第一篇:基因工程在废水处理中的应用与展望
基因工程在废水处理中的应用状况及展望
摘要:本文对现代基因工程技术在污水生物处理系统中的应用进行了概述, 利用基因工程技术提高微生物净化环境的能力是用于废水治理的一项关键技术。笔者就基因工程技术的原理、研究内容和在污水处理领域中的应用进行了阐述了,并对其研究方向作了展望。
关键字:基因工程,污水处理,应用
The application status of gene engineering technique to wastewater
treatment and its prospects
Abstract: The application of gene engineering technique in wastewater treatment process had been discussed in this paper, and gene engineering technique was the key technique for wastewater treatment by improving the purifying environment ability of microbes.The author formulated the principle, main research content of gene engineering technique, and the application of gene engineering technique in wastewater treatment, and discussed its research orientation in the end.Key words: gene engineering, wastewater treatment, application
生物法处理生活污水如今已被广泛的应用,但揭示污水中复杂微生态系统方面存在很大的局限性,并且有些特殊污水用自然界中自然进化的微生物难于降解,基因工程的引进开辟了培育高降解能力的新品菌种方法,利用基因工程技术检测微生物性状、提高微生物净化环境的能力是用于废水治理的一项关键技术。基因工程的定义
基因工程(genetic engineering)是指重组DNA技术的产业化设计与应用,包括上游技术和下游技术两大组成部分。上游技术指的是基因重组、克隆和表达的设计与构建(即重组DNA技术);而下游技术则涉及到基因工程菌或细胞或基因工程生物体的大规模培养以及基因产物的分离纯化过程。基因工程是利用重组技术,在体外通过人工“剪切”和“拼接”等方法,对各种生物的核酸(基因)进行改造和重新组合,然后导入微生物或真核细胞内,使重组基因在细胞内表达,产生出人类需要的基因产物,或者改造、创造新特性的生物类型。
一个完整的、用于生产目的的基因工程技术程序包括的基本内容有:(1)外源目标基因的分离、克隆以及目标基因的结构与功能研究。这一部分的工作是整个基因工程的基础,因此又称为基因工程的上游部分。(2)适合转移、表达载体的构建或目标基因的表达调控结构重组。(3)外源基因的导入。(4)外源基因在宿主基因组上的整合、表达及检测与转基因生物的筛选。(5)外源基因表达产物的生理功能的核实。(6)转基因新品系的选育和建立,以及转基因新品系的效益分析。(7)生态与进化安全保障机制的建立。(8)消费安全评价。基因工程技术在废水处理中的应用
环境污染已远远超出了自然界微生物的净化能力,已成为人们十分关注的问题。尤其是在污水处理方面,生物法逐渐成为废水处理的主要方法。但是由于废水的多样性及其成分的复杂性,自然进化的微生物降解污染物的酶活性往往有限。20世纪90年代后期问世的DNA改组技术可以创新基因,并赋予表达产物以新的功能,创造出全新的微生物,就可以定向获得具有特殊降解性状的高效菌株,方便有效地应用于水污染处理。因此,构建基因工程菌成为现代废水处理技术的一个重要研究方向,且日益受到人们的重视。
2.1 基因工程技术在污水检测中的应用
2.1.1 聚合酶链反应(PCR)技术在污水检测中的应用
聚合酶链式反应(Polymerase Chain Reaction)是20世纪80年代后期由K.Mullis等建立的一种体外酶促扩增特异DNA片段的技术,PCR是利用针对目的基因所设计的一对特异寡核苷酸引物,以目的基因为模板进行的DNA体外合成反应。由于反应循环可进行一定次数(通常为25~30个循环),所以在短时间内即可扩增获得大量目的基因。这种技术具有灵敏度高、特异性强、操作简便等特点。PCR技术的基础是只有在微生物特定核酸存在的条件下,重复性酶促DNA合成和扩增才能够发生。PCR扩增产物可通过琼脂糖凝胶电泳来检验和纯化,也可以被用来克隆、转化和测序.在具体应用中往往采用经过修正的或与其它技术联合应用的PCR衍生技术,如RT-PCR、竞争PCR、PCR-DGGE、PCR-SSCP和巢式PCR等。
PCR通过对待测DNA片段的特异性扩增,一方面作为菌株定性鉴定的重要手段,同时也为定性和定量研究微生物的群落特征提供帮助。自PCR技术问世以来,通过其自身的不断完善以及同其它相关技术的联用,在污水生物处理微生物的检测和鉴定方面得到了长足的发展,为该领域的研究提供了一个高效、灵敏、简便的研究工具。应用PCR-DGGE(Polymerase Chain Reaction Denaturing Gradient Gel Electrphoreses)方法对环境微生物进行研究可以不经过培养,直接从样品中提取细菌的DNA,再将编码有16SrDNA的基因进行扩增。通过这种方法能够直接了解样品中微生物分布结构,并能大致比较相同条件下单一菌群的生物量。王峰等采用PCR-DGGE技术来分析活性污泥与生物膜中微生物种群的结构,可以不经过常规培养而直接从活性污泥和生物膜样品中提取DNA;Marsh等利用PCR-DGGE分析并获得了活性污泥中真核微生物的种群变化情况;Nicolaisen等利用PCR-DGGE技术发现Nitrosomonas-like细菌是上流式好氧流化床颗粒污泥中的主要氨氧化菌。以上的事实均说明,PCR-DGGE结合测序技术是一种完全可行的适于环境样品微生物研究的快速分析方法。
2.1.2 荧光原位杂交技术(FISH)技术在污水检测中的应用
荧光原位杂交技术(Fluorescence In Situ Hybridization,FISH)结合了分子生物学的精确性和显微镜的可视性,能够在自然的微生物环境中检测和鉴定不同的微生物个体,并提供污水处理过程中微生物的数量、空间分布和原位生理学等信息。FISH技术的基本原理是通过荧光标记的探针在细胞内与特异的互补核酸序列杂交,通过激发杂交探针的荧光来检测信号从而对未知的核酸序列进行检测。
Nielsen等(2001)对工业废水处理厂活性污泥的细菌表面疏水性进行了原位检测,并应用FISH技术结合细胞表面微球体分析研究了丝状细菌的胞外聚合物。Konuma等(2001)运用FISH法来测定氨氧化菌(ammonia-oxidizing bacteria)的数量,结果表明,FISH法对氨氮含量高的活性污泥混合液检测结果较好,但对氨氮含量低的污水厂出水和河水的检测效果不佳。表1列举了FISH技术的一些应用实例。
表1 FISH技术在废水中微生物检测的具体应用实例
Table1 The applications of FISHin the microorganism detections in wastewater 应用
检测活化污泥反应器中的Microthrix parvicella 在EBPR系统中,考察聚磷菌(PAOs)的微
生物特性和生化特性
探明废水处理湿地生物膜中影响氨氧化的主要功能菌群
揭示UASB反应器中高温和中温颗粒污泥的厌氧微生物群落的空间分布和多样性 鉴定了活性污泥中硝化细菌群落的数量和空间分布
SBR反应器内,不同电子受体条件下,反 硝化除磷菌(DNPAOs)的种群变化
文献来源(Eberlet al.,1997)(Minoet al.,1998)(Silyn-Robertset al.,2001)(Sekiguchiet al.,2002;Syutsuboet al.,2001)(Coskuneret al.,2002)(Johuanet al.,2002)
2.1.3 DNA重组技术在污水检测中的应用
DNA重组技术的实质是,将两个或多个单独的DNA片段连接起来产生一个能在特定宿主中自主复制的DNA分子。其基本程序是:外源DNA的获得;选择载体并进行处理;将目的DNA片段和处理后的载体连接;将连接产物导入合适的宿主细胞内,使重组DNA分子在宿主细胞内复制扩增;将转化菌落在平板培养基上培养成单个菌落,筛选获得含有重组DNA的阳性克隆。在废水的处理过程中仅靠分离和筛选的功能性微生物是不够的。在混合的微生物群体中筛选特定的微生物菌种时往往得不到预期的结果;特定的微生物可能难以培养,从而无法应用到实际的生物反应器中;人类排放到环境中的污染物越来越复杂且难以处理。因此,有必要通过基因工程技术并根据具体的需要构建有效的基因工程菌或培育出可高效降解复杂多样的有害污染物的细菌来解决以上的问题。
2.2 利用基因工程菌降解废水中的有机污染物
生物处理法是废水中有机污染物降解的主要方法,但是部分难降解有机污染物需要不同降解菌之间的协同代谢或共代谢等复杂机制才能最终得以降解,这无疑降低了污染物的降解效率。首先,污染物代谢产物在不同降解菌间的跨膜转运是耗能过程,对细菌来说这是一种不经济的营养方式;其次,某些污染物的中间代谢产物可能具有毒性,对代谢活性有抑制作用;此外,将不同种属、来源的细菌的降解基因进行重组,把分属于不同菌体中的污染物代谢途径组合起来以构建具有特殊降解功能的超级降解菌,可以有效地提高微生物的降解能力。
Satoshi Soda等[11]将基因工程菌P.putidaBH(pSl0-45)接种到SBR反应器的活性污泥中,用于处理500mg/L的苯酚废水,在大大提高苯酚去除率的同时改善了污泥沉降性能。南京大学、扬子石油化工有限责任公司、香港大学、国家环保总局南京环境科学研究所联合完成了跨界融合构建基因工程菌处理石化废水的生物工程技术。在优化调控技术的基础上,该菌株对二甲苯、苯甲酸、邻苯二甲酸、4-羧基苯甲醛和对苯二甲酸的降解率分别高达86%、94%、99%、97%和94%,比原工艺提高了20%~30%,总有机碳去除率达到了94%;污水经过处理后,铜、锰、锌、硒的浓度符合国家规定排放标准,生物毒性明显降低。
刘春等以生活污水为共基质,考察了基因工程菌在MBR和活性污泥反应器中对阿特拉津的生物强化处理效果,以及生物强化处理对污泥性状的影响。结果表明,基因工程菌在MBR中对阿特拉津具有很好的生物强化处理效果,阿特拉津平均出水浓度为0.84 mg/L,平均去除率为95%,最大去除负荷可以达到70mg/(L·d)。生物强化的MBR对生活污水中COD的平均去除率为71%,COD平均出水浓度65mg/L。
吕萍萍等研究发现,克隆有苯降解过程中的关键基因——甲苯加双氧酶的基因工程菌E.coli.JM109(pKST11)对苯具有较高的降解效率和降解速度,应用于固定化细胞反应器中效果突出。在较短的水力停留时间内,可以将1500mg/L苯降解70%,降解速度为1.11mg/(L·s),延长水力停留时间,可以使去除率达到95%以上。该反应器对高浓度的苯具有突出的处理效果。同时所得到的产物为环己二烯双醇,可以被野生非高效菌W3快速利用。
2.3 基因工程技术在处理重金属废水中的应用
将基因工程技术应用于重金属废水的治理,就是通过转基因技术,将外援基因转入到微生物细胞中进行表达,使之表现出一些野生菌没有的优良的遗传性状。2.3.1基因工程菌强化生物化学法处理重金属废水
生物化学法指通过微生物处理含重金属废水,将可溶性离子转化为不溶性化合物而去除。硫酸盐生物还原法是一种典型生物化学法,该法是在厌氧条件下硫酸盐还原菌通过异化的硫酸盐还原作用,将硫酸盐还原成H2S,重金属离子和H2S反应生成溶解度很低的金属硫化物沉淀而被去除,同时H2SO4的还原作用可将SO2-4转化为S2-而使废水的pH值升高,从而形成重金属的氢氧化物而沉淀。中国科学院成都生物研究所从电镀污泥、废水及下水道铁管内分离筛选出35株菌株,从中获得高效净化Cr(VI)复合功能菌。
袁建军等利用构建的高选择型基因工程菌生物富集模拟电解废水中的汞离子,发现电解废水中其他组分的存在可以增大重组菌富集汞离子的作用速率,且该基因工程菌能在很宽的pH范围内有效地富集汞。但高浓度的重金属废水对微生物毒性大,故此法有一定的局限性,不过,可以通过遗传工程、驯化或构造出具有特殊功能的菌株,微生物处理重金属废水一定具有十分良好的应用前景。2.3.2 基因工程强化生物絮凝法处理重金属废水
生物絮凝法是利用微生物或微生物产生的具有絮凝能力的代谢物进行絮凝沉淀的一种除污方法。生物絮凝剂又称第三代絮凝剂,是带电荷的生物大分子,主要有蛋白质、黏多糖、纤维素和核糖等。目前普遍接受的絮凝机理是离子键、氢键结合学说。前述硅酸盐细菌处理重金属废水可能的机理之一就是生物絮凝作用。目前对于硅酸盐细菌絮凝法的应用研究已有很多[,有些已取得显著成果[7]。运用基因工程技术,在菌体中表达金属结合蛋白分离后,再固定到某些惰性载体表面,可获得高富集容量絮凝剂。
Mehran Pazirandeh等人将含金属结合肽(Cys.Gly.Cys—Cys.GIy)的基因与麦芽糖结合蛋白的基因进行融合,并将融合蛋白在E.coli细胞膜处表达,表达该融合蛋白的基因工程菌对人工合成废水中Cdz+和H +的去除率有很大的提高,Cdz 和H +的富集能力分别达到每毫克湿细胞1.1和1.3nmol,而对照菌株(缺少金属结合肽)的富集能力低于每毫克湿细胞0.1 nmol Masaaki Terashima 等利用转基因技术使 E.coli表达麦芽糖结合蛋白(pmal)与人金属硫蛋白(MT)的融合蛋白pmal-Ml并将纯化的 pmal-MT 固定在Chitopeara 树脂上,研究其对 Ca2+和 Ga2+的吸附特性,该固定了融合蛋白的树脂具有较强的稳定性,并且其吸附能力较纯树脂提高十倍以上。展望
自2000年,国际上提出基于系统生物学原理的基因工程概念后,基因工程被应用于社会各个领域,并且手段日新月异。在环境领域当中,基因工程正迅速应用到废水检测和废水治理当中,培养出新的特效物种并进一步提高其应用效率、降低应用成本。随着分子生物学技术、环境工程检测技术的发展并结合我们已经掌握的微生物群落结构和功能方面的知识,我们逐渐了解到污水生物处理系统中微生物群体的多样性、实际生存状态、功能特点,并更有效地对其加以开发和利用。此外,基因工程菌的出现,使以往的一些难降解有机废水、制药废水、石油废水、重金属污染废水以及其他有毒有害废水等都得到了有效地治理,还会实现废水资源化。当下引入DNA 扩增和其它生物技术的环境监测方法等将是基因工程技术研究的侧重方向。
基因工程技术作为一种新兴技术以极快的速度发展。以下两方面的研究将对水资源保护有着重要意义。一是对基因工程菌的深入研究,如基因工程菌对污染物的代谢途径、控制目的基因表达的启动子基因序列、降解基因表达的调控条件的优化等方面的研究;二是对环境中微生物的习性及基因工程菌与环境中微生物和污染物之间的相互作用进行研究。目前的研究主要是利用单一的基因工程菌对污染物进行处理,随着研究的不断深入,利用多种基因工程菌相结合对污染物进行处理,将对水资源保护起到更为重要的作用。参考文献
[1] 李向东,冯启言,于洪锋.基因工程菌在制药废水处理中的应用.工业水处理,2008, 28(8):70-71.[2] 杨 林,聂克艳,杨晓容,高红卫.基因工程技术在环境保护中的应用.西南农业学报,2007,20(5):11-30.[3] 邢雁霞,刘斌钰.基因工程技术的研究现状与应用前景.大同医学专科学校学报,2006年第3期:48.[4] Johwan A, Tomotaka D, Satoshi T, et al.2002.Characterization of denitrifying phosphate-accumulating organisms cultivated under different electron acceptor conditions using polymerase chain reaction-denaturing gradient gel electrophoresis assay [J].Wat Res, 36:403—412.[5] Leo E, Renate S, Aldo A, et al.1997.Use of green fluorescent protein as a marker for ecological studies of activated sludge communities[J].Fems Microbiology Letters, 149(1):20:77—83.[6] Marsh TL, Liu WT, Forney LJ.1998.Beginning a molecular analysis of the eukaryal community in activated sludge [J].Wat Sci Tech, 37(4—5):455—460.[7] Metcalf, Eddy, Inc.2003.Wastewater Engineering: Treatment and Reuse(Fourth Edition)[M].Beijing: Tsinghua University Press:129—130.[8] Mette H N, Niels B R.2002.Denaturing gradient gel electrophoresis(DGGE)approaches to study the diversity of ammonia-oxidizing bacteria [J].Journal of Microbiological Methods, 50:189—203.[9] Wang F, Fu Y G.2004.Characteristics of municipal sewage chem-bioflocculation treatment process by using PCR-DGGE technology[J].Environmental Science,25(6):74—80(in Chinese).[10] Wang J, Chicharro M, Rivas G,et al.1996.DNA biosensor for the detection of hydrazines[J].Anal Chem, 68(13): 2251—2254.[11] Zhang D, Zhang D M, Liu Y P,et al.2004.Community analysis of ammonia oxidizer in the oxygen-limited nitritation stage of OLAND system by DGGE of PCR amplified 16S rDNA fragments and FISH [J].Journal of Environmental Sciences, 16(5):838—842.[12] Sellwood J,Litton P A,Mcdermott J,et al.1995.Studies on wild and vaccine strains of poliovirus isolated fromwater and sewage [J].Wat Sci Tech, 31(5—6):317—321.[13] Selvaratnam S, Shoedel B A, Mcfarland B L, et al.1997.Application of the polymerase chain reaction and reverse transcriptase/PCR for determining the fate of phond-degrading Pseudomonas putida ATTCC 11172 in a bio-augmented sequencing bath reactor [J].Appl Environ Microbiol, 47:236—240.[14] SimonT.1999.PCR and the detection of microbial pathogens in water and wastewater[J].Wat Res,33(17):3545—3556.[15] Zhao, X.W., M.H.Zhou, Q.B.Li, et al.Simultaneous mercury bioaccumulation and cell propagation by genetically engineered Escherichia coli[J].Process Biochemistry,2005, 40(5):1 611-1 616.[16] Satoshi, S., I.Michihiko.Effects of inoculation of a genetically engineered bacterium on performance and indigenous bacteria of a sequencing batch activated sludge process treating phenol[J].Journal of Fermentation and Bioengineering,1998,86(1):90-96.[17] 陆杰, 徐高田, 张玲, 等.制药工业废水处理技术[J].工业水处理,2001,21(10):1-4.[18] 刘春,黄霞,孙炜,王慧.基因工程菌生物强化MBR工艺处理阿特拉津试验研究.环境科学,2007年2月,第28卷,第2期:417-421.[19] 袁建军,卢英华.高选择性重组基因工程菌治理含汞废水的研究.泉州师范学院学报(自然科学).2003年11月,第21卷,第6期:71-72.[20] Masaaki Terashima,Noriyuki Oka,Takamasa Sei,et o1.Biotech.no1.Prog.,2002,18:1318—1323.
[21] Caroliaa S,Pave[K,Tomas R,et .J Bacterio1.,1998,180(9、:2280—2284. [22] 吕萍萍,王慧,施汉昌,等.基因工程菌强化芳香化合物的处理工艺.中国环境科学
2003,23(1):12-15.[23] Mehran P,Bridget M W,Rebecca L R.App1.Environ.Microbio1.,1998,64(10)::4068-4072.[24] 徐雪芹,李小明,杨麒,等.固定化微生物技术及其在重金属废水处理中的应用 [J].环境污染治理技术与设备,2006,7(7):99-105.
第二篇:基因工程在食品工业中的应用
基因工程在食品工业中的应用
摘要:生物技术发展日新月异,基因工程的应用已经渗透到工、农、衣、国防和环保等各个领域,深刻影响着人类的生活和社会的进程;当然,基因工程技术在食品中的应用也越来越广泛。它具有从本质上改变生物及食品性能的特性,因此越来越受到食品科技工作者的重视。本文阐述了基因工程的定义,详细介绍了基因工程食品的由来,并介绍了基因工程在食品原料改良中的应用;基因工程在食品发酵中的应用;基因工程在农副产品加工中的应用,同时,展望了基因工程技术在食品工业领域中的美好发展前景。
关键词:基因工程
食品工业
食品原料改良
食品发酵
农副产品
Application of genetic engineering in food industry Abstr act: Changing biotechnology and genetic engineering applications have penetrated into industry, agriculture, national defense, clothing, and the environmental protection and other fields, and deeply influenced the process of human life and society;Genetic engineering application in the food, of course, also more and more widely.It has essentially changed biological and food performance characteristics, so more and more brought to the attention of the food science and technology workers.This paper expounds the definition of genetic engineering, gene engineering was introduced in detail the origin of the food, and introduces the application of genetic engineering in food raw material improvement;The application of genetic engineering in food fermentation;Genetic engineering application in the agricultural and sideline products processing, at the same time, discussed in the field of genetic engineering in food industry good development prospects.Key word: Genetic engineering
food industry
food raw material improvement
food fermentation
agricultural and sideline products
一、基因工程的定义
狭义:指用体外重组DNA技术去获得新的重组基因;
广义:指按人们意愿设计,通过改造基因或基因组而改变生物的遗传特性。如用重组DNA技术,将外源基因转入大肠杆菌中表达,使大肠杆菌能够生产人所需要的产品;将外源基因转入动物,构建具有新遗传特性的转基因动物;用基因敲除手段,获得有遗传缺陷的动物等。
基因工程食品: 基因工程食品是指利用生物技术改良的动植物或微生物所制造或生产的食品、食品原料及食品添加剂等。它是针对某一或某些特性以突变、植入异源基因或改变基因表现等生物技术方式,进行遗传因子的修饰,使动植物或微生物具备或增强此特性,进而降低生产成本,增加食品或食品原料的价值,例如增强抗病性、改变营养成分,加快生长速度、增强对环境的抗性等
二、基因工程的发展史 基因工程是在分子生物学和分子遗传学综合发展基础上于本世纪70年代诞生的一门崭新的生物技术科学。一般来说,基因工程是指在基因水平上的遗传工程,它是用人为方法将所需要的某一供体生物的遗传物质--DNA大分子提取出来,在离体条件下用适当的工具酶进行切割后,把它与作为载体的DNA分子连接起来,然后与载体一起导入某一更易生长、繁殖的受体细胞中,以让外源遗传物质在其中“安家落户”,进行正常复制和表达,从而获得新物种的一种崭新的育种技术。
三、基因工程在食品原料改良中的应用
(一)水化合物的改良
食品碳水化合物类食品方面利用基因工程来调节淀粉合成过程中特定酶的含量或几种酶之间的比例,从而达到增加淀粉含量或获得独特性质、品质优良的新型淀粉。例如:通过反义基因抑制淀粉分枝酶可获得完全只含有直链淀粉的转基因马铃薯。这样油炸后的产品更具有马铃薯的风味,更好的构质,较低的吸油量和较少的油味。
(二)油脂的改良
目前,控制脂肪酸链长的几个酶的基因和控制饱和度的一些酶的基因已被克隆成功,并用于研究改善脂肪的品质。如通过导入硬脂酸-ACP 脱氢酶的反义基因,可使转基因油菜 种子中硬脂酸的含量从 2%增加到 40%。而将硬脂酞 CoA 脱饱和酶基因导入作物后,可使转基因作物中的饱和脂肪酸(软脂酸、硬脂酸)的含量有所下降,而不饱和脂 肪酸(油酸、亚油酸)的含量则明显增加,其中油酸的含量可增加 7 倍。除了改变 油脂分子的不饱和度外,基因工程技术在改良脂肪酸的链长上也取得了实效。事实上,高油酸含量的转基因大豆及高月桂酸含量的转基因油料作物芥花菜(Canola)在美国已经成为商品化生产的基因工程油料作物品种。
(三)蛋白质的改良
食品中动植物蛋白由于其含量不高或比例不恰当,可能导致蛋白营养不良。采用转基因的方法,生产具有合理营养价值的食品,让人们只需吃较少的食品,就可以满足营养需求。例如,豆类植物中蛋氨酸的含量很低,但赖氨酸的含量很高;而谷类作物中的对应氨基酸含量正好相反,通过基因工程技术,可将谷类植物慕冈导入豆类植物,开发蛋氨酸含量高的转基因人豆。
(四)碳水化合物的改良
对碳水化合物的改进,只有通过对其酶的改变来调节其含量。高等植物体中涉及淀粉合成的酶类主要有: ADPP葡萄糖焦磷酸酶(ADP-GPP)、淀粉合成酶(SS)和分支酶(BE)。通过反义基因抑制淀粉分支酶,可获得完全只含直链淀粉的转基因马铃薯。Monsanto公司开发了淀粉含量平均提高了20%-30%的转基因马铃薯。油炸后的产品更具马铃薯风味、且吸油量较低。
四、基因工程在食品发酵中的应用
随着食品工业的发展,对酶、蛋白质、氨基酸、香精、甜味剂等原辅料的需求量大增,而这些原辅料传统上靠动植物供应,由于受气候、季节、生长期等因素的影响,供应鼍往往不能满足需要。现在基因工程技术已能将许多酶、蛋白质、氨基酸和香精以及其他多种物质的基冈克隆入合适的微生物宿主细胞中利用细菌的快速繁殖来大量生产。例如将牛胃蛋白酶的基因克隆入微生物体内,由细菌生产这种动物来源的酶类,将解决奶酪工业受制于凝乳酶来源不足的问题;从西非发现的由植物果实中提取的甜味蛋自质(thaumatin)的DNA编码序列已经被克隆入细菌,以生产这种高效低热量新型甜味剂等。下面重点介绍基因工程程在啤酒工业、乳品工业方面的应用。
(一)啤酒工业
1、大麦的选育:
利用RF[,P(限制性片断长度多样性)技术对人麦进行抗病选育、Q一淀粉酶多基因族分析大麦醇溶蛋白的研究及品种鉴定。利用转基因技术将外源基因直接导入大麦,用于品种改良、抗虫和抗病选育,人们期待着基因重组技术能产生耐枯斑病等病害的大麦品种。
2、啤酒稻的选育:
大米是啤酒酿造中使用最广的辅料,但普通大米的用帚提高到30%以上时,麦汁中Q一氨基氮含量会不足而影响酵母的正常生长和发酵。利用基因转移技术、细胞融合技术等选育高蛋白、低脂肪、低NSP(非淀粉多糖)的稻品种,专门用于啤酒酿造,进一步提高辅料比例,降低生产成本。
3、啤酒酵母的改造:
利用粮食替代晶酿造啤酒的首选原料是纤维素因为纤维素自然界存量最多的有机物,某些真菌如平菇、香菇、灵芝、红曲霉等对纤维素有很强的分解能力,如果利用现代基因工程技术将这些真菌中控制纤维素酶,合成的基阗转移到啤酒酵母中去,那么啤酒酵母就能利用纤维素酿造啤酒,改变传统的啤酒生产中消耗大量的大麦和大米等粮食的局面。
(二)乳品工业
l、提高牛乳产量:
将采用基因工程技术生产的牛生长激素(BST)注射到母牛上,可提高母牛产奶量。目前利用DNA的克隆繁殖技术,把人垂体激素(ST)重组体互)陋UBST的mRNA中,利用外源BST来注射乳牛,可提高15%左右的产奶量,BST现已进入商业化领域。现在英、美等国都已采用BST来提高乳牛的产奶量,具有极大的经济效益,且对人体无害。
2、改善牛乳的成分:
利用13一半乳糖苷酶水解乳中的乳糖,对众多乳糖不耐症者是一个难得的好产品。可将编码通过基因工程技术将B一半乳糖苷酶基因转入GRAS级的微生物细胞作为宿主,在宿主调节基因的调控下,在发酵罐规模上生产表达有优良特性的13一半乳糖营酶基因。此外,针对矿乳白蛋白的mRNA,用核酸编码的转基因,使与乳糖合成有关的a_乳白蛋白(是乳糖产生的催化物质)的基因被淘汰,以此达到降低乳中乳糖含量的目的。
五、基因工程在农副产品加工中的应用
改良果蔬采收后品质增加其贮藏保鲜性能 随着对番茄、香蕉、苹果、菠菜等果蔬成熟及软化机理的深入研究和基因工程技术的迅 速发展,使通过基因工程的方法直接生产耐储藏果蔬成为可能。事实上,现在无论在国外还 是国内都已经有了商品化的转基因番茄。促进果实和器官衰老是乙烯最主要的生理功能。在 果实中乙烯生物合成的关键酶主要是乙烯的直接前体—l-氨基环丙烷一 1-梭酸合成酶(ACC 合成酶)和ACC 氧化酶。在果实成熟中这两种酶的活力明显增加,导致乙烯产生急剧上升,促进果实成熟。在对这两种酶基因克隆成功的基础上,可以利用反义基因技术抑制这两种基 因的表达,从而达到延缓果实成熟,延长保质期的目的。因此,利用反义基因技术可以成 功的培育耐储藏果蔬。目前,有关的研究正在继续进行,并已扩大到了草莓、梨、香蕉、芒 果、甜瓜、桃、西瓜、河套蜜瓜等,所用的目的基因还包括与细胞壁代谢有关的多聚半乳糖 醛酸酶(PG)、纤维素酶和果胶甲脂酶基因。反义PG 转基因番茄还具有更强的抗机械损伤和 真菌侵染能力,且有更高的果酱产率。
(六)、展望
目前,包括我国政府在内的各国政府对基因工程技术在农业和食品工业中的应用都制定了相关的管理条例,因此只要合理地使用,基因工程技术将是发展绿色食品产业的有效手段。基因工程技术是一门诞生不久的新兴技术,正如其它一些新技术的产生过程一样,由于人们一开始对新技术的了解程度不够,由此而产生的疑虑和争论是可以理解的,更何况基因工程技术研究的产品与人类健康息息相关。虽然现在对基因工程技术仍有许多争论,但目前科学界已基本上达成共识,即基因工程本身是一门中性技术,只要能正确地使用该项技术就可以造福于人类可以预言,在2l世纪,以基因工程为核心的生物技术必将给食品工业带来深刻的革命
参考文献
[1]林影、石磊、杜红丽.食品与基因工程.北京.化学工业出版社,2007.10 [2]周如金,郭华,彭志英.基因工程及其在食品中应用[J].2002,4:33.
[3]杨淑芳.发酵工程在农产品加工上的应用[J].农业工程技术,2007,(12):1l-13. [4]江梅.生物技术的应用[J].生物学通报,1996,6:4-8.
[5]何水林.郑金贵.农业生物技术在作物品质改良中的应用[J].福建农业大学学报,2000,(3):2O [6] 陈宗道,赵国华,李洪军等.食品基因工程研究进展[J].中国食物与营养,2000,4:14-16. [7] 汪秋安.基因工程食品[J].广西轻工业,2003,6:5-6.
[8] 郑铁松,何国庆,应铁进.基因工程技术在食品品质改良中的应用[J].食品工业科技,2000,21(4):70-72.
[9] 伊国等 基因工程在食品工业中的应用进展,食品科技,2001年02期 [10] 吴乃虎.基因工程原理[M].北京:科学出版社,1999.
[11] 李淑侠,齐凤兰,李伯林.基因食品的研究进展[J].食品科学,2002,21(3):6-10. [12]彭志英主编.食品生物技术[M].北京:中国轻工业出版社,1999.8:26-33. [13] 邵学良.刘志伟 基因工程在食品工业中的应用 [期刊论文]-生物技术通2009(7)[14]贾士荣.转基因植物的环境及食品安全性[J].生物工程进展.1997,6:38-42.
[15]张建全,张倩,马建军.基因工程技术在视食品工业中的应用[J].山东农业科学,2008,2:106-108.[16] El—Khateib T,Yousef A E.Ockerman H W.Inactivation and attachment of Listeria monocytogenes on beef muscle treated with lactic acid and selected bacteriocins[J].J.Food Protect,1993,56:29-33.
[17] Uzogara,Stella G The impact of genetic modification of human foods in the 2 1 st century:A review[J].Biotechnology Advances,2000,1 8(3):179-2O6.
[18] De Vefies AG,Faucitano L,Soenicki A.The use of gene technology for optimal development of pork meat quality[J].Food Chemistry,2000,69(4):397-405.
[19] Marc Van Montagu, Jeff Schell(1935-2003): Steering agrobacterium-mediated plant gene engineering[J].Trends in Plant Science , 200
[20] El-Khateib T,Yousef A E,Ockerman H W.Inactivation and attachment of Listeria monecytogenes on beef muscle treated with lactic acid and selected bacteriecins[J].J.Food Protect, 1993, 56: 29-33.
第三篇:基因工程技术在废水处理中的应用
基因工程技术在废水处理中的应用
李孟 廖改霞
(武汉理工大学市政工程系,湖北 武汉 430070)
【摘要】基因工程技术是在DNA分子水平上按照人们的意愿进行的定向改造生物的新技术。利用基因工程技术提高微生物净化环境的能力是用于废水治理的一项关键技术。本文介绍了基因工程技术的原理、特点和主要研究内容,重点阐述了基因工程技术在废水处理中的应用,并对其研究方向作了展望。关键词:基因工程 技术 废水处理 应用
The application of gene engineering technique to wastewater treatment
Li Meng
Liao Gaixia(Department of Municipal Engineering, Wuhan University of Technology, Hubei Wuhan 430070)Abstract: Gene engineering technique was the new technique for modifying living beings according to human wishes on the DNA molecular level and the key technique for wastewater treatment by improving the purifying environment ability of microbes.The paper introduced the principle, characteristic, main research content of gene engineering technique, emphasized on formulating the application of gene engineering technique in wastewater treatment, and discussed its research orientation in the end.Key words: gene engineering
technique
wastewater treatment
application
利用基因工程技术提高微生物净化污染物的能力是现代生物技术用于废水治理的一项关键技术。20世纪50年代初,由于分子生物学和生物化学的发展,对生物细胞核中存在的脱氧核糖核酸(DNA)的结构和功能有了比较清晰的阐述。20世纪70年代初实现了DNA重组技术,逐步形成了以基因工程为核心内容,包括细胞工程、酶工程、发酵工程的生物技术。这一技术发展到今天,正形成产业化并列为世界领先专业技术领域之一,广泛应用于食品、医药、化工、农业、环保、能源和国防等许多部门,并日益显示出其巨大的潜力,将为世界面临的水污染等问题的解决提供广阔的应用前景[1]。基因工程技术概述
基因工程技术是一种按照人们的构思和设计,在体外将一种生物的个别基因插入病毒、质粒或其他载体分子,构成遗传物质的重组,然后导入到原先没有这类分子的受体细胞内,能持续稳定地进行无性繁殖,使重组基因在受体细胞内表达,产生出人类所需要的基因产品的操作技术。基因工程技术是一项极为复杂的高新生物技术,它具有高效、经济、清洁、低耗、可持续发展、预见性和准确性等特点[2]。一个完整的基因工程技术流程一般包括目的基因的获得、载体的制备、目的基因与载体的连接、基因的转移、阳性克隆的筛选、基因的表达、基因工程产品的分离提纯等过程[1]。基因工程技术在废水处理中的应用
基因工程技术应用于废水处理是水处理领域一项具有广泛应用前景的新兴技术。常规的废水处理方法有物化法、生物法等。由于一般的物化方法只是污染物的转移,不能从根本上治理,且容易造成二次污染,成本也较高,生物法逐渐成为废水处理的主要方法。但是由于废水的多样性及其成分的复杂性,自然进化的微生物降解污染物的酶活性往往有限,如果能利用基因工程技术对这些菌株进行遗传改造,提高微生物酶的降解活性,并可大量繁殖,就可以定向获得具有特殊降解性状的高效菌株,方便有效地应用于水污染处理。因此,构建基因工程菌成为现代废水处理技术的一个重要研究方向,且日益受到人们的重视。
2.1 利用基因工程菌富集废水中的重金属离子
近几十年来,经济的高速发展导致各种有毒、有害金属污染物,经生产和使用过程中的各种渠道进入环境。高稳定性和高脂溶性使其在环境中具有停留时间长、能沿着食物链富集等特点,严重威胁着人类的健康和生存。随着国家对污染物排放标准的要求日益严格,单纯使用传统生物法处理这类重金属废水在适应性和高效性等方面存在局限性。针对这一问题,一些新型生物处理技术应运而生,其中利用基因工程菌代替普通微生物处理重金属是近年来研究的热点。此法采用生物工程技术将微生物细胞中参与富集的主导性基因导入繁殖力强、适应性能佳的受体菌株内,大大提高了菌体对重金属的适应性和处理效率。
X.W.Zhao等[3]研究发现,宿主菌在Hg2+浓度为1mg/L的LB培养液中生长严重受抑,而基因工程菌E.coliJM109在Hg2+浓度为7.4mg/L时仍能增殖,且Hg2+富集量为2.97mg/g(细胞干重),去除率达96%以上。
Carolina Sousa等[4]构建了表达酵母金属硫蛋白(CUP1)、哺乳动物金属硫蛋白(HMT-1A)和外膜蛋白LamB的融合蛋白的基因工程菌E.coli,该菌种的Cd2+富集能力比原始宿主菌提高15~20倍。K.Kuroda[5]等在酿酒酵母细胞壁处的凝集素蛋白中表达了含His的寡肽,增强了酵母对Cu2+的抗性和吸附能力,其Cu2+富集能力比对比菌株提高了8倍多。
X.Deng等[6]构建了同时表达镍转运系统和金属硫蛋白的基因重组菌E.coliJM10,将其用于处理含镍废水的试验研究时,发现其对Ni2+的富集能力比原始宿主菌增加了6倍多。
赵肖为等[7]利用基因工程菌E.coli SE5000 对水体中的镍离子进行富集研究。菌体细胞对Ni2+的富集速率很快,富集过程满足Langmuir 等温线模型。经基因改造的基因工程菌不仅最大镍富集容量与原始宿主菌相比增加了4倍多,而且对pH值的变化呈现出更强的适应性。袁建军等[8]利用构建的高选择型基因工程菌生物富集模拟电解废水中的汞离子。模拟电解废水中除含有3.0 mg·L-1的汞离子外, 还含有十种以上的其它金属离子。实验表明,与重组菌对只含汞离子的水溶液的处理结果比较, 电解废水中其它组份的存在意外地增大了重组菌富集汞离子的作用速率, 但同时却使细菌的最大汞富集量降低了约30%。
张迎明等[9]利用基因重组技术构建出基因工程菌Staphylococcus aureusATCC6538,该工程菌在IPTG用量为1.00mmol·L-1,诱导时间为4 h的条件下培养对镍离子的富集能力最高。在不同镍离子浓度时,基因工程菌对溶液中Ni2+的平衡富集量为11.33mg·g-1,与原始宿主菌相比提高了3倍。对基因工程菌吸附镍和钴的实验表明,Staphylococcus aureusATCC6538的NiCoT对镍具有较高的特异性和富集容量,属于第Ⅲ类镍钴转运酶。
2.1 利用基因工程菌降解废水中的有机污染物
生物处理法是废水中有机污染物降解的主要方法,但是部分难降解有机污染物需要不同降解菌之间的协同代谢或共代谢等复杂机制才能最终得以降解,这无疑降低了污染物的降解效率。首先,污染物代谢产物在不同降解菌间的跨膜转运是耗能过程,对细菌来说这是一种不经济的营养方式;其次,某些污染物的中间代谢产物可能具有毒性,对代谢活性有抑制作用;此外,将不同种属、来源的细菌的降解基因进行重组,把分属于不同菌体中的污染物代谢途径组合起来以构建具有特殊降解功能的超级降解菌,可以有效地提高微生物的降解能力[10]。
Satoshi Soda等[11]将基因工程菌P.putidaBH(pSl0-45)接种到SBR反应器的活性污泥中,用于处理500mg/L的苯酚废水,在大大提高苯酚去除率的同时改善了污泥沉降性能。南京大学、扬子石油化工有限责任公司、香港大学、国家环保总局南京环境科学研究所联合完成了跨界融合构建基因工程菌处理石化废水的生物工程技术。在优化调控技术的基础上,该菌株对二甲苯、苯甲酸、邻苯二甲酸、4-羧基苯甲醛和对苯二甲酸的降解率分别高达86%、94%、99%、97%和94%,比原工艺提高了20%~30%,总有机碳去除率达到了94%;污水经过处理后,铜、锰、锌、硒的浓度符合国家规定排放标准,生物毒性明显降低。
刘春等[12]以生活污水为共基质,考察了基因工程菌在MBR和活性污泥反应器中对阿特拉津的生物强化处理效果,以及生物强化处理对污泥性状的影响。结果表明,基因工程菌在MBR中对阿特拉津具有很好的生物强化处理效果,阿特拉津平均出水浓度为0.84 mg/L,平均去除率为95%,最大去除负荷可以达到70mg/(L·d)。生物强化的MBR对生活污水中COD的平均去除率为71%,COD平均出水浓度65mg/L。
陈俊等[13]采用跨界原生质融合技术,构建基因工程特效菌Fhhh,实现廉价工业化生产Fhhh菌剂,在10m3/d精对苯二甲酸废水处理实验装置中,容积负荷率达到3.0 kg/(L·d)以上,生物负荷率达到1.42d-1,出水水质达到国家一类标准,与国内外同类装置相比,生物负荷率处于先进水平。
蒋建东等[14]采用同源重组法成功构建了分别含1个和2个mpd 基因插入到rDNA位点且不带入外源抗性的多功能农药降解基因工程菌株CDS2mpd和CDS22mpd。基因工程菌遗传稳定,能同时降解甲基对硫磷和呋喃丹。甲基对硫磷水解酶(MPH)的比活在各生长时期均高于原始出发菌株,比活最高达6.22mu/μg。
刘智等[15]采用基因工程技术构建出具有耐盐、降解苯乙酸和水解甲基对硫磷的功能的基因工程菌H2pKT2MP和H2pBBR2MP,其中H2pBBR2MP水解酶活性与亲本菌株甲基对硫磷降解菌(Pseudomonas putida)DLL2E4相当,而H2pKT2MP水解酶活性要提高1倍左右。
吕萍萍等[16]研究发现,克隆有苯降解过程中的关键基因——甲苯加双氧酶的基因工程菌E.coli.JM109(pKST11)对苯具有较高的降解效率和降解速度,应用于固定化细胞反应器中效果突出。在较短的水力停留时间内,可以将1500mg/L苯降解70%,降解速度为1.11mg/(L·s),延长水力停留时间,可以使去除率达到95%以上。该反应器对高浓度的苯具有突出的处理效果。同时所得到的产物为环己二烯双醇,可以被野生非高效菌W3快速利用。展望
随着基因工程菌的出现,基因工程技术将不断应用于更多的废水治理工程中。培养出新的特效物种并进一步提高其应用效率、降低应用成本;运用各种相关技术加以优化组合,尤其是高效、低能耗、易普及的特种微生物与特殊工艺的最佳结合;加强不同专业、不同学科之间的合作,如将毒理学和微生物学和环境工程学相结合;从根本上消除污染源,充分协调人与自然之间的关系,充分实现废水资源化,引入DNA 扩增和其它生物技术的环境监测方法等将是基因工程技术研究的侧重方向。基因工程技术作为一种新兴技术以极快的速度发展。以下两方面的研究将对水资源保护有着重要意义。一是对基因工程菌的深入研究,如基因工程菌对污染物的代谢途径、控制目的基因表达的启动子基因序列、降解基因表达的调控条件的优化等方面的研究;二是对环境中微生物的习性及基因工程菌与环境中微生物和污染物之间的相互作用进行研究。目前的研究主要是利用单一的基因工程菌对污染物进行处理,随着研究的不断深入,利用多种基因工程菌相结合对污染物进行处理,将对水资源保护起到更为重要的作用。
参考文献
[1]杨 林,聂克艳,杨晓容,高红卫.基因工程技术在环境保护中的应用.西南农业学报,2007,20(5):1130 [2]邢雁霞,刘斌钰.基因工程技术的研究现状与应用前景.大同医学专科学校学报,2006年第3期:48
[3]Zhao, X.W., M.H.Zhou, Q.B.Li, et al.Simultaneous mercury bioaccumulation and cell propagation by genetically engineered Escherichia coli[J].Process Biochemistry,2005, 40(5):1 611-1 616 [4]Carolina,S., K.Pavel,R.Tomas,et al.Metalloadsorption by escherichia colicells displaying yeast and mammalian metallo thioneins anchored to the outer membrane protein lamb[J].Journal of Bacteriology,1998,180(9):2 280-2 284 [5]Kuroda,K.,S.Shibasaki,M.Ueda,et al.Cell surface-engineered yeast displaying a histidine oligopeptide(hexa-His)has enhanced adsorption of and tolerance to heavy metal ions[J].Applied Microbiology and Biotechnology,2001,57(5—6):697-701 [6]Deng,X.,Q.B.Li,Y.H.Lu,et al.Bioaccumulation of nickel from aqueous solutions by genetically engineered Escherichia coli[J].Water Research,2003,37(10):2 505-2 511 [7]赵肖为,李清彪,卢英华,等.高选择性基因工程菌E.coli SE5000生物富集水体中的镍离子.环境科学学报.2004年3月,第24卷,第2期:231-232 [8]袁建军,卢英华.高选择性重组基因工程菌治理含汞废水的研究.泉州师范学院学报(自然科学).2003年11月,第21卷,第6期:71-72 [9]张迎明,尹华,叶锦韶,等.镍钴转运酶NiCoT基因的克隆表达及基因工程菌对镍离子的富集.环境科学, 2007年4月,第28卷,第4期:918-923 [10]郭 杨,王世和.基因工程菌在重金属及难降解废水处理中的应用.安全与环境工程.2007年12月,第14卷,第4期:58-59 [11]Satoshi, S., I.Michihiko.Effects of inoculation of a genetically engineered bacterium on performance and indigenous bacteria of a sequencing batch activated sludge process
treating phenol[J].Journal of Fermentation and Bioengineering,1998,86(1):90-96.[12]刘春,黄霞,孙炜,王慧.基因工程菌生物强化MBR工艺处理阿特拉津试验研究.环境科学,2007年2月,第28卷,第2期:417-421 [13]陈俊,程树培,王洪丽,等.基因工程菌在精对苯二甲酸废水处理中的应用.工业用水与废水,2006年2月,37(1):32-35 [14]蒋建东,顾立锋,孙纪全,等.同源重组法构建多功能农药降解基因工程菌研究.生物工程学报.2005年11月,21(6):884-891 [15]刘智,洪青,徐剑宏,等.耐盐及苯乙酸、甲基对硫磷降解基因工程菌的构建.微生物学报,2003年10月,43(5):554-559 [16]吕萍萍,王慧,施汉昌,等.基因工程菌强化芳香化合物的处理工艺.中国环境科学
2003,23(1):12-15
第四篇:基因工程及其应用说课稿
《基因工程及其应用》说课稿
一、说教材
1.教材的地位和作用
《基因工程及其应用》是人教版生物必修2第六章第二节内容。本节的教学内容是在学生对基因有一定的理解的基础上,引入基因工程,让学生了解基因工程在生活中的运用,激发学生的求知欲。在教学内容的组织上体现了学科内在逻辑性与学生认识规律的统一。这一节主要讲述了基因工程的原理、基因工程 的应用以及转基因生物和转基因食品的安全性三个 方面的内容。基因工程的原理既是学生进入高中以来第一次接 触到的生物工程方面的内容。为了避免与《现代生物科 技专题》模块中基因工程的内容重复,教材没有过 多地展开介绍。其地位更是由《课程标准》上的了解层次上升为 《考试说明》上的理解层次,其重要性显而易见。
2.教学目标
根据本教材结构和内容分析,结合着学生的认知结构及其心理特征,我制定了以下的教学目标:
(1)、知识目标:掌握基因工程的概念、原理及安全性问题;基因操作的工具及其操作过程。
(2)、能力目标:培养学生分析、推理、归纳、总结的能力。
(3)、情感目标:培养学生实事求是的科学态度,从微观到宏观,从现象到本质的科学的研究方法;培养学生严谨的学习态度和思维习惯。
3.说教学的重、难点
本着高二新课程标准和考试大纲,在吃透教材基础上,我确定了以下教学重点和难点(1)、教学重点
基因工程的基本原理及安全性问题、基因操作的工具,基本步骤及其应用。(2)、教学难点
基因工程的基本原理,基因工程的应用及其安全性。
4.课程资源的开发及有机整合:本节课安排2课时,应当充分利用学生已有的知识经验和网络条件学习本课知识。
二、说学法:本节课的授课对象是高二的学生,此年龄段的学生求知欲望强,因为本节知识难度不是很大,学生将通过多种途径,如:观察、阅读、思考、分析、讨论、实践等等,来开展学生之间的协作学习和自主学习,形成以学生为主体的教学模式。
三、说教法
围绕本节课的教学目标、教学重点和学生情况的分析,采用了观察法、演示法、讨论法、实践法等多种教学方法,积极创设一个可以让学生在轻松愉快的氛围中,去主动探求知识的过程。在教学过程中,开展师生互动、生生互动,体现出以学生为主体,教师为主导的主动探究式教学理念。
四、说教学过程
在这节课的教学过程中,我注重突出重点,条理清晰,紧凑合理。各项活动的安排也注重互动、交流,最大限度的调动学生参与课堂的积极性、主动性。
1、导入新课: 提问:各种生物间的性状千差万别这是为什么呢?
引导:生物体的不同性状是通过基因特异性表达而形成的。
列举:几种生物的不同性状:蚕吐出丝;豆科植物的根瘤菌能够固定空气中的氮气;青霉菌能产生对人类有用的抗生素——青霉素。
提问:人类能不能改造性状?能不能使本身没有某个性状的生物具有某个特定性状呢? 引导:让禾本科植物能够固定空气中的氮气;能否让细菌“吐出”蚕丝;让微生物生产出人的胰岛素、干扰素等珍贵的药物。(这种设想能实现吗?)定向改造生物的新技术——基因工程。
2、讲授新课:(1)基因工程的原理
指导学生阅读教材P102页第二段,通过提问的方式指导学生找出概念中的关键词语,并让学生理解基因工程概念,引导学生独立完成。最后归纳列表,便于学生的记忆。概念:在生物体外,通过对DNA分子进行人工“剪切”和“拼接”,对生物的基因进行改造和重新组合,然后导入受体细胞进行无性繁殖,使重组基因在受体细胞内表达,产生出所需要的基因产物。(2)基因操作的工具
利用多媒体课件演示抗虫棉培育过程示意图,同时提出讨论问题,进行分组讨论,最后交流讨论结果,教师进行归纳总结。
思考:在以上的基因工程培育的过程中,关键步骤或难点是什么?
引导:关键步骤的完成过程中都要用到基因操作工具,并使学生形象地记忆“工具”的作用。A基因的剪刀——限制性内切酶(简称限制酶)。
要想获得某个特定性状的基因必须要用限制酶切几个切口?可产生几个黏性未端 B基因的针线——DNA连接酶
用DNA连接酶连接两个相同的黏性未端要连接几个磷酸二酯键?
限制酶切一个特定基因要切断几个磷酸二酯键? C基困的运输工具——运载体
大家一起思考下这些工具到底怎样操作才能完成基因工程的过程呢? 思考题: 简要归纳基因工程操作的基本步骤和大致过程。
启发学生思考:想像科学家在分子水平上进行这一操作的精确性。
(3)基因工程的应用。
学生阅读教科书P.104的内容。教师总结,并从具体事例引入关于转基因生物和转基因食品安全性的争议,启发学生对其安全性问题进行讨论。
3、课堂小结,强化认识。
复习基因工程操作的基本步骤和重要工具,完成课后习题
4、板书设计 基因工程操作的基本步骤: 剪切→拼接→导入→表达
结束语:
本节课设置了一系列问题情境,层层设问,在学生答问、质疑、讨论过程中让学生建构新概念和新的知识体系,并通过教师及时掌握反馈信息,适时点拨、调节,让学生在推理判断中培养良好的思维习惯和对知识的迁移能力,而且通过留出一定的时间让学生提问,体现了以学生为主体的思想。我的说课完毕,谢谢大家。
第五篇:浅谈现代基因工程及其应用
浅谈现代基因工程及其应用
目录
摘要..................................................................................................................................................1
一、基因工程的含义.......................................................................................................................2
二、现代基因工程的应用及对现代生活所产生的影响...............................................................2
1、在工业中的应用.................................................................................................................3
2、在农业中的应用.................................................................................................................3
3、在医药卫生中的应用.........................................................................................................3
4、在环境保护中的应用.........................................................................................................4
三、基因工程引发的争议及解决对策...........................................................................................4
四、结语...........................................................................................................................................5 参考文献...........................................................................................................................................5
摘要
随着科学技术的快速发展,基因工程应用在各个领域,显示着不可估量的发展前景。任何科学技术都是一把“双刃剑”,基因工程也不例外,如何趋利避害,成为了社会各界争议和讨论的热点。
关键词:基因工程; 应用; 转基因产品; 法律制度;
Abstract With the rapid development of science and technology, gene engineering application in various fields, show the immeasurable development prospects.Any science and technology is a “double-edged sword”, genetic engineering is not exceptional also, how to avoid disadvantages, became the focus of controversy and discussion from all walks of life.key words:genetic engineering;Application;Genetically modified products;The legal system;
一、基因工程的含义:“种瓜得瓜,种豆得豆;龙生龙,凤生凤,老鼠的儿子会打洞。”众所周知,基因是造成这些遗传规律的幕后功臣。基因是DNA分子上具有遗传功能的片段,它控制生物的代谢和发育,并把遗传信息传递给下一代。基因工程又称基因操作、基因拼接技术和DNA重组技术,是以分子遗传学为理论基础,以分子生物学和微生物学的现代方法为手段,特别是运用DNA 重组技术,将生物基因组的结构或组成在体内或者体外进行人为修饰、改造或重新组合,然后通过载体把新的DNA分子转入另一种生物的细胞中,以改变生物原有的遗传特性,从而获得目的基因产物或新的生物种类。基因工程打破常规,把不同种类生物的基因组合到一起,形成新的生物类型,实现了人类长期以来渴望定向改变生物性状,培育新物种的愿望。
二、现代基因工程的应用及对现代生活所产生的影响:基因工程自20世纪70年代初诞生以来,发展突飞猛进。它可以按照人们的主观愿望直接控制基因,打破了不同物种间在亿万年中形成的天然屏障。人们可以将一些不同种类生物的基因组合到一起,创造出自然界中并不存在的新生物类型。基因工程各项技术的应用,使生命科学的研究发生了前所未有的变化,在工业、农牧业、医药卫生、环境保护等各方面都有着不可限量的发展前景。
[1]
1、在工业中的应用:基因工程在工业上的应用,主要体现在医药工业和食品工业上。基因工程制药 开创了制药工业的新纪元,解决了许多疾病问题,基因工程可以生产出大量廉价优质的新药物、抗病毒疫苗和诊断试剂,基因工程生产出的药物为治疗各种疾病提供了有效的手段。在食品工业上,提高了人们对食品中微量元素的吸收和农作物抗病虫害的性能;生产食品酶试剂;改良了食品工业用菌数及其性能和食品加工性能;用来生产保健品和特殊食品。基因工程是工业发展进程中不可或缺的一部分,起着巨大的作用。
2、在农业中的应用:培育优良品种是农作物稳定增产的重要因素,利用基因工程可以将带有作物优良性状的基因“裁剪下来,拼接起来”,植入受体的细胞中,使受体作物具有优良性状,成为优质作物新品种。[2]基因工程培育出了能防虫害和防腐烂的作物,提高了农作物的产量。
[3]一些小麦和大豆通过转基因,具有了抗化学除草剂的特性;给水稻添加基因,生产人体需要的β-胡萝卜素;从耐盐植物中成功克隆出耐盐的基因,为盐碱地利用和海水灌溉提供了依据。基因工程育种有着目的性强、速度快、产量高、质量优和遗传性稳定等特点,它定向改造生物性状,将引发一次新的农业革命。
3、在医药卫生中的应用:利用基因工程技术,我们可以生产自然界中难以得到的蛋白质。1982年,首例基因工程产品-人胰岛素投放市场,为人类的健康带来了福音。之后,出现了更多的基因工程产品和蛋白质药物,如人生长激素、干扰素、白细胞介素-
2、乙肝疫苗等,令患者看到了生的希望。1999年,中国第一头携带人血清蛋白基因的转基因牛被培育出来。利用基因工程技术,科学家还从转基因羊奶中提取出了一种治疗心脏病的药物tPA。基因工程技术为人类的健康长寿做出了巨大贡献。
4、在环境保护中的应用:基因工程还被应用到环境保护中,基因工程成为变废为宝,除害兴利的重要技术手段。利用转基因微生物,可以吸收环境中的重金属,降解有毒有害化合物,处理工业废水;
[4]科学家把不同的降解基因转移到同一菌株中,创造出具有多种降解能力的“超级微生物”-“超级细菌”,可以降解各种工业污染物;通过基因工程培育对贵重金属具有亲和力的菌株,可用来回收贵重金属;培养具有浸矿能力的细菌来开采铜矿和铀矿等不久也将成为现实。
三、基因工程引发的争议及解决对策:自20世纪后半期,伴随着基因工程出现的生物技术,为解决人类面临的疾病、灾害和饥饿等提供了有力的帮助。但生物技术的发展并非总是乐观的,自身的潜在危险和不可预料的结局,引起了颇多的争议。转基因技术同其他科学技术一样,闪烁着科技“双刃剑”的光芒,在给人类社会带来福利的同时,也引发了社会对其涉及的经济、政治、法律、环境、健康和伦理道德等问题的广泛关注和争议。人们目前已经认识到转基因产品的失控和滥用,可能会给人类赖以生存和发展的自然生态环境造成灾难性的后果。中国作为转基因产品的生产大国之一,更应趋利避害,广泛借鉴国外先进的管理经验,既不能像有些国家那样对转基因产品拒不接受,又要使之在科学规范的轨道上得到有效的控制,有序的发展。因此,建立和完善中国转基因产品法律制度,具有深远的历史意义和现[5]实意义,对我国转基因产业的顺利发展起着重要的保障作用。解决基因工程所引发的问题,需要从以下几个方面做到:完善转基因产品生物安全监督的管理体制;完善转基因产品的“标识制度”;完善转基因产品生物安全评价体系;完善进口转基因产品的安全审批制度;
[6][7]完善我国转基因的法律制度:1)完善我国转基因产品法律法规体系;2)建立转基因产品风险评估技术体系的立法;3)立法改良安全性检测的措施。
四、结语:从古至今,人们对于事物的争议都是不可避免的。只要我们努力趋利避害,科学技术总会朝着人们期望的的方向继续发展,我相信,在不久的将来,基因工程技术将帮助解决更多阻碍人类发展的食物、安全、健康、医药、能源、环境保护等问题,最终推动全世界人类的发展。
参考文献
[1]刘金寿.现代科学技术概论.北京:高等教育出版社,2016
[2]陈晋莹,姜友军,刘洋.浅谈农业生物技术及转基因农作物[J].粮油仓储科技通讯.2016(04)[3]滕春红,陶波.农作物抗除草剂基因工程[A].中国化学除草50年回顾与展望[C].2004 [4]杨婷.微生物细胞表面的化学/基因改性调控用于重金属分离及(形态)分析[D].东北大学 2013 [5]尹航.论基因工程对现代生活的影响[A].第三届世纪之星创新教育论坛论文集[C].2016 [6]郭高峰.多元主义视角下转基因产品国际法律规制研究[D].西南政法大学 2014 [7]钱贺利.转基因农产品安全的立法规制研究[D].郑州大学 2016