第一篇:先进刀具技术现状分析及发展趋势
先进刀具技术现状分析及发展趋势
钢市低迷不改 钢铁原材料市场延续弱势1-8月份桐庐蜂产品原料抽检合格率100%为户外而生 耳神探险者ER151几大优势辽宁山推开展道路机械产品专项培训(图)十二五天津节能减排综合工作实施方案解析潍柴控股集团动能公司进入“高考月”进口葡萄酒:超越价格与跟风的竞争赢创决定将美白炭黑产能提至2.2万吨广东LED出口遭“围剿”2月19日绥芬河开元经贸氯化钾行情动态新能源车将减免购置税 政府补贴改为直减2012中国水性木器涂料现场涂装大赛结果揭晓外国朋友考察福鼎茶业生产先进技术2013汇坚国际·太湖国际装备制造业博览会周五开幕7月16日湖北天舜化工磷酸一铵产销动态央视新址修幕墙大换装8月21日铝业市场新闻简要宁波市智慧物流专项扶持政策出台
进入21世纪以来,随着制造技术的全球化趋势,制造业的竞争也越来越激烈。在由机床、刀具、夹具和工件组成的切削加工工艺系统中,刀具是最活跃的因素。因此在高速加工技术广泛应用于生产的今天,高性能刀具越来越受到重视并大量取代传统刀具。虽然高性能刀具与传统刀具相比价格昂贵,甚至是传统刀具的10倍,但是使用高性能刀具仍然可以有效地降低生产成本[1]。
刀具材料、几何参数及其结构是高性能刀具设计制造最重要的关键技术。目前,先进刀具发展迅速,各种专用高性能刀具不断推陈出新。在刀具材料方面,超细晶粒硬质合金刀具和超硬材料刀具获得了广泛运用;在涂层方面,多层梯度复合涂层和高强度耐热纳米涂层也得到了长足的发展,并在航空航天、汽车船舶等领域得到应用;在刀具结构方面,将朝可转位、多功能、专用复合刀具和模块式方向发展。
刀具材料的最新进展
近年来,世界各工业发达国家都在致力于开发与高速、高效、高质切削加工相匹配的先进切削刀具材料[2]。刀具材料对刀具寿命、加工效率、加工质量和加工成本等影响很大。刀具切削时要承受高压、高温、摩擦、冲击和振动等作用,因此刀具材料必须具备如下一些基本性能:硬度高,即刀具材料的硬度必须高于被加工材料;高的强度和韧性,刀具切削部分的材料在切削时要受到很大的切削力和冲击力,因此刀具材料必须要有足够的强度和韧性;耐磨性和耐热性好,一般来说,刀具材料硬度越高,耐磨性也就越好,同时刀具的耐磨性和耐热性有着密切的关系;导热性好,导热性越好,就能降低切削部分的温度,从而减轻刀具磨损;工艺性和经济性好[3-5]。
(1)新型高速钢。
高速钢(HSS)是加入了W、Mo、Cr、V等合金元素的高合金工具钢。虽然目前可供使用的刀具材料品种较多,但由于高速钢在强度、韧性、热硬性、工艺性,特别是锋利性(刀尖半径可达12~15μm)等方面具有优良的综合性能,因此在切削某些难加工材料以及在复杂刀具(尤其是切齿刀具、拉刀和立铣刀等)制造中仍占有较大比重[6]。
(2)新型细晶粒和超细晶粒硬质合金。
硬质合金是高硬度、难熔的金属化合物(主要是WC,TiC等,又称为高温碳化物)微米级的粉末,用钴或镍等金属做粘结剂烧结成的粉末冶金制品。硬质合金是当前切削领域中应用最广泛的切削刀具材料,切削效率大约为高速钢的5~10倍。全世界硬质合金的产量增长极快,新材料、新牌号的硬质合金刀具不断出现,在全部刀具中的比重越来越大。但其工艺性差,用于复杂刀具尚受到很大的限制。
细晶粒(1~0.5μm)和超细晶粒(小于0.5μm)硬质合金材料及整体硬质合金刀具的开发,使硬质合金的抗弯强度大大提高,可替代高速钢用于制造小规模钻头、立铣刀、丝锥等量大面广的通用刀具,其切削速度和刀具寿命远超过高速钢。整体硬质合金刀具的使用可使原来采用高速钢的大部分应用领域的切削效率显著提高。为提高硬质合金的韧性,通常采取增加Co含量的方法,由此引起的硬度降低现在可通过细化晶粒得到补偿,并可使硬质合金的抗弯强度提高到4.3GPa,已达到并超过普通高速钢的抗弯强度。细晶粒硬质合金的另一优点是刀具刃口锋利,尤其适合高速切削粘而韧的材料[5]。
(3)超硬刀具。
所谓超硬刀具材料是指人造金刚石和立方氮化硼,以及用这些粉末与结合剂烧结而成的聚金刚石和聚晶立方氮化硼。由于超硬刀具具有比硬质合金更优良的耐磨性,能够适应更高的切削速度,已成为高速切削的主要刀具材料,更为重要的是能够满足难加工材料的切削需要。因此超硬刀具材料已经在整个切削加工领域中起到越来越重要的作用。
金刚石是碳的同素异形体,分为天然金刚石和人造金刚石(PCD)两种。PCD是在高温、高压和催化剂作用下,由石墨转化而成的。金刚石刀具具有极高的硬度和耐磨性,拥有锋利的切削刃和良好的导热性能,同时PCD刀具与有色金属和非金属材料间的亲和力很小,在加工过程中不易在刀尖上产生积屑瘤。目前,PCD刀具主要运用在以下两个方面[2,5]:a.难加工有色金属及其合金,如用PCD刀具加工硅铝合金时,刀具寿命可达硬质合金的50~200倍;b.难加工非金属材料,PCD刀具非常适合于石材、硬质碳、碳纤维增强塑料和人造板材等难加工非金属材料的加工[6]。因此,可以说金刚石刀具是精密加工有色金属及其合金、陶瓷、玻璃、木材等非金属材料最佳的刀具。
但是金刚石的热稳定性较低,切削温度超过700~800℃时,就会完全失去其硬度。另外,金刚石中的碳和铁具有很强的亲和力,在高温高压下,铁原子与碳原子发生相互作用,导致金刚石石墨化,从而使刀具极容易发生磨损。因此,金刚石刀具一般不用来加工钢铁等材料。
继美国GE公司于1957年首次合成立方氮化硼之后,在高温高压条件下将立方氮化硼聚合在硬质合金上,得到了复合结构的立方氮化硼(CBN)刀片。CBN刀具有聚晶烧结块和复合刀片两种,能在较高切削速度下加工淬硬钢及铸铁,以车代磨,并可高速切削部分高温合金,加工精度高,表面粗糙度相当低,而且立方氮化硼还适宜加工各种淬硬钢、Ni基、Fe基及其他一些耐磨、耐蚀的热喷涂(焊)件材料,钒钛铸铁、冷硬铸铁等耐磨类铸铁,钛合金材料等[2]。
(4)陶瓷材料。
陶瓷刀具具有很高的硬度、耐磨性能及良好的高温力学性能,与金属的亲和力小,不易与金属产生粘结,并且化学稳定性好。因此,陶瓷刀具可以加工传统刀具难以加工或根本不能加工的超硬材料。陶瓷刀具有Al2O3基和Si3N4基两大类,加入各种碳化物、氮化物、硼化物和氧化物等可改善其性能,还可通过颗粒、晶须、相变、微裂纹和几种增韧机理的协同作用提高其断裂韧性[7-9]。
目前,国产的一些晶须增韧陶瓷、梯度功能陶瓷等产品已达到国外同类刀片的性能,有的还优于国外。陶瓷刀具使用的主要原料氧化铝、氧化硅等在地壳中含量丰富,对节省贵重金属也具有重要的意义。陶瓷刀具主要应用于难加工材料的高速加工。国际上已经将陶瓷材料刀具视为进一步提高生产率的最有希望的刀具之一[10-11]。
刀具涂层的最新进展
在相对较软的刀具基体上涂覆一层或多层硬度高、耐磨性好的金属或非金属化合物薄膜(如TiAlN、TiC、TiN、Al2O3等)而形成的涂层刀具,是切削刀具发展的一次革命。涂层刀具与未涂层刀具相比,具有明显的优越性:显著降低摩擦系数,改善刀具表面的摩擦学性能和排屑能力;显著提高耐磨性和抗冲击韧性,改善刀具的切削性能,提高加工效率和刀具寿命;提高刀具表面抗氧化性能,使刀具可以承受更高的切削热,有利于提高切削速度及加工效率,并扩大了干切削的应用范围。在先进制造业中,80%以上的硬质合金刀具及高性能高速钢刀具都采用了表面涂层技术,而CNC机床上所用的切削刀具90%以上是涂层刀具[2-5]。
刀具涂层技术自从问世以来,对刀具技术的改善和加工技术起到了越来越重要的作用,已经成为现代刀具的标志。涂层刀具是通过在韧性较好的硬质合金基体或高速钢基体上,涂覆一薄层耐磨性高的难熔金属化合物而获得的,使刀具性能发生了巨大的变化。常用的涂层材料有TiC、TiN、Al2O3等,其中TiC的硬度比TiN高,抗磨损性能更好。对硬质合金,一般采用化学气相沉积法(CVD),层积温度为1000℃;而对高速钢刀具,一般采用物理气相沉积法(PVD),层积温度在500℃左右[2]。
随着涂层工艺的日益成熟和不断发展,从开始的单一涂层,进入到开发多元、多层、梯度、纳米涂层的新阶段。就目前PVD技术的发展状况,涂层薄膜结构大体可以分为单一涂层、复合涂层、梯度涂层、多层涂层、纳米多层涂层、纳米复合结构涂层[3]。
复合涂层是由各种不同功能或特性的涂层薄膜组成的结构,也称为复合涂层结构膜,其典型涂层为目前的硬涂层加软涂层,每层薄膜各具不同的特征,从而使涂层具有更好的综合性能[12-14]。
梯度涂层是指涂层成分沿着薄膜生长方向逐步变化,这种变化可以是化合物各元素比例的变化,如TiAlCN中Ti、Al含量的变化,也可以由一种化合物逐渐过渡到另一种化合物,如CrN逐渐过渡到CBC碳基涂层[15]。
多层涂层由多种性能各异的薄膜叠加而成,每层膜化学组成基本恒定。目前在实际应用中多有2种不同膜组成,由于所采用的工艺存在差异,各膜层的尺寸也不尽相同,通常由十几层薄膜组成,每层薄膜尺寸大于几十纳米,最具代表性的有AlN+TiN、TiAlN+TiN涂层等。与单层涂层相比,多层涂层可有效改善涂层组织状况,抑制粗大晶粒组织生长[16]。
纳米多层涂层结构与多层涂层类似,只是各层薄膜的尺寸为纳米数量级,又可称为超显微结构。理论研究证实在纳米调制周期内(几纳米至几十纳米),与传统的单层膜或普通多层膜相比,此类薄膜具有超硬度、超模量效应,其显微硬度预计可以超过40GPa,并且在相当高的温度下,薄膜仍可保留非常高的硬度。
正因为涂层刀具既有硬度很高、化学稳定性好、摩擦系数小的表层,不易产生扩散磨损,同时又有基体的韧性,因而切削力、切削温度都较低,能够显著提高刀具的切削性能。因此,涂层刀具已成为现代切削刀具的主流,西方工业发达国家使用的涂层刀具占可转位刀片的比例已由20世纪80年代的26%上升到目前的90%,新型数控机床所用的刀具中80%左右是涂层刀具。瑞典山特维克可乐满和美国肯纳金属公司的涂层刀片的比例已达85%以上;美国数控机床上使用的硬质合金涂层刀片的比例为80%;瑞典和德国车削用的涂层刀具都在70%以上[3,15]。我国涂层刀具起步晚,但进步快,其涂层网点遍布全国。有不少城市都有自己的涂层中心,并承接对外加工业务。我国从1970年代初就开始进行CVD涂层技术研究,80年代中期,我国的CVD涂层技术就已经进入实用化水平,其工艺水平也达到国际水平。总体而言,国内CVD涂层技术水平与国际水平相差不大。但我国1980年初才开始研究PVD涂层技术,目前国外刀具PVD涂层技术已发展到第四代,而国内还处于第二代水平,且仍以单层TiN涂层为主[16]。
刀具结构的最新进展
当前刀具结构的变革正朝着可转位、多功能、专用复合刀具和模块式方向发展,刀具结构不断创新[5]。
立铣刀采用变螺旋角的设计或者刀槽采用不等分的设计,能减小精密切削中的振动,提高表面质量;高速钢立铣刀的大前角设计明显降低了切削力,改善了排屑,在精密加工中能改善表面的完整性;硬质合金刀具的整体化使小直径刀具的刚度显著提高,甚至复杂刀具如齿轮、螺纹刀具等也采用整体硬质合金制造;整体硬质合金立铣刀采取端齿中一刃过中心设计,使立铣刀功能扩大,不用预钻孔,在一定深度范围内可实现直接向下切削。
钻头的工作条件比较差,而排屑是人们最关心的问题,所以一直在设法改进。群钻是比较典型的,但是其刃磨比较复杂;德国的Guehring公司研制了RT型钻头,其抛物线形槽增加了芯厚,加大了槽的面积;采用S型钻尖的麻花钻具有很好的定心性,能显著减小钻削轴向力,改善排屑断屑状况。
复合刀具淡化了传统的车、铣、镗、钻和螺纹加工等不同切削工艺的界限,能在一次装夹中对复杂零件进行多工序的集中加工,以减少换刀次数,节省换刀时间,还可减少刀具的数量和库存量,有利于管理和降低制造成本。较常见复合刀具有多功能车刀、铣刀,还有镗铣刀、钻-铣螺纹-倒角等各种多功能刀具。美国肯纳公司的多功能车刀可完成车外圆、端面和镗孔等工作。在CIMT2001上,德国Gun-ther公司展出的车、钻刀可在实心材料上钻平底孔、镗孔、车端面、车外圆,可将工时缩短40%。Emuge公司的螺纹铣刀,一次走刀可完成钻底孔、倒角和铣螺纹工序。日本三菱公司开发的Octacot多功能铣刀可安装八角形刀片或圆刀片,在加工中心上完成铣平面、沟槽、台阶、倒角、轮廓加工和斜面等多种加工[2,5,17-18]。
可转位刀具发展的一个重要方面是刀片断屑槽型的开发,山特维克可乐满推出的R、M和F等新槽型系列(钢材粗加工、半精加工和精加工相应采用PR、PM和PF槽型;切不锈钢时用MR、MM和MF槽型;切铸件和有色金属用KR、KM和KF的槽型)以及伊斯卡以“霸王刀”为典型的槽型设计都独树一帜。这些刀片大多是三维曲面槽型,断屑范围宽,适应性好。
结束语
随着制造技术的全球化,制造业的竞争也日趋激烈。高速切削作为先进制造技术的一项全新的共性基础技术,已经成为现代切削加工技术的重要发展方向。先进刀具在机械加工中起到了越来越重要的作用,选择合理的刀具材料、涂层及几何参数将是实现高效切削加工的关键。因此,刀具作为切削加工工艺系统中最活跃的因素已经成为实现高速切削加工的必要条件。
参考文献[1]艾兴.高速切削加工研究新进展.第九届切削与先进制造技术学术会议论文摘要集,2007.[2]邓建新,赵军.数控刀具材料选用手册.北京:机械工业出版社,2005.[3]艾兴.高速切削加工技术.北京:国防工业出版社,2003.[4]翁世修,吴振华.机械制造技术基础.上海:上海交通大学出版社,1999.[5]太原市金属切削刀具协会.金属切削实用刀具技术.北京:机械工业出版社,2004.[6]白清顺,姚英学,Zhang G,等.聚晶金刚石(PCD)刀具发展综述.工具技术,2002,36(3):7-10.[7]胥锴,刘徽平,杨天雪.陶瓷刀具材料及其发展前景.稀有金属与硬质合金,2009(3):57-60.[8]张荣波,许崇海,冯曰美,等.陶瓷刀具材料近期研究进展.机械工程师,2008(3):55-58.[9]张福豹,谢国如.陶瓷刀具在高速切削加工中的应用.机械工程与自动化,2009(12):196-197.[10]岑向东,谢国如.新型陶瓷刀具的研究.现代机械,2009(4):3-5.[11]景秀并,林滨,张琪,等.用金属陶瓷刀具加工淬硬钢薄壁件切削参数优化.组合机床与自动化加工技术,2009(4):30-35.[12] Fox-Rabinovicha G S,Weatherlya GC,Dodonovb A I,etal.Nano-crystalline filteredarc deposited(FAD)TiAlN PVD coatings forhigh-speed machining applications.Surface andCoatings Technology,2004,177-178:800-811.[13] Ninga L,Veldhuisa S C,YamamotobK.Investigation of wear behavior and chipformation for cutting tools with nano-multilayeredTiAlCrN/NbN PVD coating.International Journalof Machine Tools &Manufacture,2008,48:656-665.[14] Yoon S Y,Yoon S Y,Chung W S,etal.Impact-wear behaviors of TiN and Ti–Al–N coatings on AISI D2 steel and WC–Cosubstrates.Surface and Coatings Technology,2004,177-178:645-650.[15]梁伟,王先.现代刀具涂层技术及发展趋势.桂林航天工业高等专科学校学报,2008(1):17-19.[16]赵晓燕.对我国刀具涂层技术现状及发展趋势的认识.科技经济市场,2009(9):27-29.[17]肖曙红,张柏霖,李志英.高速机床主轴/刀具联结的设计.机械工艺师,2000(3):8-10.[18]徐进.刀具结构创新是实现高效加工的有效途径之一.广东轻工职业技术学院学报,2008(7):7-10.(end)
刀具最大利润率耐用度的可行性探讨
第二篇:先进制造技术的现状和发展趋势
先进制造技术的现状和发展趋势
摘要
近年来, 制造业出现了世界范围的研究并采用“先进制造技术”的浪潮,先进制造技术已成为当代国际间的科技竞争的重点。本文论述了先进制造技术的发展现状与发展趋势,指出:信息化、精密化、集成化、柔性化、动态化、虚拟化、智能化、绿色化将是未来制造技术的必然发展方向。
1.先进制造技术简介
1.1先进制造技术的定义
先进制造技术AMT(advanced manufacturing technology)是制造业不断吸收机械、电子、信息(计算机与通信、控制理论、人工智能等)、能源及现代系统管理等方面的成果,并将其综合应用于产品设计、制造、检测、管理、销售、使用、服务乃至回收的全过程,以实现优质、高效、低耗、清洁和灵活生产,提高对动态多变的产品市场的适应能力和竞争能力的制造技术的总称。它集成了现代科学技术和工业创新的成果,充分利用了信息技术,使制造技术提高到新的高度。先进制造技术是不断利用新技术逐步发展和完善的技术,因而它具有动态性和相对性。先进制造技术以提高企业竞争能力为目标,应用于产品的设计、加工制造、使用维修、甚至回收再生的整个制造过程,强调优质、高效、清洁、灵活生产,体现了环境保护与可持续发展和制造的柔性化。
1.2 先进制造技术的内涵和技术构成
先进制造技术的技术构成可以分为以提高生产效率和快速响应市场需求为目的的技术构成和以满足特种需求为目的的技术构成。
以提高生产效率和快速响应市场需求为目的的技术构成强调制造系统与制造过程的柔性化、集成化和智能化。包括:
(1)系统理论与技术(着重制造系统组织优化与运行优化,以提高制造系统的整体柔性与效率)。
(2)制造过程的单元技术(着重制造过程的优化,以提高单元的效率与精度)。系统理论与技术涉及范围包括:CIMS、敏捷制造、精益生产、智能制造等。制造过程单元技术涉及的范围包括:设计理论与方法、并行工程、系统优化、运行、控制、管理、决策与自组织技术、虚拟制造技术、制造过程智能检测、信息处理、状态检测、补偿与控制、制造设备的自诊断与自修复、智能机器人技术、智能数控技术、精密成型技术等。
以满足特种需求为目的的技术构成使传统制造工业与加工方法发生根本变化,其技术构成包括:
(1)精密与超精密加工、细微与超细微加工技术等。
(2)快速成型制造(RPM);激光加工;电子加工;离子加工;化学加工技术等。
先进制造技术在不同发展水平的国家和同一国家所处的不同阶段,先进制造技术的内涵和技术构成是不同的。
1.3先进制造技术的分类
(1)现代设计技术:现代设计技术是根据产品功能要求,应用现代技术和科学知识,制定方案并使方案付诸实施的技术。它是一门多学科、多专业相互交叉的综合性很强的基础技术。现代设计技术主要包括:现代设计方法,设计自动化技术,工业设计技术。
(2)先进制造工艺:现代制造工艺技术主要包括精密和超精密加工技术、精密成型技术、特种加工技术、表面改性、制模和涂层技术。
(3)自动化技术:自动化技术包括数控技术、工业机器人技术、柔性制造技术、计算机集成制造技术、传感技术、自动检测及信号识别技术和过程设备工况监测与控制技术等。
(4)系统管理技术:系统管理技术包括工程管理、质量管理、管理信息系统等,以及现代制造模式(如精益生产、CIMS、敏捷制造、智能制造等)、集成化的管理技术、企业组织结构与虚拟公司等生产组织方法。
2.我国先进制造技术的发展状况
(1)在设计方面,计算机助设计(CAD)技术普及化。计算机辅助设计(CAD)技术,是电子信息技术的一个重要组成部分,是促进科研成果的开发和转化,促进传统产业和学科的更新和改造,实现设计自动化,增强企业及其产品在市场上竞争能力,加速国民经济发展和国防现代化的一项关键性高新技术,也是进一步向计算机集成制造(CIMS)发展的重要技术基础。CAD技术的广泛应用,提高了我国企业整体的设计水平和产品开发能力。以二维CAD和产品数据管理为重点,在软件市场和企业应用方面得到充分的发挥。
(2)在应用方面,各种高新技术发展迅速,并取得了显著的成效。主要表现在以下几个方面:快速原型制造技术由起步迈向成熟,应用初具规模;精密成形与加工技术水平显著提高,在汽车零部件、重大装配制造中获得广泛应用;热加工工艺模拟优化技术取得重要进展,使材料热加工由“技艺”走向“科学”;激光加工在基础研究和技术开发方面有实质性进展,产业应用获得经济效益;数控技术取得重要进展,国内市场占有率有所提高;现场总线智能仪表研究开发获重要进展,应用已有一定的基础;现代集成制造系统研究和应用取得突破,在国际上已占有一席之地。
(3)在管理方面,新生产模式的研究和实践具有特色,推动了我国制造业的技术进步和管理现代化。通过学习和引进工业发达国家的先进管理经验,采用计算机管理,重视组织和管理体制、生产模式的更新发展,推出了准时生产(JIT),敏捷制造(AM),精益生产(LP)、并行工程(CE)等新的管理思想和技术,通过精简机构、减少管理层次和消除各种浪费现象,显著提高了企业的经营效益。
3.先进制造技术的前沿
3.1无余量精密成形技术
目前,某些中小零件经过精密成形制成的,可以做到不经切削加工或极少余量加工即可装配,因此国外某些学者提出成形的工件应该由“接近零件形状(Near Net Shape Products)”向“完全成零件形状(Net Shape Products)”发展, 即所谓的“净成形技术(Net Shape Technique)”。
3.2毫微米技术与微型机械
“毫微米技术”又称之为“超精密工程”,是高精度加工的技术前沿,据预测到2000年,普通加工、精密加工和超精密加工的精度可分别达到1um,0.01um和0.001um(毫微来一一纳米),而且“超精密工程”正在向原子级加工精度逼近。毫微米技术的发展还引发了微型机械的出现。微型机械是机械技术与电子技术在毫微米水平上相融合的产物。国外有人将毫微米技术与微型机械称为“21世纪的核心技术”。
3.3自由造型制造与快速零件制造技术
近年来国外正在发展一种崭新的称为快速零件制造一的新技术,它是将 与各种自由造型制造等新的制造技术直接结合起来,从而使直接生产出零件的实体物理模型、样件、铸模或冲模。的出现将是制造技术的一场新的变革,它将使传统的金属切削加工技术面临被部分或逐步替代的挑战。
3.4新型材料的成型、加工技术
随着材料使用结构的不断变化, 新型材料的成形、加工技术的重要性越来越突出,未来的重点是超硬材料、功能梯度材料、复合材料、工程陶瓷、非晶微晶合金及各种功能材料的某些崭新的成形,加工技术将不断出现并得到应用,如未来的超导材料成形加工技术等。
3.5极限条件下的成形加工技术
下个世纪人类的活动区间将从陆地扩展到空间和海洋。宇航工程及海洋工程提出了极限条件下真空、失空、水下高压等的成形加工技术要求,其中最重要的是空间焊接及水下切割、焊接技术。
4.先进制造技术的发展趋势
4.1信息化
信息化是制造技术发展的生长点,信息技术正在以人们难以想象的速度高速发展。网络技术特别是Internet/Intranet/Extranet技术的迅速发展,正在给制造业带来新的变化和重大影响,制造网络化是现代制造业发展的主要趋势之一。基于网络的制造技术(NMT)是指网络技术和制造技术相结合的有关技术和研究领域。NMT的技术内容框架由计算机网络技术和数据技术及其支撑下的基于网络的制造系统管理和营销技术群、基于网络的产品设计与开发技术群、基于网络的制造过程技术群、基于网络的系统集成技术群构成。NMT具有一系列的创新功能特点,如时域特点、空间特点、生产方式特点、组织模式特点等。4.2精密化
现代高新技术产品需要高精度制造,社会的发展对机械产品的质量提出了越来越高的要求。这决定了发展精密加工、超精密加工技术是机械制造未来的一个重点。目前,加工制造技术向着超精密、超高速、创新装备的方向发展。
4.3集成化
计算机集成制造(CIM)是信息技术和生产技术的综合应用,旨在提高制造企业的生产效率和响应能力。因此,企业的所有功能信息和组织管理都是一个集成起来的整体的各个部分。其通俗含义就是用计算机通过信息集成实现现代化的生产制造,求的企业的总体效益。SIM的实现方法就是CIMS。
理想的CIMS能够实现5个R:在正确的时间(Right time)将正确的信息(Right information)送到正确的地点(Right place)的正确的人(Right person),从而帮助他做出正确的决策(Right decision)他通过管理、生产控制、工程设计等子系统的集成,使企业具有快速响应市场的能力(T)、较好的产品质量(Q)、较低的生产成本(C)和较好的服务(S)。
现代制造业的方向并不只是计算机的集成,信息的集成,而是人、技术、组织的整体集成,包括功能集成、组织集成、信息集成、过程集成、知识集成和企业间的集成。
4.4柔性化
柔性制造系统(FMS)集高效、高质量、高柔性三者于一体,它既是CIMS的重要组成部分,也是当前和未来制造业的一个主要生产系统,故发达国家都把FMS当作是制造业自动化的一个重点发展领域。目前,FMS在发达国家已发展成熟,并正向规模大型化、功能复杂化(柔性制造车间)及小型化、简单化(FMC)这两极方向发展。
80年代中期以来,国外的柔性制造设备开始与CAD/ CAPP/ CAM 等自动化技术和生产管理中的MIS等进行集成,借助计算机和网络技术,将企业所有的技术、信息、管理功能和人员、财务、设备等资源与制造活动有机结合在一起,向CIMS发展,构成一个覆盖企业制造全过程(产品订货、设计、制造、管理营销),能对全厂物质流、能量流、信息流进行有效控制和集成管理的完整系统,实现全局动态综合优化、协调运作和整体高柔性、高质量、高效率,从而创造出巨大生产力。
现在柔性化不仅是指企业的制造技术柔性化,还包括生产方式柔性化,管理模式柔性化。
4.5动态化
由于先进制造技术本身是针对一定的应用目标、不断吸收各种高薪技术逐渐形成、不断发展的新技术,因而其内涵不是绝对的和一成不变的。
4.6虚拟化
虚拟制造系统(VMS)是指在虚拟环境下,以图形虚拟和仿真技术为前提,通过不消耗实际资源和能量的生产活动,生产可视的虚拟产品,并具有现实制造系统所具有的一切特征、功能及运行机制从而做出可制造性和可装配性评价及产品性能预测,做出收益和风险评价,并发现潜在的问题。
VMS是集CAD/CAM技术、计算机技术、可视技术、并行工程、快速原型虚拟逼真设计等多学科先进技术的综合应用。其关键技术中最核心的是:虚拟环境下服务于产品全生命周期的建模、分布式并行协同求解技术、全局最优化决策理论与技术,实现虚拟制造系统对实际制造系统映射的虚拟设备、虚拟传感器、虚拟车间和工厂的建立基于真实动画感的产品制造、装配、生产调度过程仿真等。
VMS的应用可以缩短产品的设计与制造周期,降低产品的开发成本,提高对市场变化的响应能力。
4.7智能化
智能制造是指综合利用各个学科、各种先进技术和方法,解决和处理制造系统中的各种问题。系统能领会设计人员的意图,能够检测失误,回答问题,提出建议方案等。
智能制造技术旨在将人工智能融进制造过程的各个环节,通过模拟专家的智能活动,取代或延伸制造环境中的部分脑力劳动,从而在制造过程中,系统能自动监测其运行状态,在受到外界或内部激励时能够自动调整其参数,以期达到最佳状态,具有自组织能力。
4.8绿色化
绿色制造技术是指在保证产品的功能、质量、成本的前提下,综合考虑环境影响和资源利用的一种现代制造模式。其主要技术是:
(1)绿色设计技术。在产品设计阶段就考虑在其生命周期全过程的无污染、资源低耗和回收。
(2)清洁生产技术。清洁生产(Clean Production)或称清洁工艺(Clean Technology)技术,是近年来,根据社会、环境要求而发展的一种新型生产技术。它与一般的环保技术的区别在于要求将加工过程产生的废物减量化、资源化、无害化,使污染尽量消灭在生产过程之中,以达到末端排放最小的目的。
(3)拆卸回收技术。
(4)生态工厂的循环制造技术。
(5)ISO140000环保管理标准。
4.9快速化
快速化是指对市场的快速响应,对生产的快速重组。它要求生产模式有高度的柔性与高度敏捷性。快速化能强有力地推动着制造技术的进步与发展,它是先进制造技术发展的“动力”。
4.10全球化
新世纪制造业将从单一企业或企业集团为主的竞争模式发展成为完全调和、多企业共同合作的全球化生产体系的竞争,全球化的制造系统将成为21世纪的主要制造模式。面向全球制造环境(GME)的制造技术主要有:面GME企业动态联盟;面向GME的并行产品设计技术;面向GME的异地设计与制造技术;面向GME的产品信息集成技术;面向GME的并行产品集成开发系统等。
先进制造技术的竞争正在导致制造业在全球范围内的重组,新的制造模式不断出现,更加强调实现优质、高效、清洁、灵活的生产。
5.结束语
近几十年来,以微电子、信息、新材料、控制论、系统科学等为代表的科学与技术的迅猛发展及其在制造领域的广泛渗透、应用、融合与衍生,极大地拓展了制造活动的深度和广度,急剧地改变了现代制造业的设计方法、产品结构、生产方式、生产工艺和设备以及生产组织结构,产生了一大批新的先进的制造技术和制造模式。新世纪的制造业将成为发展速度快、技术创新能力强的技术密集乃至知识密集的产业部门。
工业发达国家都把先进制造技术作为国家级关键技术和优先发展领域。经过近几十年的发展,我国的制造工业已经取得了长足的进步。但和先进国家相比还存在很大差距。主要表现在:技术投入相对不足,原有技术基础和研究开发能力薄弱,制造业产品落后,技术水平低,信息含量少,更新换代慢,以及市场营销、经营管理、人才素质相对落后,缺乏国际竞争能力等方面。面对这样形势,我们必须注重科技人才的培养,大力发展对高新技术的研究,加强政策与法规建设,建立与发展我国自主的NC,CAD/CAM,FMS,CIMS,IMS等制造自动化单元技术,提高制造业现代化管理水平,发展适应我国国情的生产模式。努力缩小我国与先进国家之间的差距,使我国的制造业站在世界先进行列。
参考文献
【1】王章豹,刘光复等 发达国家先进制造技术发展趋势述要.合肥工业大学学报。1999(12)【2】李敏贤.面向21世纪的先进制造技术.机械工业自动化.2002(12)【3】朱世和,孙其新.面向新世纪的先进制造技术和生产模式.天津理工学院学报.1998(12)【4】戴俊平.先进制造技术的体系结构及发展.陕西工学院学报.2002(12)
【5】房贵如,刘维汉.先进制造技术的发展及国内外水平对比分析.机械科学研究院
【6】姚小群,陈统坚.展望新世纪的制造技术.东莞理工学院学报.2002(12)【7】陈国权.先进制造技术系统研究开发和应用的关键——人的因素.中国机械工程.1996
第三篇:最新刀具材料发展趋势
摘要:本文主要简要介绍切削刀具材料的分类以及重要性,并根据切削刀具发展要求展望各类切削材料方趋势。
关键字:切削刀具材料;刀具的分类;发展方向
1.概述
1.1 内涵
在21世纪未来的岁月里,切削加工仍将是机械加工最主要的方法。其中,刀具材料起着至关重要的作用。切削刀具材料指的是用于制作刀具的材料,该刀具不仅对普通钢,铸铁等一般材料加工,还要对铝合金,高硬度钢,钛合金,复合材料等超硬超软材料的加工。目前主要切削刀具材料包括:硬质合金、金属陶瓷、陶瓷、超硬材料、高速钢等。1.2 重要性
刀具材料性能的优劣,直接影响切削加工能否正常进行。为了保证提高加工效率和加工质量,同时降低加工费用,刀具材料的性能必须优良,并向更高水平发展。在切削加工中,刀具费用约占加工总费用的5%。加工效率和机床、人工等费用受到刀具工作状况的严重制约。只有在刀具正常工作和运转的情况下,加工效率才能得到提高,加工总费用才能保持正常或减少;反之,切削加工不能正常进行,甚至被迫停止。刀具切削性能的好坏,取决于构成刀具的材料、几何参数及其结构,其中刀具材料对刀具耐用度、加工效率和加工质量等的影响最大。随着生产技术的进步,高速切削已成为切削的发展趋势,它所采用的速度比常规切削速度高几倍甚至十几倍,切削温度很高。因此,高速切削对刀具材料提出了更高的要求。研究表明,高速切削时,随着切削速度的提高,切削力减小,切削温度上升很高,达到一定值后上升逐渐趋缓。造成刀具损坏最主要的原因是切削力和切削温度作用下的机械摩擦、粘结、化学磨损、崩刃、破碎以及塑性变形等磨损和破损,因此高速切削刀具材料最主要的要求是高温时的力学性能、热物理性能、抗粘结性能、化学稳定性(氧化性、扩散性、溶解度等)和抗热震性能以及抗涂层破裂性能等。
2.刀具的分类及发展方向
2.1 硬质合金
硬质合金是以WC等难熔金属碳化物为基体,以Co等过渡族金属为粘结相,采用粉末冶金方法制备的材料。硬质合金具有高强度、高硬度、高弹性模量、耐
磨损、耐腐蚀、热膨胀系数小以及高化学稳定性等优点,是目前最主要的切削刀具材料,超细硬质合金、涂层硬质合金是其在未来最主要的发展方向。
刀具材料性能的两个关键指标—硬度和强度之间总存在着矛盾,超细硬质合金是解决这种矛盾的重要途径。目前国内外在超细硬质合金原料、晶粒长大抑制、制备工艺等方面的研究已取得突破性进展。超细WC-Co硬质合金在印刷电路板打印针、金属切削等领域得到了广泛应用。但一方面,目前市场上多为亚微晶粒硬质合金(0.6~0.9µm),而真正的超细硬质合金材料(<0.5µm)十分少。晶粒超细化可获得强度硬度 “双高”的性能,因此晶粒度小于0.5μm的硬质合金材料目是未来超细合金研究和发展的方向,而超细硬质合金制备过程中的均匀性,晶粒度控制等仍是需要解决的问题。另一方面,目前超细硬质合金主要是K类,而应用更广泛的P、M类硬质合金的超细化的研究在国内外也已经得到重视。
上世纪70年代出现的刀具涂层技术是刀具发展史上的一个里程碑,涂层技术得到了高速发展。采用各种涂层技术在硬质合金基体上涂覆上一层或者多层高硬度、高耐磨损性能的材料,可显著提高刀具的使用性能。在工业发达国家中,涂层刀具材料占全部刀具材料使用量的70-80%。涂层硬质合金在未来主要关注的三个方面,即优质涂层基体的开发、涂层材料的开发及纳米化、涂层技术的改进的新技术开发。梯度硬质合金表面富Co、具有良好的抗涂层裂纹扩散能力,研究梯度结构的形成过程,精确控制梯度结构硬质合金微观组织,使其成为优质的涂层基体。同时强韧性优异的涂层基体新材质的开发也非常重要。目前的涂层材料包括TiC、TiN、Al2O3、TiAlN等,开发新的耐磨涂层材料及组合,制备具有纳米级晶粒度的涂层组织是获得高切削性能的保证。目前的涂层技术主要包括CVD、PVD等,但CVD存在温度高、使用有毒性的气体等缺点; PVD方法是在500℃或者低于500℃下进行的,膜基体结合力有待提高,改进目前的涂层工艺和开发新的涂层技术非常必要。2.2 金属陶瓷
Ti(C,N)基金属陶瓷刀具有更好的红硬性,耐磨性和化学稳定性,与金属间的摩擦系数极低,抗粘刀能力强,有利于提高加工件的表面光洁度和控制尺寸精度,可用于制成微型可转位刀片,用于精镗孔、精孔加工和以车代磨等精加工领域,其功能填补了传统WC-Co系硬质合金与Al2O3陶瓷刀具之间的空白,是一种大有前途的刀具材料。必须指出的是,与大量使用W、Co的稀缺战略资源硬质合金相比,金属陶瓷以相对丰富的Ti和Ni为主要原材料资源,具有明显的资源优势。目前,金属陶瓷发展最好的日本,其切削刀具中金属陶瓷(绝大部分是Ti(C,N)基金属陶瓷)已经占到30%以上。美国的切削刀具市场上,金属陶瓷刀具已占5%以上,且仍在增加。我国作为世界第一大硬质合金生产国与消费国,年产硬质合金15000吨左右(占世界1/3),金属陶瓷刀具占不到0.5%,有很大的发展空间。
金属陶瓷材料具有耐高温、耐磨损耐腐蚀、高硬度重量轻等优点但其致命的弱点是脆性大这不仅限制了现代陶瓷材料的应用范围也限制了其优良性能的发挥。因此进一步提高金属陶瓷刀具材料的断裂韧性和抗弯强度仍然是目前研究的热点问题之一。通过成分改进、晶粒细化和表面涂层等工艺,使其性能进一步提高。预计金属陶瓷刀具材料将代替 WC 基硬质合金,成为整个刀具材料中的新生力量,甚至占据硬质合金的主要刀具材料的地位。2.3 陶瓷材料
陶瓷刀具材料是以氧化铝或氮化硅等为主要成分,加微量添加剂,经冷压制成形后烧结而成,是一种廉价的非金属材料。它具有高硬度和高温硬度,在1200℃时硬度达58HRC,可加工硬度高达65HRC的高硬度难加工材料;化学性能稳定,耐氧化,摩擦因数低,刀具耐用度比硬质合金提高几倍至几十倍,切削效率提高3~10倍。而且使用陶瓷刀具,可节约大量的贵重金属W、Co、Ni及Ti等。
陶瓷刀具是最有发展潜力的高速切削刀具,目前已引起世界各国的重视。在德国约70% 加工铸件的工序是用陶瓷刀具完成的, 而日本陶瓷刀具的年消耗量已占刀具总量的8%~10%。中国开发的陶瓷与硬质合金的复合刀片, 其工作表面既有陶瓷材料高的硬度与耐磨性, 而基体又有硬质合金较好的抗弯强度, 故能承受冲击负荷, 并解决了陶瓷刀具镶焊困难等问题, 为推广使用陶瓷刀具创造了条件。
但由于其强度低、韧性差,陶瓷刀具未能在我国广泛推广应用。为解决韧性差,纳米化技术已成为重要的研究方向,以提高韧性,可以预料,随着高速切削、干式切削和硬切削应用的增多,陶瓷刀具必将得到高速的发展。2.4 超硬刀具材料
超硬材料是指聚晶金刚石(PCD)和聚晶立方氮化硼(CBN)。PCD(Polycrystalline diamond)是结构取向不一的细晶粒金刚石烧结体,由于PCD烧结体表现为各向同性,因此不易沿单一解理面裂开。PCD刀具因其良好的加工质量和加工经济性在非金属材料、有色金属及其合金材料、金属基复合材料等切削加工领域显示出其它刀具难以比拟的优势。随着PCD刀具理论研究日益深入,尤其在提其化学稳定性方面的进展,PCD刀具在切削刀具领域的地位将日益重要,其应用范围也将进一步拓展。
PCBN(Polycrystalline Cubic Boron Nitride)是由许多细晶粒CBN聚结而成的CBN聚集体的一类超硬材料产品。它除了具有高硬度、高耐磨性外,还具有
高韧性、化学惰性、红硬性等特点,能够在高温下实现稳定切削,特别适合加工各种淬火钢、工具钢、冷硬铸铁等难加工材料。PCBN刀具切削锋利、保形性好、耐磨性能高、单位磨损量小、修正次数少、利于自动加工,适用于从粗加工到精加工的所有切削加工。目前的新型的PCBN刀具比起那些早期缺乏韧性的牌号有了革命性的变化。PCBN刀具的设计和用途也出现了许多新的进展,PCBN刀具能够更加广泛地满足特殊工件材料加工过程的要求,改善加工性能,扩大应用范围。PCBN在数控切削行业已得到广泛应用,是一种具有良好发展前景的刀具材料。2.5 粉末高速钢(PMHSS)
高速钢是一种传统的刀具材料尽管高速钢材料在全世界的销售额正逐年减少,但粉末冶金高速钢的使用量仍在不断增加,这种高性能高速钢比普通高速钢具有更好的耐磨性、红硬性和使用的可靠性。
粉末高速钢(PMHSS)通过把高速钢微细粉末用特殊方法成形并烧结而制成的高速钢材制品。PMHSS是高速钢中的上品,它的特点在于无论尺寸大小和形状如何,都具有组织均匀,晶粒细小,消除了熔铸高速钢难以避免的偏析,因而比相同成分的熔铸高速钢具有更高的韧性和耐磨性,同时还具有热处理变形小、锻轧性能和磨削性能良好等优点。研究表明,用微量的氮置换粉末高速钢中的一部份碳,不仅能增加强度,而且韧性、耐磨损性、耐热性都获得提高。关键在于掌握氮含量的控制技术。
PMHSS工艺技术随着粉末冶金技术日新月异的发展,将会涌现出一系列新技术、新工艺,如粉末冶金注射成形、热压成形、流动热压成形、高速压制成形、微波烧结、烧结硬化等。PMHSS工艺技术正朝着高致密化、高性能化、集成化和低成本化等方向发展,在未来,高速钢仍在切削领域占有一席之地。展望
综上所述,随着社会进步和科学技术的发展,在航空、航天、船舶、电子、汽车等领域对刀具材料提出了越来越高的要求。由加工工艺的多样性造成对刀具材料需求的多样性,提高各类刀具材料性能,进一步提高刀具材料耐磨性和韧性是未来刀具材料发展的主流。
在现代刀具材料中,含有多种金属成分和非金属成分。有些在大自然中蕴藏丰富,取之不尽,用之不竭;但也有些储藏量有限,制约着刀具材料的发展。高速钢和硬质合金是目前用得最多的2种材料,其成分为W、Mo、Cr、V、Ti、Co等。如传统的钨高速钢W18Cr4V中含W达18%,钨钴类硬质合金含WC92%~97%,钨钛钴类硬质合金合WC66%~85%,通用类硬质合金含WC82%~85%,普通高速钢
中不含Co,高性能钴高速钢中含Co量高达8%~10%,各类硬质合金中含Co量为3~10%。中国W资源丰富,除本国使用外,还大量出口。全世界使用的W原料,约75%~80%来自中国。中国W的蕴藏量尚够用50年,半个世纪后将发生枯竭。Co的情况与W不同,中国Co资源缺少,大部分依赖进口,价格昂贵。故在刀具材料的应用与发展中应十分注意节约W和Co,具体建议是:
(1)发展钨钼和钼钨高速钢,用Mo代替一部分W。如W6Mo5Cr4V2高速钢中W只占6%,Mo占5%。其使用性能与W18Cr4V相当。
(2)发展无钴或少钴的高性能高速钢。目前中国在这方面已做出了很大贡献。如自行研发的W6Mo5Cr4V2Al(M2Al)、W12Mo3Cr4V3N(V3N)和W12Mo3Cr4V3Co5Si(Co5Si),都节约了Co资源,而使用性能均能完全可与美国的知名产品110W1.5Mo9.5Cr4VCo8(M42)相媲美。M42的综合性能很好,但Co含量高,价格贵,不适合中国国情。
(3)发展金属陶瓷,用TiCN或TiC作基体,不含WC或少含WC,粘结剂用Ni、Mo。这样就节约了W和Co。与WC基硬质合金相比,金属陶瓷的硬度较高,与工件材料之间的摩擦系数较小,耐磨性更强;不足之处是抗弯强度和冲击韧性稍低,故其使用受到一定限制。用Ni、Mo作粘结剂,可节约Co;若能成功地用Fe作粘结剂,则意义更大。发展金属陶瓷对节约资源有重要意义。
(4)发展陶瓷和PCBN。在它们的组分中,都没有贵重金属,使用性能常优于硬质合金;唯韧性不足,可加工性不好,在使用上受到限制;另外,由于工艺成本的原因,其价格竞争力尚不够强。应改变组分,改进工艺,降低价格,使陶瓷和PCBN刀具进一步推广使用。
(5)发展人造金刚石。金刚石的原料并不贵重,而且是最硬的刀具材料,可用以代替硬质合金加工高硬的非铁金属和非金属材料,从而节省了W、Wo资源。对有色金属进行精密切削,更是非金刚石刀具莫属
对材料发展的看法
21世纪刀具材料必定有更快的发展。(1)刀具材料的发展要适应加工对象的需要,尤其是难加工材料应用的需要。航空、航天工程材料应当处于领头的位置。(2)刀具材料的新发展不断对它们的制造工艺提出新要求,而制造工艺的进步推动着刀具材料的新发展。(3)刀具材料的发展要考虑资源的储有量,应当优先
发展储存量大的刀具材料,节约贵重资源的刀具材料。
参考文献
[1]王宝友,崔丽华.陶瓷刀具的发展与应用[J].工具材料,2001,35:3-7 [2]熊 继.超细TiCN金属陶瓷的制备及性能[J].粉末冶金技术,2003,21(2):92-95 [3]贾佐诚,陈飞雄,吴诚.硬质合金新进展[J].粉末冶金工业,2010,20(3):52-55 [4] Xin Deng,Mechanical Properties of a hybrid cemented carbide composite[J].Refractory Metals and Hard Materials.2001,19:547-552 [5]周建华.国内外新型复合硬质合金材料的发展动态[J].超硬材料工程, 2009,21(2):33-39 [6] Kang wantrakool S, shinohara,K.,Recent advances in tungsten-based hardmetal [J].Journal of chemistry Enginering of Japan, 2001, 34:1486-1492 [7] 叶伟昌.超硬硬质合金发展得新动态[J].产品信息.2002,2:66-69 [8] 庞俊忠,王敏杰,李国和.高速切削淬硬钢的研究进展[J].中国机械工程(增),2006,17,421-425 [9]闫建新,李在元.粉末高速钢的研究进展[J].硬质合金,2010,27(5):316-320 [10]Belyanchikov,L.N.New high-nitrogen corrosion-resistant tool and high-speed steels[J].Russian Metallurgy(Metally),2008(8):761 [11]Giménez S,Zubizarreta C,Trabadelo V and Iturriza I.Sintering behaviour and microstructure development of T42 powder metallurgy high speed steel under different processing conditions[J].Materials Science and Engineering,2008,480(1-2):130-142
第四篇:刀具材料的现状
刀具材料的现状与运用
俗话说好钢用在刀刃上,由此可以看出材料对刀具有着重要的影响,20世纪刀具材料大发展历史时期——各种难加工材料出现和应用,先进制造系统、高速切削、超精密加工、绿色制造发展和付诸实现,对刀具提出了全新要求,令刀具品种、类型、数量和性能均比过去有了长足发展。刀具材料与工件双方交替发展和相互促进,成为切削技术不断向前发展的历史规律。在未来,刀具材料必将面临工件材料性能提高、加工批量加大和制造精度提升的更严峻挑战。材料科学的进步,推动了刀具材料的发展;而刀具材料的发展,应考虑原材料资源的制约。新品种的出现,新旧品种各自所占比重的变化以及它们之间相互竞争和相互补充的格局,将成为未来刀具材料发展的新特点。下面就谈谈现代新型材料及其应用 一 高速钢
在现代切削加工中,高速钢的性能已不够先进,但因其稳定性好,能接受成形加工,目前在刀具材料总消耗量中高速钢刀具仍占到40%。传统的普通高速钢以钨系的Wl8Cr4V和钨钼系的W6Mo5Cr4V2为代表。所有的高速钢中,铬含量均保持在3.5%~4.5%,它是增大高速钢淬透性的主要元素。而如若钒含量分类增加,钢的耐磨性将随之提高,但会使刀具接受刃磨困难,且脆性增加。铝元素在钢中能生成AL2O3、AlN;且起钉扎作用,阻止位错,从而提高了材料的硬度和强度。
加入钴元素后,可形成超硬高速钢,钴不形成碳化物,但能提高淬火温度,增强二次硬化效果,提高高温硬度。中国缺钴资源,钴价昂贵,因而研制了无钴或少钴的超硬高速钢——它们的性能都能达到M42的水平。可以说,中国在发展无钴、少钴超硬高速钢方面,做出了很大贡献。值得一提的是,用粉末冶金方法制造高速钢,可减少有害杂质,有利于消除碳化物偏析,提高钢的硬度和韧性。粉末高速钢的切能性能优于熔炼高速钢,国内也掌握这方面的技术。今后,中国应发展和使用性能优良的钨钼系或钼钨系高速钢,少用钨系高速钢以节约W;发展和使用无钴和少钴超硬(高性能)高速钢,尽量不用高钴高速钢(如M42,HSP-15)。中国已大量使用涂层高速钢刀具,亦已掌握涂层工艺,但粉末合金高速钢刀具尚属空白。在工业先进国家,粉末冶金高速钢刀具已占高速钢总量的10%,因其性能优越,可有效提高刀具寿命和设备利用率,所以尽管这种刀具的价格较贵,仍能在总体上降低加工成本。近年,国内个别钢厂和工具厂已能制造粉末冶金高速钢,如能保证质量且性能稳定,应推荐机械制造厂采用。笔者认为,中国应大力研制粉末冶金高速钢。二 硬质合金
硬质合金是碳化物(WC、TIC等)的粉末冶金制品,新型硬质合金有下列6种。①添加TaC和NbC的硬质合金:添加后能有效地提高常温硬度、高温强度和高温硬度,细化晶粒,提高抗扩散和抗氧化的能力。此外,还能增强抗塑性变形的能力。
②细晶粒和超细晶粒硬质合金:晶粒细化后可提高合金的硬度和耐磨性,适当增加钴含量后还可提高抗弯强度。普通刀具牌号和合金平均晶粒尺寸为2~3mm,细晶粒合金为1~2mm,亚微细晶粒合金为0.5~1mm,超细晶粒合金为0.5mm以下。我国硬质合金刀具已达细晶粒和亚微细晶粒的水平。
③TiC基和Ti(C,N)基硬质合金金属陶瓷:在YT,YG,YW合金中,WC是主要成分,并以Co为黏结剂;TiC基合金则以TiC为主要成分,不含或少含WC,以Ni-Mo作黏结剂。
④添加稀土元素的硬质合金:添加少量稀土元素,可有效提高合金的韧性和抗弯强度,耐磨性亦有一定提高。这类合金最适于粗加工刀具牌号,亦可用于半精加工牌号;在矿山工具、顶锤、拉丝模用硬质合金中亦有广阔发展前景。我国稀土元素资源丰富,在硬质合金中添加稀土的研究有所领先。P,M,K类合金都已研制出添加稀土的牌号。
⑤表面涂层硬质合金:涂层硬质合金的表面硬度和耐磨性完全反映TiC等涂层材料自身的性能,故可提高刀具寿命和加工效率,降低切削力,提高已加工表面质量。近20年来,涂层硬质合金刀具有了很大发展,在工业先进国家已在可转位刀具中占50%~60%以上。
⑥梯度硬质合金:这是近年来发展起来的新品种,各层成分可根据需要加以调节。综述可知,各种硬质合金全都在提高水平,扩大其使用范围。在21世纪中,硬质合金刀具材料将重点在两方面发展:一是细化晶粒,提高韧性与抗弯强度,从而扩大应用,进一步代替高速钢刀具。将晶粒尺寸达到纳米级,抗弯强度可达到2.5~3.0GPa以上。二是发展金属陶瓷,用TiC和Ti(C,N)代替WC,以节约W资源;用Ni和Mo代替Co,节约Co资源。现在的问题是,金属陶瓷的韧性尚逊于WC基硬质合金,在这方面要加强研究,争取突破。三 陶瓷
陶瓷刀具材料分为3类:氧化铝基陶瓷;氮化硅基陶瓷;复合氮化硅——氧化铝陶瓷。陶瓷的高温性能优于硬质合金,故适用于高速切削。Al2O3基和Si3N4基复合陶瓷都适合切削淬硬钢、高硬铸铁及一般铸铁;Al2O3基复合陶瓷亦能有效地切削未淬硬钢料,而Si3N4基陶瓷切削一般钢材时磨损迅速。
陶瓷的硬度稍高于硬质合金,但其脆性很大,韧性不足,可加工性很差,故应用受到限制。今后的发展方向在于增韧,用细化原料的粒度,添加ZrO2、TiB2或SiC晶须等方法,可在一定程度上提高陶瓷材料的韧性。四 超硬刀具材料
超硬材料是指金刚石和立方氮化硼(CBN),它们的硬度比其他刀具材料高出好几倍。金刚石是自然界中最硬的物质,CBN的硬度仅次于金刚石。近年来,超硬刀具材料发展迅速。
金刚石刀具材料分为5类:天然金刚石(ND);人造聚晶金刚石(PCD)和人造单晶金刚石;人造聚晶金刚石复合片(PCD/CC);金刚石薄膜涂层刀具(CD);金刚石厚膜刀具(FCD)。ND的结晶各向异性,在进行刀磨的使用时必须选择适宜的方向。人造金刚石各向同性,其硬度低于ND,但强度与韧性高于ND。
金刚石刀具能够有效地加工非铁金属材料和非金属材料,如铜、钨等有色金属及其合金、陶瓷、硬质合金、各种纤维和颗粒加强复合材料、塑料、橡胶、石墨、玻璃和木材等,但金刚石忌切钢铁及其他铁族金属。
TFD综合性能很好,兼有天然金刚石和人造聚晶金刚石的优点,与基底结合牢固,便于
多次重磨,故有良好应用价值和发展前景。CBN的制造方法与PCD或PCD/CC相似。以六方氮化硼为原料,经高温高压制成聚晶CBN或复合片CBN/CC。CBN主要用于加工淬硬钢、高硬铸铁及其他硬金属与非金属材料。
可以预见,金刚石刀具在21世纪将有大发展,它除了不能加工钢铁和铁族金属以外,在非铁金属和非金属材料的加工方面,有非常优越的应用价值。如汽车工业中的铝硅活塞和航空航天工业中的有色金属精密零件的加工都离不开金刚石刀具。笔者认为,今后人造单晶金则石刀具和CD、TFD金刚石镀膜(涂层)刀具将有较大发展。
近年,CBN的制造工有了改进,成本有所降低;同时,通过改硬质相和黏结相的配比和黏结材料的种,使其韧性显著提高。近年,在汽剎毂(灰铸)和冶金工辊(淬硬和高硬)的加工,得到了广泛应用。我相信,CBN刀具将有大发展,到21世纪末,可能将替代相当数量的硬质合金刀具和陶瓷刀具,成为应用最广的刀具材料之一。从技术角度说,CBN应改进在加工一般硬度和中硬材时效果不显著的缺陷。
近年来还出现了一种崭新的超硬刀具材料。用磁控溅射法在高速或硬质合金刀具上可沉积氮化碳(CxNy)薄膜,根据体弹模量计算,它能达到甚至超过金刚石的硬度。其他性能也与金刚石十分相似。在高速刀具(如麻花钻)上涂覆这种薄膜来加工钢件,刀具命比涂前可提高8~10倍。在硬质合金刀片涂覆亦有一定的效果,但不如高速刀具显著。因此,CxNy涂层刀具也是未来刀具的重要展方向。
现在,高速钢和硬质合金仍用得最多两种刀具材料,但硬质合金占比已扩大到60%。可以看到,经过半个世纪“攻城掠地”,硬质合金竟然占领了如此广阔阵地,应该也当初人们始料不及。但它仍不能满足现代高硬度工件材料超精密加工要求,于在20世纪30年代出现了氧化铝陶瓷,后来又有氮化硅陶瓷。到50年代和60年代又制造出人造立方氮化硼和人造聚晶金刚石,它们硬度明显高于其它刀具材料。陶瓷硬度稍高于硬质合金,但其韧性和可加工性则又逊于硬质合金。
参考文献
[1] 吴岳坤主编 金属切削原理与刀具 北京 机械工业出版社 1978 [2] 杨叔子主编 机械加工工艺 北京 机械工业出版社 2003 [3] 汪定伟等,敏捷制造的EPR及其决策化[M].北京:机械工业出版社,2003. [4]《机械设计与制造工程》2001年第30卷第1期
[5] 《刀具制造工艺基础》傅水根主编,清华大学出版社出版,03年第1次印刷
第五篇:国内外核电仪控技术的现状和发展趋势分析(本站推荐)
5月26日,第一届中国(国际)核电仪控技术大会在北京召开,包括国家核安全主管部门、电力企业、科研院所以及核电仪控设备供应商等方面的200余名专家,对国内外核电仪控技术的现状和发展趋势进行交流与研讨。
全数字化是发展趋势
核电站从工程管理、工程设计、设备制造、工程建设、安全运行和退役,无一不体现高端技术。仪控系统就是其中一项重要的组成部分。
中核集团科技委副主任、中国工程院院士叶奇蓁认为,虽然国内核电行业采用数字化控制系统还处于起步阶段,但随着全球信息化和数字化技术的迅猛发展,核电仪表控制系统的数字化是当前核电技术发展的必然趋势。
日本福岛发生核事故之后,客观上对核电安全的要求提高,这也给仪控设备行业带来了新的发展机遇,同时也对仪控技术与装臵的研究、设计、制造、选型、应用、维护提出了越来越高的要求。全数字化仪控系统的应用将对确保核电厂的安全、可靠、经济运行,起到至关重要的作用。
作为全数字化仪控系统在国内首次应用的江苏田湾核电站,其出色的运行业绩为核电站仪控领域的发展提供了良好实践。全数字化仪控系统降低了人为误操作引起的非计划停堆停机的概率,并从软件和硬件上确保了电站安全系统的高可靠性;全数字化仪控系统自田湾核电站投入临时运行至今一直稳定运行,从未发生由于系统软件或硬件原因造成的非计划停堆;与传统的模拟仪控系统相比,数字化仪控系统大大提高了核电厂运行的效率、安全性和可靠性。
田湾核电站的投运,标志着国内核电市场全数字化仪控时代已到来,目前在建的核电站均采用了全数字化的仪控技术。
何为数字化仪控系统
据北京广利核系统工程有限公司总工程师朱毅明介绍,核电仪控系统是核电站“神经中枢”,体现了工业控制领域的前沿技术,可分为模拟、模拟加数字、全数字三种类型,经历了三代的发展过程。
最早是上世纪60年代,核电站是完全基于模拟组合仪表和继电器的设计,这种设计还是比较可靠的,状况良好,尽管功能比较简单,维修起来比较费劲,但运行效果还是不错的。
目前在国内的核电站基本上都是第二代,控制系统基本沿用了模拟单元组合式仪表,加入了计算机数据采集系统(DAS),包括数据的采集、显示、报警和日志记录、趋势的记录等,与国内上世纪80年代火电厂的技术水平差不多。
全数字化的核电站仪控系统是第三代产品,它的控制层、监控层完全计算机化,实现先进主控室的设计,控制回路也根据计算机化的特点进行了改进,而不是把原来模拟系统的逻辑图、原理图直接拿过来用计算机实现。计算机系统是有其特点的,所以必须改进之后才能应用于DCS(分散式控制系统),田湾核电站是世界第一家使用全数字化控制系统的新建核电站。
在大亚湾和秦山核电站,反应堆保护系统是组合式模拟仪表加继电器逻辑;到上世纪90年代,岭澳等核电站加入了采集系统,在主控室有几个终端来显示采集的数据和报警,模拟操作盘台加上数字化采集系统,常规岛与一般的火电厂基本相同,采用DCS,核岛控制系统比较重要,沿用了组合式仪表。2000年以来,田湾等在建的核电站都用到了全数字化的控制系统, 主控室模拟盘大大缩小,甚至只剩下一个紧急操作盘,保护系统也升级为基于核安全级的DCS。
朱毅明把核电仪控系统分为三个层次:
一是仪表和执行器层次。核电站仪控系统的最基础层次是仪表和执行器层,无论是火电、核电、轻工、化工、石化,与主设备打交道的主要是传统的变送器(如无线压力变送器)、传感器和执行器等。目前在核电站中大部分都是采用模拟技术,数字化技术很少采用,在信号传输方面也没有采用现场总线技术。
二是控制层次。控制层基于数据采集单元、DCS控制站和PLC产品,完成现场信号输入输出、自动控制和保护功能。
三是监控层次。传统的主控室基于老式的模拟盘,有点像上世纪70年代火电厂的大型模拟操作盘,上面有一些计算机化的数据采集系统。新型的主控室已经取消了模拟盘,完全采用计算机化的操作界面,每个操作员面前会有5~6台操作终端,但会保留有少量的后备手动操作手段,作为计算机系统的后备。
仪控系统安全分级
据朱毅明介绍,各国对核电仪控系统设备的安全分级有很多种方式。比如,欧洲和美国的分类方法就不相同。美国只有核安全级(lE)和非安全级(NC),欧洲的分类方式比较复杂,在欧洲主导的IEC 61226 标程中,将安全性重要的仪控系统分为A、B、C 三个等级。
在美国,仪表和执行器层次由安全级和非安全级设备组成,安全级设备中包括一些核专用的核测仪表,如中子通量的测量和与反应堆相关的特殊的变送器、传感器。除此之外,还要用到很多核级的常规仪表。这种核级设备的设计制造,需要取得国家颁发的许可证。在非核级的设备中,除了一些核电站、反应堆专用的仪器仪表,大多是压力、流量、温度传感器和变送器,与普通发电设备应用的没有太大的差异,这部分设备的量也是很大的。
在控制层,分为核岛、常规岛、BOP等部分。核岛的运行控制要归到核安全级系统,因为其保证电厂处于正常稳定的运行工况。核安全级系统包括反应堆保护系统、专设安全设施控制(安注、安喷、辅助给水、安全壳隔离等),还有一些相关的测量系统。如棒控棒位系统、堆芯测量系统。常规岛部分基本全是非安全级的;BOP 部分也基本上是非安全设备,如放射性废物处理、压缩空气、除盐水、制氢、辐射监测、安防系统等。在监控层,除了主控室外,还有远程停堆操作站,当主控室不可用时,操作人员可以在远程停堆操作站停止反应堆反应。
数字化仪控系统安全分级
据朱毅明介绍,核电数字化仪控系统也分为非安全级(NC)、安全级(1E)二类。非安全级主要完成机组在运行状态下的自动控制和监控操作,也叫做运行仪控系统;安全级主要完成在事故工况下的保护和事故缓解功能,主要包括反应堆跳堆、专设安全设施控制、事故后监视等功能。
一、非安全级DCS。从核电站方面讲,核电站不愿意采用数字化控制系统有二个顾虑。一是因为数字化控制系统都是采用冯诺依曼计算机基本结构,这种结构的计算机会不会在某种特定情况下导致全部失效? 比如2000年世界范围内曾经爆发过“千年虫”。二是软件的可靠性问题。软件的可靠性问题是一个世界级的难题,很难对软件的可靠性进行量化评估。国外对于硬件的可靠性已经研究了几十年,是可以应用概率论的方法进行量化的。复杂软件的缺陷是不可避免的,如果要求将数字化仪控系统软件的所有条件组合进行全覆盖测试,将是一个天文数字,没有任何人任何国家能够做到。所以,造成了核电场对使用基于软件的数字化仪控系统是非常谨慎的。一般情况下安全级、非安全级采用不同厂家的设备或不同设计技术的设备,这是一种多样化的措施,可以避免控制系统和安全系统同时出现问题的情况。
核电站非安全级DCS与火电厂DCS的差异主要在于可靠性和可维护性的不同。核电站出于运营的需要,要求产品至少能够在现场运行10~15年,维护期20~25年,这对厂家来说是非常困难的。很多芯片、显示器、计算机等零部件和装臵都已经停产,而DCS厂家却还要维护下去。在一些核电站,对于DCS还有抗地震要求,要求在SLl/SL2地震条件下保持系统功能的完整性。
二、核安全级DCS。这部分是与火电厂不同的,反应堆保护系统是核安全级DCS 重要的应用,基本是按照独立多通道设计。目前运行的大亚湾、岭澳一期核电站均采用模拟组合仪表、继电器和磁逻辑的反应堆保护系统, 田湾核电站在国内首先采用基于数字化技术的反应堆保护系统, 岭澳二期和秦山一期保护系统改造也采用了类似的系统。
目前,核安全级DCS研发最大的问题是软件的可靠性。目前,软件可靠性无法量化。
核安全级DCS对于实时性要求很高,在DCS系统中,实时性一方面意味运算周期短,但更主要的是确定性。核安全级DCS对于信息安全有很高的要求,程序和数据受到保护,不受偶然的或者恶意的原因而遭到破坏、更改。数据真实性和完整性在仪控系统中更为重要,数据校验和冗余是有效的方法。
国产化是突破重点
据了解,国内的核电站数字化仪控系统发展了很多年,但是因为市场太小,过去20多年就3~5个项目,发展缓慢。但现在不一样,在建就是几十台,将来还会有几十台,市场容量扩大了。
数字化仪表控制系统控制着核电站300多个系统近万套设备,是核电站的“控制中枢”和“神经中枢”,核电站数字化仪控系统由于安全性、可靠性要求极高,是核电装备国产化最重要、最困难的部分。而控制系统一直是我国成套装备国产化的薄弱环节。
目前,国内核电站数字化仪控系统和关键仪控设备主要被国外技术所垄断,已投运或已开工建设的国内核电站项目,所采用的全数字化仪控系统均直接采用国外产品和技术,或者由国外公司总承包。数字化仪表控制系统设计自主化,成为我国大规模建设核电机组必须突破的核心技术之一。
“本次大会为核科学和仪器仪表领域专家的学术交流搭建了一个良好的平台,对于推动我国核电仪控技术的发展,促进产、学、研、用紧密结合,推动我国核电仪控学术界的国际交流,有非常重要的意义。”国家环保部核安全管理司司长刘华在第一届中国(国际)核电仪控技术大会上指出。
据悉,经过多年努力,我国已确立了较为完整的核电仪控设备设计、制造安全规范,形成了一批相对成熟的核电仪控设备供应商,国产化程度得到不断提升。其中,核电站非安全级数字化仪控系统已经完全实现自主化;核安全级数字化控制平台研制也取得了突破性进展,发布了具有完整自主知识产权据的原理样机阶段的研制成果。国产化仪控技术的发展将为核电安全架起更为稳固的防护网。