定性的风电接纳能力,即是以电网的静态电压稳定性作为约束条件,在保证电网静态电压稳定的基础上尽可能多接入风电。通常系统静态电压越限临界点所接入的风电容量即为系统可接纳的最大风电并网容量。
1算例
本文通过IEEE14节点标准测试系统作为算例,风电场通过变压器和110 kV线路接入IEEEl4节点标准测试系统的14号节点,使用以上算法对基于静态电压稳定性下的一风电场的并网功率极限进行计算。
风电场110kv线路IEEE14节点系统图2.2 风电场接入IEEE14系统图
图中变压器标幺变比取1(在实际运行中,可以通过改变变压器的分接头来调控特定节点的电压),风电场接入系统的线路参数为12.6+j24.96Ω。本文基于双馈感应风机的风电场进行电压静态稳定约束下接纳能力计算。1.1基于双馈感应风机的风电场接纳能力计算 1.1.1Powerworld仿真软件简介
Powerworld是一个面向对象的电力系统大型可视化分析和计算程序,其拥有优异的交互性能以及友好的用户界面。PowerWorld软件集电力系统潮流计算、静态安全分析、灵敏度分析、经济调度EDC/AGC、短路电流计算、,最优潮流OPF、GIS功能、无功优化、用户定制模块、电压稳定分析PV/QV、ATC计算、等多种庞大复杂功能于一体,并使用数据挖掘技术来实现强大丰富的三维可视化显示技术。
1.1.2Powerworld仿真算例
按照前文所介绍的算例,仿真系统单线图如下图所示:
图1.1 Power World下的ieee14节点系统接线图
本文在原模型中另加入15号母线,并在15号母线上添加了一台双馈式感应风机来等值一个风电场。
本例中双馈异步电机风电机组采用恒功率因数控制方式,且功率因数cosφ = l,利用Powerworld中P-V曲线绘制功能,不断增加在15号母线处的双馈式感应电机的有功输出,绘制出风电接入处电压随风机并网功率变化的P-V曲线图。如下图所示:
图1.2 风电接入处P-V曲线图
大规模风电接入后,电力系统电压稳定性降低的原因是风机会消耗一定的无功功率。由上图可以看出,当风电输出有功功率功率较小时,风电接入地区的电压有所上升,这是因为风电的接入为接入地区的电网提供了一定的有功功率,减少了该地区从主网吸收的功率,使得传输线路及变压器上的无功损耗减小,降低了主网与风电接入点的电压差。
当风电场输出的有功功率进一步增加时,风电接入地区电压下降,这是因为当风电场输出较大时,风电场附近局部电网由受端系统转化为送端系统。当外送的有功出力继续增加时,线路及变压器上的无功消耗增大,需要从主网吸收大量的无功功率,无功功率的传输导致风电接入点的电压与主网的压差不断增大,导致接入点电压水平不断下降。当系统电压升高或降低超过电力系统的规程规定的标准时,就容易导致电压失稳。
此外,风电接入前的并网点电压水平以及风电场的功率因数也是影响电网接纳风电能力的重要因素。风电接入前,并网点的电压水平由整个系统决定,当并网点的电压水平很高时,如果风电的接入容量较小,则对并网点的电压的抬升效果可能会造成电压越上限。当风电场运行在不同的功率因数下,即风电机组吸收或发出无功功率会抬升或降低并网点及附近母线电压,可能会造成电压越限,使电网失去电压稳定性。由于常规电机具有一定的无功调节能力,可以在机组的无功极限内通过控制其无功输出以保证连接节点的电压维持稳定,所以当风电场出力较小时,与常规机组连接的母线电压变化不大。
但是在风电场出力持续增大的过程中,如果常规机组的无功调节能力达到了机组极限,即发出的无功功率超过极限值时,则随着风电场并网功率的持续增加,其输出无功不会再改变,以保证风电机组的稳定运行,因此,母线电压仍会下降。如下图所示:
图1.3 发电机母线的P-V曲线图
再绘制出其余节点的P-V曲线图,如图1-4和1-5所示:
图1.4 剩余母线P-V曲线图
图1.5 剩余母线P-V曲线图
绘制出所有母线的P-V曲线图后,分别观察其母线电压是否越限,得到节点电压越限时风电场输出功率的集合,取其最小值即为基于电力系统静态电压稳定性下的风电最大并网功率。
第五篇:电力系统仿真模型参数
实验一:中性点经消弧线圈接地系统A相接地故障实验
利用MATLAB搭建了小电流接地系统模型。线路采用分布参数模型,其正序参数为:
R00.23R10.17/km,L11.2mH/km,C19.697nF/km;零序参数:/Y/km,L05.48mH/km,C06nF/km;变压器连接方式为:,110KV/35KV;其中线路1所带负载为2MVA,线路3所带负载为5MVA。供电线路总长度为100km,若故障发生在线路的50km处,且在0.02s发生故障,0.04s恢复正常运行(在故障发生器中已设置),由于单相接地故障占到整个系统故障类型的80%以上,所以,仿真以A相接地故障为例进行。仿真模型中系统采样频率f1000KHZ,整个仿真时间为0.06s。
实验内容:分别做出当过渡电阻为5、50、500时,线路UA、UB、UC以及IA、IB、IC的波形,并分析与所学单相接地故障时的边界条件是否符合。
注意:
1.实验报告纸上的实验器材、实验步骤、结果分析等内容都要填写完整,除实验结果(波形)应另附外,其他都在实验报告纸上完成。
2.实验步骤描述模型的搭建过程,以及各个参数数值的大小和设置过
程。
3.4.结果分析要详细且有说服力。该模型时在MATLAB7.6(MATLABR2008a)中建立的模型,其它低版本的可能打不开,建议同学们采用高版本软件运行模型。
实验二:电力系统潮流分析
采用实验一的模型,进行实验二,做出:
阻抗依频特性波形; 发挥部分:采用分析FFT变换特性以及潮流分析部分。注意:实验报告要求和实验一一样,必须严格给出实际的仿真步骤以及实验结果分析。