第一篇:激光焊接前景讲解
激光焊接前景
摘要:焊接是一种将材料永久连接,并成为具有给定功能结构的制造技术。近几年中国完成的一些标志性工程来看,焊接技术发挥了重要作用。但传统焊接已不能满足越来越高的技术要求和条件限制,激光焊接便有了很大的发展空间。激光技术涉及材料学、力学、计算机科学等。研发是一个消耗的过程,其投入要求高,资金回收期较长。单靠企业研发,速度很难跟上,于是有一部分压力转移到国家科研机构。所以产业化需要强大的经济实体后盾和政策支持。关键词:焊接技术
关键制造工艺
激光焊接
产业化
焊接是一种将材料永久连接,并成为具有给定功能结构的制造技术。几乎所有的产品,从几十万吨巨轮到不足1克的微电子元件,在生产制造中都不同程度地应用焊接技术。焊接已经渗透到制造业的各个领域,直接影响到产品的质量、可靠性和寿命以及生产的成本、效率和市场反应速度。中国2005年钢产量达到3.49亿吨,成为世界最大的钢材生产与消费国,而焊接结构的用钢量也突破1.3亿吨,相当于美国一年的钢产量,成为世界上空前最大的焊接钢结构制造国。近几年中国完成的一些标志性工程来看,焊接技术发挥了重要作用。例如三峡水利枢纽的水电装备就是一套庞大的焊接系统,包括导水管、蜗壳、转轮、大轴、发电机机座等,其中马氏体不锈钢转轮直径10.7m高5.4m重440t,为世界最大的铸-焊结构转轮。该转轮由上冠、下环和13或15个叶片焊接而成,每个转轮的焊接需要用12t焊丝,耗时4个多月。神舟6号飞船的成功发射与回收,标志着中国航天事业的巨大进步,其中两名航天员活动的返回舱和轨道舱都是铝合金的焊接结构,而焊接接头的气密性和变形控制是焊接制造的关键。由第一重型机械集团为神华公司制造的中国第一个煤直接液化装置的加氢反应器,直径5.5m长62m厚337mm重2060t,为当今世界最大、最重的锻-焊结构加氢反应器,采用国内自主知识产权的全自动双丝窄间隙埋弧焊技术,每条环焊缝需连续焊接5天。西气东输的管线长4000km,是中国第一条高强钢(X70)大直径长输管线,所用的螺旋钢管和直缝钢管全部是板-焊形式的焊接管。2005年我国造船的总吨位达到1212万吨,占世界造船总量的17%,居于日、韩之后,稳居世界第三位,正向年产2500万吨的世界水平迈进。国内制造的30万吨超级油轮、新型5668标箱集装箱船、15万吨散装货船,以及为世界瞩目的,被称为“中华第一盾”的170舰,都是中国造船界的骄傲,船体是典型的板-焊结构。另外,上海中泸浦大桥是世界最长的全焊钢拱桥;国家大剧院的椭球型穹顶是世界最重的钢结构穹顶;奥林匹克主体育场的鸟巢式钢结构重4万多吨,也是世界之最。这些大型结构都是中国焊接制造的最大、最重、最长、最高、最厚、最新的具有代表性的重要产品。由此可见,焊接在国民经济发展和国防建设中具有非常重要的地位和作用。从“十一五”规划的二十项国家重大技术装备的研制项目可以看出,在百万千瓦级核电机组、超超临界火力发电机组成套设备、高水头超大容量水电机组、大型抽水蓄能机组、30~60万瓦级循环硫化床(CFB)锅炉的成套技术装备、百万吨级大型乙烯成套设备、百万吨级大型对苯二甲酸成套设备、大型煤制气成套设备以及大型煤矿综合采掘成套技术与装备中,焊接制造都是关键制造工艺之一。
但传统焊接已不能满足越来越高的技术要求和条件限制,激光焊接便有了很大的发展空间。
1、激光焊接原理——激光是辐射的受激发射光放大的简称,由于其独有的高亮度、高方向性、高单色性、高相干性,自诞生以来,其在工业加工中的应用十分广泛,成为未来制造系统共同的加工手段。用激光焊接加工是利用高辐射强度的激光束,激光束经过光学系统聚焦后,其激光焦点的功率密度为104~107W/cm2,加工工件置于激光焦点附近进行加热熔化,熔化现象能否产生和产生的强弱程度主要取决于激光作用材料表面的时间、功率密度和峰值功率。控制上述各参数就可利用激光进行各种不同的焊接加工。
2、激光焊接的一般特点——激光焊接是利用激光束作为热源的一种热加工工艺,它与电子束等离子束和一般机械加工相比较,具有许多优点:(1)激光束的激光焦点光斑小,功率密度高,能焊接一些高熔点、高强度的合金材料;(2)激光焊接是无接触加工,没有工具损耗和工具调换等问题。激光束能量可调,移动速度可调,可以多种焊接加工;(3)激光焊接自动化程度高,可以用计算机进行控制,焊接速度快,功效高,可方便的进行任何复杂形状的焊接;(4)激光焊接热影响区小,材料变形小,无需后续工序处理;(5)激光可通过玻璃焊接处于真空容器内的工件及处于复杂结构内部位置的工件;(6)激光束易于导向、聚焦,实现各方向变换;(7)激光焊接与电子束加工相比较,不需要严格的真空设备系统,操作方便;(8)
激光焊接生产效率高,加工质量稳定可靠,经济效益和社会效益好。中国科学院力学研究所发动机科学与工程联合实验室近期在涡轮增压器异种材料激光焊接技术方面取得重要进展,优化后的激光焊接工艺为提高柴油发动机性能提供了重要支持。
目前,柴油发动机应用广泛,在国民经济发展中占据重要地位。作为柴油发动机的关键部件,涡轮增压器对于发动机动力性能的改善有显著作用,其异种材料焊接质量对整机性能有重要影响。在柴油发动机增压器中,涡轮叶片和涡轴杆的材料不同,参数有很大差异,对两者进行连接时易形成焊接裂纹,具有淬硬倾向。目前,业界多采用摩擦焊方式进行连接,但强度不高、成形精度差是摩擦焊的缺陷。激光焊接是一种新方式,它利用激光的相干性等特性,很好地解决了焊缝偏熔和未熔合的问题。与传统焊接工艺相比,优化后的激光焊接工艺在满足高焊接强度要求的同时,极大提高了焊接效率,为提高柴油发动机性能提供了重要技术支持。
中国科学院力学所发动机科学与工程联合实验室副主任虞刚认为,随着市场需求的扩大,汽车行业近年来的发展势头很好,但自主技术稀少、自主研发环境欠缺的问题始终没能解决。国内企业与跨国公司合作,很难获得核心技术。“没有核心技术以及后续的研发、改进,将会给产业发展带来不良影响。当前,一些汽车制造企业及科研机构已经开始独立研发,但„拿来主义‟的观念仍然很强,真正的自主研发成果少之又少。”
激光技术涉及材料学、力学、计算机科学等。研发是一个消耗的过程,其投入要求高,资金回收期较长。单靠企业研发,速度很难跟上,于是有一部分压力转移到国家科研机构。中国科学院下属研究所包含所有自然科学及工程研究领域,从技术上讲,是国家最有代表性的部门。虞刚说:“正是在这样的背景下,我们力学所从最基础的角度着手开始攻关。在激光异种材料焊接这个领域,国际上一直没有新进展。经过长期努力,我们力学所取得了突破性进展,领先国际水平。可以说,这是一项百分之百拥有自主知识产权的国际先进技术。”
谈到异种材料激光焊接技术的产业化前景,虞刚说,这项技术已经非常成熟,市场也有这方面的需求,其产业化潜力很大。但产业化有风险。虞刚给记者算了一笔账,如果一项基础研究只要投入1元钱,那么,将这项研究成果变成可用的技术就需要10元钱,而真正的产业化则需要100元钱。“这个比例让很多企业承受不了。国内大部分企业还不具备这种抗风险的能力,所以许多企业不愿意做。所以产业化需要强大的经济实体后盾和政策支持。参考文献:
《实用焊接手册》顾纪清 上海科学技术出版社
《现代焊接生产手册》 上海市焊接协会 上海科技(2007-05出版)《焊接技术手册》 河南科学技术出版社2004 年7月(1999-04出版)《激光原理与技术》 阎吉祥高等教育出版社 【书 号】 7040145677 个人介绍“
姓 名:孟军
性别:男
出生年月:1980.06 毕业院校:兰州理工大学
专业:机电工程学院机械制造
毕业时间:2003.06 工作单位:兰州铁路机电工厂 地址:兰州市红山东路98号 邮编:730000
第二篇:激光焊接总结
激光焊接总结
就“鹏桑普”焊接板芯208片,分析总结!
自2011年8月18日整板裁剪好开始调试焊接起,24小时连续工作五天完成任务。前期我已对0.2mm铜板进行焊接调试,就调试板可以完美焊接了。可是焊接德国进口镀膜板时,又回出现焊接不上及焊点太大的问题。
经过调试,同样是0.2mm的铜板用不同的工艺焊接,后面发现主要有两个问题:
1、铜板材质不一样,表面发光效果会影响激光焊接工艺;
2、镜片:激光聚焦前面的保护镜片,保护飞溅不伤害激光聚焦。保护镜片透射率及清晰度一定要好。
在整批任务的完成过程中还出现了很多问题:
1、伺服电机卡死现象;------先调伺服电机5A编辑器不成功,后更换。(主要是Y轴方向不能灵活运动)
2、有漏焊及脱焊现象;------通过把铜板垫高气压加大,让铜管与铜板更有效地接合后焊接。
3、德国进口镀膜铜板反面出现两种颜色,一种很光洁(要求功率会相对高点),一种看起来有氧化现象(相对功率低点,而且容易焊接);------工艺偏向光洁面,功率偏大,氧化面焊点较大,有铜飞溅。
4、在焊接过程中,因为功率太大,铜板飞溅也就很大,保护镜片损害相当严重,使用监视器查看焊缝越来越模糊,越是模糊就越要加大功率,最后镜片不能使用;------在保证焊点的前提下劲量调小功率,让飞溅减小。镜片稍模糊时用棉布搽拭干净,镜片严重模糊时更换镜片。
5、在连续焊接24小时后,监视器的电源无故失效;------更换类似电源。
6、在焊接过程中,由于工装不完善经常出现碰撞现象;------焊接过程中多注意观察调节,要认真、要专心的工作。
7、工装不完善,剪板公差无法精确到1mm以下;------工装要根据铜板与板芯中心对称,剪板要求精准。
8、焊接到最里面的时候,需要爬上平台进行调试很不方便。------把易焊的一面装在里面。
经过大批量焊接,机器稳定了好多,我们也都学着能够熟悉掌握它了!
第三篇:激光焊接工艺实践课程教学大纲讲解
《激光焊接工艺实践》教学大纲
学时:48 学分:3
一、课程的地位与任务
“激光焊接工艺实践”课属于光机电应用技术教学资源库核心课程体系之一的激光加工技术类。光机电应用技术教学资源库建设规划的五门课程体系分别是激光原理及技术、激光设备机械设计基础、激光设备机电控制技术及应用、激光加工技术和激光3D打印技术。“激光焊接工艺实践”是一门实训为主的专业主干课程,主要介绍不同激光焊接参数对常用金属材料焊接质量的影响和不同类型激光焊接设备在材料焊接领域的应用。
激光焊接工艺实践为面向光机电类专业学生开设的一门专业必修的基础实训类课程,课程设置为48学时,合计3学分。学习本课程之前,学生应完成激光加工技术和工程材料基础等预备性课程的学习。目标是使学生掌握不同激光焊接参数对常用金属材料焊接的影响规律和不同类型激光设备在材料焊接方面的选择应用,培养学生分析、解决生产实际问题的能力,为将来从事激光焊接设备操作打下基础,从而使其在掌握专业知识的基础上获得所需要的职业技能。
二、课程的基本内容
第一章 激光焊接设备的种类及应用
通用激光焊接设备的构成
CO2激光焊接设备介绍 YAG激光焊接设备介绍 DISK激光焊接设备介绍 半导体激光焊接设备介绍 光纤激光焊接设备介绍 激光扫描振镜的应用
准连续光纤激光器在焊接上的应用
通快激光焊接工作站
美国PRC激光焊接设备的特点
PRC激光器的维护 激光焊接设备的选用
第二章 激光焊接参数及其影响
激光焊接工艺特点介绍 激光焊接工艺参数介绍 激光功率对焊接的影响
焊接速度对激光焊接的影响 离焦量对激光焊接的影响 保护气体对激光焊接的影响 等离子体对激光焊接的影响 激光焊接光束焦点的常用测定方法 高功率激光焊接的离焦量恒定问题
材料吸收率对激光焊接的影响 离焦量对激光焊缝成形的影响
焊接速度对600MPaTRIP钢焊缝成形的影响 焊接速度对600MPaDP钢焊缝成形的影响 焊接速度对1000MPaTRIP钢焊缝成形的影响
激光焊接熔池的动态观察 激光功率对焊接熔池动态的影响
激光焊接的脉冲波形 激光焊接的脉冲频率
焊接速度对奥氏体不锈钢激光焊接的影响
功率对奥氏体不锈钢激光焊接的影响
激光焊接参数对接头强度的影响
焊接速度对1.2mm厚1200MPaTRIP钢接头性能的影响
激光焊接速度对1000MPaTRIP钢接头性能的影响
激光焊接速度对1000MPaTRIP钢接头性能的影响(He保护)
激光焊接速度对800MPaTRIP钢焊缝成型的影响
1mm不锈钢薄板的YAG激光焊接 1.2mm不锈钢薄板的YAG激光焊接 2mm厚低碳钢板的CO2激光焊接 3mm厚低碳钢板的CO2激光焊接 4mm厚低碳钢板的CO2激光焊接
第三章 激光焊接设备操作及维护
YAG脉冲激光焊接设备操作方法 DISC激光焊接系统操作规程
Rofin二氧化碳激光焊接系统操作规程
光纤激光焊接系统操作规程 YAG激光焊接设备的维护 DISC激光焊接设备的维护 光纤激光焊接设备的维护 二氧化碳激光焊接设备的维护 半导体激光焊接设备的维护 IPG激光焊接设备的运行模式 IPG激光焊接设备的操作步骤 IPG激光焊接设备的非手动操作模式
通快碟片激光器的操作 通快碟片系列激光器的接口
通快碟片激光器的操作程序TruControl 1000
-2-第四章 激光焊接实例
第五章 激光复合焊接技术
塑料的激光焊接 三光点激光钎焊工艺
德国LIMO公司塑料激光焊接机
激光半熔透焊接工艺介绍
激光拼焊板工艺介绍
激光熔焊在乘用车白车身上的应用 激光钎焊在乘用车白车身上的应用
传动齿轮的激光焊接 传感器的激光焊接
应用激光焊接金刚石锯片实例
动力电池的激光焊接 纳秒脉冲激光器的焊接应用 光纤激光器在白车身焊接中的应用 激光自体钎焊在医疗器械上的应用
1mm厚低碳钢薄板的激光焊接 800MPaTRIP钢的激光焊接
激光焊接与电阻点焊在白车生上应用对比
SUS304L不锈钢的激光焊接
薄壁件的激光脉冲焊接
激光填丝焊接
激光脉冲焊接传感器实例 上海宝钢阿赛洛激光拼焊板介绍 汽车座椅转角器的激光焊接实例
激光电焊的特点
激光点焊在白车身上应用
铝合金的激光焊接 长春三友激光拼焊板介绍 汽车刹车盘的激光焊接实例
阀门的激光焊接 黄铜阀门的激光焊接 钢铝异种材料的激光焊接 钛合金板材的激光焊接
奥氏体不锈钢波纹板的激光焊接
600MPaTRIP钢的激光焊接 600MPaDP钢的激光焊接 1000MPaTRIP钢的激光焊接
采用He保护的1000MPaTRIP钢的激光焊接
600MPaPH钢的激光焊接
采用He保护的600MPaPH钢的激光焊接
华菱安赛乐米塔尔激光拼焊板介绍
激光电弧复合焊技术介绍 激光MIG复合焊接应用 激光MIG复合焊接系统介绍
激光等离子复合焊介绍 激光电弧复合焊应用对比
激光-TIG复合焊介绍
激光电弧复合焊接接头化学成分均匀性的影响因素
第六章 能量负反馈激光焊接工艺第七章 激光焊接缺陷及检验
第八章 激光焊接操作安全与防护激光自体复合焊介绍 激光单热源焊接特点介绍 激光复合热源焊接特点介绍
激光-TIG复合焊介绍
能量反馈式激光焊接原理 激光焊接能量负反馈设备介绍
激光拼焊板常见缺陷分析
激光焊接接头的形式 激光焊接接头坡口形核 激光焊接的焊缝介绍 激光焊缝中的气孔缺陷 激光焊接中的冷裂纹缺陷 激光焊接中的热裂纹缺陷 激光焊缝缺陷的外观检验 激光焊接接头的密封性检验 激光焊接接头的金相检验 激光焊接接头的耐压检验 激光焊缝缺陷的RT检测 激光焊缝缺陷的UT检测 激光焊缝缺陷的MT检测 激光焊缝缺陷的PT检测 激光焊缝缺陷的ET检测
激光焊接接头的耐腐蚀性能检验
激光焊接接头的质量评定 轿车白车身激光焊接质量的检验 激光焊接奥氏体不锈钢薄板接头的缺陷
激光焊接设备操作常用工程防护措施介绍 激光焊接设备操作常用个人防护措施介绍
激光焊接设备操作安全培训介绍 激光焊接设备操作医学监督措施介绍
气体激光焊接设备维护介绍 半导体激光焊接设备维护介绍 DISK激光焊接设备维护介绍 YAG激光焊接设备维护介绍
光纤激光焊接设备维护介绍
激光辐射的危害
激光焊接设备使用的安全防护 现代封闭式激光焊接工作站介绍 高功率激光焊接设备使用注意事项 高功率光纤激光器维护与故障处置
光纤激光器光纤的清洁处理 罗芬板条系列激光器使用须知 通快系列激光器的安全配置 通快碟片激光器运行中断应对措施
通快碟片系列激光器的标牌 激光焊接设备的分级(国际标准)激光焊接设备的分级(国家标准)
三、课程的基本要求
1.本课程在注重学生基础理论知识理解的同时,要求更侧重对学生实践动手能力的培养;
2.采取理论教学和实践观摩教学相结合的方式以增强课程学习的直观性和针对性;
四、课程的实践环节安排
根据系里实验室设备情况,安排实践观摩教学。
五、推荐教材和主要参考书
推荐教材:
《激光加工工艺与设备》,郑启光,邵丹 主编,机械工业出版社,2010; 推荐参考书:
1.《激光焊接/切割/熔覆及时》李亚江 主编,化学工业出版社,2012; 2.《材料激光工艺过程》 威廉.M.斯顿 主编 机械工业出版社,2012。
六、面向对象
光机电一体化专业高职院校学生
七、考核方式及标准
学生学习考核标准请参见本课程资源“考核方案”
课程主讲人:王文权
第四篇:铝合金激光焊接技术
一、铝合金激光焊接的发展
铝合金密度低,但强度比较高,塑性好,可加工成各种型材,具有优良的导电性、导热性和抗蚀性,在航空、航天、汽车、机械制造、船舶及化学工业中已大量应用。铝合金的广泛应用促进了铝合金焊接技术的发展,同时焊接技术的发展又拓展了铝合金的应用领域,因此铝合金的焊接技术正成为研究的热点之一。
不过,铝合金本身的特性使得其相关的焊接技术面临着一些亟待解决的问题:表面难溶的氧化膜、接头软化、易产生气孔、容易热变形以及热导率过大等。以往的生产实践中,铝合金的焊接常用钨极氩弧焊和熔化极氩弧焊。虽然这两种焊接方式能量密度较大,焊接铝合金时能获得良好的接头,但仍然存在熔透能力差、焊接变形大、生产效率低等缺点。用这些传统的、应用于黑色金属的焊接方法焊接铝合金,并不能达到工业上高效、无缺陷、性能佳的要求,于是人们开始寻求新的焊接方法,20世纪中后期激光技术逐渐开始应用于工业。欧洲空中客车公司生产的A340飞机机身,就采用激光焊接技术取代原有的铆接工艺,使机身的重量减轻18 %左右,制造成本降低了近25 %。德国奥迪公司A2和A8全铝结构轿车也获益于铝合金激光焊接技术的开发和应用。这些成功的事例大大促使对激光焊接铝合金的研究,激光技术已经成为了未来铝合金焊接技术的主要发展方向,因为激光焊接具有其独特的优点:
(1)能量密度高,热输入量小,焊接变形小,能得到窄的熔化区和热影响区以及熔深大的焊缝。
(2)冷却速度快,焊缝组织微细,故焊接接头性能良好。
(3)焊接能量可精确控制,可靠性高,针对不同的要求有较高的适应性。(4)可进行微型焊接或实现远距离传输,不需要真空装置,利于大批量自动化生产。
二、激光焊接铝合金的难点及解决措施 1.铝合金表面的高反射性和高导热性
这一特点可以用铝合金的微观结构来解释。由于铝合金中存在密度很大的自由电子,自由电子受到激光(强烈的电磁波)强迫震动而产生次级电磁波,造成强烈的反射波和较弱的透射波,因而铝合金表面对激光具有较高的反射率和很小
吸收率。同时,自由电子的布朗运动受激而变得更为剧烈,所以铝合金也具有很高的导热性。
针对铝合金对激光的高反射性,国内外学者都作了大量研究,试验结果表明,进行适当的表面预处理如喷砂处理、砂纸打磨、表面化学浸蚀、表面镀、石墨涂层、空气炉中氧化等均可以降低光束反射,有效地增大铝合金对光束能量的吸收。另外,从焊接结构设计方面考虑,在铝合金表面人工制孔或采用光收集器形式接头,开V形坡口或采用拼焊(拼接间隙相当于人工制孔)方法,都可以增加铝合金对激光的吸收,获得较大的熔深。另外,还可以利用合理设计焊接缝隙来增加铝合金表面对激光能量的吸收(如图1)。从图上可以直观的反应出,将焊缝和激光束的位置关系由图1(a)改为图1(b)或图1(c),使激光束与缝壁有一定角度后,激光束能够在缝隙内多次反射,形成一个人工小孔,增加了焊件对激光能量的吸收。
图1 改变焊缝几何形状
2.小孔的诱导和维持
小孔的诱导和维持是铝合金激光焊接中的特有困难,这是由铝合金材料特性和激光光学特性造成的。激光焊接的过程中,小孔可看成是铝合金的黑体,能大大提高材料对激光的吸收率,为母材获得更多的能量耦合,这有利于提高焊接接头的质量。但由于铝合金的高反射性和高导热性,要诱导小孔的形成就需要激光有更高的能量密度。而铝元素以及铝合金中的Mg、Zn、Li沸点低、易蒸发且蒸汽压大,虽然这有助于小孔的形成,但等离子体的冷却作用(等离子体对能量的屏蔽和吸收,减少了激光对母材的能量输入)使得等离子体本身“过热”,却阻碍了小孔维持连续存在。
由于能量密度阈值的高低本质上受其合金成分的控制,因此可以通过控制工艺参数,选择确定激光功率保证合适的热输入量,有助于获得稳定的焊接过程。另外,能量密度阈值一定程度上还受到保护气体种类的影响。研究表明,激光焊接铝合金时使用N2气时可较容易地诱导出小孔,而使用He气则不能诱导出小孔。这是因为N2和Al之间可发生放热反应,生成的Al-N-O 三元化合物提高了对激光吸收率。
三、激光焊接铝合金容易产生的缺陷及消除方法 1.气孔
铝合金激光焊接的主要缺陷之一是气孔,焊缝气孔的形成机理比较复杂,一般认为存在两类气孔:氢气孔和由于小孔的破灭而产生的气孔。氢气孔是由于氢(主要来自表层的湿气与微量水)在熔池金属中的可溶性引起的,激光焊接冷却速度极快,导致氢的溶解度急剧下降形成氢气孔。由于小孔塌陷而形成的孔洞,主要是由于小孔表面张力大于蒸气压力,不能维持稳定而塌陷,液态金属来不及填充就造成孔洞。另外,低熔点、高蒸气压合金元素蒸发导致气孔,表面氧化膜在焊接过程中溶解到熔池中也会形成气孔。
从氢气孔的形成原理可知,表层物质是氢元素的主要来源,因此选择正确的焊前表面预处理可以有效地减少氢气孔的产生。对于由小孔塌陷引发的气孔,则要求选择适当的保护气体并合理控制流量流速,在条件允许下采用高功率、高速度、大离焦量(负值)的焊接方式,可以进一步消除气孔的产生。
2.热裂纹
铝合金的焊接裂纹都是热裂纹,与冷却时间(或焊接速度)密切有关,主要有结晶裂纹和液化裂纹。铝合金激光焊接产生的结晶裂纹是由于焊缝金属结晶时在晶界处形成低熔点共晶化合物导致的,焊缝金属氧化生成的Al2O3和AlN也会成为微裂纹的扩展源。液化裂纹是熔化的铝合金在凝固过程中局部塑性变形量超过其本身所能承受的变形量的结果。
目前常用的消除热裂纹的方法是使用填充材料,即填丝,这能有效地防止焊接热裂纹,提高接头强度。此外,调整激光能量的输入方式,合理选择脉冲点焊时的脉冲波形,焊缝熔化凝固重复进行,以降低熔池凝固时的凝固速度,这种在凝固过程中增加热循环的控制方法同样可以减少结晶裂纹。
3.Mg、Zn等元素的烧损
使用激光焊接铝合金时,焊缝的加热和凝固速度都非常快,这使得Mg,Zn 等低熔点强化元素发生烧损,导致焊缝硬度和强度下降。Mg 的沸点为1 380 K,比Al 的2 727 K低,Mg首先蒸发烧损。烧损现象使得焊缝成型时的晶粒大小严重不均匀,从金属学角度讲,大晶粒的存在破坏合金元素的强化作用,导致焊缝的强度明显比母材低。
防止合金元素的烧损主要从控制合金成分入手,在保证铝合金质量和接头要求的前提下,降低Mg的含量,添加Mn、Si等元素。
四、铝合金激光焊接的工艺参数
铝激光焊接的工艺参数主要有: 功率密度、焊接速度、焦点位置、保护气体种类及流量等,它们直接决定着焊缝成形。
1.功率密度
激光的功率密度是决定焊缝熔深的最主要因素。当其他工艺参数保持不变时,随着功率密度的增大,焊缝深宽比增大。因为功率密度增大时,蒸汽压力能克服熔化成液态金属的表面张力和静压力而形成小孔,小孔有助于吸收光束能量——“小孔效应”。但是如果功率密度过大,使金属强烈汽化,严重烧损合金,焊缝成型组织的晶粒过大,焊缝的硬度和强度均下降。并且,大量的光致等离子体的冷却和屏蔽作用,使得熔深反而下降。
2.焊接速度
在其他工艺参数不变的情况下,熔深随焊速的增加而减小,焊接效率随焊速的增加而提高。但是速度过快,到达焊缝处的线能量密度较低,会使熔深达不到焊接要求;速度过慢,则线能量密度过高,母材过度熔化和烧损,降低接头性能,甚至引发热裂纹。因此,对一特定厚度的铝合金工件,选择确定激光功率密度之后,存在着既能维持合适的焊缝深宽比又不会使工件过热的最佳焊速,这可以从以往的生产实践中总结经验或者查阅相关文献获得。
3.焦点位置
研究表明,铝合金激光焊接的焦点位置与熔深的关系如图2所示。我们可以看出,熔深随焦点位置的变化有一个跳跃性变化过程:当焦点处于偏离工件表面较大(2 mm)时,工件表面光斑尺寸较大,因此光束能量密度较低,属于以热传
导为主的熔化焊,熔深较浅; 而当焦点靠近工件表面某一位置(2 mm)时,工件表面入射光束能量密度值增大到临界值,产生小孔效应,因此熔深发生跳跃性增加。经试验得到,当焦点位置在工件表面上方1 mm 处时焊缝熔深最大。
图2 焦点位置对焊缝熔深的影响
4.保护气
和电子束焊接相比,激光焊接不需要真空环境,但焊接铝合金需采用保护气体,其目的是抑制光致等离子体,并排除空气使焊缝免受污染。光致等离子体的形成不仅来自被离子化的金属母材蒸汽,而且和保护气体本身性质也有很大的关系。通过增加电子与离子和中性原子三体碰撞来增加电子的复合速率,以降低等离子体中的电子密度。中性原子越轻,碰撞频率越高,复合速率越高;另一方面,保护气体本身的电离能应该高,不致因气体本身的电离而增加电子密度。铝合金激光焊接传统上采用的保护气体主要有三种:Ar、N2、He。理论上He最轻且电离能最高,但是在较低功率、较高焊速下,由于等离子体很弱,不同保护气体差别很小。研究表明,在相同条件下,使用N2容易诱导小孔,主要是N2和Al 之间可发生放热反应,生成的Al-N-O 三元化合物对激光的吸收率要高一些,纯N2 会在焊缝中产生AlN 脆性相,同时易形成气孔。而采用惰性气体保护时,由于质轻而逸出,气孔形成机率小,因此采用混合气体保护效果较好。现在也有采用Ar-O2,N2-O2等气体进行铝合金激光焊接的研究越来越多。
五、先进的铝合金激光焊接技术 1.铝合金的激光-电弧复合焊
现在激光焊接铝合金还处于发展阶段,设备成本高、接头间隙允许度小、工件准备工序要求严等制约了纯激光焊接铝合金的应用。目前,激光-电弧复合焊在德国和日本等发达国家研究比较多,激光-电弧复合主要是激光与TIG电弧、MIG电弧及等离子体复合,分别如图3、4所示。这种工艺在汽车制造业中已有一定的应用,如德国大众汽车公司的Phaeton前门上就有48处激光-M IG焊道,而且还可以用来焊接车体及轮轴。铝合金激光-电弧复合焊很好地解决了激光焊接的功率、铝合金表面对激光束的吸收率以及深熔焊的阈值等问题。这是因为焊接铝合金时,激光与电弧的相互影响,可以克服单用激光或电弧焊方法自身的不足,产生良好的复合效应——两种热源同时作用在一个相同区域的叠加效应——高的能量密度导致了高的焊接速度,显著提高焊接效率。
图3 激光-TIG复合焊接铝合金原理图
图4 激光-MIG复合焊接铝合金原理图
2.铝合金的双光束激光焊接
单束激光焊接铝合金时,由于小孔的塌陷而容易产生气孔。李俐群[10]等学者研究表明,采用如图5所示的双光束焊接铝合金,焊缝成形美观、无飞溅或凹坑等缺陷,对焊接参数适应性更好;等离子体稳定性提高;气孔大大减少。这是因为采用双光束激光焊接时,第一束激光产生熔池,并对焊接区域附近进行预热积累热量。当第二束激光照射该处时,更多的母材能够熔化,从而使得形成焊缝更宽。同时,第二束激光能把第一束激光形成的小孔后壁气化,防止其塌陷,大大减小了形成气孔的几率。双光束激光焊接铝合金的技术已经在德国军用飞机EADS进气管的焊接上得到了应用。
图5 双光束激光焊接铝合金的原理图
3.铝合金激光填丝焊技术
在新兴的铝合金焊接技术中,搅拌摩擦焊需要针对被焊母材的形状和接口要求设计专用夹具,铝合金激光填丝技术则解决了对工件装夹、拼装要求严的问题,而且用较小功率激光器就能实现厚板窄焊道的多层焊。另外通过调节焊丝成分,改善焊缝区组织性能,对裂纹等缺陷更易控制,显著提高铝合金焊接稳定性与适应性。铝合金激光填丝焊示意图如图6所示。
图6 铝合金激光填丝焊示意图
六、铝合金激光焊接的前景展望
前面已经提到,日本和德国等发达国家已经开始将激光焊接铝合金应用于汽车制造业。由于铝合金具有高比强度、耐锈蚀、热稳定性好、易成形、再生性好和简化结构等一系列优点,在汽车业中倍受青睐。大量的对比研究和反复实践证明,选用铝合金材料是实现汽车轻量化的有效途径。减轻汽车重量以降低能耗、减少污染、提高燃油效率,这是解决汽车节能和环保问题的最有效的措施。而激光焊接技术效率高、热影响区小、能获得良好的接头质量。在铝合金颇受汽车业青睐的大环境下,激光焊接铝合金将会成为越来越成熟的工艺,并被推广至船舶制造行业和航空航天产业。其实,上文也已经提到过,欧洲的空中客车已经在使用激光焊接铝合金的技术部分取代传统的铆接技术。这种自动化程度极高、质量稳定的焊接方式甚至能够满足载人航天和可重复使用航天器对焊接结构的可靠性提出了更高的要求。我们可以预见,铝合金激光焊接技术在近几年将成为航天焊接研究领域工作者热点之一。
第五篇:激光焊接在船舶制造中的应用前景
激光焊接在船舶制造中的应用前景
在20世纪90年代中期,激光作为一种重工业制造工具用于造船工业。大型舰船制造方法逐渐实现由铆接到焊接的变革,焊接方法、工艺和设备也稳步发展,从早先的气焊、电弧焊,发展到激光焊。造船技术的不断发展,带动了造船材料和设计的重大变化。图1所示为造船工业中三明治夹层板的激光焊接。
图1 造船工业中“三明治”板的激光焊接
早期日本的一些船厂就使用激光切割设备获得了准确的切割尺寸和良好的切割质量,并从中受益。1992年,Vosper Thornycroft在欧洲船厂安装了第一台激光切割设备。90年代中、后期,欧洲船厂纷纷安装了用于焊接和切割的成套设备。在美国,Bender 船厂是第一家使用高功率激光切割设备的船厂。1999年Bender 使用6KW的Tanaka LMX Ⅲ激光器,在制造成本和质量上取得了巨大进步。2001年,联邦电动船部在其移动实验室安装了4KW的ESAB系统。激光切割设备在Bender的应用,引起了对发展高效激光焊接技术的关注。下面几个图为激光制造技术与系统在欧洲几个船厂的应用实例。
图2 Vosper Thornycroft船厂在欧洲最先使用激光切割设备
图3 Meyer Werft船厂采用的船板焊接头
图4 Odense船厂采用的Triagon激光焊接头
目前世界工业领域都向着低能耗、短流程方向发展,激光制造具有许多传统制造方法无法比拟的优点,世界各国都加大了对发展制造业的重视程度。但与国外相比,我国激光技术达到应用推广的还是不多,还没有发挥出应有的作用。究其原因,首先在于激光制造系统的高成本、高投入;为了更广泛的普及激光制造技术的应用,弥补高投入的问题,需要在充分认识影响激光制造技术应用关键因素的基础上,综合考虑船舶本身需求、激光加工系统的投入等因素,控制成本,寻找最佳加工条件、提高加工效率的方法,最终形成我国新一代激光制造产业链。
现代激光制造作为通用的加工手段,其前沿领域之一是应用领域的扩展,激光制造应用技术提出并解决新的问题。重点针对汽车、航天运载器、船舶和车辆等运输机械的轻型化、冶金工业和循环经济的发展趋势,实现激光制造技术在国防和重点工业领域的产业化应用。同时对激光制造系统技术提出新的要求,如激光器小型化、高转换效率与集成化等,光纤激光器和半导体激光器将得到大力发展。推动我国激光制造技术向着效率更高、能耗更低、流程更短、光束质量更高、性能更好、数字化、智能化程度更高、成本更低的方向发展,改变我国大工业用激光制造装备完全依赖进口的现状。
本文由万向联轴器www.xiexiebang.com 冷镦机www.xiexiebang.com 联合整理发布 激光技术在船舶制造中的应用又具有其独特性,这跟船舶本身的加工和应用特点以及激光制造系统的特性息息相关。目前铝合金材料逐渐成为运输机械制造的关键材料,全铝结构船显示出良好的发展前景,配合先进的激光制造技术,展示了无限发展潜力。(end)文章内容仅供参考()(2010-8-21)
本文由万向联轴器www.xiexiebang.com 冷镦机www.xiexiebang.com 联合整理发布