基因工程在药用植物次生代谢物研究中的应用

时间:2019-05-14 08:15:56下载本文作者:会员上传
简介:写写帮文库小编为你整理了多篇相关的《基因工程在药用植物次生代谢物研究中的应用》,但愿对你工作学习有帮助,当然你在写写帮文库还可以找到更多《基因工程在药用植物次生代谢物研究中的应用》。

第一篇:基因工程在药用植物次生代谢物研究中的应用

基因工程在药用植物次生代谢物研究中的应用

基因工程在药用植物次生代谢物研究中的应用

摘要:

目的:药用植物遗传背景基础资料缺乏,对其次生代谢途径及其调控机制的认识不够深入,阻碍了细胞或组织培养、代谢工程等在获取高价值次生代谢物上的广泛应用。功能基因组学方法,尤其cDNA-AFLP 转录轮廓分析和代谢组学的整合运用,将次生代谢物的变化与相关基因的表达相关联,在挖掘次生代谢物生物合成相关基因、探索次生代谢途径方面展现出广阔的应用前景,是植物次生代谢物研究的新趋势和重要手段之一,将有力地促进药用植物资源更好的开发利用。植物在长期进化过程中与环境相互作用,产生大量不同种类的小分子有机化合物——次生代谢物(secondarymetabolites)。

【关键词】 次生代谢物;功能基因组学;转录组学;代谢组学;代谢工程

植物在长期进化过程中与环境相互作用,产生大量不同种类的小分子有机化合物——次生代谢物(secondary metabolites)。次生代谢物在植物适应特殊生态环境、对抗生物或非生物压力等方面发挥着重要作用,如抵御病虫害、适应生态环境变化、诱导授粉或防紫外线灼伤等[1-2]。很多次生代谢物化学结构复杂而独特,具有特殊的生物活性,是药用植物的主要活性成分[3]。药用植物在药物研发中应用广泛,是传统中药主要来源,其次生代谢物是新药、新先导化合物(drug leads)、新化学实体(new chemical entities,NCEs)的重要来源[4-5]。

从生物合成的起源来看,药用植物次生代谢物可分为5大类:多聚酮类(polyketides)、异戊二烯类(isoprenoids)、生物碱类(alkaloids)、苯丙烷类(phenyl propanoids)、黄酮类(flavonoids)。多聚酮类由乙酸-丙二酸途径(acetate-malonate pathway)产生;异戊二烯类(包括萜类和固醇类)由五碳前体异戊烯焦磷酸(isopenteny l diphosphate,IPP)经过经典的甲羟戊酸途径(mevalonic acid pathway,MVA pathway)或MEP 代谢途径(methyl-erythritol phosphate pathway)产生;生物碱类由不同种类的氨基酸合成;苯丙烷类含有1 个C6-C3单元,起源于芳香氨基酸苯丙氨酸和酪氨酸;黄酮类由苯丙烷类与多聚酮类相结合的途径合成[6]。不同种类的药用植物次生代谢物在药物开发中均有应用[7]。然而,来源于药用植物的次生代谢物往往含量低,且天然药用植物资源有限,增加了药物开发的难度[7]。药用植物次生代谢产物的生物合成往往包含多个步骤,过程长而复杂,有多种酶参与,至今仍有很多问题悬而未决。目前,药用植物中仅有少数次生代谢途径(如黄酮类,吲哚三萜,异喹啉生物碱)经过多年经典生物化学研究已有较深入的认识[8-9],而大部分次生代谢途径还有待进一步阐明,阻碍了生物技术生产次生代谢物的成功应用。功能基因组学方法是全面探索生系统的有力工具,是发现次生代谢物生物合成相关基因及阐明次生代谢途径的有效手段[10],将成为药用植物次生代谢物研究以及中药现代化研究的发展趋势之一[11-12]。

一、药用植物次生代谢物的获得途径

总的来说,药用植物次生代谢物的获得途径有①从植物(包括野生和栽培植物)中提取分离;②对结构已知的次生代谢物寻求化学合成或结构改造;③从植物细胞或组织培养物中获得;④代谢工程生产。目前,从植物中提取分离仍是获得次生代谢物最主要的途径,而且其中大约2/3 来源于野生资源[13]。然而,大多数次生代谢物在植物中含量低,且只在特殊组织部位、特定生长阶段或生长环境下积累,过度依赖野生资源会危及濒危物种、破坏环境。药用植物栽培在一定程度上可以缓解这些问题,但由于生长环境要求高、耗时长、劳动量大等原因,使得药用植物栽培成本较高、难度较大[14]。大部分次生代谢物结构复杂,常含有特异的立体化学结构(stereochemistry),使得化学全合成往往不可能或者经济上不可行。

在基于次生代谢物作用机制知识的基础上合成作用相似的替代物,或者对次生代谢物进行结构修饰,是药物开发中一种经济可行的策略。例如,以薯蓣皂苷元(diosgenin)为基本骨架,经化学修饰开发出大量类固醇激素类药物。作为获得药物植物次生代谢物一种可能的替代方法,运用细胞或组织培养物产生有商业价值的次生代谢物的研究已广泛开展。虽然许多不同种类的药用植物细胞或组织培养体系已经被确定,但它们常常并不能产生足够量的目标次生代谢物[15]。可能的原因如下:次生代谢物细胞内毒性高,导致其在培养物中往往并不积累或者含量很低[16];培养物容易受后天变化(epigenetic changes)的影响,产物水平不稳定,使得依靠经验摸索选择高产、稳定的培养体系难度较大。通过筛选选择高产率细胞系、优化培养基、加入茉莉酸甲酯等诱导因子、运用毛状根培养等方法能够在一定程度上提高目标次生代谢物产量[17]。

成功的例子有: 运用紫草Lithospermum erythrorhizon 细胞悬浮培养生产紫草素(shikonin);从罂粟Apaver somniferum 细胞培养生产血根碱(sanguinarine)等。但由于产量以及生产成本等问题,目前这种方法商业成功率仍然非常有限。代谢工程为产生目标次生代谢物、提高其含量提供了新的前景。调控次生代谢途径要求彻底认识其整个生物合成途径,详细了解代谢途径中控制启动和流通的调控机制。目前,这种方法已经被成功的运用于微生物生产本体或异源次生代谢物[18]。例如,在大肠杆菌Escherichia coli 中生产抗疟疾成分青蒿素的前体青蒿酸(amorphadiene)[19]。然而,药用植物与微生物不同,通常次生代谢途径更长,酶催化步骤更多,因此阻碍了代谢工程在药用植物中的应用。功能基因组学研究将最终揭示次生代谢物的生物合成途径,为药用植物代谢工程以及细胞或组织培养与代谢工程相结合的途径产生次生代谢物奠定坚实的理论基础。

二、功能基因组学的基本研究工具

拟南芥、水稻全基因组测序完成,其他几种植物如杨、苜蓿、莲、土豆、玉米等序列信息的发现[20-22],有力推进了基因组学的发展。然而,仅仅依靠大量序列信息,许多基因的功能无法阐明。通过改变单个因素或基因探索基因功能的方法效率较低、成本较高,这要求大规模分析基因功能[23],从而催生了功能基因组学。功能基因组学(functional genomics)应用多重平行的方法,包括转录组学(transcriptomics)、蛋白质组学(proteomics)、代谢组学(metabolomics),采用高通量模式在基因组或系统水平上全面研究分析基因功能,是全面探索生物系统的有力工具,最终将建立起基因组(genome)和表型组(phenome)之间的联系[10,24]。

转录组学在整体水平上研究细胞中基因转录情况及转录调控规律,其发展使得全面系统研究基因表达、发现新基因、诠释基因功能成为可能。常用的转录轮廓分析方法有:差异性显示(differential display),cDNA 微阵列(cDNA microarray),基因芯片(gene chip),表达序列标签(expressions equence tags,EST)分析,基因表达的系统分析(serial analysis of gene expression,SAGE),大规模平行测序技术(massively parallel signature sequencing,MPSS),cDNA-扩增片段长度多态性(cDNA-amplified fragment lengt polymorphism,cDNA-AFLP)等[22,25-26]。cDNA-AFLP 是Bachem 等1996 年在AFLP(amplified fragment length polymorphism)的基础上发明出来的一项RNA 指纹图谱技术,基本原理是对cDNA 限制性酶切片段进行选择性扩增,通过扩增片段获得基因表达信息[27]。cDNA-AFLP 与基于杂交的转录图谱技术cDNA 微阵列和基因芯片相比,最显著的优点为不需要事先知道基因组序列信息、灵敏度高、特异性高、重复性好、启动成本相对较低,在基因表达研究方面可有效替代后两者[28]。cDNA-AFLP 已逐渐成为探索基因序列信息相对缺乏的药用植物基因表达的有力工具[29-30],主要应用于定量基因表达分析,新基因发现,表达数量性状基因坐(quantitative trait loci,QTL)作图等方面,适用于任何物种[25]。

蛋白质组学在大规模研究基因表达、揭示蛋白质功能、探索酶的催化调控作用等领域发挥着举足轻重的作用,主要的分离分析方法有:二维凝胶电泳(two dimensional gelelect rophoresis),质谱技术,包括基质辅助激光解吸电离飞行时间质谱(matrix assisted laser desorption/ionization time of flight mass spectrometry,MALDI/TOF MS)、电喷雾离子化质谱(electro spraying ionization-mass spectrometry,ESI-MS)等。二维凝胶电泳技术是高效分离分析多种蛋白的主要手段。质谱技术灵敏度、特异性高,主要应用于精确鉴定蛋白质[31]。由于蛋白质自身结构复杂、特异,且存在相互作用,蛋白质组的研究常需要结合二维凝胶电泳、质谱技术以及用于研究蛋白质相互作用的分析技术,如酵母双杂交技术、蛋白质芯片[32]。

代谢组学的形成和发展使得对于代谢网络的整体动态变化的衡量成为可能或者更接近于真实,尤其适合于特定条件下的代谢表型(metabolic phenotypes)的研究[33-34],并且迅速成为阐释基因功能、全面了解细胞对生物环境反应的关键工具[35],也是药用植物、中医药现代化研究非常重要的手段[36-37]。

常用的分析方法有:核磁共振(nuclear magnetic resonance,NMR)、气相色谱-质谱联用(gas chromatography coupled with mass spectrometry,GC-MS)、液相色谱-质谱联用(liquid chromatography coupled with mass spectrometry,LC-MS)、傅立叶质谱(Fourier transform mass spectrometry,FTMS)和毛细管电泳-质谱联用(capillary electrophoresis coupled with mass spectrometry,CE-MS)等[38]。近年来又发展出了串连质谱、液相色谱与核磁共振联用等新技术。这些分析方法各有优缺点,NMR 快速、选择性好、代谢物结构鉴定方便,但灵敏度相对较低、检测动态范围窄;基于分离和质谱联用的技术灵敏度高、专属性好,但样品前处理及分析需要相对较长的时间。选择合适的分析技术需要综合考虑代谢物谱的特征,分析速度、选择性和灵敏度[39-40]。

三、药用植物功能基因的挖掘

对于药用植物来说,由于基因组序列信息及其相关数据库、功能基因组学研究工具的缺乏,其次生代谢物相关基因的全面研究几乎未见报道。整合转录组学与代谢组学的功能基因组学方法是该研究领域的一个突破口[6](图1)。使用茉莉酸甲酯(methyljasmonae,MeJA)、水杨酸(salicylic acid,SA)、壳聚糖(chitosan)或重金属(heavy metals)等刺激因子处理未分化的细胞通常能够提高次生代谢物产量[11-12]。

假设目标次生代谢物的含量提高的同时,与这些成分生物合成相关的基因也被激活,那么,在药用植物细胞或组织培养物中,当目标次生代谢物诱导条件确定后,基因组层面的转录轮廓分析就能够确定与之累积相关的基因表达,筛选出与次生代谢相关的基因进行功能分析,阐明和验证它们的功能,进而应用于提高次生代谢物产量。理论上,这种方法适用于任何药用植物细胞或组织培养物。

图1 一种用于提高植物细胞中次生代谢物

含量的功能基因组学方法概要:Alain Goossens[43]等运用cDNA-AFLP 的转录轮廓和目标代谢物轮廓分析相结合的方法分析了茉莉酸甲酯诱导后的烟草细胞培养物,在2 万个可见基因片段中,确定591个由茉莉酸甲酯诱导转录,同源搜索显示,其中58%的基因片段功能已知,几乎包括所有和尼古丁生物合成相关的基因,如编码鸟氨酸脱羧酶、精氨酸脱羧酶、喹啉酸磷酸核糖基转移酶的基因和许多据推测可能在生物碱合成中起作用基因;约15%的基因编码功能不确定的蛋白以及信号转导蛋白,如受体、激酶、磷酸酶和转录因子,这些蛋白的诱导与尼古丁生物合成相关基因的上调一致。Heiko Rischer[44]等运用cDNA-AFLP 转录轮廓分析和代谢轮廓分析相结合的方法,分析茉莉酸甲酯诱导的长春花细胞培养物,得到一系列已知或未知的基因标签以及与二萜类吲哚生物碱(terpenoid indole alkaloids,TIAs)相关的代谢物;通过搜索417 个差异性表达基因标签和178 个代谢峰的累积轮廓之间的关联,他们首次描画了从基因到基因(gene-to-gene)以及从基因到代谢(gene-to-metabolite)的网络,这些代谢网络揭示了二萜类吲哚生物碱具有不同的代谢分支,且不同的代谢途径受到不同的植物激素调节,也揭示了与二萜类吲哚生物碱生物合成相关的一系列基因和代谢物。整合转录组学和代谢组学,构建从基因到代谢的网络,将促进包含多种层面(包括基因表达、酶活性和代谢物水平)、相互作用的生物体系之间的信息的整合,发现关键调节成分从而阐明基因功能,进一步确定与药用植物次生代谢物生物合成、转运、调节、修饰相关的新基因及其调控机制[45]。

四、药用植物次生代谢工程

代谢工程通过调控与代谢途径相关的基因、关键酶、代谢通路、代谢物等途径,改变目标次生代谢物含量。功能基因组学研究领域的基本问题是确定与次生代谢物生物合成相关的各个因素,包括基因表达、酶及其调节水平,其研究成果为代谢工程产生次生代谢物提供了理论基石,目前已经有较多应用。

引入或过量表达编码关键酶如限速酶的基因能够调控代谢途径。Dae-Jin Yun[46]等的研究表明,在颠茄Atropa belladonna中引入编码莨菪碱-6β-羟化酶(hyoscyamine-6β-hydroxylase)的基因,导致了颠茄中含量很低的高价值托品生物碱东莨菪碱(scopolamine)的累积,几乎所有的莨菪碱都转化成了东莨菪碱。该基因在黑莨菪Hyoscyamus muticus 毛状根中过量表达效果更剧烈,不仅产生了大量的东莨菪碱,而且累积了高含量的莨菪碱[47]。Lee[48]等研究表明,在人参中过量表达角鲨烯合成酶基因(squalene synthase gene)获得了更高含量的三萜(triterpenes)和植物甾醇(phytosterols)。使某个基因沉默导致代谢途径中产生或阻断代谢支路也能使某种代谢物累积。

Allen [49]等的研究已经表明,阻断罂粟中产生吗啡的代谢途径,会导致荔枝碱(reticuline)及其甲酯的积累。在咖啡植物中,调控咖啡因的相关代谢通路可控制其含量[50]。转录因子(transcriptional factors)异常表达启动整个代谢途径的能力显示了调控次生代谢途径新的可能性。长春花二萜类吲哚生物碱(terpenoid indole alkaloids,TIAs)生物合成途径的主导调节子基因Orca3,该基因编码产物ORCA3含有一个AP2/ERF 功能域,为茉莉酸应答性调节子(jasmonate-responsive regulator)。在长春花细胞培养物中,连续产生过量ORCA3导致几种与二萜类吲哚生物碱生物合成相关基因的过量表达以及二萜类吲哚生物碱累积[51]。在细胞或组织培养物中,次生代谢物常储存在植物液泡内,转运器(transporter)很可能在次生代谢物转运区隔中发挥着重要作用。次生代谢物的细胞毒性限制了其在细胞中累积。尼古丁和其他生物碱对植物细胞毒性高,在转基因土豆细胞中过量表达酵母ABC 转运器(ABC transporter)PDR5 被证实能减小尼古丁的细胞毒性,增加其累积[52]。

功能基因组学的发展为产生或设计新的次生代谢物提供了前所未有的机会,运用代谢工程以及植物细胞或组织培养物与代谢工程相结合的方法产生次生代谢物将会取得更大的突破。

五、展望

由于药用植物缺乏大量序列数据信息,使得基因表达的系统分析、微阵列等转录轮廓分析方法难以应用,严重阻碍了大规模的基因发掘。相比而言,由于不需要事先知道基因组序列信息,cDNA-AFLP 分子标记技术成为目前广泛发掘药用植物基因以及定量分析基因表达谱的有力工具。代谢组学的兴起使得大规模定量检测整体或目标代谢物成为可能。

作为对基因表达活动的响应,次生代谢物更为灵敏地反映了基因表达与调控的变化,基于cDNA-AFLP 的转录轮廓分析与代谢组学整合,能够将基因表达变化与代谢物变化相关联,并通过次生代谢物的变化规律发现新基因、推测代谢途径、阐释基因功能,在次生代谢物生物合成途径及相关基因功能阐明研究中已显现出广阔的应用前景。

随着技术的发展及研究的深入,基因组、基因表达数据库的不断扩充和完善,更多的功能基因组学研究工具,包括转录组学、蛋白质组学和代谢组学及其全面深入的整合[45],将越来越广泛地应用于药用植物及中医药研究领域。这种整体系统方法和传统还原分析方向相结合,必将加速揭示药用植物基因的功能,建立起基因表达水平、酶活性和次生代谢物之间的因果关联,最终阐明次生代谢途径及其相关基因的表达调控机制。

这些研究成果将促进细胞或组织培养基因工程、代谢工程产生高价值活性成分的应用,有力推进药用植物次生代谢物的开发和中药材新品种培育,在保护自然资源、保持生物多样性的同时使人类极大受益[53-54]。

[参考文献] [1] Dixon R A.Natural products and plant disease resistance[J].Nature,2001,411(6839):843.[2] Wink M,Schimmer O.Functions of plant secondary metabolites andtheir exploitation in biotechnology[M].Sheffield : Sheffield Academic Press,1999:17.[3] Itokawa H,Morris-Natschke S L,Lee K H,et al.Plant-derived natural product research aimed at new drug discovery[J].J Nat Med,2008,62(3):263.[4] Butler M S.The role of natural product chemistry in drug discovery [J].J Nat Prod,2004,67(12):2141.[5] Newman D J,Cragg G M,Snader K M.Natural products as sources of new drugs over the period 1981-2002 [J].J Nat Prod,2003,66(7):1022.[6] Oksman-Caldentey K M,Inze D.Plant cell factories in the post-genomic era : New ways to produce designer secondary metabolites [J].Trends Plant Sci,2004,9(9):433.[7] Balunas M J,A D Kinghorn.Drug discovery from medicinal plants[J].Life Sci,2005,78(5):431.[8] Dixon R A,Steele C L.Flavonoids and isoflavonoids-A gold mine for metabolic engineering[J].Trends Plant Sci,1999,4(10):394.[9] Hashimoto T,Yamada Y.New genes in alkaloid metabolism and transport[J].Curr Opin Biotech,2003,14(2):163.[10] Colebatch G,Trevaskis B,Udvardi M.Functional genomics:tools of the trade[J].New Phytol,2002,153(1):27.[11] 陈晓亚.植物次生代谢研究[J].世界科技研究与发展,2006,28(5)[12] 王永炎.中医药研究中系统论与还原论的关联关系[J].世界科学技术——中医药现代化,2007,9(1):70.[13] Edwards R.No remedy in sight for herbal ransack[J].New Sci,2004,181(2429):10.[14] Wu Jianyong,Zhong Jianjiang.Production of ginseng and its bioactive components in plant cell culture:Current technological and applied aspects[J].J Biotechnol.1999,68(2/3):89.[15] Ramachandra R S,Ravishankar G A.Plant cell cultures:Chemical factories of secondary metabolites[J].Biotechnol Adv,2002,20(2): [16] Vanisree M,Lee C Y,Tsay H S,et al.Studies on the production of some important secondary metabolites from medicinal plants by plant tissue cultures [J].Bot Bull Acad Sinica,2004,45(1):1.[17] Verpoorte R A,Contin,Memelink J.Biotechnology for the production of plant secondary metabolites[J].Phytochem Rev,2002,[18] Mijts B N,Schmidt-Dannert C.Engineering of secondary metabolite pathways[J].Curr Opin Biotech,2003,14(6):597.[19] Martin V J J,Pitera D J,Keasling J D,et al.Engineering a mevalonate pathway in Escherichia coli for production of terpenoids[J].Nat Biotechnol,2003,21(7)[20] Kaul S,Koo H L,Jenkins J,et al.Analysis of the genome sequence of the flowering plant Arabidopsis thaliana[J].Nature,2000,408(6814):796.[21] Sasaki T.The map-based sequence of the rice genome [J].Nature,2005,436(7052):793.[22] Rensink W A,Buell C R.Microarray expression profiling resources for plant genomics[J].Trends Plant Sci,2005,10(12):603.[23] Jansen R C.Studying complex biological systems using multifactorial perturbation[J].Nat Rev Genet,2003,4:145.[24] Vij S,Tyagi A K.Emerging trends in the functional genomics of the abiotic stress response in crop plants :Review article[J].Plant Biotechnol J,2007,5(3):361.[25] Marnik V,Johan D P,Michiel J T van Eijk.AFLP-based transcript profiling(cDNA-AFLP)for genome-wide expression analysis[J].Nat Protoc,2007,2(6):1399.[26] Busch W,Lohmann J U.Profiling a plant:Expression analysis in Arabidopsis [J].Curr Opin Plant Biol,2007,10(2):136.[27] Bachem C W B,Visser R G F,R S van der Hoeven,et al.Visualization of differential gene expression using a novel method of RNA fingerprinting based on AFLP:Analysis of gene expression during potato tuber development[J].Plant J,1996,9(5):745.[28] Reijans M,Lascaris R,Groeneger A O,et al.Quantitative comparison of cDNA-AFLP,microarrays,and genechip expression data in Saccharomyces cerevisiae[J].Genomics,2003,82(6):606.[29] Breyne P,Dreesen R,Vandepoele K et al.Transcriptome analysis during cell division in plants[J].Proc Natl Acad Sci USA,2002,99(23):14825.[30] Sarosh B R,Meijer J.Transcriptional profiling by cDNA-AFLP reveals novel insights during methyl jasmonate,wounding and insect attack in Brassica napus[J].Plant Mol Biol,2007,64(4):425.[31] Beranova G S.Proteome analysis by two-dimensional gelelectrophoresis and mass spectrometry:Strengths and limitations[J].Trac-Trend Anal Chem,2003,22(5):273.[32] Chen S,Harmon A C.Advances in plant proteomics[J].Proteomics,2006,6(20):5504.[33] Fiehn O.Metabolomics ——The link between genotypes and phenotypes[J].Plant Mol Biol,2002,48(1/2):155.[34] Villas-Boas S G,Rasmussen S,Lane G A.Metabolomics or metabolite profiles?[J].Trends Biotechnol,2005,23(8):385.[35] Schauer N,Fernie A R.Plant metabolomics:Towards biological function and mechanism[J].Trends Plant Sci,2006,11(10):508.[36] 贾 伟,蒋 健,刘平,等.代谢组学在中医药复杂理论体系研究中的应用[J].中国中药杂志,2006,31(8):621.[37] 齐炼文,李 萍,赵 静.代谢组学与中医药现代研究[J].世界科学技术——中医药现代化,2006,8(6):79.[38] Sumner L W,Mendes P,Dixon R A.Plant metabolomics:Large-scale phytochemistry in the functional genomics era[J].Phytochemistry,2003,62(6):817.[39] Dettmer K,Aronov P A,Hammock B D.Mass spectrometry-based metabolomics [J].Mass Spectrom Rev,2007,26(1):51.[40] Dunn W B,D I Ellis.Metabolomics:Current analytical platforms and methodologies[J].Trac-Trend Anal Chem,2005,24(4):285.[41] Poulev A,Neal J M O,Logendra S,et al.Elicitation,a new window into plant chemodiversity and phytochemical drug discovery[J].J Med Chem,2003,46(12):2542.[42] Zhao J,Davis L C,Verpoorte R.Elicitor signal transduction leading to production of plant secondary metabolites[J].Biotechnol Adv,2005,23(4):283.[43] Goossens A,Hakkinen S T,Laakso I,et al.A functional genomics approach toward the understanding of secondary metabolism in plant cells[J].Proc Natl Acad Sci USA,2003,100(14):8595.[44] Rischer H,Orešič M,Seppänen-Laakso T,et al.Gene-to-metabolite networks for terpenoid indole alkaloid biosynthesis in Catharanthus roseus cells[J].Proc Natl Acad Sci USA,2006,103(14):5614.[45] Yuan J S,Galbraith D W,Dai S Y,et al.Plant systems biology comesof age[J].Trends Plant Sci,2008.13(4):165.[46] Yun D J,Hashimoto T,Yamada Y.Metabolic engineering of medicinal plants:Transgenic Atropa belladonna with an improved alkaloid composition[J].Proc Natl Acad Sci USA,1992,89(24):11799.[47] Jouhikainen K,Lindgren L,Jokelainen T,et al.Enhancement of scopolamine production in Hyoscyamus muticus L.hairy root cultures by genetic engineering[J].Planta,1999,208(4):545.[48] Lee M H,Jeong J H,Seo J W,et al.Enhanced triterpene and phytosterol biosynthesis in Panax ginseng overexpressing squalene synthase gene[J].Plant Cell Physiol,2004,45(8):976.[49] Allen R S,Millgate A G,Chitty J A,et al.RNAi-mediated replacement of morphine with the nonnarcotic alkaloid reticuline in opium poppy[J].Nat Biotechnol,2004,22(12):1559.[50] Ogita S,Uefuji H,Yamaguchi Y,et al.Producing decaffeinated coffee plants[J].Nature,2003,423(6942):823.[51] Van Der Fits L,Memelink J.ORCA3,a jasmonate-responsive transcriptional regulator of plant primary and secondary metabolism[J].Science,2000,289(5477):295.[52] Goossens A,Hakkinen S T,Laakso I,et al.Secretion of secondary metabolites by ATP-binding cassette transporters in plant cell suspension cultures[J].Plant Physiol,2003,131(3):1161.[53] 刘昌孝.代谢组学与医药科学研究[J].中国医学科学院学报,2007,29(6):712.[54] 陈 竺.系统生物学——21 世纪医学和生物学发展的核心驱动力[J].世界科学,2005,5:3.

第二篇:基因工程在食品工业中的应用

基因工程在食品工业中的应用

摘要:生物技术发展日新月异,基因工程的应用已经渗透到工、农、衣、国防和环保等各个领域,深刻影响着人类的生活和社会的进程;当然,基因工程技术在食品中的应用也越来越广泛。它具有从本质上改变生物及食品性能的特性,因此越来越受到食品科技工作者的重视。本文阐述了基因工程的定义,详细介绍了基因工程食品的由来,并介绍了基因工程在食品原料改良中的应用;基因工程在食品发酵中的应用;基因工程在农副产品加工中的应用,同时,展望了基因工程技术在食品工业领域中的美好发展前景。

关键词:基因工程

食品工业

食品原料改良

食品发酵

农副产品

Application of genetic engineering in food industry Abstr act: Changing biotechnology and genetic engineering applications have penetrated into industry, agriculture, national defense, clothing, and the environmental protection and other fields, and deeply influenced the process of human life and society;Genetic engineering application in the food, of course, also more and more widely.It has essentially changed biological and food performance characteristics, so more and more brought to the attention of the food science and technology workers.This paper expounds the definition of genetic engineering, gene engineering was introduced in detail the origin of the food, and introduces the application of genetic engineering in food raw material improvement;The application of genetic engineering in food fermentation;Genetic engineering application in the agricultural and sideline products processing, at the same time, discussed in the field of genetic engineering in food industry good development prospects.Key word: Genetic engineering

food industry

food raw material improvement

food fermentation

agricultural and sideline products

一、基因工程的定义

狭义:指用体外重组DNA技术去获得新的重组基因;

广义:指按人们意愿设计,通过改造基因或基因组而改变生物的遗传特性。如用重组DNA技术,将外源基因转入大肠杆菌中表达,使大肠杆菌能够生产人所需要的产品;将外源基因转入动物,构建具有新遗传特性的转基因动物;用基因敲除手段,获得有遗传缺陷的动物等。

基因工程食品: 基因工程食品是指利用生物技术改良的动植物或微生物所制造或生产的食品、食品原料及食品添加剂等。它是针对某一或某些特性以突变、植入异源基因或改变基因表现等生物技术方式,进行遗传因子的修饰,使动植物或微生物具备或增强此特性,进而降低生产成本,增加食品或食品原料的价值,例如增强抗病性、改变营养成分,加快生长速度、增强对环境的抗性等

二、基因工程的发展史 基因工程是在分子生物学和分子遗传学综合发展基础上于本世纪70年代诞生的一门崭新的生物技术科学。一般来说,基因工程是指在基因水平上的遗传工程,它是用人为方法将所需要的某一供体生物的遗传物质--DNA大分子提取出来,在离体条件下用适当的工具酶进行切割后,把它与作为载体的DNA分子连接起来,然后与载体一起导入某一更易生长、繁殖的受体细胞中,以让外源遗传物质在其中“安家落户”,进行正常复制和表达,从而获得新物种的一种崭新的育种技术。

三、基因工程在食品原料改良中的应用

(一)水化合物的改良

食品碳水化合物类食品方面利用基因工程来调节淀粉合成过程中特定酶的含量或几种酶之间的比例,从而达到增加淀粉含量或获得独特性质、品质优良的新型淀粉。例如:通过反义基因抑制淀粉分枝酶可获得完全只含有直链淀粉的转基因马铃薯。这样油炸后的产品更具有马铃薯的风味,更好的构质,较低的吸油量和较少的油味。

(二)油脂的改良

目前,控制脂肪酸链长的几个酶的基因和控制饱和度的一些酶的基因已被克隆成功,并用于研究改善脂肪的品质。如通过导入硬脂酸-ACP 脱氢酶的反义基因,可使转基因油菜 种子中硬脂酸的含量从 2%增加到 40%。而将硬脂酞 CoA 脱饱和酶基因导入作物后,可使转基因作物中的饱和脂肪酸(软脂酸、硬脂酸)的含量有所下降,而不饱和脂 肪酸(油酸、亚油酸)的含量则明显增加,其中油酸的含量可增加 7 倍。除了改变 油脂分子的不饱和度外,基因工程技术在改良脂肪酸的链长上也取得了实效。事实上,高油酸含量的转基因大豆及高月桂酸含量的转基因油料作物芥花菜(Canola)在美国已经成为商品化生产的基因工程油料作物品种。

(三)蛋白质的改良

食品中动植物蛋白由于其含量不高或比例不恰当,可能导致蛋白营养不良。采用转基因的方法,生产具有合理营养价值的食品,让人们只需吃较少的食品,就可以满足营养需求。例如,豆类植物中蛋氨酸的含量很低,但赖氨酸的含量很高;而谷类作物中的对应氨基酸含量正好相反,通过基因工程技术,可将谷类植物慕冈导入豆类植物,开发蛋氨酸含量高的转基因人豆。

(四)碳水化合物的改良

对碳水化合物的改进,只有通过对其酶的改变来调节其含量。高等植物体中涉及淀粉合成的酶类主要有: ADPP葡萄糖焦磷酸酶(ADP-GPP)、淀粉合成酶(SS)和分支酶(BE)。通过反义基因抑制淀粉分支酶,可获得完全只含直链淀粉的转基因马铃薯。Monsanto公司开发了淀粉含量平均提高了20%-30%的转基因马铃薯。油炸后的产品更具马铃薯风味、且吸油量较低。

四、基因工程在食品发酵中的应用

随着食品工业的发展,对酶、蛋白质、氨基酸、香精、甜味剂等原辅料的需求量大增,而这些原辅料传统上靠动植物供应,由于受气候、季节、生长期等因素的影响,供应鼍往往不能满足需要。现在基因工程技术已能将许多酶、蛋白质、氨基酸和香精以及其他多种物质的基冈克隆入合适的微生物宿主细胞中利用细菌的快速繁殖来大量生产。例如将牛胃蛋白酶的基因克隆入微生物体内,由细菌生产这种动物来源的酶类,将解决奶酪工业受制于凝乳酶来源不足的问题;从西非发现的由植物果实中提取的甜味蛋自质(thaumatin)的DNA编码序列已经被克隆入细菌,以生产这种高效低热量新型甜味剂等。下面重点介绍基因工程程在啤酒工业、乳品工业方面的应用。

(一)啤酒工业

1、大麦的选育:

利用RF[,P(限制性片断长度多样性)技术对人麦进行抗病选育、Q一淀粉酶多基因族分析大麦醇溶蛋白的研究及品种鉴定。利用转基因技术将外源基因直接导入大麦,用于品种改良、抗虫和抗病选育,人们期待着基因重组技术能产生耐枯斑病等病害的大麦品种。

2、啤酒稻的选育:

大米是啤酒酿造中使用最广的辅料,但普通大米的用帚提高到30%以上时,麦汁中Q一氨基氮含量会不足而影响酵母的正常生长和发酵。利用基因转移技术、细胞融合技术等选育高蛋白、低脂肪、低NSP(非淀粉多糖)的稻品种,专门用于啤酒酿造,进一步提高辅料比例,降低生产成本。

3、啤酒酵母的改造:

利用粮食替代晶酿造啤酒的首选原料是纤维素因为纤维素自然界存量最多的有机物,某些真菌如平菇、香菇、灵芝、红曲霉等对纤维素有很强的分解能力,如果利用现代基因工程技术将这些真菌中控制纤维素酶,合成的基阗转移到啤酒酵母中去,那么啤酒酵母就能利用纤维素酿造啤酒,改变传统的啤酒生产中消耗大量的大麦和大米等粮食的局面。

(二)乳品工业

l、提高牛乳产量:

将采用基因工程技术生产的牛生长激素(BST)注射到母牛上,可提高母牛产奶量。目前利用DNA的克隆繁殖技术,把人垂体激素(ST)重组体互)陋UBST的mRNA中,利用外源BST来注射乳牛,可提高15%左右的产奶量,BST现已进入商业化领域。现在英、美等国都已采用BST来提高乳牛的产奶量,具有极大的经济效益,且对人体无害。

2、改善牛乳的成分:

利用13一半乳糖苷酶水解乳中的乳糖,对众多乳糖不耐症者是一个难得的好产品。可将编码通过基因工程技术将B一半乳糖苷酶基因转入GRAS级的微生物细胞作为宿主,在宿主调节基因的调控下,在发酵罐规模上生产表达有优良特性的13一半乳糖营酶基因。此外,针对矿乳白蛋白的mRNA,用核酸编码的转基因,使与乳糖合成有关的a_乳白蛋白(是乳糖产生的催化物质)的基因被淘汰,以此达到降低乳中乳糖含量的目的。

五、基因工程在农副产品加工中的应用

改良果蔬采收后品质增加其贮藏保鲜性能 随着对番茄、香蕉、苹果、菠菜等果蔬成熟及软化机理的深入研究和基因工程技术的迅 速发展,使通过基因工程的方法直接生产耐储藏果蔬成为可能。事实上,现在无论在国外还 是国内都已经有了商品化的转基因番茄。促进果实和器官衰老是乙烯最主要的生理功能。在 果实中乙烯生物合成的关键酶主要是乙烯的直接前体—l-氨基环丙烷一 1-梭酸合成酶(ACC 合成酶)和ACC 氧化酶。在果实成熟中这两种酶的活力明显增加,导致乙烯产生急剧上升,促进果实成熟。在对这两种酶基因克隆成功的基础上,可以利用反义基因技术抑制这两种基 因的表达,从而达到延缓果实成熟,延长保质期的目的。因此,利用反义基因技术可以成 功的培育耐储藏果蔬。目前,有关的研究正在继续进行,并已扩大到了草莓、梨、香蕉、芒 果、甜瓜、桃、西瓜、河套蜜瓜等,所用的目的基因还包括与细胞壁代谢有关的多聚半乳糖 醛酸酶(PG)、纤维素酶和果胶甲脂酶基因。反义PG 转基因番茄还具有更强的抗机械损伤和 真菌侵染能力,且有更高的果酱产率。

(六)、展望

目前,包括我国政府在内的各国政府对基因工程技术在农业和食品工业中的应用都制定了相关的管理条例,因此只要合理地使用,基因工程技术将是发展绿色食品产业的有效手段。基因工程技术是一门诞生不久的新兴技术,正如其它一些新技术的产生过程一样,由于人们一开始对新技术的了解程度不够,由此而产生的疑虑和争论是可以理解的,更何况基因工程技术研究的产品与人类健康息息相关。虽然现在对基因工程技术仍有许多争论,但目前科学界已基本上达成共识,即基因工程本身是一门中性技术,只要能正确地使用该项技术就可以造福于人类可以预言,在2l世纪,以基因工程为核心的生物技术必将给食品工业带来深刻的革命

参考文献

[1]林影、石磊、杜红丽.食品与基因工程.北京.化学工业出版社,2007.10 [2]周如金,郭华,彭志英.基因工程及其在食品中应用[J].2002,4:33.

[3]杨淑芳.发酵工程在农产品加工上的应用[J].农业工程技术,2007,(12):1l-13. [4]江梅.生物技术的应用[J].生物学通报,1996,6:4-8.

[5]何水林.郑金贵.农业生物技术在作物品质改良中的应用[J].福建农业大学学报,2000,(3):2O [6] 陈宗道,赵国华,李洪军等.食品基因工程研究进展[J].中国食物与营养,2000,4:14-16. [7] 汪秋安.基因工程食品[J].广西轻工业,2003,6:5-6.

[8] 郑铁松,何国庆,应铁进.基因工程技术在食品品质改良中的应用[J].食品工业科技,2000,21(4):70-72.

[9] 伊国等 基因工程在食品工业中的应用进展,食品科技,2001年02期 [10] 吴乃虎.基因工程原理[M].北京:科学出版社,1999.

[11] 李淑侠,齐凤兰,李伯林.基因食品的研究进展[J].食品科学,2002,21(3):6-10. [12]彭志英主编.食品生物技术[M].北京:中国轻工业出版社,1999.8:26-33. [13] 邵学良.刘志伟 基因工程在食品工业中的应用 [期刊论文]-生物技术通2009(7)[14]贾士荣.转基因植物的环境及食品安全性[J].生物工程进展.1997,6:38-42.

[15]张建全,张倩,马建军.基因工程技术在视食品工业中的应用[J].山东农业科学,2008,2:106-108.[16] El—Khateib T,Yousef A E.Ockerman H W.Inactivation and attachment of Listeria monocytogenes on beef muscle treated with lactic acid and selected bacteriocins[J].J.Food Protect,1993,56:29-33.

[17] Uzogara,Stella G The impact of genetic modification of human foods in the 2 1 st century:A review[J].Biotechnology Advances,2000,1 8(3):179-2O6.

[18] De Vefies AG,Faucitano L,Soenicki A.The use of gene technology for optimal development of pork meat quality[J].Food Chemistry,2000,69(4):397-405.

[19] Marc Van Montagu, Jeff Schell(1935-2003): Steering agrobacterium-mediated plant gene engineering[J].Trends in Plant Science , 200

[20] El-Khateib T,Yousef A E,Ockerman H W.Inactivation and attachment of Listeria monecytogenes on beef muscle treated with lactic acid and selected bacteriecins[J].J.Food Protect, 1993, 56: 29-33.

第三篇:基因工程在废水处理中的应用与展望

基因工程在废水处理中的应用状况及展望

摘要:本文对现代基因工程技术在污水生物处理系统中的应用进行了概述, 利用基因工程技术提高微生物净化环境的能力是用于废水治理的一项关键技术。笔者就基因工程技术的原理、研究内容和在污水处理领域中的应用进行了阐述了,并对其研究方向作了展望。

关键字:基因工程,污水处理,应用

The application status of gene engineering technique to wastewater

treatment and its prospects

Abstract: The application of gene engineering technique in wastewater treatment process had been discussed in this paper, and gene engineering technique was the key technique for wastewater treatment by improving the purifying environment ability of microbes.The author formulated the principle, main research content of gene engineering technique, and the application of gene engineering technique in wastewater treatment, and discussed its research orientation in the end.Key words: gene engineering, wastewater treatment, application

生物法处理生活污水如今已被广泛的应用,但揭示污水中复杂微生态系统方面存在很大的局限性,并且有些特殊污水用自然界中自然进化的微生物难于降解,基因工程的引进开辟了培育高降解能力的新品菌种方法,利用基因工程技术检测微生物性状、提高微生物净化环境的能力是用于废水治理的一项关键技术。基因工程的定义

基因工程(genetic engineering)是指重组DNA技术的产业化设计与应用,包括上游技术和下游技术两大组成部分。上游技术指的是基因重组、克隆和表达的设计与构建(即重组DNA技术);而下游技术则涉及到基因工程菌或细胞或基因工程生物体的大规模培养以及基因产物的分离纯化过程。基因工程是利用重组技术,在体外通过人工“剪切”和“拼接”等方法,对各种生物的核酸(基因)进行改造和重新组合,然后导入微生物或真核细胞内,使重组基因在细胞内表达,产生出人类需要的基因产物,或者改造、创造新特性的生物类型。

一个完整的、用于生产目的的基因工程技术程序包括的基本内容有:(1)外源目标基因的分离、克隆以及目标基因的结构与功能研究。这一部分的工作是整个基因工程的基础,因此又称为基因工程的上游部分。(2)适合转移、表达载体的构建或目标基因的表达调控结构重组。(3)外源基因的导入。(4)外源基因在宿主基因组上的整合、表达及检测与转基因生物的筛选。(5)外源基因表达产物的生理功能的核实。(6)转基因新品系的选育和建立,以及转基因新品系的效益分析。(7)生态与进化安全保障机制的建立。(8)消费安全评价。基因工程技术在废水处理中的应用

环境污染已远远超出了自然界微生物的净化能力,已成为人们十分关注的问题。尤其是在污水处理方面,生物法逐渐成为废水处理的主要方法。但是由于废水的多样性及其成分的复杂性,自然进化的微生物降解污染物的酶活性往往有限。20世纪90年代后期问世的DNA改组技术可以创新基因,并赋予表达产物以新的功能,创造出全新的微生物,就可以定向获得具有特殊降解性状的高效菌株,方便有效地应用于水污染处理。因此,构建基因工程菌成为现代废水处理技术的一个重要研究方向,且日益受到人们的重视。

2.1 基因工程技术在污水检测中的应用

2.1.1 聚合酶链反应(PCR)技术在污水检测中的应用

聚合酶链式反应(Polymerase Chain Reaction)是20世纪80年代后期由K.Mullis等建立的一种体外酶促扩增特异DNA片段的技术,PCR是利用针对目的基因所设计的一对特异寡核苷酸引物,以目的基因为模板进行的DNA体外合成反应。由于反应循环可进行一定次数(通常为25~30个循环),所以在短时间内即可扩增获得大量目的基因。这种技术具有灵敏度高、特异性强、操作简便等特点。PCR技术的基础是只有在微生物特定核酸存在的条件下,重复性酶促DNA合成和扩增才能够发生。PCR扩增产物可通过琼脂糖凝胶电泳来检验和纯化,也可以被用来克隆、转化和测序.在具体应用中往往采用经过修正的或与其它技术联合应用的PCR衍生技术,如RT-PCR、竞争PCR、PCR-DGGE、PCR-SSCP和巢式PCR等。

PCR通过对待测DNA片段的特异性扩增,一方面作为菌株定性鉴定的重要手段,同时也为定性和定量研究微生物的群落特征提供帮助。自PCR技术问世以来,通过其自身的不断完善以及同其它相关技术的联用,在污水生物处理微生物的检测和鉴定方面得到了长足的发展,为该领域的研究提供了一个高效、灵敏、简便的研究工具。应用PCR-DGGE(Polymerase Chain Reaction Denaturing Gradient Gel Electrphoreses)方法对环境微生物进行研究可以不经过培养,直接从样品中提取细菌的DNA,再将编码有16SrDNA的基因进行扩增。通过这种方法能够直接了解样品中微生物分布结构,并能大致比较相同条件下单一菌群的生物量。王峰等采用PCR-DGGE技术来分析活性污泥与生物膜中微生物种群的结构,可以不经过常规培养而直接从活性污泥和生物膜样品中提取DNA;Marsh等利用PCR-DGGE分析并获得了活性污泥中真核微生物的种群变化情况;Nicolaisen等利用PCR-DGGE技术发现Nitrosomonas-like细菌是上流式好氧流化床颗粒污泥中的主要氨氧化菌。以上的事实均说明,PCR-DGGE结合测序技术是一种完全可行的适于环境样品微生物研究的快速分析方法。

2.1.2 荧光原位杂交技术(FISH)技术在污水检测中的应用

荧光原位杂交技术(Fluorescence In Situ Hybridization,FISH)结合了分子生物学的精确性和显微镜的可视性,能够在自然的微生物环境中检测和鉴定不同的微生物个体,并提供污水处理过程中微生物的数量、空间分布和原位生理学等信息。FISH技术的基本原理是通过荧光标记的探针在细胞内与特异的互补核酸序列杂交,通过激发杂交探针的荧光来检测信号从而对未知的核酸序列进行检测。

Nielsen等(2001)对工业废水处理厂活性污泥的细菌表面疏水性进行了原位检测,并应用FISH技术结合细胞表面微球体分析研究了丝状细菌的胞外聚合物。Konuma等(2001)运用FISH法来测定氨氧化菌(ammonia-oxidizing bacteria)的数量,结果表明,FISH法对氨氮含量高的活性污泥混合液检测结果较好,但对氨氮含量低的污水厂出水和河水的检测效果不佳。表1列举了FISH技术的一些应用实例。

表1 FISH技术在废水中微生物检测的具体应用实例

Table1 The applications of FISHin the microorganism detections in wastewater 应用

检测活化污泥反应器中的Microthrix parvicella 在EBPR系统中,考察聚磷菌(PAOs)的微

生物特性和生化特性

探明废水处理湿地生物膜中影响氨氧化的主要功能菌群

揭示UASB反应器中高温和中温颗粒污泥的厌氧微生物群落的空间分布和多样性 鉴定了活性污泥中硝化细菌群落的数量和空间分布

SBR反应器内,不同电子受体条件下,反 硝化除磷菌(DNPAOs)的种群变化

文献来源(Eberlet al.,1997)(Minoet al.,1998)(Silyn-Robertset al.,2001)(Sekiguchiet al.,2002;Syutsuboet al.,2001)(Coskuneret al.,2002)(Johuanet al.,2002)

2.1.3 DNA重组技术在污水检测中的应用

DNA重组技术的实质是,将两个或多个单独的DNA片段连接起来产生一个能在特定宿主中自主复制的DNA分子。其基本程序是:外源DNA的获得;选择载体并进行处理;将目的DNA片段和处理后的载体连接;将连接产物导入合适的宿主细胞内,使重组DNA分子在宿主细胞内复制扩增;将转化菌落在平板培养基上培养成单个菌落,筛选获得含有重组DNA的阳性克隆。在废水的处理过程中仅靠分离和筛选的功能性微生物是不够的。在混合的微生物群体中筛选特定的微生物菌种时往往得不到预期的结果;特定的微生物可能难以培养,从而无法应用到实际的生物反应器中;人类排放到环境中的污染物越来越复杂且难以处理。因此,有必要通过基因工程技术并根据具体的需要构建有效的基因工程菌或培育出可高效降解复杂多样的有害污染物的细菌来解决以上的问题。

2.2 利用基因工程菌降解废水中的有机污染物

生物处理法是废水中有机污染物降解的主要方法,但是部分难降解有机污染物需要不同降解菌之间的协同代谢或共代谢等复杂机制才能最终得以降解,这无疑降低了污染物的降解效率。首先,污染物代谢产物在不同降解菌间的跨膜转运是耗能过程,对细菌来说这是一种不经济的营养方式;其次,某些污染物的中间代谢产物可能具有毒性,对代谢活性有抑制作用;此外,将不同种属、来源的细菌的降解基因进行重组,把分属于不同菌体中的污染物代谢途径组合起来以构建具有特殊降解功能的超级降解菌,可以有效地提高微生物的降解能力。

Satoshi Soda等[11]将基因工程菌P.putidaBH(pSl0-45)接种到SBR反应器的活性污泥中,用于处理500mg/L的苯酚废水,在大大提高苯酚去除率的同时改善了污泥沉降性能。南京大学、扬子石油化工有限责任公司、香港大学、国家环保总局南京环境科学研究所联合完成了跨界融合构建基因工程菌处理石化废水的生物工程技术。在优化调控技术的基础上,该菌株对二甲苯、苯甲酸、邻苯二甲酸、4-羧基苯甲醛和对苯二甲酸的降解率分别高达86%、94%、99%、97%和94%,比原工艺提高了20%~30%,总有机碳去除率达到了94%;污水经过处理后,铜、锰、锌、硒的浓度符合国家规定排放标准,生物毒性明显降低。

刘春等以生活污水为共基质,考察了基因工程菌在MBR和活性污泥反应器中对阿特拉津的生物强化处理效果,以及生物强化处理对污泥性状的影响。结果表明,基因工程菌在MBR中对阿特拉津具有很好的生物强化处理效果,阿特拉津平均出水浓度为0.84 mg/L,平均去除率为95%,最大去除负荷可以达到70mg/(L·d)。生物强化的MBR对生活污水中COD的平均去除率为71%,COD平均出水浓度65mg/L。

吕萍萍等研究发现,克隆有苯降解过程中的关键基因——甲苯加双氧酶的基因工程菌E.coli.JM109(pKST11)对苯具有较高的降解效率和降解速度,应用于固定化细胞反应器中效果突出。在较短的水力停留时间内,可以将1500mg/L苯降解70%,降解速度为1.11mg/(L·s),延长水力停留时间,可以使去除率达到95%以上。该反应器对高浓度的苯具有突出的处理效果。同时所得到的产物为环己二烯双醇,可以被野生非高效菌W3快速利用。

2.3 基因工程技术在处理重金属废水中的应用

将基因工程技术应用于重金属废水的治理,就是通过转基因技术,将外援基因转入到微生物细胞中进行表达,使之表现出一些野生菌没有的优良的遗传性状。2.3.1基因工程菌强化生物化学法处理重金属废水

生物化学法指通过微生物处理含重金属废水,将可溶性离子转化为不溶性化合物而去除。硫酸盐生物还原法是一种典型生物化学法,该法是在厌氧条件下硫酸盐还原菌通过异化的硫酸盐还原作用,将硫酸盐还原成H2S,重金属离子和H2S反应生成溶解度很低的金属硫化物沉淀而被去除,同时H2SO4的还原作用可将SO2-4转化为S2-而使废水的pH值升高,从而形成重金属的氢氧化物而沉淀。中国科学院成都生物研究所从电镀污泥、废水及下水道铁管内分离筛选出35株菌株,从中获得高效净化Cr(VI)复合功能菌。

袁建军等利用构建的高选择型基因工程菌生物富集模拟电解废水中的汞离子,发现电解废水中其他组分的存在可以增大重组菌富集汞离子的作用速率,且该基因工程菌能在很宽的pH范围内有效地富集汞。但高浓度的重金属废水对微生物毒性大,故此法有一定的局限性,不过,可以通过遗传工程、驯化或构造出具有特殊功能的菌株,微生物处理重金属废水一定具有十分良好的应用前景。2.3.2 基因工程强化生物絮凝法处理重金属废水

生物絮凝法是利用微生物或微生物产生的具有絮凝能力的代谢物进行絮凝沉淀的一种除污方法。生物絮凝剂又称第三代絮凝剂,是带电荷的生物大分子,主要有蛋白质、黏多糖、纤维素和核糖等。目前普遍接受的絮凝机理是离子键、氢键结合学说。前述硅酸盐细菌处理重金属废水可能的机理之一就是生物絮凝作用。目前对于硅酸盐细菌絮凝法的应用研究已有很多[,有些已取得显著成果[7]。运用基因工程技术,在菌体中表达金属结合蛋白分离后,再固定到某些惰性载体表面,可获得高富集容量絮凝剂。

Mehran Pazirandeh等人将含金属结合肽(Cys.Gly.Cys—Cys.GIy)的基因与麦芽糖结合蛋白的基因进行融合,并将融合蛋白在E.coli细胞膜处表达,表达该融合蛋白的基因工程菌对人工合成废水中Cdz+和H +的去除率有很大的提高,Cdz 和H +的富集能力分别达到每毫克湿细胞1.1和1.3nmol,而对照菌株(缺少金属结合肽)的富集能力低于每毫克湿细胞0.1 nmol Masaaki Terashima 等利用转基因技术使 E.coli表达麦芽糖结合蛋白(pmal)与人金属硫蛋白(MT)的融合蛋白pmal-Ml并将纯化的 pmal-MT 固定在Chitopeara 树脂上,研究其对 Ca2+和 Ga2+的吸附特性,该固定了融合蛋白的树脂具有较强的稳定性,并且其吸附能力较纯树脂提高十倍以上。展望

自2000年,国际上提出基于系统生物学原理的基因工程概念后,基因工程被应用于社会各个领域,并且手段日新月异。在环境领域当中,基因工程正迅速应用到废水检测和废水治理当中,培养出新的特效物种并进一步提高其应用效率、降低应用成本。随着分子生物学技术、环境工程检测技术的发展并结合我们已经掌握的微生物群落结构和功能方面的知识,我们逐渐了解到污水生物处理系统中微生物群体的多样性、实际生存状态、功能特点,并更有效地对其加以开发和利用。此外,基因工程菌的出现,使以往的一些难降解有机废水、制药废水、石油废水、重金属污染废水以及其他有毒有害废水等都得到了有效地治理,还会实现废水资源化。当下引入DNA 扩增和其它生物技术的环境监测方法等将是基因工程技术研究的侧重方向。

基因工程技术作为一种新兴技术以极快的速度发展。以下两方面的研究将对水资源保护有着重要意义。一是对基因工程菌的深入研究,如基因工程菌对污染物的代谢途径、控制目的基因表达的启动子基因序列、降解基因表达的调控条件的优化等方面的研究;二是对环境中微生物的习性及基因工程菌与环境中微生物和污染物之间的相互作用进行研究。目前的研究主要是利用单一的基因工程菌对污染物进行处理,随着研究的不断深入,利用多种基因工程菌相结合对污染物进行处理,将对水资源保护起到更为重要的作用。参考文献

[1] 李向东,冯启言,于洪锋.基因工程菌在制药废水处理中的应用.工业水处理,2008, 28(8):70-71.[2] 杨 林,聂克艳,杨晓容,高红卫.基因工程技术在环境保护中的应用.西南农业学报,2007,20(5):11-30.[3] 邢雁霞,刘斌钰.基因工程技术的研究现状与应用前景.大同医学专科学校学报,2006年第3期:48.[4] Johwan A, Tomotaka D, Satoshi T, et al.2002.Characterization of denitrifying phosphate-accumulating organisms cultivated under different electron acceptor conditions using polymerase chain reaction-denaturing gradient gel electrophoresis assay [J].Wat Res, 36:403—412.[5] Leo E, Renate S, Aldo A, et al.1997.Use of green fluorescent protein as a marker for ecological studies of activated sludge communities[J].Fems Microbiology Letters, 149(1):20:77—83.[6] Marsh TL, Liu WT, Forney LJ.1998.Beginning a molecular analysis of the eukaryal community in activated sludge [J].Wat Sci Tech, 37(4—5):455—460.[7] Metcalf, Eddy, Inc.2003.Wastewater Engineering: Treatment and Reuse(Fourth Edition)[M].Beijing: Tsinghua University Press:129—130.[8] Mette H N, Niels B R.2002.Denaturing gradient gel electrophoresis(DGGE)approaches to study the diversity of ammonia-oxidizing bacteria [J].Journal of Microbiological Methods, 50:189—203.[9] Wang F, Fu Y G.2004.Characteristics of municipal sewage chem-bioflocculation treatment process by using PCR-DGGE technology[J].Environmental Science,25(6):74—80(in Chinese).[10] Wang J, Chicharro M, Rivas G,et al.1996.DNA biosensor for the detection of hydrazines[J].Anal Chem, 68(13): 2251—2254.[11] Zhang D, Zhang D M, Liu Y P,et al.2004.Community analysis of ammonia oxidizer in the oxygen-limited nitritation stage of OLAND system by DGGE of PCR amplified 16S rDNA fragments and FISH [J].Journal of Environmental Sciences, 16(5):838—842.[12] Sellwood J,Litton P A,Mcdermott J,et al.1995.Studies on wild and vaccine strains of poliovirus isolated fromwater and sewage [J].Wat Sci Tech, 31(5—6):317—321.[13] Selvaratnam S, Shoedel B A, Mcfarland B L, et al.1997.Application of the polymerase chain reaction and reverse transcriptase/PCR for determining the fate of phond-degrading Pseudomonas putida ATTCC 11172 in a bio-augmented sequencing bath reactor [J].Appl Environ Microbiol, 47:236—240.[14] SimonT.1999.PCR and the detection of microbial pathogens in water and wastewater[J].Wat Res,33(17):3545—3556.[15] Zhao, X.W., M.H.Zhou, Q.B.Li, et al.Simultaneous mercury bioaccumulation and cell propagation by genetically engineered Escherichia coli[J].Process Biochemistry,2005, 40(5):1 611-1 616.[16] Satoshi, S., I.Michihiko.Effects of inoculation of a genetically engineered bacterium on performance and indigenous bacteria of a sequencing batch activated sludge process treating phenol[J].Journal of Fermentation and Bioengineering,1998,86(1):90-96.[17] 陆杰, 徐高田, 张玲, 等.制药工业废水处理技术[J].工业水处理,2001,21(10):1-4.[18] 刘春,黄霞,孙炜,王慧.基因工程菌生物强化MBR工艺处理阿特拉津试验研究.环境科学,2007年2月,第28卷,第2期:417-421.[19] 袁建军,卢英华.高选择性重组基因工程菌治理含汞废水的研究.泉州师范学院学报(自然科学).2003年11月,第21卷,第6期:71-72.[20] Masaaki Terashima,Noriyuki Oka,Takamasa Sei,et o1.Biotech.no1.Prog.,2002,18:1318—1323.

[21] Caroliaa S,Pave[K,Tomas R,et .J Bacterio1.,1998,180(9、:2280—2284. [22] 吕萍萍,王慧,施汉昌,等.基因工程菌强化芳香化合物的处理工艺.中国环境科学

2003,23(1):12-15.[23] Mehran P,Bridget M W,Rebecca L R.App1.Environ.Microbio1.,1998,64(10)::4068-4072.[24] 徐雪芹,李小明,杨麒,等.固定化微生物技术及其在重金属废水处理中的应用 [J].环境污染治理技术与设备,2006,7(7):99-105.

第四篇:浅谈基因工程在食品领域内的应用

07食品科学与工程二班

史养栋

20070940079 浅谈基因工程在食品领域内的应用

摘要:21世纪是生物技术的世纪。转基因技术作为生物技术的核心,在解决当今世界所面临的一系列重大的问题上发挥愈加显著的作用。这是一个新兴独立的技术领域,必将成为21世纪最具发展前景的高科技领域和国民经济的支柱产业之一。而基因工程在食品各个领域内的应用与研究更是被各国提上议程!

The 21st century is the century of biotechnology.Transgenic technology as the core of biotechnology in addressing today's world faces a series of major issues increasingly play a significant role.This is a new stand-alone technology, will become the 21st century and the most promising high-tech sector and the national economy of the pillar industries.And genetic engineering in food applications within various fields and research has also been put on the agenda of the world.关键词:转基因食品、基因工程、食品类型、食品的功能改良与贮存保鲜 前言

随着科学技术的日新月异,人民的物质文化需求越来越高。始终围绕着“提高人口素质”的主题来发展,这是当前社会和时代的必然趋势。而“民以食为天”这一条亘古不变的道理就像一根无形的指挥棒指导者科技工作者朝着这方面努力探求新知。在食品领域内涌现出了一个又一个的奇葩,其中基因工程功不可没!下面详细介绍一下基因工程在各个食品领域内的突破与应用。

1.基因工程在三大类食品领域内的应用 1.1基因工程在蛋白质类食品中的相关应用

蛋白质是人类赖以生存的营养素之一,植物是人类的主要蛋白供应源,蛋白原料中有65%来自植物。与动物蛋白相比,植物蛋白的生产成本低,而且便于运输和贮藏,然而其营养也较低。谷类蛋白质中赖氨酸(Lys)和色氨酸(Trp),豆类蛋白质中蛋氨酸(Met)和半光氨酸(Cys)等一些人类所必需的氨基酸含量较低。通过采用基因导入技术,即通过把人工合成基因、同源基因或异源基因导入植物细胞的途径,可获得高产蛋白质的作物或高产氨基酸的作物。

Yang等合成了一个292个by的能编码高含量必需氨基酸DNA(high essential amina acid ecoding DNA),再把HEAAC-DNA导入马铃薯细胞中去,该基因在马铃薯细胞中能表达,表达水平为HEAA蛋白占总蛋白的0.35%。1990年Clercq等用Met密码子序列取代了拟南芥菜2s白蛋白的可复区域,所获得的转基因拟南芥菜可生产富含Met的2s白蛋白。这些工作说明通过导入人工合成基因来修饰编码蛋白质的基因序列,来提高蛋白质中必需氨基酸含量是可行的。

植物体中有一些含量较低,但氨基酸组成却十分合理的蛋白质,如果能把编码这些蛋白质的基因分离出来,并重复导入同种植物中去使其过量表达,理论上就可以大大提高蛋白质中必需氨基酸含量及其营养价值。小麦中有一富含赖氨酸((Lys)的蛋白质,在其270位到370位区间有富含赖氨酸((Lys)的片断,Singh在1993年成功地克隆了编码该蛋白质的。DNA,并把该基因确定为小麦蛋白质工程的内源目的基因。目前同源基因的研究工作尚停留在目的基因的分离和监定阶段。

异源基因是指从分类学关系较远的植物中分离获得的目的基因。巴西豆BN2s白蛋白富含Met(18%)和Cys(8%), Altenabch在1991年把巴西豆编码BN2s白蛋白的基因转移到烟草和油菜中去,发现BN2 s基因在转基因烟草中和油莱中能很好地表达,表达水平达8%。进一步研究还发现,构建嵌合基因的起动子的种类会影响到BN2 s基因的表达水平。

1.2基因工程在油脂类食品方面的应用

人类日常生活及饮食所需的油脂高达70%来自植物。高等植物体内脂肪酸的合成由脂肪合成酶(FAS)的多酶体系控制,因而改变FAS的组成就可以改变脂肪酸的链长和饱和度,以获得高品质、安全及营养均衡的植物油。目前,控制脂肪酸链长的几个酶的基因和控制饱和度的一些酶的基因已被克隆成功,并用于研究改善脂肪的品质。如通过导入硬脂酸-ACP脱氢酶的反义基因,可使转基因油菜种子中硬脂酸的含量从2%增加到40%。而将硬脂酞CoA脱饱和酶基因导入作物后,可使转基因作物中的饱和脂肪酸(软脂酸、硬脂酸)的含量有所下降,而不饱和脂肪酸(油酸、亚油酸)的含量则明显增加,其中油酸的含量可增加7倍。除了改变油脂分子的不饱和度外,基因工程技术在改良脂肪酸的链长上也取得了实效。事实上,高油酸含量的转基因大豆及高月桂酸含量的转基因油料作物芥花菜(Canola)在美国已经成为商品化生产的基因工程油料作物品种。

1.3基因工程在碳水化合物类食品方面的应用

利用基因工程来调节淀粉合成过程中特定酶的含量或几种酶之间的比例,从而达到增加淀粉含量或获得独特性质、品质优良的新型淀粉。高等植物体内涉及淀粉生物合成的关键性酶类主要有:ADP葡萄糖焦磷酸化酶(ADPGlcpyrophosphorylase, AGPP),淀粉合成酶(Starchsynthase,SS)和淀粉分支酶(Starchbranchingenzyme, SBE),其中淀粉合成酶又包括颗粒凝结型淀粉合成酶(Granule-boundstarch synthase, GBSS)和可溶性淀粉合成酶(Solublestarch synthase, SSS)。

淀粉含量的增加或减少,对作物而言,都有其利用价值。增加淀粉含量,就可能增加干物质,使其具有更高的商业价值。减少淀粉含量,减少淀粉合成的碳流,可生成其它贮存物质,如贮存蛋白的积累增加。目前,在增加或减少淀粉含量的研究方面都有成功的报道。Stark等人利用突变的大肠杆菌菌株618来源的AGPP基因和CMV35启动子构建了一个嵌合基因,并把此基因导入烟草、番茄和马铃薯中去,结果得到极少的转达基因植物,表明AGPP基因的组成性表达对植物的生长、发育是有害的,它很可能改变了植物不同组织之间源库与沉积的关系。后来改用块茎特异表达的Patatin基因的启动子来构建嵌合基因,就得到了相当多的马铃薯,转基因马铃薯块茎中淀粉的含量比传统的马铃薯提高了35%。在减少淀粉含量方面,Mulle:等人利用含有不同启动子和反向连接的AGPP大或小亚基cDNA的融合基因构建表达载体,转化马铃薯。在35S加上反向连接的AGPP大亚基。DNA的融合基因转化植株中,叶片的AGPP活性仅为野生型的5%--30%,块茎中A GPP活性降得更低,活性仅为野生型的2%。分析转化植株淀粉含量,结果表明转化植株块茎淀粉含量仅为野生型的5%一3.5%。伴随这淀粉含量的下降,转化植株细胞内可溶性糖显著升高,蔗糖和葡萄糖分别占块茎干重的30%和8%。在已有的改变淀粉含量的研究之中,多数是针对AGPP的,反映出AGPP在控制淀粉合成速率方面的重要性。

对动物类食品原料的基因改造研究远不如植物类那样普及,但也取得了很大的进展。其研究内容主要集中在改良家畜、家禽的经济性状和通过转基因动物进行药物或蛋白的生产等几个方面。继1980年Cordon等人用显微注射法育成带有人胸腺游酶基因片断的转基因小鼠,1982年Palmiter等人将人的生长素基因导入小鼠受精卵育成超级转基因“硕鼠”,新型“硕鼠”比普通小鼠生长速度快2.4倍,体型大1倍。现已获得转基因兔、转基因羊,转基因猪、转基因牛和转基因鸡等多种转基因动物。如美国伊利诺斯大学研究出一种带有牛基因的猪,这种转基因猪生长快,个体大,瘦肉率高,饲料利用率高,可望给养猪业带来丰厚的经济效益;梁利群等克隆子大马哈鱼的生长激素因子,在体外经过和鲤鱼的MT启动子基因重组,导入黑龙江野鲤,选育出了“超级鲤”。另外,在提高奶牛产奶量和食用动物的脂肪与瘦肉的构成都取得了一定的成绩。

2.基因工程在食品功能改良与储存保鲜领域内的应用

2.1基因工程在改良果蔬采收后品质增加其贮藏保鲜性能方面的应用

随着对番茄、香蕉、苹果、菠菜等果蔬成熟及软化机理的深入研究和基因工程技术的迅速发展,使通过基因工程的方法直接生产耐储藏果蔬成为可能。事实上,现在无论在国外还是国内都已经有了商品化的转基因番茄。促进果实和器官衰老是乙烯最主要的生理功能。在果实中乙烯生物合成的关键酶主要是乙烯的直接前体—l-氨基环丙烷一1-梭酸合成酶(ACC合成酶)和ACC氧化酶。在果实成熟中这两种酶的活力明显增加,导致乙烯产生急剧上升,促进果实成熟。在对这两种酶基因克隆成功的基础上,可以利用反义基因技术抑制这两种基因的表达,从而达到延缓果实成熟,延长保质期的目的。利用反义RNA技术抑制酶活力已有许多成功的例子,其中最为成功的就是延缓成熟和软化的反义RNA转基因番茄。Hamilton等于1990年首次构建了ACC氧化酶反义 RNA转基因番茄,在纯合的转基因番茄果实中,乙烯的合成被抑制了97%,从而使果实的成熟延迟,储藏期延长。导入ACC合成酶反义基因的番茄也得到了类似的结果。转基因番茄的乙烯合成也被抑制了99.5%,果实中不出现呼吸跃变,叶绿素降解和番茄红素合成也都被抑制。果实不能自然成熟,不变红,不变软,只有用外源乙烯处理6d后才能使转基因番茄恢复正常成熟。因此,利用反义基因技术可以成功的培育耐储藏果蔬。目前,有关的研究正在继续进行,并已扩大到了草莓、梨、香蕉、芒果、甜瓜、桃、西瓜、河套蜜瓜等,所用的目的基因还包括与细胞壁代谢有关的多聚半乳糖醛酸酶(PG)、纤维素酶和果胶甲脂酶基因。反义PG转基因番茄还具有更强的抗机械损伤和真菌侵染能力,且有更高的果酱产率。

2.2基因工程在改善酶及发酵制品的品质并降低成本方面的应用

酱油风味的优劣与酱油在酿造过程中所生成氨基酸的量密切相关,而参与此反应的梭肤酶和碱性蛋白酶的基因已克隆并转化成功,在新构建的基因工程菌株中碱性质白酶的活力可提高5倍,梭肤酶的活力可大幅提高13倍。酱油制造中和压榨性有关的多聚半乳糖醛酸酶、葡聚糖酶和纤维素酶、果胶酶等的基因均已被克隆,当用高纤维素酶活力的转基因米曲霉生产酱油时,可使酱油的产率明显提高。另外,在酱油酿造过程中,木糖可与酱油中的氨基酸反应产生褐色物质,从而影响酱油的风味。而木糖的生成与制造酱油用曲霉中木聚糖酶的含量与活力密切相关。现在,米曲霉中的木聚糖酶基因已被成功克隆。用反义RNA技术抑制该酶的表达所构建的工程菌株酿造酱油,可大大地降低这种不良反应的进行,从而酿造出颜色浅、口味淡的酱油,以适应特殊食品制造的需要。

在正常的啤酒发酵过程中,由啤酒酵母细胞产生的二-乙酞乳酸经非酶促的氧化脱梭反应会产生双乙酞。当啤酒中双乙酞的含量超过阈值((0.02-0.10 mg/L)时,就会产生一种令人不愉快的馊酸味,严重破坏啤酒的风味与品质。去除啤酒中双乙酞的有效措施之一就是利用α-乙酞乳酸脱梭酶。但由于酵母细胞本身没有该酶活性,因此,利用转基因技术将外源α-乙酞乳酸脱梭酶基因导入啤酒酵母细胞,并使其表达,是降低啤酒中双乙酞含量的有效途径。Sone等用乙醇脱氢酶的启动子和穿梭质粒载体Yep13将产气肠杆菌+-乙酸孚L酸脱梭酶基因导入啤酒酵母,并使其表达。当用此转基因菌株进行啤酒酿造时,可使啤酒中的双乙酞含量明显降低,且不影响其他的发酵性能和啤酒中的正常风味物质。但由于用此法所构建的基因工程菌株中α-乙酞乳酸脱梭酶基因是存在于酵母的质粒而不是染色体上,因而使该基因易于随着细胞分裂代数的增加而发生丢失,造成性能的不稳定。因此,Yaman。等将外源的oa-乙酞乳酸脱梭酶整合入啤酒酵母的染色体中,从而构建了能稳定遗传的转基因啤酒酵母。使用这种转基因酵母酿制啤酒,也能明显地降低啤酒中的双乙酚含量,而且不会对啤酒酿造过程中的其他发酵性能造成不良影响。

另外,利用基因工程技术可生产出高效能高质量的酶产品,目前能利用遗传技术生产大多数常用的酶产品,并投放市场。世界上第一个应用在食品上的基因工程酶为凝乳酶。将牛胃蛋白酶的基因克隆入微生物体内,由细菌生产这种动物来源的酶类,解决了奶酪工业受制于牛胃蛋白酶来源不足的问题,并降低了生产成本。

2.3基因工程在开发新型功能性食品方面的应用

利用基因工程技术可以研制特种保健食品的有效成份。例如将一种有助于心脏病患者血液凝结溶血作用的酶基因克隆至羊或牛中,便可以在羊乳或牛乳中产生这种酶。1997年9月上海医学遗传所与复旦大学合作的转基因羊的乳汁中含有人的凝血因子,为通过动物大量廉价生产人类的新型功能性食品和药品迈出了重大的一步

以上即为基因工程在食品领域内的各个应用与突破,将基因工程应用于食品领域内是一个划时代的突破,它不仅有利于提高食品的产量,而且更是大大提高了食品的质量。然而基因工程却是一把双刃剑,如果不慎的话将会酿成大错。对我们的生态平衡和生态环境产生不可估量的破坏!进一步的探索和追求将一直绵延下去,直至我们的子孙后代。

参考文献

[1]彭志英 食品生物技术 北京:中国轻工业出版社,1999 [2]程树培 环境生物工程 南京:南京大学出版社,1994 [3]顾夏声等 水处理技术 北京:清华大学出版社,1985 [4]周光宏等 畜产食品加工学 北京:中国农业大学出版社,2002

第五篇:基因工程在亲子鉴定方面的应用

基因工程在亲子鉴定方面的应用

【摘要】日益成熟的基因在给社会带来进步的同时也给人们的生活带来了方便。基因工程诞生的意义不亚于历史上任何一次工业革命。基因工程主要应用于以下几个方面:

1、医药卫生。包括生产基因工程药品、基因诊断和基因治疗。

2、农牧业、食品工业方面。

3、环境保护的应用。主要是环境监测和环境净化等。下面笔者主要谈一下基因工程在亲子鉴定方面的应用。

【关键字】亲子鉴定STRPCR琼脂糖凝胶电泳DNA测序仪血缘关系

【正文】DNA鉴亲子鉴定就是利用医学、生物学和遗传学的理论和技术,从子代和亲代的形态构造或生理机能方面的相似特点,分析遗传特征,判断父母与子女之间是否是亲生关系。亲子鉴定在中国古代就已有之,如滴骨验亲,滴血验亲等。

一、DNA鉴定的准确性

传统的血清方法能检测红细胞血型、白细胞血型、血清型和红细胞酶型等,这些遗传学标志为蛋白质(包括糖蛋白)或多肽,容易失活而导致检材得不到理想的检验结果。此外,这些遗传标志均为基因编码的产物,多态信息含量(PIC)有限,不能反映DNA编码区的多态性,且这些遗传标志存在生理性、病理性变异(如A型、O型血的人受大肠杆菌感染后,B抗原可能呈阳性。因此,其应用价值有限。

DNA检验可以弥补血清学方法的不足,其中STR位点和单核苷酸(SNP)位点检测分别是第二代、第三代DNA分析技术的核心,是继VNTRs(可变数量串联重复序列多态性)研究而发展起来的检测技术。作为最前沿的刑事生物技术,DNA分析为法医物证检验提供了科学、可靠和快捷的手段,使物证鉴定从个体排除过渡到了可以作同一认定的水平,DNA检验能直接认定犯罪、为凶杀案、强奸杀人案、碎尸案、强奸致孕案等重大疑难案件的侦破提供准确可靠的依据。随着DNA技术的发展和应用,DNA标志系统的检测将成为破案的重要手段和途径。此方法作为亲子鉴定已经是非常成熟的,也是国际上公认的最好的一种方法,准确率达99.99%。

SNP主要是指在基因组水平上由单个核苷酸的变异所引起的DNA序列多态性。SNP所表现的多态性只涉及到单个碱基的变异,这种变异可由单个碱基的转换(transition)或颠换(transversion)所引起,也可由碱基的插入或缺失所致。但通常所说的SNP并不包括后两种情况。理论上讲,SNP既可能是二等位多态性,也可能是3个或4个等位多态性,但实际上,后两者非常少见,几乎可以忽略。因此,通常所说的SNP都是二等位多态性的。这种变异可能是转换(C T,在其互补链上则为G A),也可能是颠换(C A,G T,C G,A T)。转换的发生率总是

明显高于其它几种变异,具有转换型变异的SNP约占2/3,其它几种变异的发生几率相似。在基因组DNA中,任何碱基均有可能发生变异,因此SNP既有可能在基因序列内,也有可能在基因以外的非编码序列上。总的来说,位于编码区内的SNP(coding SNP,cSNP)比较少,因为在外显子内,其变异率仅及周围序列的1/5。SNP自身的特性决定了它更适合于对复杂性状与疾病的遗传解剖以及基于群体的基因识别等方面的研究:

STR(short tandem repeat,短片段重复序列)又称微DNA.广泛存在于人类及哺乳动物的基因组中,具有高度多态性,它们一般由2-6个碱基构成一个核心序列,人类一般是(CA/GT)n,简称(CA)n核心序列串联重复排列,由核心序列重复数目的变化产生长度多态性。对于一个特定的个体,染色体上某个特定位臵的重复序列的重复次数是固定的,而对于不同的个体在同一位臵处的重复次数可能不同,这就构成了人群中这些重复序列的多态性。由于人类基因组中这种重复序列非常多,通过对这种多态性的检测,就可以明确区分个体与个体的不同,确定父母子的亲缘关系。

二、DNA亲子鉴定的原理

1、理论基础

通过遗传标记的检验与分析来判断父母与子女是否亲生关系,称之为亲子试验或亲子鉴定。DNA是人体遗传的基本载体,人类的染色体是由DNA构成的,每个人体细胞有23对(46条)成对的染色体,其分别来自父亲和母亲。夫妻之间各自提供的23条染色体,在受精后相互配对,构成了23对(46条)孩子的染色体。如此循环往复构成生命的延续

由于人体约有30亿个核苷酸构成整个染色体系统,而且在生殖细胞形成前的互换和组合是随机的,所以世界上没有任何两个人具有完全相同的30亿个核苷酸的组成序列,这就是人的遗传多态性。尽管遗传多态性的存在,但每一个人的染色体必然也只能来自其父母,这就是DNA亲子鉴定的理论基础

2、原理

不同个体中,STR核心序列的重复次数不同。根据子代的两条DNA一条来自于父方一条来自于母方,其子代某一特定DNA分子上STR核心序列重复次数必定与父母相同。通过设计引物,运用PCR技术进行DNA扩增,采用琼脂糖凝胶电泳技术分理出微卫星DNA片段。利用微卫星DNA探针于不同个体的DNA分子杂交,就会呈现出各自特有的杂交图谱

三、方法步骤

方法一:DNA测序法

步骤:

1、样本的选择

DNA检测样本很多。一般来说,人体的任何组织或分泌物都可以做。DNA样

品收集主要采用抽少量静脉血或者末梢血或者收集口腔上皮细胞。此外,我们也可以进行头发、组织、血迹、胎儿之绒毛等特殊样本的DNA鉴定。

2、DNA的提取

CTAB(十六烷基三甲基溴化铵)是一种阳离子去污剂,具有从低离子强度的溶液中沉淀核酸和酸性多聚糖的特性,在这种条件下,蛋白质和中性多聚糖留在溶液中。在高离子浓度下,CTAB与蛋白质和除大多数酸性多聚糖以外的多聚糖形成复合物,但不能沉淀核酸。在一定的盐浓度下,DNA、蛋白质与多糖在CTAB溶液中溶解度不一样而达到去多糖的目的。生物体内的DNA与蛋白质结合在一起,提取时需除去其结合的蛋白质,然后再将DNA与RNA分开,并进一步纯化。此外需抑制 DNAase 的活性以防DNA被降解。基本环节:

.破碎细胞壁以释放细胞内容物

.破坏细胞膜使DNA释放到提取缓冲液中

.DNA释放后,尽量确保DNA的完整性

.去除杂质(大量的RNA、蛋白质、多糖、单宁和色素等)

3、PCR扩增

〔1〕预变性 〔2〕 变性〔3〕退火 〔4〕 延伸(2~4步循环30次)〔5〕延伸

4、琼脂糖凝胶电泳

5、挖胶

6、回收试剂盒回收DNA片段

7、与特定质粒形成重组DNA分子

8、导入大肠杆菌,筛选白斑

9、提取质粒DNA10、DNA测序

方法二:Southern杂交法

步骤:

1、样本的选择

2、DNA的提取

3、PCR扩增

4、琼脂糖凝胶电泳

5、转膜—进行Southern杂交(探针设计)—洗膜—晾干—包(用保鲜膜)—压X光片(-20度—-70度保存3到7天)—冲洗—观察杂交图谱(全自动条带分析系统)

注:探针设计将微卫星DNA核心序列(CA)n串联起来,—PCR扩增(加入P32标记的dNTP)—电泳—挖胶—回收试剂盒回收DNA片段—导入载体形成重 组DNA分子—导入大肠杆菌—选择白斑—一部分培养保存,一部分提取质粒DNA—测序—作为探针

五、结果分析

方法一:电泳分离片段后,通过放射自显影技术检测单链DNA片段的放射性带,就可以直接读出DNA的核苷酸序列。如果小孩的遗传位点和被测试男子的位点超过3个不一致,那么该男子便100%被排除血缘关系之外,即他绝对不可能是孩子的父亲。如果孩子与其父母亲的位点都吻合,我们就能得出亲权关系大于99.99%的可能性,即证明他们之间的血缘亲子关系。若有1~2个位点不同,要考虑是否发生了基因突变,这是要对多个STR序列位点进行鉴定。

方法二:若获得的个体的杂交图谱与亲代的图谱相同则证明是亲子关系;反之,则不是。

六、实例分析

一家团圆

1999年3月12日,在北京打工的曾凡彬被人骗出屋后,几名犯罪分子持刀闯入曾家抢走其子曾超。后经公安人员侦查,终于将被卖到在地的曾超解救回家。孩子被解救回来后,体貌特征已发生很大的变化。打拐办民警带曾超到北京市公安局法医中心DNA实验室抽取血样进行DNA检测,在全国丢失儿童父母DNA数据库中上网比对,确认曾超与曾凡彬夫妇的DNA特征完全吻合,曾超终于回到父母身边。

皇室之谜

法国国王路易十六的儿子路易夏尔究竟是在1795年死于巴黎一座监狱,还是逃过了法国大革命的追捕?一直是个谜。有人怀疑路易夏尔的坟墓里躺的只是个替死鬼。1999年12月,科学家对墓地中不能确定的少年君主进行鉴定,并将其DNA结构与健在的和已故的皇室成员的DNA样品进行了对比,结果证明死者就是路易夏尔,并分析出死因是结核病。

真假公主

十月革命后,苏联官方宣布沙皇一家于1918年7月19日被枪决。但一些历史学家怀疑沙皇幼女安娜丝塔西娅公主可能逃过一死。从此,不断有人声称自己就是安娜丝塔西娅公主。特别是其中一位移居美国的妇女,甚至取得了沙皇亲属的信任。科学家最终又求助于DNA分析法,他们找到了沙皇本人理发留下的头发,提取了DNA,同时找到了那名妇女留下的组织片段,对比后发现这名妇女是个冒牌货。

七、应用前景

由于DNA亲自鉴定技术具有检测迅速准确,安全可靠等优点,现已广泛应用于许多方面。不仅包括亲子鉴定,还用于文物鉴别等方面。作为最前沿的生物技术,DNA分析将为法医物证检验提供科学、可靠和快捷的手段,使物证鉴定从个体排除过渡到可以作同一认定的水平。DNA检验能直接认定犯罪,为凶杀案等重大疑难案件的侦破提供准确可靠的依据。随着DNA技术的发展和应用,DNA标志系统的检测将成为破案的重要手段和途经。让我们共同期。

八、参考文献

1、基因工程技术钟卫鸿主编化学化工出版社

2、生物谷网站

3、小木虫网站

4、现代分子生物学朱玉贤主编高等教育出版社

下载基因工程在药用植物次生代谢物研究中的应用word格式文档
下载基因工程在药用植物次生代谢物研究中的应用.doc
将本文档下载到自己电脑,方便修改和收藏,请勿使用迅雷等下载。
点此处下载文档

文档为doc格式


声明:本文内容由互联网用户自发贡献自行上传,本网站不拥有所有权,未作人工编辑处理,也不承担相关法律责任。如果您发现有涉嫌版权的内容,欢迎发送邮件至:645879355@qq.com 进行举报,并提供相关证据,工作人员会在5个工作日内联系你,一经查实,本站将立刻删除涉嫌侵权内容。

相关范文推荐

    基因工程在植物育种中的应用及其安全性简介(共5则)

    基因工程在植物育种中的应用及其安全性简介 摘 要 基因工程是通过DNA重组技术,获得具有特殊生物遗传性状和功能的遗传工程生物体。基因工程在农作物育种中得到了广泛的应用,尤......

    幸福感研究在企业管理中的应用

    齐齐哈尔大学毕业设计(论文) 齐 齐 哈 尔 大 学 毕业设计(论文) 题 目: 幸福感研究在企业管理中的应用学 院: 教育与传媒学院专业年级: 学生姓名:指导教师: 成 绩: 齐齐哈尔大学毕......

    激光共聚焦显微镜在细胞骨架研究中的应用

    激光共聚焦显微镜在细胞骨架研究中的应用 摘要随着生物技术研究的不断发展,对观察细胞形态所使用的仪器要求也越来越高,普通光学显微镜已经无法满足研究的需要,激光共聚焦显微......

    浅谈生物信息学在生物学研究中的应用

    10生乙 尹竹10517109 浅谈生物信息学在生物学研究中的应用 生物信息学(Bioinformatics)是一门新兴的、正在迅速发展的交叉学科,目前国内外对生物信息学的定义众说纷纭,没有形成......

    流式细胞仪在免疫学研究中的应用

    流式细胞仪在免疫学研究中的应用 摘 要:随着现代激光技术、电子检测技术和电子计算机技术等的迅速发展,流式细胞仪(FCM)在免疫学、生物学、遗传学、血液学、临床检验等领域中......

    研究信息技术在英语教学中的应用

    研究信息技术在英语教学中的应用 时间:2010年12月01日 15:36 来源:网络转载供稿:佚名浏览:778 登陆分享获积分:腾讯微博开心网QQ空间百度贴吧淘江湖腾讯朋友邮件 摘要:随着信息时......

    基因工程的应用 中图版 选修三(小编整理)

    基因工程的应用 教案 一、 教学目标 1.举例说出基因工程应用及取得的丰硕成果。 2.关注基因工程的进展。 3.认同基因工程的应用促进生产力的提高。 二、教学重点和难点 1.教......

    浅析电子计算机在档案管理中的应用及重要性研究

    计算机与档案管理论文2篇 1、浅析电子计算机在档案管理中的应用及重要性研究 摘要:计算机技术在我们的工作和生活中起着越来越重要的作用,本文从计算机技术应用于检索信息管理......