连铸坯横裂的产生原因与控制措施

时间:2019-05-13 06:33:25下载本文作者:会员上传
简介:写写帮文库小编为你整理了多篇相关的《连铸坯横裂的产生原因与控制措施》,但愿对你工作学习有帮助,当然你在写写帮文库还可以找到更多《连铸坯横裂的产生原因与控制措施》。

第一篇:连铸坯横裂的产生原因与控制措施

小方坯横裂产生原因与控制措施 李聿军1,邵三萍1,邹节忠2

(1.江西九江钢厂有限公司 炼钢厂,江西 九江;2.萍钢公司 技术中心,江西 萍乡)

摘要

分析了炼钢厂小方坯产生横裂的主要原因。通过采取相应措施,使方坯横裂水平降到较低水平。

关键词 小方坯

横裂

控制措施

CAUSES TO CC BILLET CROSS CRACKS AND COUNTER CONTROLLING MEASEURES

Li Yu-Jun1, Shao San-Ping1, Zou Jie-Zhong2

(1.The Steelmaking Plant of Jiujiang Iron&Steel company,Jiujiang ,China;2.Technical Center of

PX Steel,Co.Ltd,Pingxiang,China)

ABSTRACT

The main causes to the cross cracks on the surface of CC billet are discussed in the steelmaking plant of Jiujiang Iron & steel company.Counter measures have already been taken to reduce the rejected rate of the billet due to the cross cracks to a relatively lower level.KEY WORDS

CC billet cross cracks controlling measures

0 前言

江西九江钢厂有限公司(以下简称九钢)是萍钢公司2006年9月份兼并重组的股份制企业。三炼钢厂(原九钢炼钢厂)现有30t转炉两座,R6m 150×150三机三流小方坯连铸机两台,主要钢种为HRB335和HRB400,已形成年产100万吨钢生产能力。在九钢重组前后前两个月内,连铸坯横裂不断,最严重的一个月由于横裂导致的废品率高达4.5kg/t(废品率=废品量/合格坯产量),成为制约炼钢厂连铸质量提高的主要问题之一。为此,三炼钢厂技术人员认真分析总结了连铸坯横裂产生的主要原因,并采取了一系列的预防控制措施,取得了显著效果。铸机主要技术参数

机型:全弧型 铸机半径: 6m

主要生产断面: 150mm×150mm 中间罐公称容量: 12t 结晶器铜管长度:900mm 浇注方式:敞开浇注,加菜籽油润滑 振幅: 2~6.5mm

工作拉速:平均拉速2.0m/min 振动方式:正弦振动 振频:0一220次/min 流间距:1200mm 机流数:3机3流 二冷水控制方法:(静态)比例控制法 2 横裂产生原因 2.1 钢水成分

三轧钢厂(原九钢轧钢厂)为普通轧制线,没有控轧控冷,因此炼钢厂成分Mn按1.20%~1.60%控制,实际Mn控制在1.40%左右。较高的Mn含量增加了铸坯的裂纹敏感性,使钢的脆化温度区间加宽[1]。2.2 结晶器的润滑、倒锥度和振动参数

三炼钢厂小方坯连铸机采用定径水口敞开浇注工艺。通过手动添加菜籽油保证铸坯与结晶器之间的润滑,由于润滑相关制度未规范,铜管四周润滑不能保证均匀,降低了润滑效果,增加了铸坯与铜管之间的摩擦,造成初生凝固坯壳撕裂。由于结晶器的强冷,在撕裂处漏出的钢水立刻凝固,在铸坯表面形成横向折叠痕迹,严重时表现为横裂[2]。

三炼钢厂最初结晶器的倒锥度为1.0%/m。在生产中经常发现不脱模而致横裂,这是因为倒锥度过大,造成结晶器铜管拉坯阻力增大,坯壳撕裂而致横裂,严重时甚至拉断。

三炼钢厂结晶器振动采用正弦振动方式,振动频率在0~220次/min,起始振频80次/min。振动频率与拉速关系如下:

f=aV

式中:a-振动系数

以往振动系数设为88,在拉速较低时,振动频率较小,负滑脱时间较长,容易产生振痕。振痕深处树枝晶粗大,溶质元素富集,铸坯在矫直受到应力作用就成为裂纹的发源地[3]。2.3 二冷配水

三炼钢厂二冷配水具有先天的缺陷。首先表现在二冷配水的控制方法比较简单,二冷配水采用比水量方法,即冷却水量Q=Kv(K为系数,v为拉速),且最初二冷0段(足辊段)为手动配水。经常在拉速降低或中间包最后一炉出现横裂,这是由于生产节奏协调或转炉出现故障时,钢水接不上造成中间包低液面拉坯,或者最后一炉液面逐渐降低,从而导致拉速降低。在拉速降低的情况下,由于冷却水量的变化跟不上比拉速的变化,特别是二冷0段由于手动调水,更是滞后于拉速的变化。这种结果最终导致连铸坯在矫直时的温度落入钢种的脆化温度区间而产生横裂。其次是二冷比水量过大,造成铸坯矫直时温度较低,在应力作用下产生裂纹。

另外,三炼钢厂二冷水质难以得到保证,二冷水过滤器老化陈旧,经常在二冷水管道能发现杂质沉积,造成二冷段冷却不均匀,加剧了横裂的扩展。3 控制措施

根据三炼钢厂横裂产生的主要原因,制订了以下措施来控制横裂的产生: 1)调整结晶器的倒锥度。结晶器铜管的倒锥度由1.0%/m调低为0.8%/m后,效果较好。铜管不脱模现象大幅减少,拉坯顺畅,拉断现象减少。

2)规范结晶器润滑操作。结晶器菜籽油要求从四面加入,少加、勤加,以结晶器上口火焰长度在10~60mm能看到钢水液面为宜,火焰太长,显黑色则油太多,火焰太短,能看到钢水亮光则油太少应补加油。

3)调整结晶器振动系数,结晶器振动系数调高到100,以减少结晶器振痕产生。

4)调整二冷比水量和0段水量。二冷采用弱冷,比水量由1.2L/kg调低到1.0L/kg。对于对裂纹敏感的20MnSiNb钢种,比水量进一步调低为0.6~0.8L/kg。由于0段手动配水,因此特别注意调整0段配水量。中间包开浇、最后一炉以及拉速变化大炉次,均要求及时调整0段水量。比如,对于中间包最后一炉,液面逐渐下降,0段水由10~12m3/h调低到7~9m3/h,以确保铸坯矫直前温度大于950℃,避开HRB335和HRB400(20MnSiNb)的脆性温度区间(700~950℃)。经过调整后,效果较好,不但开浇炉次、最后一炉和液面波动较大炉次的横裂大幅减少,而且对裂纹敏感的20MnSiNb钢种也很少产生横裂,轧制时没有产生烂钢,轧制后性能良好。

2007年2月份对连铸机改造时,又进一步将0段配水改为自动配水,避免手动配水的滞后。

5)控制好中间包液面高度和钢水温度,避免拉速波动过大。连铸机长关注中间包液面和温度趋势。中间包尽量保持满液面拉坯,原则上“低温快拉”,以消除二冷配水方法的缺陷,减轻人工调整配水参数的压力。若中间包液面有下降的趋势,则及时调节二冷水流量。中间包温度过高或过低均应向调度及时反馈,以便调度采取措施保证低过热度。

6)改善水质。

7)加强红坯热检。连铸台下班发现横裂及时改成短尺轧制,避免由于横裂造成整支报废。4 效果

在找到连铸坯横裂发生的主要原因和采取相应控制措施后,三炼钢厂自2006年11月份开展了减少铸坯横裂的专项攻关,横裂废品率由重组后的4.5%降低到2007年5月份的0.15%,取得了良好的效果。具体情况见图1。

5横裂废品率(kg/t)4.53.8432100.6506年10月06年11月06年12月0.3207年1月0.4107年2月0.2807年3月0.1907年4月0.1507年5月时间图1 每月横裂废品率情况 结束语

(1)高Mn或含Nb钢连铸坯容易产生横裂。

(2)结晶器润滑效果不均匀,倒锥度过大,振动频率小对铸坯表面质量影响较大。结晶器润滑均匀,润滑油少加勤加;合理的倒锥度和振动频率可以使折叠或振痕变浅,保证铸坯脱模效果,减少横裂。

(3)对于高锰钢或含Nb钢二冷应采用弱冷制度,使铸坯矫直前温度避开脆性温度范围,减少横裂发生几率。

(4)通过对铸坯产生原因进行分析和采取上述控制措施,三炼钢厂铸坯横裂废品率由4.5kg/t降低到0.15kg/t,效果显著。6参考文献

[1] 蔡开科等.连续铸钢原理与工艺.北京:冶金工业出版社.1994 [2] 蔡开科.连续铸钢500问[M].北京:冶金工业出版社,1994.李聿军(1979-),男,江西丰城人,硕士研究生,工程师,2004年毕业于北京科技大学钢铁冶金专业,现为江西九江钢厂有限公司炼钢厂(萍钢公司三炼钢厂)技术主办,从事炼钢转炉和连铸技术管理工作。通讯地址:江西省九江市湖口县金沙湾工业园江西九江钢厂有限公司炼钢厂,332500 联系方式:***

第二篇:连铸坯质量考核制度

连铸钢坯质量考核制度

为了加强连铸坯质量管理,确保下道工序正常生产,结合实际生产需要,现制定连铸坯质量考核制度:

1、钢坯五大元素的控制,应严格按照公司内控标准执行,五大元素超出内控标准的,考核炼钢厂1000元/项。

2、连铸坯长度允许偏差为+80mm,超出该范围考核炼钢厂100元/根。

3、连铸坯边长允许偏差为±5mm,超出该范围考核炼钢厂100元/根。

4、连铸坯两对角线之差应≤10mm,超出该范围则判定为脱方,脱方钢坯考核炼钢厂500元/根。

5、连铸坯切斜应≤12mm,超出该范围考核炼钢厂200元/根。

6、连铸坯鼓肚应≤5mm,超出该范围考核炼钢厂200元/根。

7、连铸坯弯曲度不得大于20mm/m,总弯曲度不得大于总长度的2%,超出该范围考核炼钢厂200元/根。

8、连铸坯表面不得有目视可见的重接、翻皮、结疤、夹杂,一经发现,考核炼钢厂500元/根。

9、连铸坯不得有深度或高度大于3mm的划痕、压痕、擦伤、气孔、皱纹、冷溅、凸块、凹坑(包括由于手工切割造成连铸坯端部不平整、凸块、凹坑、裂痕),一经发现,考核炼钢厂200元/根。

10、连铸坯端面不允许有中心偏析产生的黑点、缩孔、裂纹及皮下气泡(允许有5个以下气泡),一经发现,考核炼钢厂500元/根。

11、连铸坯应按炉组批发运并喷写炉批号,随炉号跟踪卡一同发送到下道工序,此三项若不能按要求执行,考核炼钢厂200元/项。

以上连铸坯质量问题一经发现需及时整改,如流转到下道工序则按照上述制度考核,同时按废坯退回炼钢;如发现弄虚作假,对责任单位考核2000元/次。

技术中心

2014年7月29日

第三篇:高品质连铸坯生产工艺与装备技术

高品质连铸坯生产工艺与装备技术

【摘要】 对生产这些高性能品种钢的铸坯母材质量及尺寸的要求也日益提高,集中体现为铸坯表面的微缺陷化、铸坯内部的高致密度与均质化以及断面的大型化等特点。

研究背景

近十年来,随着我国交通运输、能源石化、海洋工程、重型机械、核电、军工等国家重点行业与产业的快速发展,对高品质品种钢的需求量大幅增加。与此同时,受用途和使用环境特殊性的影响,对钢产品的质量、性能、尺寸规格等也提出了更高的要求。为此,对生产这些高性能品种钢的铸坯母材质量及尺寸的要求也日益提高,集中体现为铸坯表面的微缺陷化、铸坯内部的高致密度与均质化以及断面的大型化等特点。

我国钢铁工业经过数十年的快速发展,整体技术与装备水平均逐渐迈人世界先进行列。值得一提的是,经过近20年的引进、消化吸收与再创新,我国的连铸技术与装备水平更是获得了长足的进步,实现了超过98%的连铸比,是当前生产高品质品种钢铸坯母材最主要的工艺。受国家需求驱动,我国的品种钢微合金化技术和大断面连铸坯生产技术与装备更是得到了快速发展,合金体系涉及Nb、V、Ti、B、Ni等,已建成并投产的宽(特)厚板坯连铸机生产线超过30条、大方坯连铸机生产线20余条、Ø600mm以上大圆坯连铸生产线20多条,产能超过1.2亿吨,具备了生产高品质大规格品种钢的能力。正是由于品种钢微合金化技术进步以及上述宽/大断面连铸机的大规模投产及其技术进步,一定程度上缓解了我国长期以来依靠进口或使用铸锭来满足高品质品种钢轧制需求的局面。

但与此同时,品种钢连铸生产过程面临铸坯裂纹频发、内部质量不理想的困境,特别是随着连铸坯断面的大型化,铸坯缺陷所带来的负面效应尤显突出,已成为限制高品质品种钢连铸高效化生产的共性技术难题。

微合金品种钢连铸坯产生角部横裂纹具有普遍性,开发有效且稳定的裂纹控制技术一直是国内外冶金工作者研究的热点。目前,除了钢水成分控制外,主要是围绕连铸工艺与装备技术而展开,体现在以下几个方面:1)优化连铸坯二冷配水工艺,使连铸坯通过铸流矫直区时避开相应钢种的第三脆性温度区。该技术是目前控制微合金品种钢连铸板坯角部横裂纹缺陷最常用的措施。其包括“热行”和“冷行”两条途径,并以“热行”路线最为普遍采用。然而,这两条途径均以降低连铸机扇形段设备使用寿命为代价(“热行”路线须大幅减少连铸机矫直段前多个冷却区的冷却水量,常引发扇形段铸辊表面保护渣与氧化铁皮烧结物的黏结而降低铸辊的使用寿命;“冷行”路线则将大幅增加铸坯矫直应力,降低扇形段铸辊轴承及轴承套的使用寿命),且无法从根本上消除连铸坯角部横裂纹产生。

2)使用大倒角结晶器技术。使用该技术可大幅提高铸坯角部过矫直的温度,实现铸坯高塑性过矫直,从而有效控制微合金品种钢连铸坯角部裂纹产生。但该技术使用过程对连铸生产工艺稳定性要求较高,同时也面临倒角面附近区域易产生表面纵裂纹、结晶器铜板使用寿命低等问题。

3)实施铸坯二冷足辊段与立弯段垂直区强冷却控制技术,使连铸坯表层生成一层具有较强抗裂纹能力的组织。但该技术需要在很小的控制窗口(足辊段与立弯段垂直区)内对铸坯实施较大幅度的快速降温与升温控制。一方面,该控冷工艺实施复杂,且稳定性难以把握;另一方面,目前多数连铸机的高温区冷却能力无法满足铸坯角部的降温与升温幅度。目前仅日本新日铁住金与韩国浦项等国际先进钢铁企业成功应用该技术。

因此,结合微合金品种钢凝固特点与连铸坯铸流温度演工艺,使连铸坯通过铸流矫直区时避开相应钢种的第三脆性温度区。该技术是目前控制微合金品种钢连铸板坯角部横裂纹缺陷最常用的措施。其包括“热行”和“冷行”两条途径,并以“热行”路线最为普遍采用。然而,这两条途径均以降低连铸机扇形段设备使用寿命为代价(“热行”路线须大幅减少连铸机矫直段前多个冷却区的冷却水量,常引发扇形段铸辊表面保护渣与氧化铁皮烧结物的黏结而降低铸辊的使用寿命;“冷行”路线则将大幅增加铸坯矫直应力,降低扇形段铸辊轴承及轴承套的使用寿命),且无法从根本上消除连铸坯角部横裂纹产生。

2)使用大倒角结晶器技术。使用该技术可大幅提高铸坯角部过矫直的温度,实现铸坯高塑性过矫直,从而有效控制微合金品种钢连铸坯角部裂纹产生。但该技术使用过程对连铸生产工艺稳定性要求较高,同时也面临倒角面附近区域易产生表面纵裂纹、结晶器铜板使用寿命低等问题。

3)实施铸坯二冷足辊段与立弯段垂直区强冷却控制技术,使连铸坯表层生成一层具有较强抗裂纹能力的组织。但该技术需要在很小的控制窗口(足辊段与立弯段垂直区)内对铸坯实施较大幅度的快速降温与升温控制。一方面,该控冷工艺实施复杂,且稳定性难以把握;另一方面,目前多数连铸机的高温区冷却能力无法满足铸坯角部的降温与升温幅度。目前仅日本新日铁住金与韩国浦项等国际先进钢铁企业成功应用该技术。

因此,结合微合金品种钢凝固特点与连铸坯铸流温度演变规律,深入研究微合金品种钢连铸坯裂纹产生的本质原因,开发可实现铸坯表层组织强化、从根本上消除裂纹产生的微合金品种钢连铸坯角部横裂纹控制技术成为关键。

连铸坯中心偏析与疏松是由于铸坯凝固过程中钢液选分结晶特性和凝固收缩特性所导致的固有缺陷,严重影响最终钢产品的质量和使用寿命,制约着高端品种钢的生产。在现有技术条件下,主要依靠优化连铸坯二冷工艺并对连铸坯施加外场作用(凝固末端压下、末端电磁搅拌),以解决铸坯内部偏析与疏松问题。这些技术对于较小断面或常规断面连铸坯生产较为有效,而对于宽(特)厚板坯、大方(圆)坯等宽/大断面连铸坯而言,其浇铸速度较低、冷却强度较弱,铸坯凝固速率大大降低,同时随着断面的增宽加厚,其内部冷却条件明显恶化,凝固组织中柱状晶发达,枝晶间富含溶质偏析元素的残余钢液流动趋于平衡,导致铸坯偏析、疏松和缩孔缺陷愈加严重。使用常规技术手段,尚无法有效实现宽/大断面连铸坯的高致密、均质化生产,具体原因主要体现在以下几个方面。

1)由于铸坯加厚引起的变形抗力与变形量增大,铸坯增宽引起的溶质非均匀扩散与分布趋势加剧,传统的轻压下工艺已无法有效、稳定控制液芯变形,从而无法实现凝固末端挤压排除富集溶质的钢液和有效补偿凝固收缩的目的。

2)近年来研究者提出了以日本住友金属CPSS等为代表的大压下技术,即通过增大凝固终点的压下量达到消除中心偏析与疏松、提高铸坯致密度的目的。然而,在大压下量实施过程中,两相区坯壳变形、凝固传热、溶质微观偏析、溶质宏观扩散、裂纹扩展等行为更加复杂多变,各行为之间的相互影响作用愈加突显,目前现有研究方法与传统轻压下工艺理论已难以指导压下参数设计,只能依靠反复的工业试验进行不断的优化和调试,从而严重制约压下工艺的实施效果和稳定性。

3)连铸坯凝固末端电磁搅拌技术。该技术实施需依靠准确的搅拌工艺为基础。目前由于对大断面连铸坯凝固行为认识不充分,无法准确描述非稳定凝固条件下的铸坯两相区凝固、流动和溶质传输行为。与此同时,随着坯壳厚度的增加,目前电磁搅拌能力与搅拌模式不足以驱动钢液的流动,从而严重影响连铸坯偏析和疏松的控制效果与稳定性。

为此,针对当前钢产品结构不断升级、产品质量要求不断提高的形势,开发高致密度、均质化的宽(特)厚板坯、大断面方(圆)坯连铸生产新工艺与装备技术显得十分重要而迫切。

东北大学朱苗勇教授及其研究团队长期围绕高品质连铸坯生产工艺与装备技术开展研究,先后承担和完成了国家杰出青年科学基金、国家科技支撑计划、国家技术创新计划以及企业重大合作开发等数十项课题,授权国家发明专利30余项,获省部级科技奖励7项。在连铸坯裂纹控制方面,研究团队通过近年的研究,揭示了产生微合金品种钢连铸坯表面裂纹的本质机理,开发形成了有效消除微合金品种钢连铸坯角部裂纹的全曲面锥度结晶器与铸坯二冷高温区表层组织控冷相结合的裂纹控制装备与工艺技术。在连铸坯偏析与疏松控制方面,研究团队自2003年起就从事铸坯凝固末端压下工艺与装备技术研发工作,提出了确定压下工艺关键参数的理论模型,开发了核心工艺控制模型与系统,并率先实现了板坯、大方坯凝固末端工艺控制技术的国产化研发与应用,并在宝钢梅山、攀钢、天钢、湘钢、涟钢、首钢、邢钢等十余家企业推广应用。目前,针对高品质大断面连铸坯生产,研究团队进行了铸坯凝固末端重压下技术研究与开发,并率先在大方坯连铸机实施了应用,取得了良好的应用效果。关键共性技术内容

2.1 微合金钢连铸坯表面质量控制工艺与装备技术

微合金品种钢连铸坯凝固过程中,钢中的Nb、V、Ti以及B等微合金元素极易与钢中的C、N等元素结合,生成碳化物、氮化物以及碳氮化物。受传统连铸生产过程铸坯初凝行为及控冷工艺的限制,这些微合金碳氮化物主要以链状形式于铸坯角部表层组织晶界大量析出,从而极大弱化了其晶界的强度;与此同时,铸坯在后续凝固过程中,同样受不合理冷却模式的影响,膜状或网状先共析铁素体优先在铸坯角部奥氏体晶界生成。受奥氏体与铁素体软硬相间应力分配作用(铁素体强度仅约为奥氏体强度1/4),铸坯在弯曲和矫直过程的应力极易在晶界铁素体组织内集中。受这些因素共同作用,微合金品种钢的连铸坯角部频繁发生微横裂纹缺陷。基于该本质机理,要控制裂纹的产生,关键是要消除微合金碳氮化物以及先共析铁素体膜在奥氏体晶界的形成。为此,需进行如下关键技术研究。

1)不同微合金种类及成分下碳氮化物析出行为研究。不同种类微合金元素与钢中C、N元素的结合能力不同,且析出物的晶界与晶内析出温度、析出种类均不尽相同。需根据钢中微合金元素的种类、钢的成分,建立不同成分体系及含量下微合金碳氮化物在不同钢组织相(奥氏体与铁素体)及位置(晶内、晶界)的析出热力学与动力学模型,明确与成分体系相对应的微合金元素碳氮化物在不同钢组织相及其不同位置的析出温度区及析出控制动力学条件。

2)初凝坯壳角部快冷却细晶化控制技术开发。研究结晶器内初凝坯壳凝固热/力学行为,设计最佳的全曲面锥度结晶器铜板补偿量与冷却结构,并揭示不同锥度补偿量和冷却结构下坯壳角部热历程与晶粒生长规律,为开发有效实施结晶器内铸坯角部超快冷却、细化晶粒的全曲面锥度结晶器技术与工艺提供设计参数指导,确保铸坯角部一次凝固形成细小的奥氏体晶粒,并大幅降低铸坯角部温度,也减轻了连铸二冷高温区为强化铸坯表层的组织而进行控冷的负担。同时,通过铸坯角部在初凝期的快速冷却,抑制微合金碳氮化物在其奥氏体晶界生成。

3)铸坯二冷高温区表层组织强化控冷装备与工艺技术开发。基于全曲面锥度结晶器技术,揭示铸坯二冷足辊段与立弯段温度演变规律,开发确保铸坯角部局部快速冷却、大回温强化铸坯二冷高温区表层组织的智能控冷喷淋装置与配水工艺,实现铸坯表层组织的进一步细化。与此同时,通过铸坯高温区角部局部快速冷却,进一步抑制铸坯晶界碳氮化物与先共析铁素体膜生成,有效实现铸坯角部表层组织自身强化。

4)微合金品种钢铸坯表面裂纹控制技术的工业实施。结合企业微合金品种钢成分体系、连铸机装备特点、铸坯在铸流内的温度演变规律,开发长寿命、可在线调宽、稳定化的全曲面锥度结晶器及其角部快速冷却工艺、铸坯铸流高温区角部表层组织强化的智能控冷装备与工艺,实现高品质微合金品种钢的高效化、稳定化生产。2.2 高致密度、均质化宽/大断面连铸坯生产工艺与装备

针对宽/大断面连铸坯生产,采用传统动态二冷配水优化工艺、铸坯凝固末端动态轻压下技术,较难实现其高致密度、均质化生产。而解决该技术难题最为行之有效的方法是协同采用铸坯凝固末端重压下技术与铸坯凝固末端电磁搅拌技术。然而,由于难以准确描述大压下量实施过程中辊压力、热应力、矫直力、拉坯阻力等内外力共同作用下的凝固坯壳与两相区的动态变形行为,及其与溶质宏微观偏析、溶质宏观扩散、裂纹扩展之间的相互作用关系,严重制约了凝固末端重压下工艺的实施可靠性与稳定性。同时,由于暂无法准确描述非稳定凝固条件下的铸坯两相区凝固、流动和溶质传输行为,无法实现大断面连铸坯凝固末端电磁搅拌工艺的稳定投用。因此,需要从理论研究、工艺开发、装备控制技术开发等几方面开展研究工作,真正解决凝固末端重压下工艺的关键技术难点,实现该工艺的稳定、有效投用。1)工艺理论研究方面:建立两相区变形与溶质偏析宏微观多尺度多场耦合计算模拟,实现坯壳变形、凝固传热、溶质宏观传输、溶质微观偏析与相变的顺序耦合计算。全面考虑宽/大断面连铸坯生产过程传热、流动和凝固现象,进而研究连铸工艺参数和外场(重压下、电磁搅拌、鼓肚力等)作用下宽/大断面连铸坯坯壳与两相区变形行为。与此同时,建立考虑固相演变移动、夹杂物析出与多元合金交互作用的微观组织模型,揭示宽/大断面连铸坯凝固组织演变机理,全面解释重压下工艺与电磁搅拌工艺对宽/大断面连铸坯中心偏析与疏松的改善效果,以及凝固组织的均质化控制效果。

2)工艺控制技术开发方面:合理、有效的工艺控制技术是实施重压下工艺的关键。在理论研究酌基础上,针对宽(特)厚板坯/,大断面方(圆)坯连铸机的具体特点,系统研究并开发形成一系列适用于宽/大断面连铸坯的凝固末端压下工艺控制技术模型,如基于扇形段/拉矫机压力实时反馈的凝固末端检测技术;消除宽/特厚板连铸坯非均匀凝固导致横截面距窄面1/8-1/4区域中心偏析与疏松的宽/特厚板压下区间控制技术;基于凝固补缩原理与坯壳变形量在线检测的压下率/压下量参数在线控制技术;确保铸坯在拉坯方向与宽向上温度的平滑、合理过渡的多维动态冷却控制技术;用于有效混匀两相区溶质偏析钢液、提高等轴晶率的凝固末端电磁搅拌技术;为避免压下工艺调整过程中铸坯宽展不均而导致“楔型坯”的铸坯宽度的均匀调控工艺等。

3)装备控制技术开发方面:稳定、准确的装备控制技术是实现凝固末端重压下工艺的保障。针对宽(特)厚板、大断面方(圆)坯连铸机的具体特点,开发以热坯作为量尺的辊缝在线标定技术,消除高温与扇形段/拉矫机结构变形所引起的辊缝误差,同时实现生产过程中辊缝的在线标定;开发有效控制铸坯延展变形,提高表面压下量向固液界面传递效率的“堆钢”压下控制技术,显著提高工艺实施效果;开发渐变曲率凸型辊压下技术,实现对铸坯液芯的有效挤压,在提高压下效率的同时降低铸坯表面裂纹发生率;基于全曲面锥度结晶器/全曲面斜倒角结晶器,降低压下过程已凝固坯壳的变形抗力,保证液芯的有效压下。研究技术路线与实施方案

3.1 微合金钢连铸坯表面裂纹控制研究

1)利用数值模拟计算与在线测温相结合技术,研究铸坯在结晶器内与二冷铸流内的凝固热/力学行为,为全曲面锥度结晶器技术开发与铸坯二冷高温区表层组织强化控冷装备与工艺开发提供理论基础。

2)建立不同类型析出物在不同钢组织相及其位置的析出热力学与动力学理论模型,并结合重熔凝固技术、透射电镜等检测手段,揭示铸坯不同冷却热历程下、不同钢组织相及位置微合金碳氮化物析出行为规律,确定具体成分微合金品种钢连铸坯晶界析出控制的关键参数;基于铸坯二冷温度场演变规律,揭示连铸坯角部不同热历程与微合金碳氮化物析出行为下组织晶内与晶界的相变行为及演变规律,综合开发有效抑制晶界膜状或网状先共析铁素体生成的连铸二冷配水工艺提供依据。3)基于上述研究,结合现场实际工况,研究开发连铸坯表层组织控制的微合金品种钢角部横裂纹控制的全曲面锥度结晶器工艺与装备技术、铸坯二冷高温区表层组织强化控冷工艺与装备技术,集成开发从根本上强化铸坯表层组织的微合金品种钢连铸坯角部横裂纹控制技术。

3.2 宽/大断面连铸坯偏析疏松控制研究

受连铸坯生产过程高温特点以及凝固复杂性限制,目前尚无法定量描述铸坯凝固末端压下过程中坯壳变形对溶质偏析元素再分配行为的影响规律,限制了工艺的应用效果。对于宽(特)厚板连铸坯、大断面方(圆)坯而言,受其断面增加影响,铸坯凝固末端施加较大压下量(率)所引起的两相区的坯壳变形、钢液流动、溶质偏析和裂纹扩展等现象更为复杂,涉及现代冶金学、冶金反应工程学、材料力学、控制工程等多学科理论与研究方法,需要理论研究与模拟计算、高温物理模拟研究与现场试验研究紧密结合。

凝固末端重压下工艺开发方面,以数值仿真为主要研究手段,并采用试验研究和物理模拟方法对仿真结果进行校验,准确描述超大规格连铸坯凝固末端压下过程铸坯变形行为、溶质偏析行为以及内裂纹。产生与扩展规律,最终开发形成宽/大断面连铸坯凝固末端压下工艺。物理模拟研究主要涉及铸坯高温物性参数测定,同时模拟具体条件下铸坯凝固前沿冷速、温度和受力条件,为数值仿真计算提供必要的建模数据和校验数据。最终,结合现场试验,全面验证凝固末端重压下工艺的合理性。

阶段研究进展

在微合金品种钢连铸坯表面裂纹控制方面,现已成功开发出全曲面锥度结晶器技术、铸坯二冷高温区表层组织强化控冷装备与工艺技术。部分技术先后在天钢、宝钢梅钢、建龙钢铁等企业投入应用,稳定实现了含Nb与含B微合金品种钢板坯表面无缺陷率达99%以上,效果显著。在高致密度、均质化宽/大断面连铸坯生产技术方面,已开发形成宽厚板坯凝固末端非均匀压下技术,并在铸坯凝固末端重压下工艺的核心工艺与装备控制技术方面取得重要突破,顺利开发出扇形段辊缝在线标定技术、基于拉矫机压力实时反馈的凝固末端检测技术、辊缝在线标定技术、“堆钢”压下控制技术、压下率/压下量参数在线控制技术、非均匀凝固末端压下控制技术等重压下关键技术。目前上述技术已经天钢宽厚板连铸机、大连特钢大方坯连铸机投用。所开发的宽厚板坯非均匀凝固末端压下技术在天钢投用后,有效解决了宽厚板连铸坯横向1/4区域偏析严重’的技术难题,生产高强船板钢、合金结构钢宽厚板连铸坯中心偏析≤C级1.O比例达到96%以上,中心疏松≤1.0级比例达到100%。所开发的重压下技术确保了大连特钢轴承钢GCr15、矿山钢572C、矿山钢LTB-6等高碳合金钢连铸坯及轧材质量改善明显,其中轧制棒材中心疏松从2.0-2.5级降至1.5级以内。使用重压下技术前后轧材低倍质量对比照片如图1所示。

研究计划

在上述原有相关技术研究与开发基础上,计划使用4年时间完成高品质连铸坯生产工艺与装备技术开发。

◆2014年,完成全曲面锥度结晶器现场检验并开发出铸坯二冷高温区表层组织强化控冷装备与工艺技术,初步集成开发出有效控制微合金品种钢板坯角部裂纹新技术;获得重工艺、设备参数对铸坯变形行为的影响,开发大断面连铸方坯凝固末端重压下工艺方案并进行初步现场试验研究。

◆2015年,微合金品种钢铸坯表面裂纹控制装备与工艺集成技术在2家以上企业得到应用,解决全曲面锥度结晶器技术实际应用所面临的多钢种和在线调宽等问题,实现企业含Nb、B等宽厚板坯微合金钢的角部横裂纹率≤1.0%,表面无清理率≥99.5%;进一步完善大断面方坯连铸坯末端重压下关键工艺与装备控制技术,研究形成避免宽(特)厚板、大断面方(圆)坯凝固末端压下实施过程中内裂纹形成及扩展的重压下限定准则,并在2家企业得到应用。

◆2016年,全面推广微合金品种钢表面质量控制技术;在宽/特厚板生产企业应用实施宽/特厚板连铸坯凝固末端重压下工艺方案,实现典型品种钢连铸坯偏析和疏松的有效控制。

◆2017年,进一步完善理论、工艺与控制技术研究体系,在国内3家以上企业推广大断面方坯、宽/特厚板坯凝固末端重压下工艺与控制技术,全面提高铸坯致密度与均质化。预期效果

通过上述高品质连铸坯生产工艺与装备技术开发,有望实现从根本上消除微合金品种钢连铸坯角部表面横裂纹频发现状,实现我国微合金品种钢连铸坯的表面无缺陷化生产的目标。通过铸坯凝固末端重压下技术开发,有望最终开发形成具有自主知识产权的宽/大断面连铸坯凝固末端重压下技术,全面实现高强工程机械用钢、高强桥梁钢、高强船板钢、高级别管线钢、新一代重轨钢与火车车轴钢等高附加值钢种的高致密度、均质化连铸坯生产,全面解决宽/大断面连铸坯中心偏析与疏松及内裂纹缺陷严重的共性技术难题。

第四篇:异形坯连铸技术的最新进展

异形坯连铸技术的最新进展

由于异形坯连铸技术将炼钢、精炼、异形坯连铸机和轧机紧凑式布置,形成钢梁生产新工艺(CBP)而迅速发展。该工艺将异形坯直接热装入加热炉,与传统方坯冷装相比∶

(1)投资减少约30%;

(2)能耗降低50%~60%;

(3)从废钢到成品钢梁生产总时间减少90%;

(4)生产率提高15%;

(5)金属收得率提高1.5%;

(6)不需要中间仓库;

(7)节约人工费用;

(8)降低操作和维修费用。

异形坯连铸技术主要是钢梁异形坯连铸和紧凑式钢梁生产线。1968年,加拿大阿尔戈马

公司异形坯连铸机投入商业性生产,美国纽柯-大和公司、日本东京钢公司、共英钢公司、卢森堡Thoringen钢厂等也先后建成生产线。2002年,美国动力钢公司新建电炉炼钢车间(内设一台150吨电炉,2台钢包炉,1台三流钢梁异形坯/大方坯连铸机)投产,并与现有钢梁轧机连接,形成年产能力120万吨CBP生产线。美国纽柯公司最近也投产了一座CBP短流程厂。此外,美国Ameristeel厂和西班牙CELSA厂最近也投产了多功能组合式连铸机(除钢梁异形坯外,大方坯和小方坯兼用)。目前,全世界已建成CBP生产线约50条。

中国异形坯连铸以H型钢生产线为主,其中马鞍山钢铁公司和莱阳钢铁公司设备较先进。马鞍山钢铁公司目前拥有大和中小型异形坯生产线两条∶1998年投产的大型H型钢机组,年产能为100万吨高附加值H型钢;2005年投产的中小型H型钢机组,年产能为50万吨高附加值H型钢。其中耐火钢用作高层住宅楼的钢梁、火车用耐侯H型钢,并且开发了符合美国API标准的SM490YB热轧H型钢,实现了海洋石油平台用热轧H型钢的国产化,正在开发汽车大梁、建筑抗震以及轻型薄壁专用H型钢。莱阳钢铁公司目前拥有大、中、小型三条型钢生产线,主要设备从德国引进∶分别是在2005年、1998年和2002年投产。连铸采用异形坯热送热装技术,轧机采用CCS技术、XH轧制方法及CRS矫直机矫直技术,全线计算机控制,实现从装料到成品发货的全程自动化生产。

异形坯连铸技术是连铸领域的前沿技术,世界各国应为降低生产成本、提高产品竞争力而加快研究步伐。

更多精彩内容请登录中国冶金装备网(www.xiexiebang.com)

第五篇:沥青路面裂缝产生的原因及控制措施

沥青路面产生裂缝的原因及控制措施

 裂缝主要形式及现象

公路沥青路面的开裂表现形式是多种多样的,主要有横向、纵向、网状和反射裂缝。

横向裂缝现象为:裂缝与路中心线基本垂直,缝宽不一,缝长有的贯穿整个路幅,有的贯穿部分路幅,裂缝弯弯曲曲、有枝有叉。横向裂缝中的唧浆导致裂缝两侧凹陷,桥头跳车处的路面横向裂缝,在路面积水的作用下加速跳车发展的速度,同时会对路基造成冲刷。

纵向裂缝现象为:裂缝走向基本与行车方向平行,裂缝长度和宽度不一。一般都发生在高填方的路基上。纵向裂缝容易形成沿行车方向呈台阶状,影响行车舒适性。

网状裂缝现象为:裂缝纵横交错,将面层分隔成若干多边形的小块,一般缝宽1mm以上,缝距40cm以下。网状裂缝导致公路沥青路面松散或坑槽,严重影响公路沥青路面的综合服务水平。

反射裂缝现象为:基层产生裂缝后,在温度和行车荷载作用下,裂缝将逐渐反射到沥青表面,路表面裂缝的位置形状与基层裂缝基本相似。对于半刚性基层以横向裂缝居多,对于柔性路面上加罩的沥青结构层,裂缝形式不一,主要取决于下卧层

 裂缝产生的原因分析

1.引起公路沥青路面开裂的原因很多,大体可分为三大类: 1)由于行车荷载的作用而产生的结构性破坏裂缝。在车轮荷载的作用下,当路面结构层底部产生的拉应力大于其材料的抗拉强度时,产生的开裂称之荷载型裂缝。

2)由于沥青面层温度变化而产生的温度裂缝,包括低温收缩裂缝和温度疲劳裂缝,称之非荷载裂缝

3)是经常出现在桥涵两端的横向裂缝,或在路段上出现较长的纵缝,主要是由填土固结沉陷或地基沉陷引起,称为沉降裂缝。

2.尽管公路沥青路面开裂的原因和裂缝的形式是多种多样的,但其中的行车荷载作用、沥青面层温度变化是产生裂缝的主要原因。

2.1横向裂缝

⑴沥青面层的自身温缩开裂;

⑵半刚性基层特别是水泥稳定碎石的开裂反射到沥青面层;

⑶某些基层开挖沟槽埋设管线以及冰冻地区路基冻裂导致路面的横裂;

⑷面层施工时,施工缝未处理好,接缝不紧密,结合不良。

⑸桥梁、涵洞或通道两侧的填土产生固结或地基沉降等。

2.2 纵向裂缝

⑴填方材料和填方的不均匀性,以及填方密实度达不到设计要求。经过一段时间的自然沉降,特别是经过雨水浸泡后,路基强度有所下降,沿边坡部分路基承载力也下降,就会出现纵向裂缝。

⑵施工时,前后摊铺幅相接处的冷接缝未按有关规范要求认真处理,结合不紧密而脱开;

⑶纵向沟槽回填土压实质量差而发生沉陷;

⑷拓宽路段的新老路面交界处土层处理不彻底,沉降不均匀引起纵向开裂;

⑸边坡值小于设计值,边坡压实不够和边沟过深使实际填土高度加大而滑坡等引起的纵向开裂。

2.3 网状裂缝

⑴路基局部压实度不足或基层材料局部松散不成板体,使路面的承载能力下降形成的裂缝;

⑵沥青与沥青混合料质量差。沥青延度低,抗裂性差。沥青混合料拌和时间过长,拌和温度过高或在储料仓仓储时间过长,使沥青变硬,对拉应变敏感而产生的裂缝;

⑶沥青层厚度不足,层间粘结差,水分渗入,形成的裂缝;

⑷行车荷载重复作用下引起的疲劳裂缝。

⑸外界原因如污染、腐蚀等造成的局部网裂

2.4 反射裂缝

⑴在已开裂的旧沥青、旧水泥混凝土路面层上加罩沥青面层,由于温度的变化(降低),老路面的裂缝继续扩展,给也处于温度收缩的新沥青面层一个附加应力,使新铺层在旧裂缝处断开。

⑵半刚性基层温缩和干缩开裂引起的反射裂缝等。

 裂缝形成后对道路的危害

由于环境温度、交通荷载等因素的影响,沥青路面初期产生的裂缝对沥青路面使用性能常无明显影响,但由于半刚性基层自身干缩和温缩应变胀缩产生的拉应力超过半刚性基层自身的极限抗拉强度,使其从强度薄弱处产生断裂,随着路面使用时间的延长。已有的裂缝逐渐向上扩展到路表,横向裂缝不断增加。缝宽不断增大,横向裂缝再不断附生纵向裂缝,最终形成大小不等独立板块,在表面水的作用下,致使裂缝附近基层的含水量加大,甚至饱和。其结果是路面强度明显降低,在大量行车荷载反复作用下,产生冲刷、唧浆和沉陷等现象,聚终导致路面很快产生结构性破坏,使道路结构逐渐丧失承载能力。这些病害,如得不到及时治理,对社会车辆形成一种潜在的危害,也极大地缩短道路的服务寿命,给国家造成极大的经济损失。

 沥青路面裂缝的预防和处理措施

延缓和减轻半刚性基层沥青混凝土面层的荷载型裂缝和非荷载型裂缝,可采用两大类方法:一是在施工期间就采用相应的预防裂缝或处理措施;二是在维修养护时选用合适的加铺 层体系。通常在有条件时,为获得最佳效果,可综合运用这两类方法。

1.1提高路基工作区的强度和稳定性

路基是路面的基础,路基工作区又是路基经受行车荷载影响较大的深度区域,该深度区域具有足够的强度和整体稳定性对保证路面结构的强度和稳定性极为重要,否则将产生不均匀沉降使路面发生开裂。因此,必须采取有效措施处理好影响路基工作区的稳定性和强度的关键环节,最大限度地减小路基完工后沉降量。

(1)路基工作区的强度主要是在填筑过程中形成的。必须严格控制路基的填筑工艺,确保路基强度。填筑材料首选石、砾、砂类土,其次选用含砾、砂低液限粘土,再次选用低液限粘土。粉质土和有机土不能用于填筑路基。

(2)压实度是反映路基强度的重要指标,也是提高路基强度和稳定性的最经济、最有效的技术措施,施工中必须严格检测控制,使其达到规定值。填土层的厚度对压实度有直接的影响,施工中要插杆挂线,每层的松铺厚度不应大于30cm。检测压实度试坑要打到下一层顶面,凡是检测结果达不到规定值的要加压处理,或推除重填。

(3)降低地下水位是提高路基强度的重要措施。路面底以下80cm路床是路基的关键部位,它直接承受和吸收路面的扩散应力,要有足够的强度和稳定性。当开挖后发现底下渗水,不论流量大小都要处理。填方地段要采用较好的材料填筑,土质差的地段要进行换填处理,确保其强度和稳定性.1.2基层应有合理厚度

当基层厚度增加时,其承载能力也迅速增加,试验证明,半刚性基层厚度由10cm增加

到25cm时,其承载力提高为原来的3倍。

1.3修筑防裂路面

研究表明,面层反射裂缝明显地受沥青面层厚度的影响,厚度超过15cm的面层可以有效的防止受拉疲劳所产生的裂缝,还可以降低车辆荷载引起的剪应力。

1.4选择防裂性能好的材料

(1)选用抗冲刷能力好,干缩、温缩系数小、抗拉能力高的半刚性材料作基层,最好使用温度膨胀系数低的骨料。

(2)选用松弛性能好的优质沥青做面层,保证沥青的针入度、延度等指标;在缺少优质沥青的情况下,应采用某些添加剂或聚合物,以提高沥青的低温抗裂性能及高温稳定性能。

(3)在稳定度满足要求的前提下,选用针入度较大的沥青作面层。

(4)采用密实型沥青混凝土面层。空隙率对面层的疲劳寿命有很大影响,密实型沥青混合料在使用中沥青硬化缓慢,同时也延缓了裂缝的扩展。

(5)沥青混合料的集料应选用表面粗糙、石质坚硬、耐磨性强、嵌挤作用好、与沥青粘附性好的材料。如果集料呈酸性,则应填加一定数量的抗剥落剂或石灰粉,确保混合料的抗剥落性能,同时应尽量降低集料的含水量,尽可能使用人工砂代替原形颗粒的天然砂。

1.5设置应力吸收层

1.5.1在基层与面层之间铺橡胶沥青中间层、预制织物膜带条、土工织物或土工格栅中间层、低粘度沥青混凝土层等均匀应力吸收层。

1.5.2采用应力吸收薄膜,对减缓反射裂缝的产生与扩展有明显的效果,可使裂缝处相对位移产生的应力传到面层时大为减少,明显降低应力强度因子。而吸收薄膜的弹性模量越低,防裂效果越好。可见应力薄膜应选用低模量高韧性、大变形率的材料为好。

1.5.3用土工格栅加筋沥青路面的主要功能是控制车辙、反射裂缝和疲劳裂缝,不同类型的格栅性能显著不同。

1.5.4橡胶沥青吸收膜,是使用废橡胶磨细的粉与热沥青搅拌后,施于面层中间,形成一薄膜或与砂石成一薄层。有试验结果表明,此应力吸收层在面层中间效果最佳。

1.6施工时控制裂缝发生的措施

1.6.1在施工方面,控制半刚性基层碾压时的含水量为最佳含水量的0.9倍,压实度达到规范要求,碾压完成后要及时保湿养护,防止基层干晒,养护结束后,立即喷洒沥青乳液,做成透层或粘层,然后尽快铺沥青面层。

1.6.2制备沥青混合料时控制好加热时间和加热温度,不使沥青老化、加强碾压,使沥青混合料达到规定的压实度,也可减少反射裂缝。

1.6.3为了减少沥青面层由于半刚性基层的收缩裂缝而产生反射裂缝或对应裂缝,应尽可能采取有效措施来减少半刚性基层本身的收缩裂缝。

下载连铸坯横裂的产生原因与控制措施word格式文档
下载连铸坯横裂的产生原因与控制措施.doc
将本文档下载到自己电脑,方便修改和收藏,请勿使用迅雷等下载。
点此处下载文档

文档为doc格式


声明:本文内容由互联网用户自发贡献自行上传,本网站不拥有所有权,未作人工编辑处理,也不承担相关法律责任。如果您发现有涉嫌版权的内容,欢迎发送邮件至:645879355@qq.com 进行举报,并提供相关证据,工作人员会在5个工作日内联系你,一经查实,本站将立刻删除涉嫌侵权内容。

相关范文推荐

    浅谈抹灰裂缝产生的原因分析与控制措施

    浅谈抹灰裂缝产生的原因分析与控制措施技术部 王龙 在建筑抹灰施工中会经常发生一些质量通病,轻者给用户造成不必要的麻烦,重者存在质量隐患,影响整体工程质量,给公司造成不必要......

    混凝土结构裂缝产生的原因及控制措施

    混凝土结构裂缝产生的原因及控制措施 摘 要:大体积混凝土开裂后,其性能与原状混凝土性能相差很大,严重影响结构的长期安全和耐久运行。本文分析了混凝土结构裂缝产生的原因和机......

    方坯连铸车间工艺设计要点分析论文(合集)

    1我国合金钢连铸技术的发展过程从我国目前的现状来看,特殊钢生产还处于一个比较初级的发展阶段,合金钢连铸技术应用并不全面,实际生产的范围也比较小,主要集中在一些小型电炉厂......

    炼钢连铸坯火焰清理浊环水系统设计浅议

    炼钢连铸坯火焰清理浊环水系统设计浅议 【摘 要】 随着用户对钢铁产品表面品质要求的提高,大型钢铁企业新上火焰清理机项目是不可避免的趋势。火焰清理机浊环水系统水质的好......

    大体积混凝土裂缝产生原因及防裂措施[推荐5篇]

    大体积混凝土裂缝产生原因及防裂措施 2010-07-22 12:12:41来源:土木工程网收集整理 RSS 打印 复制链接 | 大 中 小 1大体积混凝土裂缝形成的原因 裂缝产生的原因可分为两类:......

    大体积混凝土裂缝产生原因及防裂措施综述

    大体积混凝土裂缝产生原因及防裂措施综述 论文上传:tracy116 留言 论文作者:龚爱民 您是本文第 1232 位读者 摘要:本文分析了大体积混凝土产生裂缝的原因;概括介绍了防止裂缝发......

    论文:混凝土裂缝产生的原因、控制措施及修补

    混凝土裂缝产生的原因、控制措施及修补 目录 一、 裂缝产生的原因分析......................................... 1 (一)混凝土原材料质量方面 ..................................

    连铸二冷水喷嘴堵塞原因分析

    连铸二冷喷嘴堵塞原因分析 周明佳 (攀钢钒提钒炼钢厂,四川 攀枝花 617000) 摘要:本文通过对宝钢、武钢等钢厂的连铸二冷喷嘴使用情况进行调研,发现各钢厂在生产过程中均存在不同......