超导材料在电力系统中的应用前景展望

时间:2019-05-13 05:37:48下载本文作者:会员上传
简介:写写帮文库小编为你整理了多篇相关的《超导材料在电力系统中的应用前景展望》,但愿对你工作学习有帮助,当然你在写写帮文库还可以找到更多《超导材料在电力系统中的应用前景展望》。

第一篇:超导材料在电力系统中的应用前景展望

超导材料在电力系统中的应用前景展望

摘要:

超导的发现是20世纪物理学的一项伟大成果。文章主要阐述了超导现象,超导材料的研究和发展以及在电力系统方面的应用优势和进展,并做了前景展望。

关键词:

超导材料;超导电缆;超导发电机;超导电动机。Abstract:

The discovery of superconductivity is a great achievement of 20th century in physics.The article mainly describes the phenomenon of superconductivity, the research and development of the superconducting materials as well as in Electric Power System strengths and progress, and outlook.Keywords: superconducting material;superconducting cable;superconducting generators;superconducting electrical motor.超导的诞生和发展

1911年,荷兰科学家卡麦林·昂尼斯用液氦冷却汞,当温度下降到4.2K(﹣268.95℃)时,汞的电阻变为零,这种现象被称为超导现象,电阻为零时的温度称为临界温度。为了证实超导体的电阻为零,科学家将一个铅制圆环放入温度低于7.2K(﹣265.95℃)的空间,利用电磁感应在铅制圆环内激发起感应电流。结果发现,环内电流能持续下去,从1954年3月16日始,到1956年9月5日止,在两年半的时间内的电流一直没有衰减,这说明圆环内的电能没有损失,这就是著名的昂尼斯持久电流实验。这一实验极大的激发了科学家们的研究热情,国际上也对超导技术在电力方面的应用给予了极大的关注,开展了一系列可行性论证和一定规模的研究,但由于技术上和经济上的原因,这方面的应用研究都没能实现预期的目标。随着不断的实验,超导合金的出现使超导材料的临界温度也不断提高。

1986年瑞士缪勒和柏诺兹发现了一种成分为钡、镧、铜、氧的陶瓷性金属氧化物(La-Ba-Cu-O系氧化物)具有高于30K(﹣243.15℃)的约为35K的超导性。由于陶瓷性金属氧化物通常是绝缘物质,因此这个发现的意义非常重大,缪勒和柏诺兹因此而荣获了1987年度诺贝尔物理学奖。此后,新的研究成果如雨后春笋般大量出现,出现了研究和发现的高潮。到了1987年底,临界温度达到125K(﹣148.15℃),短短一年多的时间临界温度几乎提高了100K。

从此超导材料的研究方向朝向高温超导材料发展,当然,高温是相对于低温而言,即使是高温,依然远低于冰点。所以在实际应用中超导材料需要制冷等操作,大大提高了成本,也使得超导材料不能大量应用。

超导材料在电力系统的应用

美国物理学家波恩特•特奥•马梯阿斯指出:“电能的输送是超导体最重要的应用之一。”发电站输出电能常用铝线和铜线。由于电阻的存在一部分电力在输出过程中转变为热能而消失,存在着严重的损耗。而利用超导材料输电,由于导线电阻消失,线路损耗也就降为零,用超导材料可制高效率大容量的动力电缆,并且可减少导体的需求量,节约大量有色金属资源。

由于超导材料有零电阻的性质,所以科学家想到把其应用到电力系统中,这样可以大大减少电能的热损耗,节约很大一部分电能。据统计,目前的铜或铝导线输电,约有15%的电能损耗在输电线路上,单单是在中国,每年的电力损失即达1000多亿度。若改为超导电缆输电,节省的电能相当于新建数十个大型发电厂。

在电力领域,利用超导线圈磁体还可以将发电机的磁场强度提高到5万~6万高斯,并且几乎没有能量损失,这种发电机便是交流超导发电机。超导发电机的单机发电容量比常规发电机提高5~10倍,达1万兆瓦,而体积却减少1/2,整机重量减轻1/3,发电效率提高50%。超导发电机的另一个突出特点是有利于改善系统的稳定性。一般来说,发电机的电抗越小,系统就越稳定。超导发电机的电抗大约只有普通发电机的l/4左右,因此在系统电抗相对较小时,系统的稳定极限增加了约4倍。

另外,在2012年4月12日,中国船舶重工集团公司第七一二研究所研制的兆瓦级高温超导电机实现满负载稳定运行,标志着我国首台兆瓦级高温超导电机研制成功。该电机具有完全自主知识产权,达到世界先进水平,对我国超导电机的战略发展具有里程碑意义。今后,该所将着力进行大容量高温超导电机的实用化研究,预计到2020年前进入工程研制,逐步将高温超导电机技术推广运用到电气传动和发电领域,实现该领域的新变革。

超导材料的前景展望

综上所述,在电力系统中采用超导技术可增加电网的输送容量、降低电能损耗、提高电力系统运行的可靠性和稳定性、有利于保护环境.具有广阔的应用前景。现在超导电缆,超导发电机和超导电动机的研制都取得了重大进展,超导技术在电力系统中大规模应用的想法正在不断成为现实。我国的电力科技发展必须紧跟世界电力科技发展的步伐,要加强对超导电缆,超导发电机和超导电动机等可改善电网运行参数、有利于系统稳定且结构相对简单的超导电力设备的研制开发工作,争取在超导材料的研究开发、超导设备的结构设计、降低成本、经济运行等方面取得突破。

参考文献:

1.林良真.肖立业;超导电力技术[期刊论文]-科技导报 2008(1)2.林良真;超导技术电力应用研究的进展与前景 1995(09)3.Buckles W;Hassenzahl W V; Superconducting magnetic energy storage[外文期刊] 2000(05)4.林良真;我国超导技术应用研究进展 1994(03)5.纪尚昆;超导技术在智能电网中的应用[期刊论文]-广西电业 2010(1)6.Han S Development on superconductivity in China[外文期刊] 1981(05)7.海伟.杨宏伟;超导技术及其工程应用[期刊论文]-科技创新导报 2008(20)8.曹重光.超导及其在工业领域中的应片I.江丙电力职工大学学报,2001,3 9.冯瑞华;姜山;超导材料的发展与研究现状[期刊论文]-低温与超导 2007(06)10.杨军;超导电性的研究及成用[期刊论文]-现代物理知识 2004(05)

第二篇:Gis在电力系统中的应用

GIS在电力系统中的应用

GIS的简介和功能

GIS即地理信息系统(GIS, Geographic Information System)是一种基于计算机的工具,它可以对在地球上存在的东西和发生的事件进行成图和分析。GIS 技术把地图这种独特的视觉化效果和地理分析功能与一般的数据库操作(例如查询和统计分析等)集成在一起。这种能力使 GIS与其他信息系统相区别,从而使其在广泛的公众和个人企事业单位中解释事件、预测结果、规划战略等中具有实用价值。地图制作和地理分析已不是新鲜事,但GIS执行这些任务比传统的手工方法更好更快。而且,在GIS技术出现之前,只有很少的人具有利用地理信息来帮助做出决定和解决问题的能力。电力GIS是将电力企业的电力设备、变电站、输配电网络、电力用户与电力负荷和生产及管理等核心业务连接形成电力信息化的生产管理的综合信息系统。它提供的电力设备设施信息、电网运行状态信息、电力技术信息、生产管理信息、电力市场信息与山川、河流、地势、城镇、公路街道、楼群,以及气象、水文、地质、资源等自然环境信息集中于统一系统中。通过GIS可查询有关数据、图片、图象、地图、技术资料、管理知识等。

一、GIS特点

1、开放性

具有开放式环境及很强的可扩充性和可连接性。GIS技术支持多种数据库管理系统,如 ORACLE、SYBASE、SQLSERVER等大型数据库;运行多种编程语言和开发工具;支持各类操作系统平台;为各应用系统,如SCADA、EMS、CRM、ERP、MIS、OA等提供标准化接口;可嵌入非专用编程环境。

2、先进性

GIS平台采用与世界同步的计算机图形技术、数据库技术、网络技术以及地理信息处理技术。系统设计采用目前最新技术,支持远程数据和图纸查询,利用系统提供的强大图表输出功能,可以直接打印地图、统计报表、各类数据等。可分层控制图纸、无级缩放、支持漫游、直接选择定位等功能。系统具备完善的测量工具,现场勘查数据,线路杆塔等设备的初步设计,并可直接进行线路设备迁移与相关计算等,实现线路辅助设计与设备档案修改。具有线路的方位或区域分析判断功能,为用户提供可靠的辅助决策,综合统计分析,为管理决策人员提供依据。特别是把可视化技术和移动办公技术纳入GIS系统的总体设计范围。地图精度高,省级地图的比例尺达到1:10000或1:5000,市级地图比例尺达到1:1000或1:500,地图能分层显示山川、水系、道路、建筑物、行政区域等。

3、发展性

具有很强的可扩充性和可连接性。在应用开发过程中,考虑系统成功后进一步发展,包括维护性扩展功能和与其它应用系统的街接与整合的方便。开发工具一般采用J2EE、XML等。

二、电力GIS特点

电力GIS除具备GIS的基本特点外还具备如下特点:

1、电力系统运行参数实时性及信息的动态变化性,需要对瞬间信息及时收集、处理和分析。电力GIS对数据处理、存储容量和传输速度均有较高的要求。

2、电网的多属性数据要求GIS具备足够的稳定性和可靠性。根据电力行业技术标准及电力企业业务需求,系统具有良好的可维护性。电力GIS能够实现数据的一次输入和多次输出,以保证数据的一致性操作,实现数据的统一管理和多层保护等,构建高可靠性和高准确性的业务系统。

3、电力系统是一个庞大复杂系统,电力网的广域性和电力设施的分散性及设备的多样性,实时信息量大,系统接口复杂,信息的覆盖面广,电网的各种电压等级及多用户连接等需要GIS具备拓扑分析和转换能力。

4、电力GIS的单机工作站方式已经落后,且不适合电力企业信息系统实际需要。电力行业目前应用的GIS平台安装在局域网环境下,在网络的应用和开发上整合信息,实现资源共享。

5、电力GIS具备安全保护的特点,电网设备的高精确度测量的经纬度坐标数据是国家基础信息资源,是国家安全的信息。

三、GIS在电力行业的应用

1、面向对象的数据建模,具有建模规则库、电网图的编辑及输出工具。电力GIS平台包括基本构件层、系统环境层、数据库连接层、图形与数据接口工具层、应用系统层等。分层建立各种数据模型,并建立各层的连接关系。建立地理层信息与设备信息的拓扑和映射关系。电力GIS支持多空间同屏显示和多空间关联建模、多空间索引。

2、支持多种图形处理与管理,实现数据的多层映射,多维空间映射,提供完整、准确的地图信息、高精度图片、准确的技术参数,标尺准确,高精确度杆塔位置,按用户需要自动生成专用地图。

3、数据搜索快捷、线路图表查询准确和统计功能齐全。电力GIS实现电网数字化描述,其目的是能对电网实现快速查询,及时掌握电网运行状态,快速诊断电网故障,提高处理事故能力,保证电网运行质量以及提高用户服务质量。GIS可对图形数据、可执行图形和属性数据的嵌套操作与映射查询关系运算;根据电力系统提供的配电设备的图形、属性信息与地理位置、地形数据、环境数据、线路走向数据、线路设备历史档案和即时信息,对线路设计方案、施工方案、抢修和停电措施提供决策依据及辅助决策。

4、电力GIS能够实现与电网调度自动化系统、电力用户关系管理系统、电力营销系统、电力市场管理系统等应用系统共享相关信息。支持多种管理应用系统的连接,其中包括与企业的MIS系统融为一体。GIS系统中的设备管理对其生命周期实行全过程跟踪,包括对设备信息的查询、属性数据的修改、设备的维修信息管理等。

5、电力GIS对信息库进行安全保护,制定管理与使用的安全保密措施和机制,包括内外网络的隔离、重要电力设施电子地图和设备信息数据库的保护等。安全措施在系统总体设计与建设中充分考虑,并严格实施,对应用系统的数据实现多层安全保护,设置用户权限以保证系统资源共享下的安全,使系统能在可靠安全的环境下运行。

电力系统所管辖的电网线路和设施分布在广阔的地域上,因此就很需要有GIS来为其所用。电力信息系统与其它信息系统不同之处在于它需要在数据库中记录地理信息,而且有两种类型的地理信息:电力设施的详细位置信息和设施之间的空间关系信息。

GIS系统是通过GIS技术对电力系统基础数据进行计算机管理,能够在地理背景图上管理配电网图形资料和非图形参数,真实反映电网线路的实际走向、各种电力设备的地理位置、对所属电力用户的供电方式等各种信息,并结合DMS中实时控制和离线应用,在地理背景图上显示电力系统实际运行状况。

通过GIS软件技术对配电网基础数据进行计算机管理,把GIS系统中实时控制和离线应用有机结合,形成一个具有空间概念(地理环境信息)和基础信息(电网资料和用户资料)的分层管理数据库,既能方便地进行查询和管理,为配电网运行管理提供一个有效的、具有地理信息的网络模型,又为GIS系统提供基础数据库平台,支持系统许多应用软件的开发和其他功能的实现,如故障投诉管理、配网工作(设计、施工和检修)管理、用电营业管理系统等。

电力客户服务中心系统“95598”,用于处理用电客户进行故障报修、投诉举报、咨询登记、信息查询等业务,对于用户来说,更多的是进行用户用电的故障报修,信息员可以根据用户提供的地点,从GIS系统中通过相关操作查询与之相对应的用户杆号,然后通过座席系统Agent下发派工单到配电抢修班或其他相关部门,指挥抢修车辆达到现场进行维修,再由抢修相关人员将现场故障情况及处理结果及时反馈给客户服务中心。

配电GIS与电力客户服务中心系统“95598”相结合,可以快速、准确的根据用户的故障投诉电话判断发生故障的地点、抢修队伍目前所处位置、及时派出抢修人员,缩短停电时间。近几年,电力系统相继开发建设了一大批GIS应用系统。如大连供电公司配电地理信息系统,长春供电公司用电GIS综合管理系统,南昌供电局SCZDA/AM/FM/GIS自动化主站系统,贵阳南区供电局配网地理系统,甘肃送变电工程公司输电管理地理信息系统等。下面介绍在系统运行管理方面

GIS在电力系统运行管理方面的应用

1、北京供电公司配电生产管理信息系统自2002年1月在北京供电公司、海淀、朝阳、丰台、石景山供电分公司和电缆管理处等单位安装以来,运行稳定,很大程度上提高了公司管理水平和工作效率。

2、山西省电力公司和山西晋城供电分公司2002年12月开始实施的“基于空间信息的电网综合管理系统”实现了山西电网的全面统一管理。

3、江苏省电力公司信息中心,积极推进电力GIS的应用和研究,把输电管理系统、调度管理信息系统、客户服务系统建立在GIS平台上。

4、上海沪西供电所通过电力GIS搭建数字电网实时系统,监控辖区内150万用户的用电状态,改革供电服务业务方式,通过GPS卫星定位系统准确定位,对电力线路实施维护。从电力输电预警系统分析线路运行故障,向班组发布抢修指令。利用GIS系统输出出事现场电路设备信息和接线分布图,为抢修车赶赴现场的工程人员提供准确的设备和线路信息。

GIS为电力信息化建设做出了巨大贡献,对电力行业的发展起到了积极促进作用,但同时应当看到我国电力GIS与国外先进水平还有很大差距。美国在20世纪90年代初就提出了“数字地球”的概念,而我国的地理信息系统才刚刚发展几年。相信我国电力GIS的应用空间和应用深度还很大,相信通过我们的努力会将电力GIS的水平提高到一个新的高度,电力GIS在不久的将来会到达光辉的顶点。参考文献:

1.《大连供电公司配电地理信息系统-查询版操作手册》,深圳市雅都软件股份有限公司,2004年9月出版

2.《配电GIS户外数据采集系统的建设与思考》,袁晨 赵晓纯,2006年12月发表

3.《手持GPS在配网地理信息系统的应用》,农村电气化,2007年第4期

作者介绍:

第三篇:碳化硅功率器件的发展现状及其在电力系统中的应用展望

碳化硅功率器件的发展现状及其在电力系统中的应用展望

摘要:碳化硅作为一种宽禁带材料,具有高击穿场强、高饱和电子漂移速率、高热导率等优点,可以实现高压、大功率、高频、高温应用的新型功率半导体器件。该文对碳化硅功率半导体器件的最新发展进行回顾,包括碳化硅功率二极管、MOSFET、IGBT,并对其在电力系统的应用现状与前景进行展望。

关键词:碳化硅;功率器件;电力系统

引言

理想的半导体功率器件,应当具有这样的静态和动态特性:在阻断状态,能承受高电压;在导通状态,具有高的电流密度和低的导通压降;在开关状态和转换时,具有短的开、关时间,能承受高的di/dt 和du/dt,具有低的开关损耗,并具有全控功能。半个多世纪以来(自20世纪50年代硅晶闸管的问世),半导体功率器件的研究工作者为实现上述理想的器件做出了不懈的努力,并已取得了世人瞩目的成就。各类硅基功率半导体器件(功率二极管、VDMOS、IGBT、IGCT等)被成功制造和应用,促使各种新型大功率装置成功地应用于各种工业电源、电机驱动、电力牵引、电能质量控制、可再生能源发电、分布式发电、国防和前沿科学技术等领域。

然而由于在电压、功率耐量等方面的限制,这些硅基大功率器件在现代高性能电力电子装置中(要求具有变流、变频和调相能力;快速的响应性能~ms;利用极小的功率控制极大功率;变流器体积小、重量轻等)不得不采用器件串、并联技术和复杂的电路拓扑来达到实际应用的要求,导致装置的故障率和成本大大增加,制约了现代电力系统的进一步发展。

近年来,作为新型的宽禁带半导体材料——碳化硅(SiC),因其出色的物理及电特性,正越来越受到产业界的广泛关注。碳化硅功率器件的重要优势在于具有高压(达数万伏)、高温(大于500℃)特性,突破了硅基功率器件电压(数kV)和温度(小于150℃)限制所导致的严重系统局限性。随着碳化硅材料技术的进步,各种碳化硅功率器件被研发出来,如碳化硅功率二极管、MOSFET、IGBT等,由于受成本、产量以及可靠性的影响,碳化硅功率器件率先在低压领域实现了产业化,目前的商业产品电压等级在600~1700V。近两年来,随着技术的进步,高压碳化硅器件已经问世,如19.5kV的碳化硅二极管[1],10kV的碳化硅MOSFET[2]和13~15kV[3-4]碳化硅IGBT等,并持续在替代传统硅基功率器件的道路上取得进步。这些碳化硅功率器件的成功研发带来了半导体功率器件性能的飞跃提升,引发了新一轮技术革命,必将在众多应用领域,如电力系统中的高压领域产生深远的影响。碳化硅材料及功率器件进展

2.1 碳化硅材料

在体单晶材料方面,SiC单晶衬底已经商品化。目前国际上已有76.2 mm和101.6 mm的SiC抛光衬底材料出售,具有批量生产能力的公司超过十家。高功率SiC器件的芯片面积很大(单胞面积> 1cm),需要大尺寸和低缺陷的衬底材料,尤其需要很低的微管缺陷密度。在这种需要的激励之下并经过长期的技术积累,困扰SiC单晶生长的微管缺陷控制技术也在2004年获得突破。如日本Toyata公司采用“重复a面”(repeated a-face:RAF)生长技术,实现了50.8mm SiC单晶的无微管生长,同时也将位错密度降低到250/cm2以下[5]。2005年美国Intrinsic公司也获得了零微管(Zero Micropipe,简称ZMP)的SiC单晶技术,并于2006年生长出无微管的76.2 mm SiC衬底材料。在并购了Intrinsic公司获得零微管技术后,Cree公司直径101.6 mm的4H-SiC导通衬底的微管密度最低达0.1/cm2,甚至零微管,使得用于制作面积为1cm2的功率器件能够实现90%以上的器件成品率。

外延材料方面,SiC外延生长设备的规模也不断增大,能够同时生长多片大尺寸的SiC外延。例如瑞典Epigress公司的VP2800HW型热壁式SiC外延生长系统能够同时生长10片101.6 mm高质量SiC外延,为了把SiC功率器件抵抗电压提高到10 kV,SiC外延的厚度要达到100μ m。在SiC外延研究中,一个重要指标是外延层少子寿命。少子寿命不仅反映了深能级密度和材料缺陷密度等重要外延参数,而且直接决定了高功率SiC器件的通流能力。据理论研究,20kV SiC器件中少子寿命应在10s以上,否则通流能力很弱。目前日本NEDO公司利用垂直型外延炉实现了高质量的厚达28μm的外延,在50.8 mm上取得了少子寿命分布图,其平均值为1s[6]。SiC外延技术研究的另一个重要问题是4°偏轴4H-SiC衬底上的高质量外延生长。4°偏轴衬底凭借其成本优势逐渐成为大尺寸4H-SiC的主流,但与8°偏轴相比小角度偏轴衬底上外延生长的难度较高,台阶聚并(step-bunching)现象严重,导致出现表面形貌差、缺陷密度高以及外延材料均匀性不好等问题。美国Cree公司通过改进生长条件和生长步骤获得了101.6 mm 4°偏轴4H-SiC衬底上理想的外延生长工艺,缺陷密度只有2/cm2。这些外延材料参数可满足SiC器件研究和批量生产的要求[7]。2.2 碳化硅功率二极管

碳化硅功率二极管有3种类型:肖特基二极管(Schottky barrier diode,SBD)、PIN 二极管和结势垒控制肖特基二极管(junction barrier Schottky,JBS)。在5kV阻断电压以下的范围,碳化硅结势垒肖特基二极管是较好的选择。JBS二极管结合了肖特基二极管所拥有的出色的开关特性和PIN结二极管所拥有的低漏电流的特点。把JBS二极管结构参数和制造工艺稍作调整就可以形成混合PIN-肖特基结二极管(merged PIN Schottky,MPS)。由于碳化硅二极管基本工作在单极型状态下,反向恢复电荷量基本为零,可以大幅度地减少二极管反向恢复引起的自身瞬态损耗以及相关的IGBT 开通瞬态损耗,非常适用于开关频率较高的电路。

PIN结二极管在4~5kV或者以上的电压时具有优势,由于其内部的电导调制作用而呈现出较低的导通电阻,使得它比较适用于高电压应用场合。有文献报道阻断电压为14.9和19.5kV的超高压PIN二极管,其正向和反向导通特性如图1所示,在电流密度为100 A/cm2时,其正向压降分别仅为4.4和6.5V[1]。这种高压的PIN二极管在电力系统,特别是高压直流输电领域具有潜在的应用价值。2.3 碳化硅MOSFET器件

功率MOSFET具有理想的栅极绝缘特性、高速的开关性能、低导通电阻和高稳定性,在硅基器件中,功率MOSFET获得巨大成功。同样,碳化硅MOSFE也是最受瞩目的碳化硅功率开关器件,其最明显的优点是,驱动电路非常简单及与现有的功率器件(硅功率MOSFET和IGBT)驱动电路的兼容性。碳化硅功率MOSFET面临的两个主要挑战是栅氧层的长期可靠性问题和沟道电阻问题。

图1 超高压 SiC PIN二极管

图2 10kV SiC MOSFET与SiC IGBT正向阻断特性

图3 栅氧层可靠性的改进

随着碳化硅MOSFET 技术的进步,高性能的碳化硅MOSFET也被研发出来,已有研究结果报道了具有较大的电压电流能力的碳化硅MOSFET器件。三菱公司报道的1.2kV碳化硅MOSFET器件的导通比电阻为5mΩ·cm,比硅基的CoolMOS的性能指数好15~20倍。美国Cree公司报道了8.1mm×8.1mm、阻断电压10 kV、电流20 A的碳化硅MOSFET芯片,其正向阻断特性如图2所示。通过并联这样的芯片得到的模块可以具备100 A的电流传输能力[3]。该器件在20 V的栅压下的通态比电阻为127 mΩ·cm2,同时具有较好的高温特性,在200 ℃条件下,零栅压时可以实现阻断10 kV电压。

在碳化硅MOSFET 的可靠性研究方面,有研究报道了在350 ℃下碳化硅栅氧层具有良好的可靠性[8]。如图3所示,20 年以来碳化硅MOSFET 栅氧层的可靠性得到明显提高。这些研究结果表明,栅氧层将有望不再是碳化硅MOSFET 的一个瓶颈。

2.4 碳化硅IGBT 在高压领域,碳化硅IGBT器件将具有明显的优势。由于受到工艺技术的制约,碳化硅IGBT的起步较晚,高压碳化硅IGBT面临两个挑战:第一个挑战与碳化硅MOSFET器件相同,沟道缺陷导致的可靠性以及低电子迁移率问题;第二个挑战是N型IGBT需要P型衬底,而P 型衬底的电阻率比N 型衬底的电阻率高50倍。因此,1999 年制成的第一个IGBT 采用了P 型衬底。经过多年的研发,逐步克服了P 型衬底的电阻问题,2008 年报道了13 kV的N沟道碳化硅IGBT器件,比导通电阻达到22mΩ·cm2[3]。图4对15kV的N-IGBT和MOSFET 的正向导通能力做了一个比较[4],结果显示,在结温为300 K时,在芯片功耗密度为200 W/cm2 以下的条件下,MOSFET可以获得更大的电流密度,而在更高的功耗密度条件下,IGBT可以获得更大的电流密度。但是在结温为127℃时,IGBT在功耗密度为50 W/cm2以上的条件下就能够导通比MOSFET更高的电流密度。同一年,该团队还报道了阻断电压达到12kV的P沟道碳化硅IGBT,导通比电阻达到14mΩ·cm2[8]。新型高温高压碳化硅IGBT器件将对大功率应用,特别是电力系统的应用产生重大的影响。在15kV以上的应

2用领域,碳化硅IGBT综合了功耗低和开关速度快的特点,相对于碳化硅的MOSFET以及硅基的IGBT、晶闸管等器件具有显著的技术优势,特别适用于高压电力系统应用领域。碳化硅功率器件在电力系统中的应用展望

3.1 固态变压器

随着分布式发电系统、智能电网技术以及可再生能源的发展,固态变压器作为其中的关键技术受到广泛关注。固态变压器是一种以电力电子技术为核心的变电装置,它通过电力电子变流器和高频变压器实现电力系统中的电压变换和能量传递及控制,以取代电力系统中的传统的工频变压器。与传统变压器相比,具有体积小、重量轻等优点,同时具有传统变压器所不具备的诸多优点,包括供电质量高、功率因数高、自动限流、具备无功补偿能力、频率变换、输出相数变换以及便于自动监控等优点。固态变压器的输入侧电压等级非常高,一般在数千至数万伏,目前多采用拓扑或器件串联的方式,结构较为复杂。图5所示为10kVA的固态变压器示意图[9]。新兴的碳化硅电力电子器件,特别是15kV以上碳化硅MOSFET、IGBT的出现,将有利于固态变压器的结构简化及可靠性提升。

图4 15kV SiC IGBT和MOSFET导通特性对比

图5 10kVA的固态变压器示意图

3.2 柔性交流输电系统

柔性交流输电系统(FACTS)是指电力电子技术与现代控制技术结合,以实现对交流输电系统电压、相位角、品质、功率潮流的连续调节控制,从而大幅度提高输电线路输送能力和提高电力系统稳定水平,降低输电损耗。FACTS技术主要采用晶闸管、GTO、IGBT等器件,由于硅器件自身物理限制,致使更高电压等级或者更高功率等级的FACTS控制器在实际应用中受到制约。碳化硅功率器件固有的高耐压特性,随着其器件水平的不断发展,在FACTS技术中必然越来越受到重视。

3.3 直流输电技术

轻型直流输电技术是在高压直流输电的基础上发展起来的一项新技术,其特点是直流输电两端变流器采用可关断器件构成电压源逆变器,不存在换相失败、受端系统必须提供无功容量的问题,而且可以省去换流变压器,简化换流站结构。受制于可关断硅器件水平的制约,其输电容量通常较小。图6是轻型直流输电中

图6 由IGBT构成的电压源型换流器单相图

由IGBT构成的电压源型换流器[10],利用脉宽调制(pulse width modulation,PWM)技术进行无源逆变,不但可以向无交流电源的负荷点送电,在特殊情况下也可以提供无功功率。

随着碳化硅MOSFET/IGBT 等器件性能、电压等级和功率等级的提高,碳化硅电力电子器件在轻型直流输电系统中的应用,有望进一步提高其输电容量及适用电压等级,为轻型直流输电的应用拓展带来新的机遇。

总结

在当前节能减排的重大国际发展趋势下,对于碳化硅功率器件而言,其优势明显。可以预见,新型高压大容量碳化硅功率器件将在高压电力系统中开辟出全新的应用,对电力系统的发展和变革产生持续的重大影响。

参考文献:

[1] Sugawara Y,Takayama D,Asano K,et al.12~19 kV 4H-SiC pin diodes with low power loss[C]//Proceedings of the 13th International Symposium on Power Semiconductor Devices and Ics.Osaka,Japan:IEEE,2001:27-30. [2] Callanan R,Capell D C,Hull B,et al.State of the Art 10 kV NMOS Transistors[C]//Proceedings of the 20th International Symposium on Power Semiconductor Devices & IC's.Oralando,USA,2008:253-255.

[3] Akira S,Hajime O,Tsunenobu K,et al.A 13 kV 4H-SiC n-Channel IGBT with low Rdiff,on and fast switching[J] Materials Science Forum,2009,600(1):1183-1186.

[4] Wang J,Huang Q A,Baliga B J.Design and investigation of frequency capability of 15 kV 4H-SiC IGBT [C]//Proceedings of the 21st International Symposium on Power Semiconductor Devices & IC's.Barcelona,Spain,2009:271-274.

[5]Nakamura D,Kimoto D,Matsunami H ,et a1.Ultra-high-quality silicon carbide single crystals[J].Nature, 2004,430,1009-1012.[6] Ito M.Development of a high rate 4H-SiC epitaxial growth technique achieving large-area uniformity [J].Materials Science Forum,2009,600,111-114.

[7] Sumakeris J,Henning J,et a1.Extremely uniform ,high quality SiC epitaxy on 100mm substrates [J].Materials Science Forum,2009,600,99-102. [8] Yu L C.Simulation,modeling and characterization of SiC devices[C]//Rutgers University Thesis collection,2010.

[9] Huang Q A,Baliga B J.FREEDM system:role of power electronics and power semiconductors in developing an energy internet[C]//International Symposium on Power Semiconductor Devices & IC's.Barcelona,2009:9-12. [10]文俊,张一工,韩民晓等.轻型直流输电——一种新一代的HVDC 技术[J].电网技术,2003,27(1):47-51.

第四篇:电力系统的超导技术的论文

电力系统的超导技术的论文

摘要:近年来高温超导材料研究取得很大进展,它在电力领域的应用研究已受到广泛关注,一些示范样机也已经研制成功的投入示范性试验,可以说超导技术是21世纪具有战略经济意义的高新技术。从目前电力的发展现状来看,充分利用国内各种优势资源开展超导电力技术的研究与开发,对于提高我国电力设备行业在国际市场上的竞争力及电力系统的技术经济。

关键词:电力系统、超导电性、超导电力装置

我国处于发展时期,对电力技术的有力发展,会我国经济的发展显示着越来越重要的作用,但是随着电力系统容量的增大、系统结构复杂化,电力系统巳突显出了若干技术难题,如电力安全、高密度供电、高品质供电、高效率输送电等。二目前这些问题的解决,越来越依赖于超导技术的应用。超导电力技术是受国内外广泛关注的一项前瞻性技术,将其引入电力系统会为解决电力系统的固有技术难题提供一条新的技术途径。因此,从电力系统建设、管理、运行及电力设备市场出发,我国均应大力加强超导电力技术的研究与发展,开发出性能先进、市场竞争力强、有自主知识产权的超导电力设备。

目前,超导电力技术已进入高速发展时期,有些超导技术产品已进入商品化阶段,若干超导电力设备,如超导电缆、超导限流器、超导磁储能系统等已在电力系统试运行。然而,由于电力系统的重要性、电力设备运行条件的复杂性,电力系统对于全面接受超导电力装置的准备还不充分。首先,在电力设备性能鉴定方面,目前还没有规范的

标准方法,也没有一个能对超导电力装置进行性能检测的实验基地,无法对超导电力装置是否具备入网条件进行科学判断。其次,超导电力装置进入电力系统后对电力系统产生何种影响,其装置如何和现有庞大的系统、复杂的控制相互协调没有充分的研究。同时,在若干超导电力装置的关键部件上仍需进一步提高技术性能及可靠性。基于此,国网武汉高压研究院与华中科技大学对超导电力技术的发展现状、关键课题、特别是超导电力装置的性能检测方法进行了基础性研究,在此基础上,筹备建设和发展超导电力技术检测实验室,为超导电力技术进入实际应用奠定基础。

超导技术的进步逐步形成了超导电力这一新的概念。美国、日本、欧洲乃至韩国等经济发达国家和地区均对超导电力技术给予了极大的关注,政府主导投入超导电力的研究工作,且有若干电力公司、电力设备制造厂家、甚至国防研究部门均开展了与超导电力相关的研究工作。已相继研制成功了输电电缆、限流器、磁储能系统、变压器、发电机和电动机等多种超导电力装置的实验样机。我国也在“十五”期间开发了多种超导电力装置。在Bi系高温超导带材走向商品化后,超导电力的研究开发重点已转移到高温超导。目前,高温超导电缆、限流器、变压器和电动机已进入示范试验运行阶段,高温超导磁储能系统也有相应的试样样机问世。同时小型低温超导储能系统的产品已出现。

超导电力技术是吵到技术与电工技术相结合而产生的一门新技术,超导电力技术主要研究开发各种电力装置,以及含超导电力装置 的电力系统的各种特性。超导电力装置比起常规电力装置来说有损耗小、体积小、重量轻、容量大特点,但超导电力装置一旦失超,对电力系统所产生的影响也大于常规的电力装置,因此超导电力装置的监测和保护是超导电力装置实用化过程的关键技术之一。

超导技术在电力系统的应用将带来若干个直接的和间接的技术经济效益,甚至引发技术性的革命。美国日本等国家对超导应用技术给予了很高的评价,美国能源部认为超导技术是21世纪电工行业的高科技,日本新能源开发机构认为超导技术是21世纪郭嘉间竞争的关键性高技术。国际超导界专家预测在5年~10年内超导技术将在电力工业中获得广泛的应用。

在我国,超导技术应用研究也已经进入起步阶段。我们相信,随着超导技术的发展和我国经济实力的增加,超导电力应用技术的研究必将得到进一步的加强,在我国电力系统中应用超导技术的时代必将到来。

第五篇:超导材料在能源上的应用

超导材料在电力系统和热核聚变上的应用

姓名:成双良

班级:复材1402

学号:1105140212

摘要:超导技术是21世纪具有重大经济和战略意义的高新技术,在国民经济诸多领域具有广阔的应用前景,在能源方面尤其是电力系统以及热核聚变实验之中尤为突出。实用化超导材料是超导技术发展的基础。目前,国际上发现的实用化超导材料主要有有低温超导线材、铋系高温超导带材、YBCO涂层导体。文章首先介绍了超导材料的发展基础,重点综述了上述几种实用化超导材料制备及加工、性能和应用方面的最新研究进展,并对相关领域存在的问题及今后的发展作出展望。

关键词:超导材料,电力系统,热核聚变,NbTi,Nb3Sn,铋系高温超导带材,YBCO涂层导体

Application of Superconducting Materials in Power System and Thermonuclear

Fusion

Abstract:Superconducting technology is a high-tech with significant economic and strategic significance in the 21st century.It has wide application prospect in many fields of national economy, especially in energy, especially power system and thermonuclear fusion experiment.Performance improvementin practical superconducting materials is the foundation of application development.The overall picture of superconductors is diverse and developing rapidly.Currently, practical superconducting materials comprise mainly Nb-based low-temperature wires, bismuth-strontium-calcium copper oxide high-temperature superconducting tapes and yttrium barium copper oxide coated conductors.A review is presented here of the fabrication issues, key properties and recentdevelopments of these materials, with an assessment of the challenges and prospects for fixture applications.Keywords: superconducting Materials, power system, thermonuclear fusion, NbTi,Nb3Sn, BSCCO tapes, YBCO coated conductors

1.前言

自从 1911 年荷兰物理学家 Kamerling Onnes 发现超导现象以来,超导材料的发展经过了一个从简单金属到复杂化合物,即由一元系到二元系、三元系直至多元系及高分子体系的过程。在上世纪 80 代末发现铜氧化物超导体之后,在新世纪之初又有两类比较接近实用的超导材料被发现,即 MgB2和 Fe 基超导体,新型超导体可谓层出不穷。然而,由于各自不同的本征特性、低温条件、合成技术及其环境污染等因素,各类超导体的实用化水平相差很大,有的基本失去实用性,仅能适于基础研究。本文主要对超导材料进行概述性介绍并以目前已处在应用中或处于商业化前期的NbTi,Nb3Sn,铋系高温超导带材,钇系高温超导带材为例介绍超导材料在电力系统和热核聚变方面的应用。

2.超导材料的发展概况

超导体在超导状态下具有零电阻、抗磁性和电子隧道效应等奇特的物理性质[1]。利用超导体的这些特性可以传输大电流、获得强磁场、实现磁悬浮、检测微弱磁场信号等,因此超导材料广泛应用于电力、电子、军事、医疗、交通运输、高能物理等许多领域。

目前,超导材料已发现上千种,包括单质、合金和化合物。从 1911 年第 1 次发现超导现象到 1985 年,超导转变温度最高为铌三锗的 23 K,这些超导材料工作在液氦环境,一般称为低温超导材料。1986 年,Bednorz和 Muller 发现了Tc达到 30 K 的La-Ba-Cu-O 超导体,标志着高温超导研究的开始。紧接着发现了 TC超过液氮温度(77 K)的Y-Ba-Cu-O(YBCO,Tc= 92 K)、Bi-Sr-Ca-Cu-O(Bi2223,Tc= 110K),Ti-Ba-Cu-O(Ti2223,Tc=127 K)和 Hg-Ba-Ca-Cu-O(Hg1223,Tc= 134 K)等系列氧化物高温超导材料,它们可以工作在廉价的液氮环境,这类材料被称为高温超导材料。1990 年以前,实用化超导材料的研究主要集中在低温超导材料。目前,低温超导材料已经进入产业化阶段,实用化超导材料研究主要集中在铜氧化物的高温超导材料。

虽然近年 来 各 类 新 型 超 导 材 料 层 出 不 穷,包 括2000 年发现的二元化合物 MgB2和 2008 年发现的 FeAs超导材料。然而从实用的角度特别是就电力能源系统的强电应用而言,只有 Bi、Y 系材料才有市场价值。Fe、Ti和 Hg 系由于含有环境危害元素和特殊的制备工艺,失去了作为一种实用超导材料的广泛性和普适性。

上世纪 90 年代末,随着第 1 代 Bi 系超导材料的制备技术取得重大突破,高温超导线材很快形成产业化生产能力,极大地促进了超导应用技术的发展,如高温超导电缆、高温超导限流器、高温超导变压器、高温超导电动机等已经进入示范运行阶段。超导电力技术的应用可望提升电力工业的发展水平和促进电力业的重大变革。因此,世界主要发达国家均把超导电力技术视为具有经济战略意义的高新技术。美国能源部认为超导电力技术将是 21 世纪电力工业唯一的高技术储备,发展高温超导电力技术是检验美国将科学发现转化为应用技术能力的重大实践,而日本新能源开发机构(NEDO)则认为发展高温超导电力技术是在 21 世纪的高技术竞争中保持尖端优势的关键所在。可见,超导技术越来越成为1 种不可替代的具有经济战略意义和巨大发展潜力的高新技术。

高温超导材料可广泛应用于电力、电子、医疗、国防军事、交通运输、高能物理等领域,大致可分为两大类: 大电流应用(强电应用)、电子学应用(弱电应用)。超导技术越来越成为 1 种不可替代的具有经济战略意义和巨大发展潜力的高新技术,将会对国民经济和人类社会的发展产生巨大推动作用。特别值得指出的是: 高温超导线带材可制备成各类器件,包括超导储能、变压器、电缆、限流器等等广泛用于先进电网之中。正如光纤的发明催生崭新的信息时代,高温超导线带材也将带来电力工业史上划时代的革命。

目前,世界范围内能源供应越来越紧张,而电能有大量浪费在传输线上。仅美国每年在输电线上的损失就高达 400 亿美元。而如果使用高温超导线材,不仅可避免这些损失,还可以节约大量的金属材料。因为同样直径的高温超导材料的导体能力高于普通铜导线的 100 倍以上。高温超导线材制成的超导器件具有损耗低、体积小、重量轻和效率高等特点。另外,建设超导智能电网是解决常规电缆远距离输电时对超高压电缆及技术依赖的唯一途径。例如,从内蒙到上海通过传统输电方式至少需要 500 kV 的电压,而通过超导电缆仅仅需要 220 V即可输送。随着经济和社会发展,人们对电能的需求量日益增长,电力系统的容量越来越大,电网将不得不向超大规模方向发展,同时人们对电能质量和安全的要求也越来越高,急需进行电力工业的革新改造。

同时,超导材料不仅仅在电力系统方面有着划时代的意义,在开发另一种梦幻般的新能源,即可控核聚变方面也有着不可替代的作用,即用作核聚变反应堆“磁封闭体”:核聚变反应时,内部温度高达1亿~2亿摄氏度,没有任何常规材料可以包容这些物质。而超导体产生的强磁场可以作为“磁封闭体”,将热核反应堆中的超高温等离子体包围、约束起来,然后慢慢释放,从而使受控核聚变能源成为21世纪前景广阔的新能源。

为了提高超导导体的冷却效率,自上世纪 60年代起人们开始发展内冷导体 - ICC(InternalCooledConductor),将超导线或铜线缠绕在封闭的中心冷却管周围获取冷量。1975 年,Hoenig、Iwasa 等人在 ICC 的基础上,发展出 CICC(Cable- in - Conduit - Conductor)。由于 CICC 中冷却剂(主要是液氦)以流体形式直接与电缆接触,湿表面大,因此较 ICC 换热效率更高。此外,由于外部铠甲为内部电缆提供了支撑,提高了其结构强度,可承受高电磁载荷。因此,CICC 是目前国际上公认的受控热核聚变装置中的大型超导磁体线圈的首选导体,已广泛应用在加速器、聚变堆等大科学装置中,如正在建造中国际合作 ITER装置、CERN 的 LHC 装置、德国马普的 W7 - X 装置等[2]。目前主要使用的是NbTi和Nb3Sn材料。

尽管目前已有数千种超导体被发现,但具有实用价值的仅以下几种:已实现商业化生产的NbTi,Nb3Sn,铜氧化物BSCCO(Bi2223,Bi2212)和MgB2,处于商业化前期的YBCO涂层导体,以及处于实验室阶段的2008年刚发现的铁基超导材料。可以说,只有低温超导材料实现了大规模应用,当前,NbTi和Nb3Sn占超导材料市场的90%,而BSCCO和MgB2处于应用示范阶段,YBCO涂层导体批量制备尚未实现,铁基超导线带材还处于研发阶段。

3.低温超导材料

3.1 NbTi

1961年,美国Hulm等人首先报道了NbTi超导合金[3],其很快就在1968被完全产业化并迅速获得广泛应用,这主要是由于这种合金具有良好的加工塑性和很高的强度及优异的超导性能。还有很重要的一点是这种合金的原材料及制造成本远低于其他超导材料。

我们知道,NbTi合金的Tc为9.7 K,其临界场H可达12T,可用来制造磁场达9 T(4 K)或11 T(1.8 K)的超导磁体。NbTi线可用一般难熔金属的熔炼方法加工成合金,再用多芯复合加工法加工成以铜(或铝)为基体的多芯复合超导线,最后用时效热处理及冷加工工艺使其最终合金由β单相转变为具有强钉扎中心的两相(α+β)合金,以满足使用要求。现在的多芯复合NbTi线材的每根截面上排列数百芯乃至数万芯NbTi丝,典型产品截面结构见图1(a)。不同公司工艺流程稍有变化。目前NbTi超导材料主要应用于制造核磁共振成像系统(MRI)、实验室用超导磁体、磁悬浮列车等,其中MRI每年消耗的NbTi超导线约为2500吨左右。因此,NbTi超导材料因其易加工、低成本和耐用,已成为最成功的实用化、商业化的超导材料。有理由相信,NbTi超导体在今后一段相当长时间内将继续得到广泛应用。3.2 Nb3Sn

产生较高磁场的Nb3Sn材料是由贝尔实验室Matthias于1954年发现的[4],但因为其脆性大、硬度高,因而直到1970年代初才实现商业化生产。Nb3Sn是一种具有A15晶体结构的铌锡金属间化合物,其超导转变温度为18K,在4.2 K时的上临界磁场可达25 T, 4.2K/l0T磁场下能承载的临界电流密度约为5×10^5 A/cm2,因此,Nb3Sn主要用于制作10-23 T的超导磁体。Nb3Sn材料因其脆性不能按照NbTi线同样的工艺制备,历史上先后尝试过多种制造方法,如气相沉积法、青铜法、扩散法、内锡法以及粉末装管法等。虽然各有优缺点,加工工艺均较复杂,产品的力学性能差。实际上,青铜法一直是各种商品化Nb3Sn实用材料的主要制造工艺。

Nb3Sn导体主要应用于核磁共振仪,磁约束核聚变以及高能物理的高场磁体领域,如2011年Bruker公司已采用Nb3Sn开发了23.5 T,1 GHz的NMR系统。除Nb3Sn以外,比较著名的A15化合物中还有Nb3Al,其T和H比Nb3Sn要高,分别达19.1 K和32.4 T。Nb3A1是当前的一个研究热点[5],主要由于它具有优异的应变特性,但是这种材料的加工窗口更窄,制备更为困难。目前日本国立材料科学研究所((NIMS)对该材料的研究工作较为突出,已能制备高性能长线,并实验绕制了高场内插线圈。

NbTi和Nb3Sn是目前应用最为广泛的两种超导材料。至今,用NbTi合金线材绕制一个8T的超导磁体,用Nb3Sn线材绕制一个15 T的超导磁体已经不存在任何的技术问题。这些导线的主要生产厂家是美国牛津超导((OST)公司、欧洲先进超导公司((EAS)、日本古河公司以及英国Luvata公司、中国西部超导公司等。值得一提的是,我国西部超导公司近年来承担了国际ITER计划的69% NbTi超导线材和7%Nb3Sn超导线材任务。通过参与ITER计划,大大提升了我国低温超导导线研发和产业化能力,成为ITER项目超导线的重要供货商。

图 1 实用化超导导线的界面结构 高温超导材料

4.1 铋系高温超导带材

1988年,日本NIMS的Maeda发现了临界温度达110 K的秘系(BiSrCaCuO)氧化物超导体[6],后经证实他们得到的是Bi2212和Bi2223的混合物,Bi2223的Tc为110 K,而Bi2212的Tc是90 K。铋系超导相是一种陶瓷结构,无法直接加工成带材。通常采用粉末装管法(PIT),即将脆性的超导粉包裹在金属套管里制备成导线。Bi2223带材工艺流程一般是先将原料粉末装入银管,通过拉拔轧制,然后退火热处理,见图2。经过十几年的发展,利用这种方法,可以开发出长度为千米级的秘系多芯超导线材,且技术已经比较成熟,已达到商业化生产水平(被称为第一代高温超导带材)。目前工业化生产的Bi2223超导长线的临界电流(截面积为1 mm2的超导导线在77 K温度和0T条件下)一般在100 A以上,最好的能达到200 A。

图 2采用粉末套管法制备Bi2223带材的工艺流程

具备Bi2223长线批量化生产能力的厂家主要有美国超导体公司、德国布鲁克公司、日本住友公司、北京英纳公司等(前2家公司已停产)。目前Bi2223导线已基本满足实用要求,并且已在超导输电电缆、磁体、发电机、变压器、限流器等多个项目中获得示范应用,特别是中国科学院电工研究所成功研制了世界首座超导变电站并进行了并网试验。真正接人电网进行商业运行的1 km长三相Bi2223超导电缆安装在德国小城Essen,其电压为10 kV,总功率为40 MVA。自从2014年10月正式替代原来一根110 kV的铜电缆以来,已安全运行了近1年。

然而Bi2223超导体具有较强的各向异性,在液氮温区的不可逆场较低(<0.5 T),在较小的磁场下,其临界电流会显著降低,不适合用于强磁场场合。因此,在液氮温区,Bi2223超导体主要面向“超导电缆”应用。

4.2 钇系高温超导带材

临界温度达93 K的钇系(YBaCuO,缩写为YBCO)超导体是第一个被发现的Tc超过77 K的高温超导体[7]。和Bi2223相比,YBCO的各向异性γH较弱,约为5-7左右,同时在77 K时具有很高的不可逆场,高达7T,也就是说,钇系可以在77 K强磁场下承载较大的临界电流,是真正的液氮温区下强电应用的超导材料。由于YBCO带材在强磁场下具有更为优异的性能,近年来,它已成为超导材料的研究热点,研究重点是降低成本和提高性能。但是钇系超导体晶粒间结合较弱,难以用传统的PIT工艺制备带材,其成材通常建立在薄膜外延生长技术上,称为第二代高温超导带材(也称为涂层导体)。

第二代高温超导带材主要是由金属基带、多层隔离层、YBCO超导层、保护层等组成。金属基带一般为Ni或者Ni合金(如哈氏合金),甚至不锈钢,其厚度为50-100 μm,其上沉积总厚度小于1μm的几层隔离层,随后外延生长1-4 μm的YBCO超导层,最后覆盖几个μm的保护层,典型结构见图1。这样的工艺结构主要是为了得到具有双轴织构特性的YBCO超导层,从而最大程度地避免材料中的大角度晶界,消除超导相之间的弱连接,获得大的传输电流。织构化基带的制备工艺路线主要有3种: 轧制辅助双轴织构基带技术(RABiTS)、离子束辅助沉积技术(IBAD)、倾斜衬底技术(ISD)。隔离层一般采用磁控溅射或脉冲激光沉积获得,除了具有阻挡原子扩散的作用外,还具有将织构传递给超导层的作用。超导层的几种主流沉积方法有: 脉冲激光沉积(PLD)、金属有机化学气相沉积(MOCVD)、金属有机沉积(MOD)以及电子束共蒸发(CE)技术等。采用上述工艺获得的YBCO薄膜临界电流密度JC一般在106-107 A/cm2,之间(77 K,0 T)。目前YBCO薄膜的研究重点是:一个是引入人工钉扎中心,进一步提高磁场下的JC;另一个是通过增加YBCO薄膜的厚度来提高涂层导体的临界电流。

自1999年第一根100 m长YBCO带材被制备出来以后,第二代高温超导带材的研发单位已逐步发展成为以企业公司为主,主要的研发单位为:美国Superpower公司,日本Fujikura和SWCC公司,美国AMSC公司,德国THEWA公司以及韩国SuNAM公司等。其中美国Superpower公司是世界上第一家制备出千米级(1065 m, 2009年)的YBCO带材厂商,目前仍然保持着长度方面的世界纪录。该公司生产的首根1065 m长YBCO带材的最小电流是282 A/cm,整根带材的负载电流(电流ICx长度L)超过300000 A·m。值得一提的是,韩国通过设立“应用超导技术发展先进能源系统”的10年计划(即DAPAS计划),经过有效组织、整合,采用合适的技术路线,近年来获得了突破性的进展,于2012年成功研制出1000 m长的YBCO带材,其负载电流达到422 A×1000 m = 422000 A·m。近几年来,我国进行YBCO带材产业化研发的主要单位有上海超导科技公司、苏州新材料研究所以及上海上创超导公司等。

YBCO带材的缓冲层及超导层,多采用真空沉积法制备,复杂的薄膜制备工艺不仅导致其成材率较低,而且价格至今也远高于第一代Bi2223导线。因此,今后面临的挑战是进一步优化制造工艺,提高电流性能,降低成本,这样才有望获得规模化的电力应用。

5.小结

如文中所述,实用化超导材料NbTi, Nb3Sn, Bi2223均是采用拉拔、挤压或轧制等机械加工工艺获得超导线带材,该方法制造成本低廉,易于规模化制备,而YBCO导体必须采用多层镀膜的方法,需要人们付出更多的努力,才能获得真正意义上的低成本、高性能YBCO带材。

以NbTi, Nb3Sn为代表的低温超导体已实现了商品化,其制备工艺及性能发展已完全成熟,并得到广泛的应用,尤其是在全球医疗和科学仪器方面,如用于医学诊断的核磁共振成像仪和用于谱线分析的核磁共振仪以及高能物理实验用的磁体。其中在高能物理实验中更是有可能在不久的将来实现可控核聚变,人类将获得永不枯竭的能源。

我们相信,随着实用化超导材料的进一步提高和技术的成熟,人类的社会将在能源,通讯以及更多的方面出现划时代的变革。

参考文献

[1]蔡传兵, 刘志勇.实用超导材料的发展演变及前景展望.上海:中国材料进展, 2011 [2]黄素贞, 秦经刚.未来聚变堆用高温 CICC 导体发展现状.合肥:低温与超导, 2016 [3]Hulm J K, Blaugher R D.Phys.Rev.,1961,123:1569 [4]Matthias B T, Geballe T H, Geller S et al.Phys.Rev., 1954, 95:1435 [5]Rogalla H, Kes P H(ed.).One Hundred Years of Superconduc-tivity.New York: CRC press, 2011 [6]Maeda H, Tanaka Y, Fukutomi M et al.Jpn J.Appl.Phys.,1988 ,27:L209 [7]赵忠贤,陈立泉,杨乾声等.科学通报,1987,32:412

下载超导材料在电力系统中的应用前景展望word格式文档
下载超导材料在电力系统中的应用前景展望.doc
将本文档下载到自己电脑,方便修改和收藏,请勿使用迅雷等下载。
点此处下载文档

文档为doc格式


声明:本文内容由互联网用户自发贡献自行上传,本网站不拥有所有权,未作人工编辑处理,也不承担相关法律责任。如果您发现有涉嫌版权的内容,欢迎发送邮件至:645879355@qq.com 进行举报,并提供相关证据,工作人员会在5个工作日内联系你,一经查实,本站将立刻删除涉嫌侵权内容。

相关范文推荐

    关于光纤通讯在电力系统中的应用

    光纤通讯技术在电力系统中的应用 【摘 要】随着经济的不断发展,各行各业对电力的需求越来越大,要求电力系统不断应用新材料、新技术,提高服务质量。光纤通信具有电绝缘性能高......

    合金电缆在电力系统需求侧的应用及前景

    合金电缆在电力系统需求侧的应用及前景 黎志 (四川易从实业有限公司 成都 610000) 摘 要 通过对稀土高铁合金电缆的性能介绍及与铜电缆的性能对比,首次提出合金电缆的减排量分......

    电力系统配电网自动化的 应用现状及展望

    电力系统配电网自动化的 应用现状及展望2003-11-5电力系统配电网自动化的 应用现状及展望1、配电网自动化应用现状长期以来,我国电力部门重发电,轻用电的现象比较严重,将主要精......

    生物工程的应用前景与展望

    生物工程的应用前景与展望 当今,新的科学革命浪潮中引人注目的遗传工程(即生物工程)给许多领域带来飞跃发 展。例如癌症、高血压、遗传性疾病、老化等机理的阐明,胰岛素、......

    大数据在风电场运维应用前景展望概括

    摘 要:风电能源是社会运行及发展过程中的重要能源之一,随着近年来社会经济的发展以及科学技术的进步,大规模装机能量风电场的崛起,为社会生产生活提供丰富的电能资源,但其自身运......

    网络技术在电力系统物资管理中应用论文

    摘要:随着我们国家的社会的不断发展,在经济领域和相关的科学技术研究的方面的都在飞速的进步,这样使得我们国家目前的网络技术逐渐的渗透到我们的日常生活和工作学习的各个方面......

    浅谈木材在建筑中的应用前景

    浅谈木材在建筑中的应用前景 摘要:木材作为建筑材料已有悠久的历史,虽然由于我国的国情限制,木材在建筑中的使用已经很少,但随着人们生活水平的提高,环保意识的加强,木材在建筑中......

    SDH在电力系统的应用

    目录 摘要 ............................................................................................................................................................