第一篇:浅谈车用树脂基复合材料结构件的研究
浅谈车用树脂基复合材料结构件的研究
随着汽车工业的迅速发展,汽车复合材料用量逐年增加,尤其是制造大型结构件的复合材料用量增长迅速。欧美等国汽车工业已成为复合材料最大用户。我国的复合材料发展还很落后,汽车工业将面临新的挑战和发展机遇,从国外的应用发展历程来看,树脂基复合材料结构件必将在我国车用领域得到前所未有的发展,对树脂基复合材料的工业化制造技术需求极为迫切,因此牡丹江双兴化工有限公司承担了国家863计划“车用树脂基复合材料异型结构件”的研发和制造技术。
一、车用复合材料的优点
复合材料汽车部件,与金属材料和其他无机材料相比,具有许多得天独厚的优势,如重量轻、强度高、耐腐蚀、耐瞬间高温、传热慢、隔音、防水、易着色、能透光电磁波等;同时,复合材料还具有可设计性、一次性整体成型等工艺特点。复合材料是一种在中低温、低压条件下采用对模制造车用树脂基复合材料大型结构件的低成本先进制造技术。
在国家863计划资助下,针对车用复合材料的市场需求,双兴公司以复合材料构件低成本制造技术为研究对象,进行了“车用树脂基复合材料结构件制造关键技术”的研究。攻克了复合材料液体模塑成型工艺的共性关键技术,搭建了高性能低成本复合材料集成制造系统的技术平台;解决了车用复合材料构件的设计、工艺与工业化生产的相关基础技术,并形成了具有自主知识产权的成套技术。
二、车用复合材料研究内容
解决重型卡车、列车、大型客车、轿车用异型结构件规模制造技术,实现复合材料在车用领域的产业化应用,符合汽车行业轻便、高速、安全节能、舒适、降低环境污染以及多功能低成本的发展方向,符合国家产业政策。
1.研究目标。主要是攻克复合材料液体模塑成型工艺的共性关键技术,搭建高性能低成本复合材料集成制造系统的技术平台;解决车用复合材料构件的设计、工艺与工业化生产的相关基础技术,形成具有自主知识产权的成套技术。其应用目标是开发重型卡车、电动汽车、高速列车、轿车用树脂基复合材料结构构件领域并实现产业化。
2.技术特点。是一种在中低温、低压条件下采用对模制造车用树脂基复合材料结构件的低成本先进制造技术。其基本工艺原理是:反应性的热固性液态树脂在较低压力下注入含有干纤维预成型体的模腔中,树脂将模腔中的空气排出,同时浸润纤维。模腔充满后,注射过程结束,树脂开始固化,树脂固化达到一定强度后开模,取出制品。
3.其技术创新点:
(1)工艺类型和设备变化灵活,总体投资较低,制品产量在1 000~20 000件时,即可获得可观的经济效益。
(2)可设计性强,能实现局部增强、夹芯结构,设计增强材料的类型、铺层结构;可实现多种零部件一体化,降低制造成本,缩短新产品开发周期。
(3)制造具有良好表面质量、高尺寸精度的复杂构件,在大型构件的制造方面优势更为明显。
(4)模操作工艺,工作环境清洁,成型过程苯乙烯排放量小,有利于环保。
(5)压模注射,可采用复合材料模具(包括环氧模具、复合材料表面铸镍模具等),铝模具等,模具设计自由度高,模具成本较低。
4.工艺流程
生产工艺流程如下图所示:
5.主要技术指标。产品技术指标符合重汽汽车零件检测标准QZZ11154-1996要求,典型构件技术指标如下:
三、主要原材料
树脂基复合材料是指以热固性树脂如不饱和聚酯树脂、环氧树脂、酚醛树脂、乙烯基酯树脂等为基体,以玻璃纤维、碳纤维、芳纶纤维、超高分子量聚乙烯纤维等为增强材料制成的复合材料。环氧树脂的特点是具有优良的化学稳定性、电绝缘性、耐腐蚀性、良好的粘接性能和较高的机械强度,广泛应用于化工、机械、汽车、电子、水利、交通、家电和宇航等各个领域。
四、应用和推广
双兴公司在主要原材料国产化、制造工艺技术等共性和关键技术研究方面取得了突破性进展,还进行了制品表面涂装技术等相关技术的研究探素,实现了部件的批量化生产,在车用树脂基复合材料工艺研究方面积累了丰富的经验。解决车用大型复合材料构件的设计、工艺与工业化生产的相关基础技术,形成具有自主知识产权的成套技术,其应用目标是开发重型卡车、大型客车、高速列车用树脂基复合材料大型构件。
采用树脂基多合材料大型结构件制造技术成果的应用和推广,提升了企业在低温低压,对模具制造工艺技术的研究层次,拓宽了企业在树脂基多合材料技术应用的视野,结合水转印披覆膜产品技术,日前采用树脂基复合材料技术已成功应用于哈飞赛豹、一汽解放、奇瑞旗云、山东重汽的部分构件上,公司已在中小型汽车件(如仪表盘、装饰件、方向盘等)和其他领域逐步推广应用。
(编辑/刘佳)
第二篇:树脂基复合材料
树脂基复合材料的研究进展
摘要:
树脂基复合材料具有良好的成型工艺性、高的比强度、高的比模量、低的密度、抗疲劳性、减震性、耐腐蚀性、良好的介电性能、较低的热导率等特点,广泛应用于各种武器装备,在军事工业中,对促进武器装备的轻量化、小型化和高性能化起到了至关重要的作用。由于与许多材料相比具有独特的性能,树脂基复合材料在航空航天、汽车、电子、电器、医药、建材等行业得到广泛的应用。目前,随着复合材料工业的迅速发展,树脂基复合材料正凭借它本身固有的轻质高强、成型方便、不易腐蚀、质感美观等优点,越来越受到人们的青睐。关键字:树脂基复合材料,材料性能,应用领域
一、前言
复合材料在国民经济发展中占有极其重要的地位,以至于人们把一个国家和地区的复合材料工业水平看成衡量其科技与经济实力的标志之一[1]。树脂基复合材料是以纤维为增强剂、以树脂为基体的复合材料,所用的纤维有碳纤维、芳纶纤维、超高模量聚乙烯纤维等,所采用的基体主要有环氧树脂、酚醛树脂、乙烯基酯树脂等有机材料。其中热固性树脂是以不饱和聚脂、环氧树脂、酚醛树脂等为主;热塑性树脂是指具有线型或分枝型结构的有机高分子化合物。
树脂基复合材料的特点:各向异性(短切纤维复合材料等显各向同性);不均质或结构组织质地的不连续性;呈粘弹性;纤维体积含量不同,材料的物理性能差异;影响质量因素多,材料性能多呈分散性。树脂基复合材料的优点如下:(1)密度小,约为钢的1/5,铝合金的1/2,且比强度和比模量高。这类材料既可制作结构件,又可用于功能件及结构功能件。(2)抗疲劳性好:一般情况下,金属材料的疲劳极限是其拉伸强度的20~50%,CF增强树脂基复合材料的疲劳极限是其拉伸强度的70~80%;(3)减震性好;(4)过载安全性好;(5)具有多种功能,如:耐烧蚀性好、有良好的耐摩擦性能、高度的电绝缘性能、优良的耐腐蚀性能、有特殊的光学、电学、磁学性能等;(6)成型工艺简单;(7)材料结构、性能具有可设计性。
以树脂基复合材料为代表的现代复合材料随着国民经济的发展,已广泛应用于各个领域。众所周知,树脂基复合材料首先应用于航空航天等国防工业领域[2-3],而后向民用飞机发展。随着社会的发展,树脂基复合材料在人类物质生活中的需求量越来越大,并逐渐成为主要应用领域,且研究投入越来越大。树脂基复合材料除在航空航天、国防科技领域应用外,其他行业领域的应用也十分广泛。
二、综述树脂基复合材料的应用
目前常用的树脂基复合材料有:热固性树脂、热塑性树脂,以及各种各样改性或共混基体。热塑性树脂可以溶解在溶剂中,也可以在加热时软化和熔融变成粘性液体,冷却后又变硬。热固性树脂只能一次加热和成型,在加工过程中发生固化,形成不熔和不溶解的网状交联型高分子化合物,因此不能再生。随着复合材料工业的迅速发展,树脂基复合材料以其优越的性能和特点将应用于各个领域。以下将简介树脂基复合材料的应用。
2.1热固性树脂基复合材料的应用
复合材料的树脂基体,目前以热固性树脂为主。早在40年代,在战斗机、轰炸机上就开始采用玻璃纤维增强塑料作雷达罩。60年代美国在F-
4、F-11等军用飞机上采用了硼纤维增强环氧树脂作方向舵、水平安定面、机翼后缘、舵门等。在导弹制造方面,50年代后期美国中程潜地导弹“北极星A-2”第二级固体火箭发动机壳体上就采用了玻璃纤维增强环氧树脂的缠绕制件,较钢质壳体轻27%;后来采用高性能的玻璃纤维代替普通玻璃纤维造“北极星A-3”,使壳体重量较钢制壳体轻50%,从而使“北极星A-3”导弹的射程由2700千米
增加到4500千米。70年代后采用芳香聚酰胺纤维代替玻璃纤维增强环氧树脂,强度又大幅度提高,而重量减轻[4-6]。碳纤维增强环氧树脂复合材料在飞机、导弹、卫星等结构上得到越来越广泛的应用。
例如树脂基复合材料在弹体上的应用[7]。弹体是用于构成导弹外形 连接和安装弹上各部分系统且能承受各种载荷的整体结构。采用树脂基复合材料做弹体的主要目的是为了最大限度的减轻导弹的结构质量、简化生产工艺、降低成本。进一步提高导弹战术性能更重要的是,采用树脂基复合材料技术有利于整体成形有复杂形状、光滑表面和气动外形流畅的弹体,可以形成金属壳体难飞航导弹,以达到的隐身性能。目前,国外巡航导弹在设计研制时,都特别重视大量采用树脂基复合材料结构。
2.2热塑性树脂基复合材料的应用
近年来,由于热塑性树脂基复合材料具有韧性好,疲劳强度高,耐湿热性好,预浸料可以长期存放,可以重复成形,环境污染少等优点,使其在航空航天、汽车、电器、电子、建材、医药等行业得到广泛的应用。随着PPO、PEEK、PPS、PSF等高性能热塑性树脂的开发得到快速发展,使得热塑性复合材料的应用更加广泛,其中在汽车行业中的应用最为突出[8]。当前,世界汽车材料技术发展的主要方向是轻量化和环保化。减轻汽车自重是降低汽车排放,提高燃烧效率的最有效措施之一,汽车的自重每减少10%,燃油消耗可降低6%~8%。为此,增加热塑性复合材料在汽车中的使用量,便成为降低整车成本及其自重,增加汽车有效载荷的关键。
由于热塑性树脂基复合材料具有比强度和比刚度高,断裂韧性、疲劳强度、耐热、耐腐蚀等性能好,以及可重复成型等优点,在飞机上也得到一定应用[9-10]。在航空工业中,树脂基复合材料用于制造飞机机翼、机身、鸭翼、平尾和发动机外涵道;在航天领域,树脂基复合材料不仅是方向舵、雷达、进气道的重要材料,而且可以制造固体火箭发动机燃烧室的绝热壳体,也可用作发动机喷管的烧蚀防热材料。近年来研制的新型氰酸树脂复合材料具有耐湿性强、微波介电性能佳、尺寸稳定性好等优点,广泛用于制作宇航结构件、飞机的主次承力结构件和雷达天线罩。美国F-22飞机热塑性复合材料使用量大于1%,其它民用飞机上热塑性复合材料的使用量则更多。
由于热塑性复合材料具有独特的优点,使其在军事领域中也得到广泛应用。主要有枪用材料、弹用材料、以及地面车辆、火炮、舰船等部分零部件用材料。另外,热塑性复合材料在其它领域的应用也十分广泛。在建筑行业,产品有管件阀门、管道、百叶窗等部件;在机械工业方面,产品有水泵叶轮、轴承、滚轮、电机风扇、发动机冷却风扇空气滤清器、音响零件等;在油田领域,近年来,热塑性复合材料在油田中应用也越来越广泛,其中用于扶正器的玻纤增强PA材料年消耗量近万吨[11-13]。另外,树脂基复合材料在电子、能源、生物医学、体育运动器材、船舶制造等领域也有广泛的应用。
三、展望
树脂基复合材料良好的发展和应用前景决定了人们将继续重视发展树脂基复合材料的研究与开发。树脂基体的发展趋势是继续提高耐热和耐湿热性,以满足战机导弹超声速巡航及未来用材需求,目标是在可成型大型复杂构件的前提下,基体的湿态耐热进一步提高。在开发高性能增强纤维,如纳米材料的同时,主要通过基体增韧,继续提高复合材料的抗冲击韧性。
树脂基复合材料的应用向着高性能化方向发展,旨在追求高的减重效率。重视制造技术研究、生产改造和综合配套。开发材料设计及制备过程的计算机模拟软件,对产品设计和成型工艺进行优化,提高产品的先进性、可靠性,并最大限度的降低成本[14]。制约复合材料扩大应用,特别是在民用领域应用的主要障碍仍是成本太高,因此降低成本是当务之急。复合材料的发展应以市场为导向,加大创新力度,加强基础性研究和应用性研究,努力降低
原材料成本,开拓新的应用领域;要通过产学研结合,立足自主开发,同时积极引进技术和资金,在科技攻关、项目建设、装置规模上要力求与国际接轨,以推动我国复合材料工业全面、快速、健康地发展。
随着飞行器向高空高速无人化智能化低成本化方向发展树脂基复合材料的地位会越来越重要。国外预计在下一代飞机上复合材料将扮演主角[15]。树脂基复合材料对于导弹、战机屏蔽或衰减雷达波或红外特征,提高自身生存和空防能力,具有至关重要的作用;在实现战机、导弹轻量化、快速反应能力、精确打击等方面起着巨大作用,其用量已成为战机 导弹先进性的一个重要标志。树脂基复合材料技术不断发展更新其应用领域不断扩展并在能源电子汽车建筑桥梁环境和船舶等领域扮演着越发重要的角色。高性能树脂基体及其改性是我门树脂行业的责任和义务,应该努力做好这方面的研发和产业化。
随着树脂基复合材料的性能进一步提高,使用经验进一步积累,低成本技术的发展,高效新结构的发展以及应用效能的提高,未来树脂基复合材料的应用领域将变得更加广泛。
四、参考文献
1苏航,郑水蓉,孙曼灵,陈晓明等.纤维增强环氧树脂基复合材料的研究进展[J].热固性树脂,2011,04:54-57.2吴良义,罗兰,温晓蒙等.热固性树脂基体复合材料的应用及其工业进展[J].热固性树脂,2008,23(z1):22-31.3沈军,谢怀勤.先进复合材料在航空航天领域的研发与应用[J].材料科学与工艺,2008,16(5):737-740.4肖德凯,张晓云,孙安垣.热塑性复合材料研究进展[J].山东化工,2007,02:15-21 5陶永亮,徐翔青.树脂基复合材料在汽车上的应用分析[J].化学推进剂与高分子材料,2012,04:36-40.6陈平,于祺,孙明,陆春.高性能热塑性树脂基复合材料的研究进展[J].纤维复合材料,2005,02:52-57.7黄晓艳,刘波.先进树脂基复合材料在巡航导弹与战机上的应用[J].飞航导弹,2011,08:87-92.8马翠英,黄晖,王福生.树脂基复合材料及其在汽车工业中的应用[J].汽车工艺与材料,2005,11:40-42.9陈祥宝,张宝艳,邢丽英.先进树脂基复合材料技术发展及应用现状[J].中国材料进展,2009,06:2-12.10陈祥宝.先进树脂基复合材料的发展和应用[J].航空材料学报,2003,S1:198-204.11张文毓.先进树脂基复合材料研究进展[J].新材料产业,2010,01:50-53.12陈祥宝,张宝艳,邢丽英.先进树脂基复合材料技术发展及应用现状[J].中国材料进展,2009,06:2-12.13 Brouwer W D,van Herpt ECFC,Labordus A. Vacuum injection moulding for large structural ap-plications. Composites Part A-Ap-plied Science and Manufacturing,2003,34(6): 551-558 14李明明,王晓洁,刘新东.树脂基复合材料耐海水性能研究进展[J].玻璃钢/复合材料,2011,02:60-64.15吴良义.先进复合材料的应用扩展:航空、航天和民用航空先进复合材料应用技术和市场预测[J].化工新型材料,2012,01:4-9+91.16王兴刚,于洋,李树茂,王明寅.先进热塑性树脂基复合材料在航天航空上的应用[J].纤维复合材料,2011,02:44-47.17寇哲君 龙国荣 万建平姚学锋 方岱宁.热固性树脂基复合材料固化变形研究进展[J].宇航材料工艺,2006(z1):7-11.
第三篇:树脂基复合材料有关
高性能复合材料的树脂基体的研究进展
班级:材硕114 学号:030110604 姓名:周坚
摘要:本文简要回顾了高性能复合材料的发展历史。其中简要的介绍了复合材料的一个发展的历史,从古代开始一直介绍到近代。随后重点介绍了聚合物基复合材料。重点是对高性能树脂基的复合材料的基体进行了介绍,主要是环氧树脂基体、聚酰亚胺基体和双马来酰胺基体的复合材料进行了介绍。
关键词:高性能复合材料、环氧树脂基体、聚酰亚胺基体、双马来酰胺基体
1、前言
材料、能源、信息是现代科学技术的三大支柱。随着材料科学的发展,各种性能优良的新材料不断地的出现,并广泛的应用到各个领域。然而,科学急速的进步是对材料的性能也提出了更高的要求,如减轻重量、提高强度、降低成本等。这些都是需要在原有传统材料上进行改进。复合材料是现代科学技术发展涌现出的具有极大生命力的材料,它由两种或两种以上性质不用的材料组合而成,通过各种工艺手段组合而成。复合材料的各个组成材料在性能上期协同作用,得到单一材料所没有的优越的综合性能,它已成当代一种新型的工程材料[1]。
复合材料并不是人类发明的一种新材料,在自然界中,有许多天然复合材料,如竹、木、椰壳、甲壳、皮肤等。以竹为例,它是具有许多直径不同的管状纤维分散于基体中多形成的材料,纤维的直径与排列密度由表皮到内层是不同的,表皮纤维的直径小而排列紧密,以利于增加它的弯能力,但内层的纤维粗而排列疏可以改善它的韧性,所以这种复合结构很合理,打扫最优的强韧组合。
人类在6000万年前就知道用稻草和泥巴混合垒墙,这是早期人工制备的复
合材料,这种泥土混麦秸、稻草制土坯砌墙盖房子的方法目前在有些贫穷的农村仍然沿用着,但这种复合材料毕竟是最原始的和古老的,是传统的复合材料。现在建筑行业已发展到用钢丝或钢筋强化混凝土复合材料盖高楼大厦,用玻璃纤维增强水泥制造外墙体。新开发的聚合物混凝土材料克服了水泥混凝土所存在的脆性大、易开裂及耐腐蚀性差的缺点。5000年前,中东地区出现过用芦苇增强沥青造船。1942年玻璃纤维增强树脂基复合材料的出现,使造船业前进了一大步,现在造船业采用玻璃钢制造船体,尤其赛艇等变速艇等,不仅减轻了船艇的质量,而且可防止微生物的吸附。越王勾践是古老金属基复合材料的代表,它是金属包层复合材料制品,不仅光亮锋利,且韧性和耐腐蚀性优异。埋藏在潮湿环境中几千年,出土时依然寒光夺目、锋利无比。
随着新型增强体的不断出现和技术的不断进步,出现了新进复合材料,先
进复合材料是比原有通用复合材料具有更高性能的复合材料,包括各种高性能增
强剂和耐高温性好的热固性和热塑性树脂基体所构成的高性能复合材料、金属基复合材料、陶瓷基复合材料、碳/碳复合材料。先进复合材料的比强度高、比模量大、热膨胀系数小,而且它还有耐化学腐蚀、耐热冲击和耐烧蚀等特点,用它作为结构材料可以提高宇宙飞船、人造卫星和导弹等的有效载荷、增加航程或射程乃至改善这些装备本身的固有技术性能。21世纪我们面临的是复合材料迅猛发展和更广泛应用的时代。
2、聚合物基复合材料的发展历史
聚合物基复合材料是目前结构复合材料中发展最早、研究最多、应用最广、规模最大的一类。现代复合材料以1942年玻璃钢的出现为标志[2],1946年出现玻璃纤维增强尼龙,以后相继出现其他的玻璃钢品种。然而,玻璃纤维的模量低,无法满足航空、宇航等领域对材料的要求,因而,人们挣努力寻找新的模量纤维。1964年,硼纤维研制成功,其模量达400GPa,强度达3.45GPa。硼纤维增强塑料(BFRP)立即被用于军用飞机的次承力构件,如F-14的水平稳定舵。垂尾等。但由于硼纤维价格价格昂贵、工艺性差,其应用规模受到限制,随着碳纤维的出现和发展,硼纤维的成产和使用逐渐减少,1965年,碳纤维在美国一诞生,就显示出强大的生命力。1966年,碳纤维的拉伸强度和模量还分别只有1100MPa和140GPa,其比强度和比模量还不如硼纤维和铍纤维。而到1970年,碳纤维的拉伸强度和模量就分别达到2.76GPa和345GPa。从而碳纤维增强纤维得到迅速发展和广泛的应用。碳纤维及其复合材料性能不断提高。
1972年,美国杜邦公司又研制了高强、高模的有机纤维-聚芳酰胺纤维 [3](Kevlar),其强度和模量分别达到3.4GPa和130GPa,使PMC的发展和应用更为迅速。美国空军材料研究室(AFML)和国家航空航天局(NASA)的定义,以碳纤维、硼纤维、Kevlar纤维、氧化铝纤维、碳化硅纤维等增强的聚合物复合材料为先进复合材料,比模量大于40GPa/(g/cm3),因而,从60年代中期到80年代初,是先进复合材料的日益成熟和发展阶段。作为结构材料,ACM在许多领域或得应用。同时,金属基复合材料也在这一时期发展起来,如硼纤维、碳化硅纤维增强的铝基、镁基复合材料。80年代后,聚合物基复合材料的工艺、理论逐渐完善。ACM在航空航天、船舶、汽车、建筑、文体用品等各个领域都得到全面应用。同时,先进热塑性复合材料(ACTP)以1982年英国ICI公司推出的APC-2为标志 [4],向传统的热固性树脂基复合材料提出强烈的挑战。同时,金属基、陶瓷基复 合材料的研究和应用也有较大发展。
3、高性能复合材料用的树脂基体
基体树脂的主要功能是传递增强材料所承受的负荷,使之分布均匀并保护增强材料免受损伤和环境中湿气、氧气和化学物质的侵蚀。而复合材的耐热性、剪切和压缩强度、横向拉伸强度、蠕变性和流动性等也取决于基体树脂。因此,通常希望选用耐温性、强度和模量高、韧性和耐湿性好、与增强材料有良好的粘附性或浸润性而又易于加工的树脂。由于热固性树脂的交联网状结构,使它具有优异的耐温性和机械强度,而且当它作复合材料基体时,开始时以未交联固化的低分子量和低粘度的状态出现,便于成型加工,因此多年来用它做高性能复合材料的基体树脂一直占绝对优势,代表的品种有耐热的环氧树脂,聚酰亚胺及双马来酰亚胺树脂。3.1环氧树脂基高性能复合材料
3.1.1、环氧树脂的性能和基体树脂的作用
作为高性能复合材料基体树脂可以是热固性的,也可以是热塑性的,迄今为止,用量最多,应用面最广的要算是环氧树脂,这是因为它具备以下几个特点:(1)在化学结构方面,除有活性环氧外,还有羟基和醚基,致使粘结力强。(2)在固化方面面,其固化收缩率小(<2%),无挥发物逸放,孔隙率低;固化后生成三维网络结构,不溶不熔,化学稳定性高,耐蚀性强
(3)在力学性能方面,环氧树脂有较高的强度和模量,并有较长的伸长。这些优异性能是制取高性能复合材料的前提之一。
(4)在物性方面,它那热耐冷,可用在-50—180℃之间;热膨胀率系数在Tg以下是为39×10-6/℃,以上时为100×10-6/℃;热导率约为500×10-6Kal/cm·s·℃;在室温下的防潮防渗性好,绝缘性高。
(5)工艺性好,适应性强。环氧树脂不仅本身品种多,可以按比例相互掺混以调节其粘度和性能,而且可以在数十种固化剂中选择组合,以满足不同操作工序和不同用途的要求。同时,还可以选配稀释剂、改性剂和增韧剂等。此外,其贮存时间长,稳定性高,适应性强。
基体树脂的作用:
(1)赋予高性能复合材料的成型性和整体性
(2)提供连续的基体相,以使增强纤维均匀分布期中。换言之,基体必须把增
强纤维均匀地分开成为分散相,以使其在受到反抗性或弯曲等外来作用是,不会失去增强作用。
(3)当复合材料承受抗拉负荷时,基体能使其均匀地分布,并通过界面剪切有 效地载荷传递给增强纤维,充分发挥高强度和高模量的特性。3.1.2、环氧树脂的种类
(1)标准环氧树脂 双酚A型环氧树脂亦称标准环氧树脂,属于DGEBA,它
是通用的树脂[5]。国外的牌号很多。其特点是分子量低,粘度低。主要缺点是耐性差。(2)环氧酚醛树脂 其特点是活性环氧基在两个以上,交联密度大,耐热性比
较高,例如Dow公司的DEN-438,汽巴的EPN1138和ECN1299;国内主要有F-46。后者是目前用于FRP的主要基体树脂,主要缺点是由一定的脆性。
(3)酯环环氧树脂 美国UCC公司开发了多种牌号的这类树脂,它具有很好的 综合和平衡的力学性能,并且有优良的加工型、耐候性。
(4)多官能度环氧树脂 这种类型树脂的环氧基在3个以上,环氧当量高,交 联密度大,耐热性得到显著提高,主要缺点是具有一定的脆性,仍需要改性研究。3.1.3、高性能复合材料用环氧树脂基体的发展。
FRP的成型方法很多,主要有叠层加压、拉挤和缠绕等。为适应各种成型方 法工艺条件的要求,相应地开发各种专用型环氧树脂,有使用价值
(1)拉挤成型法 用于拉挤成型的基体树脂不仅要求粘度低,而且希望固
化快。一般环氧树脂,需胶化、玻璃化和最后固化为三维网络结构。因此,需发展快速固化环氧树脂。壳牌公司发展了两种适用于拉挤成型的环氧树脂体系,Epon9102/Epon固化剂CA9150和9302/CA9350。9102和9302都属于双酚A/环氧氯丙烷系环氧树脂,而固化剂CA9350为液态杂环胺。这两种新型环氧环氧树脂体系既保留了环氧树脂的耐热性和化学性,又具有类似聚酯的快速胶化速,满足课拉挤工艺条件的要求。(2)缠绕成型 缠绕成型对所用树脂体系有三点要求:①粘度低;②成型
时固化温度低;③贮存时间长,特别是对缠绕大型构件。一般环氧树脂的粘度较高,需加入反应性的稀释剂来调节,固化剂也需加入低粘度的酸酐,但是,加入稀释剂会导致耐热性下降,加入酸酐又会增加吸湿性,致使性能下降。
(3)无维布 无维布市重要的中间产品,各大碳纤维生产厂都有产品销售。为了制取高性能无维布,各公司发展了许多专用环氧树脂。由于商业保密,详情较少透露只有商品牌号和零散资料报道。
3.2、聚酰亚胺基高性能复合材料 3.2.1、聚酰亚胺的发展历史 六十年代以来,杜邦公司在开发PI方面对了大量工作[6]。1962年开发了成型材料Vespel;1965年有耐热薄膜Kapton;1968年汤普森拉英伍尔德里奇公司采用加成法制成聚酰亚胺P13N;1972年开发了NB-150;1973年法国的
Rhone-Ponlene公司开发了双马来酐亚胺系的PI;1975年第二代NB-150B2问世,迄今为止,Kapton薄膜在耐热薄膜方面仍多占鳌头,而NB-150和NB-150B2则是高性能复合材料的基体材料。对于聚酰亚胺,在开发的过程中主要围绕其成型上做了大量工作。影响成型主要的三个因素:①极为有害的缩合水;②使用高沸点溶剂;③预聚物的熔点高。加成固化A型的开发,克服了确定①;现场聚合型PMR的研制成功,克服了缺点②;热熔型LARC-160的问世,克服了缺点③。这就是使PI出具实用化的条件。3.2.2、用作高性能复合材料基体的聚酰亚胺
1976年,在NASA制定的“高性能空间运输系统复合材料”的研究大纲里,要开发耐热316℃的高性能复合材料。经过兰利和合同单位的共同努力,从14种PI中评选出4中作为高性能复合材料的基体,即NB-150B2、PMR-
15、LARC-160和Thermid6000;从5中PI粘结剂中筛选出3种,即FM-
34、LARC-
13、和RTV560-SQX;从5中碳纤维中筛选出2种,即Celion和AS4(HTS)[7]。(1)NB-150B2 NB-150B2杜邦生产的热塑性PI。NB-150B2用的是苯胺混合
物,其刚性比NB-150A2所有的二胺基二苯醚强,因此NB-150B2的Tg(350-371℃)比NB-150A2(280-300℃)高。如果采用其他胺类,Tg可调节在229-365℃之间。因为苯环之间引入—O—、—S—、—CH2—等,使主链的柔性增加,刚性下降,致使Tg降低。换言之,在PI的主链中,六元苯环和五元亚胺杂环都是热稳定性高的刚性环,Tg主要受芳族二胺结构的影响。这是分子设计的依据。
(2)PMR-15 刘易斯研究中心研制出得PMR-15都属于现场聚合的A型PI。
所谓现场聚合成型是指三元体系的脂肪醇溶液,在室温下不反应,在加热条件下才形成低聚物,最后在高温高压条件下加成固化为交联结构。
(3)LARC-160 LARC-160是兰利研究中心开发的热熔型PI。它是PMR-15 的改进型,主要区别采用了多价液状胺的低聚物。其特点是在室温下为单体溶液,浸渍性好,成型性能得到显著改善。它的强度为10Kg/mm2,模量为3.5×102Kg/mm2,比重约为1.40g/cm2。
(4)Thermid6000 Thermid6000的端基是具有三键的乙炔基,在加成固化中
进行三聚环化,形成环状结构,使其具有优异的耐热性。它的分子量小于2000。当加热到220℃时,因固化而放热,最终热处理温度是371℃,使用温度为350℃。在固化成型过程中没有挥发物释放,制品空隙率低,质量高。主要缺点是成型性欠佳和价高。3.2.3、聚酰亚胺及其复合材料的应用 各种航天航空飞行器和导弹武器,由于飞行条件的不同。飞行时间有很大的差异。GrF/PI准备用于轨道飞行器的垂直尾翼,升降副翼和后机身襟翼等。这主要时利用它的耐热性和减重效果。例如,大型试验件后机身襟翼的尺寸为6.4×2.1cm,其总重量比铝合金件轻160Kg,减重27%[8]。此外,它还用于:
①高性能军用飞机YF-12,飞行速度在3马赫以上。NASA的兰利研究中心用HTSI/ PMR-15制成了该飞机的翼板,比钛合金件减重51%。凯芙拉纤维增强聚酰亚胺复合材料的耐高温性能也比较好,可用来制造DC-9型运输机的整流罩,可降低机身阻力和节省燃油。
②航空导弹的弹头也采用了GrF/PI复合材料。
③GrF/PI可用来制造卫星的结构件,减重17-30%。如制造耐激光和耐高温的结构件。3.3双马来酰亚胺基复合材料 3.3.1双马来酰胺基复合材料的发展
高性能复合材料广泛的使用环氧树脂作为基体,主要是因为其成型工艺好。环氧树脂存在的主要缺点是耐湿热性差,如广泛使用的5208环氧体系在干态下可耐到177℃。而湿态只能耐到121℃;其次是用作主受力结构件还略显脆性,5208环氧基体的断裂延伸率为1.7%,但目前一出现断裂延伸率大于2%的碳纤维,人们对于双马来酰胺的兴趣在于[9],经过改性的双马来酰胺基体的耐湿热性与韧性均优于5208体系,同时具有类似环氧树脂的良好加工性能,能满足热压罐成型。
马来均聚物本身脆性大,用来制备复合材料的工艺性差。需使用高沸点的极性溶剂,制备的预浸料僵硬,无结性,铺覆性不好,成型温度高。因此,今年来围绕着提高韧性以及工艺性能对双马树脂进行改性研究。
人们早就在40年代就合成出双马树脂基体,到了70年代,为了解决环氧树脂的耐湿热性差的问题,才开始将双马树脂用作高性能复合材料基体,目前已商品化的双马树脂预浸料牌号有10余钟,作为高性能复合材料的基体,国内一些单位也有研究,为了进一步推动双马树脂的发展与应用,特别对高性能复合材料用双马基体进行总结[10]。3.3.2双马来酰胺树脂的改性 内扩链法增韧
双马来酰胺树脂未改性的BMI因2端的马来酰亚胺(MI)间链节短,导致分子链刚性大,固化物交联密度高。为使固化物具有柔韧性,人们设法将MI间的2R2链延长,并增大链的自旋性和柔韧性, 减少单位体积中反应基团的数目,降低交联密度, 从而达到改性目的。朱玉珑等研究发现,醚键的引入有望改善下一步所制备耐高温绝缘材料的冲击韧性。Jiang Bi biao等[11]研制了较普通BMI固化温度低的含氨酯基团的新型双马来酰亚胺低聚体,用其增韧后的BMI树脂溶解性和贮存稳定性良好, 玻璃布复合材料具有良好的力学性能和耐腐蚀性能。Haoyu Tang[12]等制备了含1,3,42氧二氮唑的耐高温BMI, 树脂的玻璃化温度高(Tg>350e),热稳定性良好, 在空气中初始分解温度大于460e,其玻璃布复合材料在高温(400e)下仍具有较高的弯曲模量(>1.6GPa)。橡胶共混增韧改性
在BMI树脂中添加少量带活性端基的橡胶有利于大大提高体系的抗冲击性能。目前普遍接受的增韧机理是银纹剪切带理论。即橡胶颗粒充作应力集中中心从而诱发了大量的银纹和剪切带,这一过程要消耗大量能量,因而能显著提高材料的冲击强度,达到增韧目的。用液体橡胶增韧BMI树脂可以使BMI韧性大幅度提高,目前应用较多的是端羧基丁腈橡胶。此方法同时也会降低耐热性,因此这类橡胶增韧的BMI树脂多用作韧性塑料和胶粘剂基体,用作先进复合材料基体的则很少, 且其价格较贵, 应尽可能地降低成本以利推广。胺类扩链增韧改性
BMI分子结构的C=C双键由于受到2个邻位羰基的吸电子作用而成为贫电子键,即一个亲电子的共轭体系,易与氨基等亲核基团发生Michael加成反应,芳香族二胺改性的BMI体系具有良好的耐热性和力学性能,但仍然存在工艺性欠佳、韧性不足、粘接性差等问题。为此在体系中引入环氧树脂,使其与芳香族二胺改性的BMI体系反应,形成交联网络结构,环氧树脂还能克服由仲胺基(-NH-)引起的热稳定性降低的缺点。王洪波等[13]通过BMI与二元胺、环氧树脂反应制备了改性BMI。研究表明,二元胺增韧后的BMI和环氧树脂能交联固化, 并且固化温度越高, 固化程度越完全,交联密度越大;改性BMI的热分解温度降低,柔韧性增加,有利于BMI在电器绝缘材料和胶粘剂等领域的应用。高性能热塑性树脂增韧改性
利用某些高性能热塑性树脂耐热性较好的特点, 可在一定程度上克服用橡胶增韧BMI后耐热性降低较多的缺点,因此通过与热塑性树脂共混增韧BMI的研究受到了重视。其改性途径主要有两种形式。
一种是热塑性树脂作为第二相增韧。该树脂的刚性与基体树脂接近,有较强的韧性和较高的断裂伸长率,当第二相的体积分数适当,就可以发生裂纹钉锚增韧作用,即在材料受力的情况下,第二相可诱发基体树脂产生银纹,同时由于本身的热塑性形变能有效地抑制裂纹扩展, 吸收较多能量, 起到增韧作用。另一种是用热塑性树脂连续贯穿于BMI树脂网络,形成半互穿网络聚合物(S-IPN),进行增韧改性。体系中的热塑性树脂与BMI相互贯穿,两相之间分散性良好,相界面大,能够很好地发挥协同效应。因此树脂兼备BMI的工艺性和热塑性树脂的韧性 3.3.3双马来酰胺基体的发展趋势 BMI增韧改性朝着保持热性能不变而使韧性提高的方向发展,这些增韧改性方法并非孤立,在实际应用中应根据目的和用途同时应用几种方法增韧改性。我国在这方面的研究与国外相比差距还是比较大。应进一步加强基础理论研究,开拓新的改性方法[14]。今后我国对BMI的开发,应从一下几个方面进行:①采用先进的增韧技术,对BMI进行改性,如原位增韧技术,通过化学反应过程控制分子交联状态下的不均匀性,以形成有利于塑性变形的非均匀性,从而得到增韧BMI;②加强新型增韧剂研究,尤其是开发耐热强韧型热塑性树脂;③进一步深入研究BMI的改性化学,改善其工艺性。开发适用于RTM的粘度低、固化时间短的BMI极其无溶剂热熔型BMI,以实现复合材料制品的工业化生产;④加强实用性BMI单体研究,有选择地合成和生产多种BMI。保持较大规模的高新技术用新材料产业。
4、结语
先进复合材料由于具有一系列优异的性能特点,已成为当今高性能结构材料的一个重要发展趋势,随着高技术的进步,先进复合材料正发挥着日益重要的作用。其中由环氧树脂为基体的高性能复合材料由于其成型性好,所以应用的很广泛,但是由于其的耐湿热性上面的缺陷,所以受到一定的限制,同时聚亚酰胺为基体的复合材料具有非常优异的耐高温性,从而在航空航天领域具有及其广泛的应用。双马来酰胺由于其的脆性,可以通过改性来改善这一问题。21世纪是复合材料的世纪,在不久的将来,复合材料肯定会应用到我们生活的各个方面。同时,在我们生活中发挥出来的的作用也会越来越大。
第四篇:树脂基复合材料成型工艺发展进程研究
树脂基复合材料成型工艺发展进程研究
摘要:本文介绍了树脂基复合材料成型工艺的发展进程及目前树脂基复合材料主要使用的成型工艺方法:手糊成型工艺、喷射成型工艺、模压成型工艺、RTM成型工艺、注射成型工艺、纤维缠绕成型工艺、拉挤成型工艺进行了介绍,并对主要的成型工艺方法进行了比较;对树脂基复合材料成型工艺的发展情况及趋势进行了叙述。
关键词:树脂基复合材料;成型工艺;发展进程背景介绍
树脂基复合材料于1932年在美国诞生,至今已有80多年的发展历史。二战期间,美国首次以玻璃纤维增强聚酯树脂,以手糊成型工艺制造军用雷达罩和远航飞机油箱,为树脂基复合材料在工业中的应用开辟了道路。
1950年,真空袋和压力袋压成型工艺研制成功,并试制成功直升飞机的螺旋桨;1949年,研制成果玻璃纤维预混料,利用传统的对模法压制成表面光洁的玻璃钢零件;60年代美国用纤维缠绕工艺研制成功“北斗星A”导弹发动机壳体,此后高压容器和压力管道相继问世。为了提高手糊成型的生产率,在此期间,玻璃纤维聚酯树脂喷射成型工艺得到了发展和应用,使生产率提高了2~4倍。1961年德国研制成功片状模塑料(SMC),使模压成型工艺达到了新水平;1963年,玻璃钢板材开始工业化生产;1965年,美国和日本用SMC压制汽车部件、浴盆、船上构件等。拉挤成型工艺始于50年代,60年代中期实现连续化生产;70年代,树脂反应注射成型(RIM)和增强树脂反应注射成型(RRIM)研究成功,产品俩面光,广泛用于卫生洁具和汽车零件的生产。60年代,热塑性复合材料得到发展,其成型工艺主要是注射成型和挤出成型,并只用于生产短纤维增强塑料。树脂基复合材料成型工艺发展现状
目前,世界各国已经形成了从原材料、成型工艺、机械设备、产品种类及性能检验等较完整的工业体系,与其他工业相比,发展速度很快。树脂基复合材料的成型工艺也从最初的手工操作工艺逐步向技术密集,高度自动化、高生产率、高稳定性的成型方法上发展,并随着应用领域的广泛开拓,出现了多种成型工艺并存,并不断衍生出新生工艺的发展态势。目前各种主要成型工艺所占比例如图1所示。
图1 主要成型工艺占比
2.1 手糊成型工艺
手糊成型工艺又称低压接触成型工艺,是树脂基复合材料工业中使用最早的一种工艺方法,操作方法简单,几乎可适用于所有的复合材料制品的生产,且投入小,但对操作人员技术熟练程度的依赖性较大,生产出的制品单面光洁,产品质量不够稳定。随着各种新工艺方法的不断涌现,手糊成型工艺所占比例逐渐降低,但手糊工艺所具有的独特的其他工艺不可替代的特点,尤其是在生产大型制品方面,故目前该工艺方法仍占有重要的地位。
主要应用领域:建筑雕塑领域如采光顶、活动房屋等;交通设施领域如游艇、汽车壳体、发动机罩等;环境与能源领域如风力发电机用机舱罩、叶片、沼气池等;体育游乐设备领域如游乐车、水滑梯等。手糊成型工艺如图2所示。
图2 手糊成型工艺
2.2 喷射成型工艺
喷射成型工艺是利用喷射设备将树脂雾化,并与即时切断的纤维在空间混合后落在模具上面,然后压实排出气泡固化,是在手糊工艺基础上发展而来的,是将手糊操作中的纤维铺覆和浸胶工作由设备来完成,是一种相对效率较高的工艺,其生产效率是手糊工艺的2~4倍。喷射工艺同样对操作人员的技术水平依赖大,且由于增强纤维以断切的形式存在,树脂含量高,制品的强度较低,同时由于喷射设备的原因,其采用阳模成型方便,而采用阴模成型困难较大,且大型制品比小型制品更适合于喷射成型工艺。
主要应用领域:喷射成型工艺主要应用于大型产品的制作及建筑物补强等,代表性的产品有玻璃钢浴缸、整体卫生间、卡车导流罩、净化槽、船身等。喷射成型工艺如图3所示。
图3 喷射成型工艺
2.3 模压成型工艺
模压成型工艺是将一定的模压料(粉状、粒状或纤维状)放入金属对模中,在一定的温度、压力作用下固化成型的一种方法。模压成型过程需要加热加压,使模塑料塑化(或熔化)、流动充满模腔,并使树脂发生固化反应。模压成型属于高压成型,及需要压力控制的压力机,又需要高强度、高精度、耐高温的金属模具。
模压成型生产效率高,产品稳定重现性好,两面光洁,尺寸精度高,但模压成型的模具制造复杂,需要进行模压料的制备,设备投资大,并受压机限制,最适合于大批量生产中小型复合材料制品。
主要应用领域:汽车领域如后尾门、侧门、车顶板、挡泥板、保险杠、天窗框架等;铁路车辆领域如车辆窗框、卫生间组间、座椅、车厢壁板与顶板等;电气领域如电气罩壳、绝缘子、电机风罩、电机换向器、电话机外壳等;建筑领域如浴缸、淋浴间、防水盘、坐便器、组合式水箱等。模压成型工艺如图4所示。
图4 模压成型工艺
2.4 树脂传递(RTM)成型工艺
RTM成型工艺是在模腔内预先铺放增强材料预成型体,然后在压力或真空作用下将树脂注入闭合模腔,浸润纤维,固化后脱模的成型工艺,是从湿法铺层和注塑工艺演变而来的一种成型工艺。
RTM成型工艺成型压力低,模具选材制作灵活,可以为钢模也可以为玻璃钢等成本较低的模具;设备成本投入适中,其投入高于手糊成型和喷射成型,但要低于模压成型;树脂注入选择性大,可以为注射机注射,也可以采用真空辅助注入;纤维预成型可以为手工铺放、手工铺放加模具热压预成型,机械喷射短纤维模具热压预成型、三维立体编织等多种形式。
RTM成型工艺为闭模成型制品具有良好的表面质量,可制作高尺寸精度、结构复杂的部件;生产效率高,制品产量在1000~2000件每年。
随着应用领域的不断扩大,在传统的RTM成型工艺上发展出一系列的衍生工艺,主要包括Light-RTM、VARIM、RFI等工艺。
Light-RTM工艺通常称为轻质RTM工艺,是在真空辅助RTM工艺的基础上发展而来的,适于制造大面积的薄壁产品。其下模为刚性的模具,上模采用轻质、半刚性的模具。工艺采用双层密封结构,外圈采用真空来锁紧模具,内圈采用真空导入树脂。注射口通常为带有流道的线形注射方式,有利于快速充模。由于上模采用半刚性的模具,模具成本大大降低,而制品仍然可以保证有良好的表面性能和尺寸精度。
真空辅助树脂扩散(VARIM)成型工艺是在RTM成型工艺基础上发展起来的一种高性能第成本的复合材料成型工艺。该工艺需要一半模具,另一半模具为与刚性模具密封处理的弹性真空袋,在真空状态下排除增强纤维中的气体,同时在真空下通过树脂的流动实现树脂的浸渍。与传统的RTM工艺相比,其模具成本低,对制品的尺寸结构限制较少,非常适用于大厚度大尺寸结构制件的成型。
RFI工艺也是采用单模和真空袋来成型制品,不同的是模具上铺放预制好的树脂模,再铺放纤维预成型体,真空袋封闭模具后将模具置于烘箱或热压下加热并抽真空,树脂模熔融后对纤维预成型体浸渍,继续升温加热使树脂固化。
总体来说,RTM工艺属于闭模成型,环境清洁,能够得到内外表面质量好的制品,同时模具制作、材料使用灵活,设备投入少,其优势越来越多的得到认可。但是,RTM工艺是在树脂与纤维浸渍阶段实现赋形,树脂的流动、纤维的浸渍及树脂的固化过程的不可控性增大,增加了工艺的复杂性。尤其是采用上下模都为刚性或半刚性的模具时,树脂的流动性、树脂对纤维的浸渍性及注射口的布置、流道的布置是非常重要的。
主要应用领域:航空航天和军事领域如雷达罩、螺旋桨、隔舱门、机翼、船舶结构件等;汽车领域如仪表盘、车身覆盖件和零部件;建筑领域如门、框架、脚手架、电话亭、标志牌等;体育运动器材如自行车架、高沃尔夫球车、高尔夫球杆、雪橇板等。RTM成型工艺如图
5、图
6、图7所示。
图5 传统RTM成型工艺
图6 轻质RTM成型工艺
图7 真空灌注成型工艺
2.5 注射成型工艺
注射成型工艺是将粉末状或粒状的纤维与树脂的混合物送入注射机内,经加热熔化后由螺杆或柱塞加压通过喷嘴注入导闭合的模具中,冷却定型后脱出模具。
注射成型工艺生产效率高,成型周期短,能够很好的保证制品精度,这些都优于模压成型,但注射成型工艺不适用于长纤维增强的产品,优于注射机的限制,较适合大量生产中小型的制品。注射成型工艺在热塑性和热固性复合材料中都有应用,但目前主要广泛应用与热塑性的复合材料。
主要应用领域:注射成型工艺在复合材料制品生产中,主要是代替模压成型工艺,生产各种电器材料、绝缘开关、汽车和火车零配件、纺织机零件、建筑配件、卫生及照明器材、家电壳体、食品周转箱、安全帽、空调机叶片等。注射成型工艺如图8所示。
图8 注射成型工艺
2.6 纤维缠绕成型工艺
是在缠绕机控制张力和预定线型的条件下,将连续的纤维粗纱或布带浸渍树脂,连续缠绕在相应的制品芯模上,然后在室温或加热条件下固化成型。
缠绕成型由于能够充分发挥纤维的强度,因此比强度和比刚度较高;易于实现产品的等强度设计,适于耐腐管道、储罐和高压管道及容器的制造。但是缠绕工艺具有局限性,由于缠绕过程中易于形成气泡,制品孔隙过多,从而降低层间剪切强度、压缩强度和抗失稳能力。同时,缠绕工艺对制品的形状有局限性,不适于制造带凹曲线表面的制品,且目前只能制造回转体制品。
主要应用领域:管道领域如炼油厂管道、石油化工防腐管道、输水管道、天然气管道、固体颗粒输送管道等;储罐如石油储罐、化工腐蚀液体储罐等;压力制品如火箭发动机壳体、深水外压壳体、高压气体压力容器等。纤维缠绕成型工艺如图9所示。
图9 纤维缠绕成型工艺
2.7拉挤成型工艺
是一种生产线型型材的成型方法,是在牵引装置带动下将无捻玻璃纤维粗纱和其他连续增强材料进行胶液浸渍、预成型,然后通过加热的成型模具固化成型,实现制品的连续生产。
主要应用领域:电子电气领域如电线杆、绝缘板、熔丝管、汇流线管、电缆桥架等;石油化工领域如管网支撑结构、格栅地板、抽油杆、楼梯、海上平台等;建筑机械制造领域如结构型材、行李架、顶梁、支柱、框架等;军用品领域如坦克、装甲车上的复合装甲、导弹火箭弹外壳等。拉挤成型工艺如图10所示。
图10 拉挤成型工艺
总体来说不同的成型工艺适应不同的制品性能和生产规模。尽管机械化、自动化日益发展,手糊与喷射成型仍将作为基本的成型工艺而占有相当的比例。树脂基复合材料成型工艺发展趋势
从复合材料成型工艺的发展趋势来看,是朝着科技含量高、逐步实现工业自动化、环境污染小、劳动强度低的方向发展。重所周知,成型工艺的优劣直接影响到制品的质量、成本和销路。成型工艺的选择标准主要有:符合市场要求,确保制品质量;操作简便、安全高效;产品性价比高;环境污染小,劳动强度低。
根据上述标准对现有的成型工艺进行衡量,手糊和喷射成型工艺为开模成型,对环境和操作人员污染伤害严重,并且所生产的制品质量不够稳定,难以控制;模压成型工艺设备昂贵、投资较大,生产周期长,适合于大批量的稳定生产;拉挤和缠绕成型工艺仅适合于较为特定的产品。从而,RTM及其衍生工艺则显现出它的优势:RTM成型工艺几乎可以适用于所有的制品的生产,并且生产效率较高,可以满足大多数生产的需求;与模压工艺相比,产品质量相当,但RTM的成本投入远小于模压工艺;与手糊工艺相比,RTM工艺产品质量好,生产效率高,而成本投入并不比手糊工艺高出很多。
因此,RTM成型工艺及其衍生的成型工艺将是树脂基复合材料成型工艺发展的主要趋势,但还要具体问题具体分析,其他的一些成型工艺也存在有不可替代的优点,也会随着树脂基复合材料的广泛应用而继续发展。
4、结论
树脂基复合材料的成型工艺发展至今,涌现出了诸多的工艺形式,并在不断的衍生发展,发展的总体趋势是朝向环保、高效、自动化、低成本的方向发展。综合上述工艺方法,RTM及其衍生的成型工艺具有非常不错的发展潜力和优势。
参考文献
【1】 黄家康主编 复合材料成型技术及应用 北京:化学工业出版社,2010.【2】 董永祺 我国树脂基复合材料成型工艺的发展方向 纤维复合材料,2003,(2):32-34.刘雄亚 谢怀勤主编 复合材料工艺及设备 武汉,武汉工业大学出版社,1997.
第五篇:碳纤维增强树脂基复合材料性能的研究
碳纤维增强树脂基复合材料性能的研究
摘 要:碳纤维增强树脂基复合材料以其优异的综合性能成为当今世界材料学科研究的 重点。本文介绍了的碳纤维增强复合材料的性能,简述了增强机理、成型工艺及其应用领 域和发展趋势。
新材料的研究、发展与应用一直是当代高新技术 的重要内容之一。其中复合材料,特别是先进复合材料 在新材料技术领域占有重要的地位,对促进世界各国 军用和民用领域的高科技现代化,起到了至关重要的 作用,因此近年来倍受重视。
复合材料(Composite materials),是以一种材料为基体(Matrix),另一种材料为增强体(reinforcement)组合而成的材料。各种材料在性能上互相取长补短,产生协同效应,使复合材料的综合性能优于原组成材料而满足各种不同的要求。复合材料的基体材料分为金属和非金属两大类。金属基体常用的有铝、镁、铜、钛及其合金。非金属基体主要有合成树脂、橡胶、陶瓷、石墨、碳等。增强材料主要有玻璃纤维、碳纤维、硼纤维、芳纶纤维、碳化硅纤维、石棉纤维、晶须、金属丝和硬质细粒等。【1】
碳纤维增强复合材料(CFRP)是目前最先进的复合 材料之一。它以轻质高强、耐高温、抗腐蚀、热力学性能 优良等特点广泛用作结构材料及耐高温抗烧蚀材料,而这些优 异的性能可使碳纤维成为一种十分良好的增强材 料。目前,碳纤维大部分应用于碳纤维增强树脂基 复 合 材 料(Carbon Fiber Reinforced Polymer Composite,简称CFRP)。是其它纤维增强复合材料所无法比拟的。因为环氧树脂的热机械 性能、抗蠕变性能、粘接性能优异而且吸湿性好; 固化收缩率和线膨胀系数小;固化温度较低;较高 温度下稳定性好;尺寸稳定性、综合性能好[2];而 且又与有机材料的浸润性能好等优点,所以近年来 应用最多的就是碳纤维增强环氧树脂复合材料。目 前为止,CFRP 可以应用于航空、航天,体育用品,交通工具,建筑材料等多个领域。无论是军用还 是民用,随着研究的不断深入和工厂的大规模生产,其应用领域更为广阔。
碳纤维增强树脂基复合材料的性能【10】
碳纤维增强树脂基复合材料具有一系列的优异性能, 主要表现在以下几个方面。
(1)具有高的比强度和比模量。CFRP的密度仅为 钢材的 1/5,钛合金的 1/3,比铝合金和玻璃钢(GFRP)还轻,使其比强度(强度 / 密度)是高强度钢、超硬铝、钛合金的4倍左右,玻璃钢的2倍左右;比模量(模量/ 密度)是它们的3倍以上。CFRP轻而刚、刚而强的特性 是其广泛用于宇航结构材料最基本的性能。
(2)耐疲劳。在静态下,CFRP 循环 105 次、承受 90%的极限强度应力时才被破坏,而钢材只能承受极 限强度的 50%左右。对于碳纤维增强树脂基复合材 料,在应力作用下呈现粘弹性材料的疲劳特性,显示出 耐疲劳特性。CFRP呈现出良好的抗蠕变性能,这可能 与碳纤维的刚性有关。
(3)热膨胀系数小。碳纤维的热膨胀系数α具有 显著的各向异性,使其复合材料的α也具有各向异 性。
(4)耐磨擦,抗磨损。CFRP 有优良的耐疲劳特 性、热膨胀系数小和热导率高的特性,具耐磨擦、抗磨 损的基本性能。再加之碳纤维具有乱层石墨结构,自 润滑性好,适用于摩擦磨损材料。比磨耗量可用以下 三式表示。
Wr=KLª
a=(b+2)/ 3
N=(So /S)/ b
式中Wr 为比磨耗量; K为比例常数; S为循环作 用的应力; So 为材料的拉伸强度; N为断裂时的循环次 数。CFRP具有高的拉伸强度,是优良的摩擦材料。
(5)耐蚀性。碳纤维的耐蚀性非常优异,在酸、碱、盐和溶剂中长期浸泡不会溶胀变质。CFRP 的耐蚀性 主要取决于基体树脂。长期在酸、碱、盐和有机溶剂环 境中,刻蚀、溶胀等使其变性、腐蚀,导致复合材料性能 下降。
(6)耐水性好。碳纤维复合材料的耐水性好,可长 期在潮湿环境和水中使用。一般沿纤维方向(0°)的强度 保持率较高,垂直于纤维方向(90º)的保持率较低。这可 能与基体树脂的吸湿、溶胀有关。
(7)导电性好。碳纤维具有导电性能。对于 CFRP 导电性能来自碳纤维,基体树脂是绝缘体。因此,CFRP 的导电性能也具有各向异性。
(8)射线透过性。CFRP对 X射线透过率大,吸收 率小,可在医疗器材(如 X光机)方面应用。增强机理 碳纤维增强树脂基复合材料是以聚合物为基体(连续相),纤维为增强材料(分散相)组成的复合材料。纤维材料的强度和模量一般比基体材料高得多,使它 成为主要的承载体。但是必须有一种粘接性能好的基 体材料把纤维牢固地粘接起来。同时,基体材料又能起到使外加载荷均匀分布,并传递给纤维的作用【11】。
这种复合材料的特点是,在应力作用下,使纤维的 应变与基体树脂的应变归于相等,但由于基体树脂的 弹性模量比纤维小得多,且易塑性屈服,因而当纤维和 基体处在相同应变时,纤维中的应力要比基体中的应 力大得多,致使一些有裂口的纤维先断头,然而由于断 头部分受到粘着它的基体的塑性流动的阻碍,断纤维 在稍离断头的未断部分仍然与其周围未断纤维一样承 担相同的负荷。复合增强的另一原因是基体抑制裂纹 的效应,柔软基体依靠切变作用使裂纹不沿垂直方向 发展而发生偏斜,导致断裂能有很大一部分用于抵抗 基体对纤维的粘着力,从而使银纹在 CFRP 整个体积 内得到一致,而使抵抗裂纹产生、生长、断裂以及裂纹 传播的能力都大为提高。因此,CFRP的力学性能得到 很大的改善和提高【12】。实验部分
1.1 实验原料
碳纤维(12K/T-300):台湾台塑厂;环氧树脂 E51:星辰化工无锡树脂厂;固化剂:二乙烯三胺(DETA)分析纯,国药集团化学试剂有限公司;活 性稀释剂:市售。
1.2 实验仪器及设备 电子天平:H10KS,上海仪器总厂;电热恒温 鼓风干燥箱:DHG-9030 型,上海精密实验设备有 限公司;搅拌器:DF-1 型,荣华仪器制造有限公 司;模具:自制。
1.3 复合材料的制备
(1)将碳纤维干燥,条件为:150 ℃/2 h;(2)按规定配比配制树脂胶液;
(3)采用手糊成型工艺制作层合板,并固化,固化条件为 100 ℃/3 h + 150 ℃/2 h;
(4)用万能制样机切割标准样条;
其中制作的层合板长宽为 200 mm×200 mm,厚度为 5 mm 的方形板材,基体树脂每层用量为 20 g,碳纤维每层平铺,一共为 8 层,层与层之间的碳 纤维丝束成十字交叉排列。
试验结果与讨论
2.1 碳纤维含量对硬度的影响 显微硬度试验结果示于图 1。可以看出, 随着 碳纤维含量的增加, 试样的硬度呈现 S 形增加趋 势, 增加幅度由小到大又由大到小。碳纤维是脆性 材料, 具有高的强度和比模量, 所以加入碳纤维能提 高试样的硬度[ 5]。基体是树脂材料, 其硬度较低, 当 碳纤维含量较低时, 由于在基体中较分散, 所以对显 微硬度的贡献较小;当碳纤维含量> 10%, 碳纤维的 作用变的非常明显, 所以硬度有较大幅度的增加;但 是, 当碳纤维含量> 25% , 碳纤维的增强作用逐渐达 到饱和, 硬度的增加速度开始下降。总之, 碳纤维的 加入对硬度的提高非常明显。
图y为不同碳纤维含量样品的电导率。从中可 以看出, 当碳纤维含量< 10%时, 电阻随纤维含量的 增加急剧下降;当碳纤维含量> 10%时, 体积电阻的 变化趋于平缓, 电阻值的下降与碳纤维含量的增加 并不成正比, 有一个渗滤阀值, 这个渗滤阀值约为 15%。这表明, 碳纤维/ 酚醛树脂复合体系在碳纤维 含量为 15%以上, 试样具有一定的导电性能[ 6]。
上述结果可用以下理论解释, 当复合体系中导 电填料的含量在达到一个临界值前, 其电阻率急剧 下降, 在电阻率导电填料含量曲线上出现一个狭窄 的突变区域。在此区域内, 导电填料含量的任何细 微变化均会导致电阻率的显著改变, 这种现象通常 称为渗滤现象, 导电填料的临界含量称为渗滤阀值。在突变区域之后, 即使导电填料含量继续提高, 复合 材料的电阻率变化甚小, 这反映在突变点附近导电 填料的分布开始形成导电通路网络。导电高分子材 料的导电现象是由导电填料的直接接触和填料间隙 之间的隧道效应的综合作用产生的;或者说是由导 电通道、隧道效应和场致发射三种导电机理竞相作 用的结果。在低导电填料含量及低外加电压下, 导 电粒子间距较大, 形成链状导电通道的几率极小, 这 时隧道效应起主要作用;在低导电填料含量和高外 加电压时, 场致发射理论变得显著;在高导电填料含 量下, 导电粒子的间距小, 形成链状导电通道几率较 大, 这时导电通道机理的作用明显增大[ 7]。
碳纤维含量对耐磨性的影响
试样磨损完毕后, 每个试样磨损前、后的质量磨 损量与碳纤维含量的关系如图 3 所示。从图 3 可以 看出, 随着碳纤维含量的增加, 复合材料的磨损率下 降、耐磨性能提高, 且提高程度随着碳纤维含量的增加而减小, 最后趋于不变。
综上所述,碳纤维增强树脂基复合材料品种结构 变化繁多,加工成型技术不断更新,基础理论研究方兴 未艾,应用领域相当广泛,这些事实充分证明了这一材料在工程塑料中的领先地位。随着基础研究和应用研 究的不断深入,该材料在取代金属、节约能源、特殊专 用等方面将发挥独特的作用,其巨大的潜力必将得到 进一步挖掘。
总结碳纤维复合材料的现实应用有以下几个方面: 4.1 航空航天领域的应用[13] 碳纤维复合材料与钢材相比其质量减轻 75%,而 强度却提高 4 倍,其最早最成熟的应用当属在航空航 天领域,如军用飞机、无人战斗机及导弹、火箭、人造卫 星等。早在 1970 年代初期,美国军用 F-14 战斗机就部 分采用碳纤维复合材料作为主承力结构。在民用航空 领域,如波音 767 和空中客车 A310 中,碳纤维复合材 料也占到了结构质量的 3%和 5%左右。近几年随着碳 纤维工业技术和航空航天事业的不断发展,碳纤维在 这一领域的应用更加广泛,如用于制造人造卫星支架、卫星天线、航天飞机的机翼、火箭的喷焰口、战略导弹 的末级助推器、机器人的外壳等。
4.2 体育休闲领域的应用 体育休闲用品是碳纤维复合材料应用的另一个重 要领域,如高尔夫球杆、滑雪板、滑雪车、网球拍、钓鱼 竿等。用碳纤维复合材料制成的球拍与传统的铝合金 球拍相比,其质量更轻、手感和硬度更好、对震荡和振 动的吸收也更好,且使用寿命大大延长。同时由于复合 材料本身的可设计性,使得制造商在球拍的硬度、弹 性、球感、击球性能的设计上,有了更大的想象空间。而 碳纤维钓鱼竿由于其良好的韧性与耐用性,更是被广 泛青睐。近年来,碳纤维复合材料在运动及休闲型自行 车零组件方面的应用也非常广泛。
4.3 交通运输领域 碳纤维增强复合材料在交通运输方面主要是汽车 骨架、螺旋桨芯轴、轮毂、缓冲器、弹簧片、引擎零件、船 舶的增强材料等,尤其在汽车方面的应用更是潜力巨 大。早在 1979 年,福特汽车公司就在实验车上作了试 验,将其车身、框架等 160 个部件用碳纤维复合材料制 造,结果整车减重 33%,汽油的利用率提高了 44%,同 时大大降低了振动和噪音。
4.5 其他工业领域 防弹产品方面,包括防弹头盔、防弹服、防弹运钞 车和防弹汽车等;电子工业方面,包括各种反射面天 线、印刷电路板、壳架等;生物工程和人体医学方面,包括人造关节、骨骼、CT扫瞄床板等;地铁车辆、发热 材料和电热用品以及机械制造工业等复合材料产品 多种多样,层出不穷,充分体现了其应用多元化的趋 势和特点。
【1】360百科
[2] 张金祥.新型 BMI/环氧树脂共固化体系的研究[D].大连:大连理 工大学,2011.
10张晓虎,孟宇,张炜.碳纤维增强复合材料技术发展现状及趋 势.纤维复合材料,2004,30(1):50~58.王汝敏,郑水蓉,郑亚萍.聚合物基复合材料及工艺.北京:科学 出版社,2004.12彭树文.碳纤维增强尼龙66的研究.工程塑料应用 13 苏小萍.碳纤维增强复合材料的应用现状.高科技纤维与应 用, 2004,29(5):34~36.