不锈钢连铸技术与质量控制

时间:2019-05-15 04:20:15下载本文作者:会员上传
简介:写写帮文库小编为你整理了多篇相关的《不锈钢连铸技术与质量控制》,但愿对你工作学习有帮助,当然你在写写帮文库还可以找到更多《不锈钢连铸技术与质量控制》。

第一篇:不锈钢连铸技术与质量控制

方坯连铸不锈钢技术与质量控制

—特钢连铸研讨会论文

方坯连铸不锈钢技术与质量控制

宝钢股份有限公司特殊钢分公司 陈家昶

上海新中连铸技术工程公司 叶 枫 1.前言

不锈钢的制造技术已有巨大的发展,从上世纪60年代不锈钢开始采用连铸,到1985年全世界不锈钢连铸比已达70%以上,目前西方工业发达的国家不锈钢生产几乎100%用连铸。最近20年来,世界不锈钢产量每年以超过7%的比例增长,1997年不锈钢总产量为1650万吨/年,2006年全球不锈钢产量达到了2840万吨,较2005年产量上升了16.7%。其中,中国的不锈钢产量增加最多,达到了530万吨,比2005年的产量增加了68%,超过日本跃居世界第一。新上马的很多产线释放出了巨大的能力,中国的不锈钢市场和产能前景乐观。

我国不锈钢的连铸起步较晚,80年代才开始起步。经过这几年的发展,我国的不锈钢连铸比提高较快,已经实现大多数的不锈钢品种的生产,但不锈钢连铸的生产和质量控制有一定的难度,在一定程度上制约了我国不锈钢连铸坯的生产。

2.生产工艺和流程

不锈钢冶炼方法有多种,如EAF单炼法、与AOD结合的二步法、与转炉顶底复吹及VOD或RH-OB相结合的三步法等,但目前最有优势、应用最广泛的还是EAF+AOD的二步法,在冶炼超低碳不锈钢时,也有较多采用AOD+VOD的双联脱碳工艺。因此,一般常用的工艺流程为:

EAF+AOD+(VOD)+CC(IC)

习惯上我们把EAF+AOD称为两步法,而EAF+AOD(或转炉顶底复吹)+VOD称为三步法。

电炉冶炼不锈钢可以选择采用偏心底(EBT)、槽式(Spout)出钢和两种功能都有的双炉壳设计,偏心底炉壳虽然能做到无渣出钢,但在出钢过程很难实施钢渣混冲,影响合金的收得率,而且EBT出钢口易被堵塞,不锈钢冷钢处理困难。因此,在不锈钢母液生产时,电炉一般采用槽式出钢法,它在出钢过程钢渣混冲,能有效提高合金收得率,但同时也带来一个回磷问题,由于不锈钢的脱磷困难、易回磷,这就对废钢和返回料的选择使用带来了严格的,对降低配料成本不利。3.不锈钢连铸

鉴于不锈钢钢种本身的性能特点(钢水粘度较大,易氧化元素较多、传热慢、热膨胀系数大等),其连铸生产的特殊性和难度较大。而且不锈钢品种较多,其中不乏含Ti、Nb、Cu、S、W等元素,钢种的裂纹敏感性强、连铸可浇性较差,对连铸工艺的参数确定和过程控制要求较高。近几年来,随着连铸控制技术和精度的提高,钢水冶炼的纯净度提高,90%以上的不锈钢已连铸成功,但是过程的不稳定性仍然存在。

不锈钢一般分为铁素体、奥氏体、马氏体和双相不锈钢等几类,严格的说,这几类钢种的凝固性能和组织各不相同,浇注性能也并不一致。总体来说,不锈钢连铸工艺可以从以下两类着手:以Ni为主含有扩大奥氏体区元素(Ni、Mn、N、C)的奥氏体不锈钢; 以Cr为主含有扩大铁素体区元素(Cr、Mo、Si、Nb)的铁素体不锈钢。特别还要考虑不锈钢的成份设计的裂纹敏感区,见下图:

由图中可以看出,凝固时新生铁素体对裂纹不敏感,②位置的奥氏体对裂纹敏感、①位置马氏体的淬火裂纹、③位置奥氏体中的相脆性、④位置铁素体的蠕变行为等都对我们的生产凝固工艺提出了挑战。

不锈钢方坯连铸,一般供轧制棒材、卷材、线材和不锈钢管坯成材。从最终的产品性能来看,对方坯连铸坯的表面质量和内部质量要求极高。由于不锈钢品种多,工艺的适应性犹为复杂,我们就一些共性的问题做一下探讨。3.1.表面质量控制

单就热膨胀系数而言,奥氏体钢的值比碳钢大(500℃时大56%,1000℃时大54%),铁素体钢与碳钢相近。这说明奥氏体钢在结晶器内凝固坯壳会过早收缩,更易使坯壳厚度不均匀,容易导致表面凹陷,裂纹等缺陷。而且钢水中的易氧化元素的夹杂物被连铸结晶器保护渣吸附后,保护渣的性能容易恶化,从而影响坯壳与结晶器铜壁之间的液渣流入,形成不均匀渣膜,加剧了传热的不均,对铸坯的表面质量产生严重的破坏。

以目前的技术装备而言,常规连铸机的结晶器振动技术,对连铸坯表面质量造成的直接后果就是产生了振痕,振痕是由于结晶器的周期性振动而在铸锭表面产生的间距均匀有一定深度的横向皱折。由于振痕的普遍存在,因此在一般情况下,已不将它看成是铸坯的表面缺陷或者说振痕是连铸坯的本征缺陷;但是,对连铸坯表面振痕的研究,发现伴随着振痕的产生,皮下往往有磷、锰等合金元素的显微正偏析,容易导致铸坯表面产生微小的横向裂纹,对后步工序产生不利影响,降低了产品各种物理性能横向断面的均匀性。研究表明,振痕是产生表面偏析和裂纹的原因之一。

对于普通钢的振痕,通过热轧加热中的氧化,振痕一般不会对成品质量造成影响;而不锈钢则不同,由于具有高的抗氧化性,较深的振痕难以在热轧中完全消除,如果用这种坯料轧制,就会在轧材表面产生缺陷。因此,不锈钢连铸坯的振痕的修磨率很高,有些厂家的不锈钢连铸坯的修磨率甚至可达100%。

控制和减少表面缺陷,减少修磨量和修磨率是不锈钢降本增效的关键。要做好这方面的工作,主要从结晶器保护渣的选取、振动参数的确定和结晶器铜管锥度的设计(包括结晶器水量控制)等方面着手。

3.1.1 结晶器保护渣

连铸保护渣在连续铸钢的保护浇注中具有非常重要的作用,保护渣的性能取决于浇铸中的实际行为,目前衡量保护渣的标准还是看它实际使用的效果,对它的性能优化只有一个宏观的取向:即提高铸坯表面质量与浇铸质量。不锈钢保护渣的研制可以说是一个世界性的难题,由于不锈钢中含有许多易氧化元素,需要吸收的夹杂物与特钢相比差别较大,保护渣性能的设计与保持对表面质量来说至关重要。奥氏体不锈钢线具有膨胀系数大的特点,冷却过程中气隙出现较早,容易产生凹陷等表面缺陷。一般的保护渣设计时针对凹陷型和黏附 型的钢种有两类不同的设计,凹陷型保护渣的特点是碱度较高(渣液在凝固过程中有析晶现象,渣的粘度曲线有明显的拐点)形成的固态渣膜导热系数较低,以降低传热速度,改善坯壳的凝固状况;黏附型保护渣则通过低熔点、低碱度(易形成玻璃态液相渣膜层)的设计,以达到减少摩擦阻力,提高表面质量的目的。不锈钢保护渣的设计一般采用的是前一种方案。这里要说明一下,由于不锈钢的固、液相线较低,因此不锈钢保护渣的熔点还是较低的。

不锈钢的保护渣耗量一般要大于碳钢的耗量,这一方面是为了形成均匀的渣膜厚度;另一方面由于渣耗量大,保护渣的更新速度加快,可以减轻和稀释被吸附的夹杂物对保护渣的污染。在整个浇铸过程中,钢水弯月面处形成的液渣层要保持足够的厚度以保证其连续流人铸坯与结晶器之间的气隙,从而形成有效渣膜,提高传热效率与均匀度。而不锈钢的容易产生表面凹陷的特性,更需要形成均匀有效的渣膜。在这里保护渣的黏度起了非常重要的作用。

通过一定的推导,我们可以得到一个熔渣层厚度与拉速之间的关系图如下:

渣膜厚度t t(2v1)2 q=qmelt Fe t2*qv 拉速v

图中左边红色曲线表示连铸保护渣的熔化速率高于保护渣消耗速率的情况,过了临界点右边蓝色曲线则表示连铸保护渣熔化速率低于最大消耗速率的情况。由上所述充分表明,保护渣黏度与对整个生产中的热传导性能有着非常密切的关系。在这里,我们仍然要强调的是保证稳定均匀渣膜对连铸坯表面质量的提高大有益处,我们设计选用的保护渣就是要针对连铸钢种的具体情况及拉速水平来进行的。所以在现场浇铸性能的评判上,渣耗是一个很重要的数据。

在不锈钢的结晶器保护渣里,还要注意碳质材料的添加问题。众所周知,为了控制保护渣的熔化速度,通常都在保护渣内配入一定量的炭质材料(炭黑或石墨等),但是绝大部分的不锈钢是低碳或超低碳,很容易引起增碳,特别在振 痕部位容易出现碳的正偏析现象;如果不锈钢表面修磨,一般该种缺陷不会影响下道工序。但未经修磨的铸坯进行轧制时,情况就不相同,我们曾经检测到如下缺陷,在规格为Φ65的304不锈钢连铸管坯上,经穿孔酸洗后发现荒管表面出现螺旋状缺陷,如下图:

电子探针面分析结果表明,荒管缺陷区域内的黑色沟槽中聚集C元素,如下图:

无独有偶,在一个低碳不锈钢连铸坯横向低倍的试样上,对其中心疏松部位做扫描电镜时,也发现了碳质材料的痕迹,如下图:

为此,有些要求高的无碳不锈钢保护渣,采用超细微的金属粉末取代碳质材料,用来控制保护渣的熔化速度,所以在保护渣的选择上,应多方面的考察和试验,才能找到符合不锈钢各钢种质量要求的保护渣。

3.1.2结晶器振动

对振痕的产生机理长期以来一直存在很多理论,如撕裂-愈合机理、机械变形机理、二次弯月面机理、保护渣作用机理等等,但直到今天还没有一个理论能够完整的解释所有的现象。不过有一点目前已达成了共识:即振痕的深度主要与负滑脱时间、负滑脱量有关。因此,研究振动参数控制负滑脱时间对连铸坯表面质量的提高有着非常重要的意义。

早期,负滑脱时间一般认为在0.5s左右对防止粘连及顺利脱模有利,如果超过这个值,就会影响振痕深度,过深的振痕会导致铸坯表面横裂纹的产生。但由于目前连铸设备与浇铸水平提高很快,铸坯与结晶器的脱模已经不再成为主要矛盾,相反随着连铸坯表面质量要求的提高。目前,已有连铸机将负滑脱时间控制在0.1s的水平。

由于负滑脱时间对振痕的深度影响较大,为减小振痕的深度,减少负滑脱时间是一行之有效的方法,在传统连铸过程中,结晶器振动的模式为正弦振动模式,为减小负滑脱时间,只有通过高频小幅振动的方式来实现。但在高频小幅振动条件下,将会在一定程度上减少保护渣的消耗,影响保护渣的流入与渣膜的均匀形成,破坏了初生坯壳和结晶器壁的润滑,从而增加了表面裂纹甚至拉漏的可能。因此应用高频小幅振动减少负滑脱时间的措施虽然有效,但仍然存在一定的隐患,应用上受到限制。

而在非正弦振动条件下,不改变频率,也能达到减小负滑脱时间的目的,这种情况下,与正弦振动模式相比,它的正滑移时间更长,振痕的深度也相应地降低。目前的液压振动控制设备,已成为实现非正弦振动的保证。

多次现场试验测定证明,采用了非正弦振动方式后,结晶器保护渣的渣耗量并没有因为负滑脱时间的降低而下降,反而略微有所上升。这在一定程度上证明了保护渣的液渣基本上是在正滑脱期内流入的机理(目前世界上一直存在有正、负滑脱时间流入的两派争论,前者以韩国浦项为代表,后者以S.Takauchi为代表)。而随着拉速、As值的提高,保护渣的耗量有降低的趋势,因此选取连铸 保护渣要以连铸机正常工艺的拉速范围为依据。

至于振动频率的选择,按照流体力学理论,液体表面波动存在一个本征频率,它与材料本身、断面、深度、液体表面张力等因素相关,相关领域(有色金属)的研究表明,如果实际振频接近系统固有频率时,容易产生共振,此时渣膜通道最大,拉坯阻力最小,铸坯表面最光滑。虽然这个工作不见连续铸钢领域报道,但对我们选择合适的振动参数又多了一个考虑方向。

3.2.连铸坯内部质量

不锈钢的内部质量很大程度上取决于钢种的特性,钢的凝固行为在一定程度上决定了连铸坯内部的铸态组织。根据加藤等人的研究结果,根据含镍不锈钢的Cr/Ni当量比,在铸坯凝固过程中发生如下相变反应:

 Creq/Nieq>2.0:L→L+δ→δ(α)→δ(α)+γ

 Creq/Nieq在1.6~1.9:L→L+δ→L+δ+γ→δ(α)+γ  Creq/Nieq在1.26~1.46:L→L+γ→L+γ+δ→γ+δ(α) Creq/Nieq<1.2: L→L+γ→γ

一般可以按Cr/Ni当量比1.5为界,初晶分别为δ相和γ相。初晶相的差别对于微观偏析的程度有着影响,因为溶质元素在δ相的扩散速度约为在γ相中的100倍。所以初晶为γ相时,一般存在明显的微观偏析。微观偏析,特别是P、S的偏析和聚集,对铸坯裂纹的形成存在着很大的隐患。

因此,铸坯的低倍组织与铸坯凝固时的铸态组织存在着一定的区别,有时很难复原分析;对于上列第4种单相组织相变,做金相的微观分析还比较容易。不同的不锈钢钢种表现出不同的宏观组织特性,比较典型的方坯低倍组织如下:

a)铁素体不锈钢的低倍组织

b)奥氏体不锈钢的低倍组织

c)双相不锈钢的低倍组织

针对不锈钢方坯的质量要求,由于各种钢种的差异较大,这里就不详细分析了。但通常用来控制提高内部质量铸态组织要求的是电磁搅拌和二冷控制。

3.2.1.电磁搅拌对铸坯质量的影响

对于不锈钢,电磁搅拌选用的参数与特钢相比变化还是比较大的。下式表示在钢水中产生感应电流与该处磁场作用产生电磁力的大小可用下式表示:

fJB(EB)B

上式中:J 为电流密度;

 为钢水电导率;

 为磁场和钢水相对运动速度速度; B 为磁感应强度;

f 为电磁力;

 为真空磁导率;

E 为电场强度。

通过上式,我们可以认为在相同磁场条件下,电磁力的作用取决于材料的电导率水平,通常不锈钢的电导率略小于特钢,但相差并不大。而对于一般的金属当其温度大于760℃时以及液态的钢水通常都是不导磁的,这方面特钢和不锈钢的特点是一致的。

试验证明,作用于铸坯中心液相的磁感应强度B不锈钢反而要比特钢强一些,这可能是由于不锈钢的合金含量高,液芯的粘度较大,运动时产生的阻力也大;其次,由于不锈钢导热率低,凝固时,其柱状晶生长倾向,大大地高于一般的特钢,因此,如果我们为了达到相同的电磁搅拌效果,一般说来,对于不锈钢无论是M-MES或F-MES工作电流的设定应高一些。

对于方坯而言,电磁搅拌的目的在于减少铸坯的中心疏松和偏析。而对含N、S等不锈钢而言,结晶器电磁搅拌消除皮下气孔及皮下夹杂的作用也是显而易见的。

3.2.2 二冷控制的影响

二冷控制应该结合各种钢种的热物性参数而定,我们如果做差热分析钢种热物性,就会发现,奥氏体的高温相变热流变化比较平缓,相对高温的热裂不敏感,而马氏体的有两个明显的热变流峰(谷)值,在对应的温度区间,热裂倾向强烈。一般来说,如果仅以二冷比水量比较,不锈钢的比水量要低于普碳钢,而且马氏体比水量应<奥氏体比水量<铁素体比水量,具体的钢种因元素的变化还是会有区别,这儿就不一一列举了。

应该指出的是在二冷控制这个环节,过热度和拉速的匹配更为重要。对应于每个钢种的传热特性曲线,我们更因注重各区水量的分配比例,例如对于马氏体钢来说,为了保证铸坯内部的质量,必须采用低过热度低拉速的工艺,在弱冷条件下,可以适当加大上部和下部的水量分配比例,因为在高温下的马氏体强度较好。

4.结语

目前,随着连铸设备和控制精度的提高,大多数不锈钢品种的连铸生产已经能够实现。但是由于用户产品质量要求的提升,每个不锈钢的性能或多或少存在着一些差异,因此,在不锈钢的连铸生产中,管理者必须认真地了解和认识各 不锈钢种的特性和存在的差异,合理的制定连铸工艺制度,并结合质量要求对各种参数实施控制;其中,首先应该严格设计和控制不锈钢的目标成分,减少成分的波动范围,这样才能够保证连铸坯凝固铸态组织的稳定,以保证连铸坯的性能和质量。

第二篇:连铸检测和控制八大技术

连铸检测和控制八大技术

连铸的特点之一是易于实现自动化。实行自动化的目的在于改善操作人员的工作环境,减轻劳动强度,减少人为因素对生产过程的干扰,保证连铸生产和铸坯质量的稳定,优化生产过程和生产计划,从而降低成本。自上世纪80年代以来,冶金自动化装备技术的可靠性、实用性、可操作性和可维护性都得到极大的改善,不断提高的性能价格比使冶金自动化装备技术得到快速推广应用。

目前,连铸自动化系统基本上包括信息级、生产管理级、过程控制级和设备控制级。信息级的主要功能是搜集、统计生产数据供管理人员研究和作出决策;生产管理级主要是对生产计划进行管理和实施,指挥过程计算机执行生产任务;过程控制级接收设备控制级提供的各类数据和设备状态,指导和优化设备控制过程;设备控制级指挥现场的各种设备(如塞棒、滑动水口、拉矫机、切割设备等)按照工艺要求完成相应的生产操作。其中,设备控制级和过程控制级自动化最为关键,直接关系到连铸机生产是否顺畅和连铸坯的质量。目前,在国内外连铸机上已成功应用的检测和控制的自动化技术主要包括以下几种:

1.钢流夹渣检测技术

当大包到中间包的长水口或中间包到结晶器的浸入式水口中央带渣子时,表明大包或中间包中的钢水即将浇完,需尽快关闭水口,否则钢渣会进入中间包或结晶器中。目前,常用的夹渣检测装置有光导纤维式和电磁感应式。检测装置可与塞棒或滑动水口的控制装置形成闭环控制,当检测到下渣信号自动关闭水口,防止渣子进入中间包或结晶器。

2.中间包连续测温

测定中间包内钢水温度的传统方法是操作人员将快速测温热电偶插人中间包钢液中,由二次仪表显示温度。热电偶为一次性使用,一般每炉测温3至5次。如果采用中间包加热技术,加热过程中需随时监测中间包内钢液温度,则连续测温装置更是必不可少。目前,比较常用的中间包连续测温装置是使用带有保护套管的热电偶,保护套管的作用是避免热电偶与钢液接触。热电偶式连续测温的原理较为简单,关键的问题是如何提高保护套管的使用寿命和缩短响应时间。国外较为成熟的中间包连续测温装置的保护套管的使用寿命可达几百小时。国内有少量连铸机采用国产的中间包连续测温装置,使用性能基本满足中间包测温要求。

3.结晶器液面检测与自动控制

结晶器液面波动会使保护渣卷入钢液中,引起铸坯的质量问题,严重时导致漏钢或溢钢。结晶器液面检测主要有同位素式、电磁式、电涡流式、激光式、热电偶式、超声波式、工业电视法等。其中,同位素式液面检测技术最为成熟、可靠,在生产中采用较多。液面自动控制的方式大致可分为三种类型:一是通过控制塞棒升降高度来调节流入结晶器内钢液流量;二是通过控制拉坯速度使结晶器内钢水量保持恒定;三是前两种构成的复合型。

4.结晶器热流监测与漏钢预报技术

在连铸生产中,漏钢是一种灾难性的事故,不仅使连铸生产中断,增加维修工作量,而且常常损坏机械设备。粘结漏钢是连铸中出现最为频繁的一种漏钢事故。为了预报由粘结引起的漏钢,国内外根据粘结漏钢形成机理开发了漏钢预报装置。当出现粘结性漏钢时,粘结处铜板的温度升高。根据这一特点,在结晶器铜板上安装几排热电偶,将热电偶测得的温度值输入计算机中,计算机根据有关的工艺参数按一定的逻辑进行处理,对漏钢进行预报。根据漏钢的危险程度不同,可采取降低拉速或暂时停浇的措施,待漏钢危险消除后恢复正常拉速。采用热流监测与漏钢预报系统可大大降低漏钢频率。比利时的Sidmar钢厂板坯连铸机自1991年安装了结晶器热流监测与漏钢预报系统后,粘结漏钢由每年的14次降低为1次。此外,热流监测系统还能够根据结晶器内热流状况预报纵裂发生的可能性以及发生的位置。同时,因为保护渣的性能影响结晶器的热流,故热流监测系统所收集的热流数据可用来比较保护渣的性能,为选择合适的保护渣提供依据。

5.二冷水自动控制

同一台连铸机在开浇、浇铸不同钢种以及拉速变化时需要及时对二冷水量进行适当调整。早期连铸采用手动调节阀门来改变二冷水量,人为因素影响很大,在改变拉速时往往来不及调整,造成铸坯冷却不均匀。二冷水的自动控制方法主要可分为静态控制法和动态控制法两类。静态控制法一般是利用数学模型,根据所浇铸的断面、钢种、拉速、过热度等连铸工艺条件计算冷却水量,将计算的二冷水数据表存入计算机中,在生产工艺条件变化时计算机按存入的数据找出合适的二冷水控制量,调整二冷强度。静态控制法是目前广泛采用的二冷水控制方法,在稳定生产时基本能够满足要求。根据二冷区铸坯的实际情况及时改变二冷水的控制方法为动态控制。目前能够测得的铸坯温度仅为表面温度,如果能够准确测得铸坯的表面温度,则可根据表面温度对二冷水及时调整。但是,铸坯表面覆盖的一层氧化铁皮、水膜以及二冷区存在的大量水蒸气严重影响测量结果的准确性。因此,在实际生产中根据实测的铸坯表面温度进行动态控制的方法很少被采用。比较可行的方法是进行温度推算控制法。温度推算控制法的思路是将铸坯整个长度分成许多小段,根据铸坯凝固传热数学模型每隔一定时间(例如20秒)计算出每一小段的温度,然后与预先设定的铸坯所要求的最佳温度相比较,根据比较结果给出最合适的冷却水量。在二十世纪80年代中后期,欧洲、日本以及美国的一些先进的连铸机已逐步采用二冷动态控制系统。我国现有的大部分铸机采用静态控制法控制二冷水量,引进的现代化板坯连铸机、薄板坯连铸机等一般采用温度推算动态控制法进行二冷水的调节。

6.铸坯表面缺陷自动检测 连铸坯的表面缺陷直接影响轧制成品的表面质量,热装热送或直接轧制工艺要求铸坯进加热炉或均热炉必须无缺陷。因此,必须进行表面质量在线检测,将有缺陷的铸坯筛选出来进一步清理,缺陷严重的要判废。目前,比较成熟的检测方法有光学检测法和涡流检测法。光学检测法是用摄像机获取铸坯表面的图像,图像经过处理后,去掉振痕及凹凸不平等信号,只留下裂纹信号在显示器上显示,经缩小比例后在打印机上打印出图形,打印纸的速度与铸坯同步。操作人员观察打印结果对铸坯表面质量做出判断,决定切割尺寸并决定是否可直接热送。当裂纹大于预定值时,应调整切割长度,将该部分切除,尽可能增加收得率。涡流检测法利用铸坯有缺陷部位的电导率和磁导率产生变化的原理来检测铸坯的表面缺陷。

7.铸坯质量跟踪与判定

铸坯质量跟踪与判定系统是对所有可能影响铸坯质量的大量工艺参数进行收集与整理,得到不同钢种、不同质量要求的各种产品的工艺数据的合理控制范围,将这些参数编制成数学模型存入计算机中。生产时计算机对浇铸过程的有关参数进行跟踪,根据一定的规则(即从生产实践中总结归纳出来的工艺参数与质量的关系)给出铸坯的质量指标,与生产要求的合理范围进行对比,给出产品质量等级。在铸坯被切割时,可以在铸机上打出标记,操作人员可以根据这些信息对铸坯进一步处理。

8.动态轻压下控制

轻压下是在线改变铸坯厚度、提高内部质量的有效手段,主要用于现代化的薄板坯连铸中。带轻压下功能的扇形段的压下过程由液压缸来完成,对液压缸的控制非常复杂,需要计算机根据钢种、拉速、浇铸温度、二冷强度等工艺参数计算出最佳的压下位置以及每个液压缸开始压下的时间、压下的速度。目前,国内薄板坯连铸机动态轻压下的设备及控制系统均全套引进。总体上讲,我国的连铸自动化水平与欧、美、日等发达国家相比还相当落后。发达国家的连铸机正朝着全自动、智能化、无人浇铸的方向发展。连铸机的操作人员越来越少。例如,奥钢联林茨厂1997年投产的年产量为120万吨的单流板坯连铸机只有5名操作人员(同类铸机为9人)和两个操作站(一般为5个)。开浇、钢包和保护渣等操作、温度测量、机械手取样、缺陷分析、结晶器液面控制、中间包浸入式水口的更换、漏钢预报、火焰切割、打印标记机的操作等所有运行区域的操作都自动运行。国内除了少数引进和近年来新建的连铸机自动化水平较高以外,其它连铸机基本靠常规仪表和一般电气设备进行控制,计算机控制的项目较少,很多靠手动控制。从普及的程度来看,二冷自动配水已为国内大多数铸机所采用,其次为结晶器液面检测与自动控制。近年来,已有少数连铸机采用中间包连续测温技术,但其它如钢流夹渣检测、结晶器热流监测与漏钢预报、铸坯表面缺陷自动检测、铸坯质量跟踪与判定系统等则很少被采用。从总体趋势看,连铸机的产量越来越高,铸坯质量也越来越好,但连铸机的操作人员却越来越少,这是实现自动化控制的必然结果。因此,如何提高连铸机的自动化水平是摆在国内钢铁企业面前的一个不容忽视的问题。

第三篇:连铸技术手册

1、连铸 1.1概述

1.2基本理论和计算 1.2.1计算和设计公式

1.2.1.1坯壳厚度及液芯长度 1.2.1.2拉速 1.2.1.3振动 1.2.1.4温度

1.2.1.5结晶器的散热 1.2.1.6二次冷却

1.2.1.7热坯长度的确定 1.2.1.8收缩

1.2电磁搅拌

1.2.1结晶器电磁搅拌 1.2.2末端电磁搅拌

1.3安全

1.3.1不能开浇(!)1.3.2禁止连续浇注 1.3.3中包停浇

1.3.4怎样区分钢水和钢渣 1.4中包包衬

1.4.1可应用的工作层

1.4.2中包和侵入式水口的预热 1.4.3塞棒浇注的中包预热

1.5拉浇前设备的前提准备 1.5.1结晶器的准备 1.5.2引锭杆的准备 1.5.3送引锭 1.5.4封引锭

1.5.5推荐使用的封引锭方式(1802)1.5.6开浇前大包中包的操作步骤

1.6开浇

1.6.1开浇的前提条件 1.6.2火切机控制板 1.6.3大包开浇

1.6.4大包长水口的操作 1.6.5塞棒浇注的手动开浇 1.6.6自动开浇 1.7连铸工艺 1.7.1更换大包 1.7.2快换中间包

1.8停浇

1.9质量控制/质量保证 1.9.1间接检验方法 1.9.2直接检验方法 1.9.3表面检验 1.9.4内部缺陷检验 1.9.5取样和检验 1.9.6中包前取样 1.9.7中包测温 1.9.8中包取样 1.9.9铸坯取样

1.9.10冶金缺陷-铸坯缺陷-原因/纠正方法 1.9.11表面缺陷 1.9.12内部缺陷

1、连铸 1.1概述

钢水由液态转变为固态是在连铸进行的,其产品被称为小方坯、大方坯或板坯

精炼后,吊车将大包吊在大包旋转台的支撑臂上,盖上大包盖,将大包放在大包回转台上后,将其旋转至浇注位。

预热好的中间包车(大于1000度)从预热位开至浇住位,将预热好的侵入式水口与结晶器对中并插入。同时使用长水口操作机构将通有氩气保护的大包长水口靠近大包滑动机构,之后,打开大包滑动水口,钢水从大包注入至中间包,中包填液时间即从大包开浇至打开塞棒的时间不应超过2分钟。

中间包向结晶器注入钢水上是通过安装在中间包内的塞棒来控制的,中间包支持在中间包车上。

开浇前,先起动结晶器振动台和液位控制系统。人工加保护渣,结晶器安装于平台上,通过振动机构完成上下运动。安装在结晶器末端的足辊对刚出结晶器的热坯导向作用。

足辊后的导向辊是固定的,将铸坯导入固定半径的弧线中。

置于弧形末端的拉矫机将铸坯由恒定半径的弧形矫直为水平。

挤压辊安装于拉矫机下方,以支撑、拉戈引锭杠和铸坯,汽水喷淋用来冷却铸坯及调节冷却强度。喷淋室在铸坯铸坯导向周围与之成为一体,在喷淋室形成的蒸汽由排蒸汽机抽到空气中。在不需要引锭杠导向时,由脱引锭辊将引锭脱开,并送自引锭杆辊道上。其上装有引锭杆存放装置,将引锭杆从开浇后至下次开浇前,存放于其上。铸坯由火切机切成定尺。在辊道末端装有可移动档板,将铸坯停下。拉浇结束时,低速拉尾坯,高速矫直。尾坯由尾坯处理装置切尾送走。当最后一支坯移至输出辊道,引锭杆由存放引锭杆装置落至辊道上,送入铸坯导向辊至结晶器下方将引锭头对中送入结晶器。封引锭杆准备下一浇次。1.2基本原理和计算 1.2.1计算和设计公式

1.2.1.1坯壳厚度及液芯长度

液芯长度由坯壳成长常数和凝固时间所决定的,此常数可看作一个数值,在凝固区增大。坯壳凝固厚度“S”的计算公式如下: S=K*/t 固态坯壳 S(mm)凝固常数

K(mm/min1/2)凝固时间=L/VC t(min)凝固长度 Vc(m/min)拉速

现在铸坯任一点的坯壳厚度都可计算。

凝固常数是由拉浇的钢种所决定的,以确定冶金长度,数值如下: K=27mm/min1/2 K=26mm/min1/2 1.2.1.2拉速

最大拉速由冶金长度(从结晶器液位至铸坯凝固的连铸长度)计算公式如下: VC MAX=LM/tsolid D/2=K*/tsolid Tsolid=(D/2K)2 VCMAX=Lm*(k/s)2=LM*(2*K/D)2 其中:

K(mm/ min1/2)——凝固系数 Vcmax*(m/min)-----最大拉速 D(mm)——————热坯厚度

Lm(M)——————液芯长度,也称“冶金长度” Tsolid(min)————铸坯全部凝固的时间 不能超过最大可用拉速(由冶金长度估算出的);否则铸坯内的液芯长度会超出铸坯支撑长度而导致鼓肚。

举例:Lm=27m K=26mm/min1/2 D=220mm VCMAX=27*(2*26*220)2=1.51m/min 在实际生产中,根据要求的拉速时间、化学成分、铸坯性能及中间包温度采用比较低的拉速。1.2.1.3振动

振动的速度,频率乃至振幅对铸件的表面性能及外形有着重要的影响。

避免坯壳粘在结晶器壁上,振动装置是密不可少的。振动参数(振幅、频率、负滑脱)影响着振痕的深度、间距、保护渣的消耗及坯壳的成长。振动的平均速度,公式如下: Vo=2*h*f h(m)——振幅

f(min-1)——频率

Vo(m/min)——平均振动速度

振动速度理论上应比拉速高30~40%,即:Vo=1.3to1.4*Vc 1.2.1.4 温度

拉浇温度对凝固过程有着相当大的影响,因此其对铸坯质量有着紧密的关系,过高的拉浇温度导致铸坯质量差(中心疏松、晶粒组织粗大、大量的树枝晶、应力裂纹等)且增加漏钢的危险,过热度应为10~35度之间。过热度增高会导致铸坯厚度变薄,这样由于坯壳很薄,拉应力增大,大大增加了粘壳的危险,而导致漏钢的危险增加。

过热度超过45~60度(不同钢种而不同),必须停止拉浇。过低的过热度会使钢水在侵入式水口中结死,大包钢水的温度应根据工艺要求在二次冶炼中确定下来。

不当的过热度对铸坯质量的影响; *过热度过高--纵向裂纹

--深度的中间裂纹和中心分层--极重的偏析 *过热度过低--水口结死

下面是对应生产顺序的相关温度: 大包温度(Tl),为开浇前在大包内的钢水温度。中包温度(Tt),为中包内钢水温度。液相线温度(Tlid),为分钢种开始凝固的温度。计算液相线温度的公式: °C(液相线)=1.5366-X%C-Y% 合金 %C X =0.025 90 0.026-0.05 82 0.06-0.10 86 0.11-0.50 88.4 0.51-0.60 86.1 0.61-0.70 84.2 0.71-0.80 83.2 0.81-1.00 82.3

合金元素 含量范围% Y Si 0-3 8 Mn 0-1.5 5 P 0-0.7 30 S 0-0.08 25 Cr 0-18 1.5 Ni 0-9 4 Cu 0-0.3 5 Mo 0-0.3 2 V 0-1 2 W-18%at0.66%C 1 As 0-0.5 14 Sn 0-0.03 10 O* 0-0.03 80 N* 0-0.03 90 H* 0-? 1.300 Ti 17 Al 5,1 Co 1,7 *=预估的

1.2.1.5结晶器散热

从结晶器带走热量的过程及热传导形式,描述如下: *凝固的坯壳间钢水的对流.*通过坯壳的热传导.*坯壳与铜板/铜管表面(保护渣气隙)的接触.*结晶器铜板/铜管的热传导.*通过结晶器铜板/铜管与水套间冷却水的对流.最重要的温降发生在结晶器铜板/铜管与坯壳的热传导,见图1:

结晶器冷却的几个重要参数: *拉速: 拉速增快,铸坯与铜板/铜管,接触的长度增加.*保护渣: 熔化的保护渣填充在铜板/铜管与坯壳之间,有助于散热.*结晶器的几何尺寸: 改变结晶器倒锥度提高散热强度.*结晶器冷却: 通常为避免形成气泡,结晶器冷却水必须达到一定流量,水的粘度比水更重要,计算水的流量及压力参见连铸机供应商提供的操作手册.1.2.1.6二冷水

二冷水的冷却强度由连铸机内铸坯的表面温度,拉浇的钢种及拉速决定的,二冷区所有的凝固常数在 K=26mm/min1/2-28 mm/min1/2之间,取决于钢种及二冷水量,为了得到满意的浇注组织,几个冷却水段的冷却水量是单独调节的。气雾冷却由于铸坯的冶金冷却,使用这种形式的喷嘴可得到较宽范围的水量调节,但必须达到下面的平衡:铸坯不能过冷(避免表面缺陷),设备不能过热(以避免辊子及轴承的损坏)。对流量,压力及喷嘴型式的要求,参加连铸机供应商提供的操作手册。1.2.1.6热坯长度的确定

计算 热坯长度的公式如下: Lhot=Lcold*X+S Lhot(mm)----热坯长度,其值应在长度测量装置上调节 Lcold(mm)----冷却后的铸坯长度(约+20℃)S(mm)------切缝宽度(因火切机及质量的不同而不同)X(1)-------收缩因子,考虑铸坯从切割机至冷坯的收缩值,是铸坯在切割辊上温度的函数及铸件成分的函数.铸坯在切割辊道上的平均温度(整个断面的平均温度)约在900℃,冷坯是在+20℃的室温上测的.计算热坯长度,必须知道收拾因子,收缩因子为一常量X=1.013.用于所生产的铸坯.如生产钢种扩大到合金钢,收缩因子可随之修改.C钢:X=1.013 举例: 铸坯长度=8000mm(冷坯)质量:St37---收缩率=1.013 Lhot= Lcold*X+切缝---=8000mm*1.013+8mm Lhot=8112mm 1.2.1.8收缩 1.2.1.8.1概述

连铸在固相线温度下的热收缩对质量有特别的影响,一些铸坯表面的缺陷及生产中遇到的一些现象都是由于不同的C含量的钢种其收缩特性不同引起的.C含量为0.09%~0.16%的钢种(包晶范围)对表面及内部裂纹表面粗糙、扭曲变形、拉漏比C含量低于或高于这个范围的钢种更为敏感。

研究表明0.09%~0.16%的钢种通过结晶器的热流量最小,且结晶器与坯壳之间的摩擦力也较低。

以上观察到的现象归因于包晶反应而引起铸坯收缩量增大及机械应力提高。δ/γ相变

在固相线温度以下恒定的温度区间内,铁碳合金的收缩量是C含量的函数。

C含量的0.09%~0.16%的热收缩量增加,相应的体积缩小(密度增大)是与δ/γ相变相关联的。

δ/γ相变只发生在铸坯上特定的一段,由于收缩不均匀,以及钢水静压力引起的除热应变外的弹性应变、粘弹性应变、使机械应力增强。在连铸生产中,收缩及应力的成长都是由于拉浇过程中各种因素复杂的相互作用(温度梯度、坯壳成长速度)以及钢的材质特性的结果。

就VOEST-ALPINE STAHL产品,经验表面:收缩率取1.013满足计算的要求,分析表明收缩率对其影响微小.1.3电磁搅拌

1.3.1结晶器电磁搅拌

M-EMS(结晶器电磁搅拌)对铸件的内部和表面质量有着积极的作用,由于能量消耗较高(约3Kwh/t),EMS主要在浇注高品质的特钢中使用.特殊情况:包晶钢!(C含量为0.09~0.16%)经验表明,调节M-EMS的参数(主要是电流),可提高生产和冶炼的效果.M-EMS放于结晶器装配下放更适合于使用保护渣和侵入式水口的形式.使用建议的M-EMS参数设置时,特别观察弯月面的情况,以确保弯月面的情况,以确保弯月面无大的搅动.如弯月面波动过大过侵入式水口侵蚀,必须逐渐减少电流,(如25A)直到满意为止.结晶器断面超过200mm2及结晶器壁>20mm的情况,建议选用2~2.5Hz的频率.如结晶器断面小于200mm2及结晶器壁<15mm的情况,建议选用4Hz的频率.为了方便操作,如果最大电流为400A,或接近400A(390A),也可选用固定的频率4.0Hz,注:范围由C含量来确定)!分钢种设置M-EMS参数,举例: 表1所示根据C含量的不同而设置的电流: M-EMS的频率应调节到2~4.5HZ之间(根据不同的断面尺寸,如小断面高频率,大断面低频率).表1 C含量 M-EMS(A)<0.25 150 0.26~0.45 250-400 0.46~0.60 350~400 >0.60 >400 注意:为了避免注流钢水时卷渣,侵入式水口必须保证最小插入深度(如建议插入深度80~140mm).1.3.2末端电磁搅拌

使用末端电磁搅拌只对高碳钢或MnCr含量高(>1%)的钢种有意义.注:为使末端电磁搅拌达到最优效果, 末端电磁搅拌中心应置于铸坯内液芯50mm处!如出现”白亮带”,强度通过下面方法可控制: *增加M-EMS的电流.*减少F-EMS的电流.*调节反转周期见表3===特别是用于低C钢.*降低拉速(也就是缩短液芯长度).表2所示F-EMS电流与C含量的函数关系.F-EMS的频率应调节至17.0~20.0Hz之间.C含量(%)F-EMS频率(A)<0.25-0.26~0.45 250 0.46~0.60 300 >0.60 350-400 周期(正反向)(sec.)小断面 大断面 5~8 8~12 表2 建议最小拉速应使F-EMS达到最佳效果。180*180末端搅拌 K-因子为26 拉速(m/min)冶金长度(m)在F-EMS处的实际液芯(mm)名义液芯(mm)1.0 12 58 >50 1.1 13.2 64 1.16 13.9 68 1.2 14.4 69 1.3 15.6 73 1.4 16.8 77 300*300末端搅拌 K-因子为26 拉速(m/min)冶金长度(m)在F-EMS处的实际液芯(mm)名义液芯(mm)0.4 13.3 34 >50 0.45 15 49 0.5 16.6 62 0.55 18.3 73 0.6 20 83 1.4安全

1.4.1不能拉浇(!)*无结晶器冷却水 *无二冷水 *无振动

*无润滑(油或保护渣)1.4.2禁止继续拉浇

*结晶器冷却水为事故状态 *结晶器冷却水温差Δt>12℃ *结晶器冷却水事故水箱未满

*发现大包或中包即将穿包(大包或中包车呈红斑)*中包弯月面低于300mm *铸坯停留超过4分钟 *拉速过快 *中包温度过高 1.4.3中包停浇

在大包停浇后,大包工必须立即通知P3工留心敞开浇注的钢流或是塞棒浇注应注意弯月面.原因:防止渣流入结晶器而导致漏钢甚至停浇.1.4.4钢和渣的区分

*当钢水从黄蓝或黄绿(在于眼镜繁荣颜色)变为深黄色时.*当钢流由强度到分流时.*持钢棒快速从钢流中挑出些渣,如溅起许多小的火花,那多是钢;如果钢流穿过钢棒轻轻掠过,那是渣.*如果是塞棒浇注,其弯月面搅动挺大,注意只是在由钢转换为渣时!*一下渣立即停浇(最好稍稍提前一点).*中包停浇时,大包工应用钢棒(勿用管子)测几次钢水液位,这样也可以知道,中包是否有渣,有多少.1.5中包包衬

连铸工艺中对钢的质量、成本及产品的安全都有严格的要求,对此领域中使用的耐材产品有更高的要求,对中包包衬耐材主要以下几个部分: *隔热层 *永久层 *工作层

隔热层是由陶瓷纤维或高铝砖制成位于永久层之间.两种不同形式的永久层: *永久层为耐火砖或高铝砖

永久层的缺点是每个中间包都需要特殊形状的砖,其连接处比较薄,使用后,永久层表面的砖磨损不均匀,特别是接缝处变大.表面的不均匀及宽的接缝,使钢壳粘在永久层上.一旦钢壳剥落永久层就遭到破坏.*永久层砖的另一缺点是,中包容积增大及复杂后,其成本及安装时间延长.*永久层为高铝,低水泥,低湿气的浇注料: 这种浇注料在各温度段都有绝好的机械强度,及耐热冲击抗力.因其为低水泥浇注料避免了接触反映.高机械强度的化合物以及少量的粘接剂大大提高了此种包衬的中包使用寿命.低水泥的浇注料制成单体无接缝的包衬,消除了用砖砌所存在的接缝问题,使用低水泥浇注料使永久层的安装更方便,更快,且中包寿命增至1500炉.1.5.1可应用的工作层 下面是几种工作层的制法: *板式包衬

*用喷枪喷涂的包衬 *喷雾式喷涂的包衬 *干粉中包衬

*板式包衬,最初使用于1974年,其为高绝热,低密度可更换的预制板.这项工艺使用冷中间包开浇成为现实,是中包准备的一次革命.早期的板式包衬为硅质板后来发展为可预热的镁质板,这样既满足了板坯的连铸开浇的要求,又利用了板式包衬的优点.可预热板式包衬消除了预热是工作层碎落的可能,另外,还比喷枪喷涂或砌砖的形式有以下优点: *中间包冷热均可用 *增加了绝热性能 *良好的抗碎裂性能 *延长一个浇次的寿命

*提高中间包使用率,缩短周转周期

制作时的一个缺点,特别是大的中包,需要大量的劳动

80年代初期,开始喷雾包衬系统,其于喷枪包衬不同的重要之处为在喷补料中增加纤维,这不仅降低其密度和成本,而且便于干燥提高了储热性能.同时这种工艺在制作厚的包衬时比喷枪补更加容易控制,这种包衬可以预热也可以冷包没有问题.其成品的决热特性比起板式包衬更加受欢迎.喷雾喷包衬的主要优点为包衬的喷补与中包的几何形状无关.此工艺只需要短的时间准备,相对劳动强度低,喷补材料可自动由机器人制作,以后的劳动需求更低.此工艺与其它湿的工艺相比主要缺点为:在使用前要进行干燥.干粉中包衬,于1986年左右提出,此工艺与前面提到的工艺不同之处为采用干粉形式,干粉包衬利用松脂在相对温度较低(约200℃)的条件下的粘合力而制成的.粉剂准备好后将一模型置于中包内,将干粉灌入中间包永久层与模型之间.这种特制的模型要求能均匀传递中包热量,防止中包中间包钢板的移动和扭曲变形,对可否振动的要求取决于使用的产品.这种工艺的优点 *中包周转快 *劳动量低 *良好的脱膜性

*对永久层有良好的保护作用

*干净精致的工作层(使非金属夹杂容易上浮)比起湿的工艺其主要的优点为减少了必要的热循环周期 采用哪一种包衬不同的钢厂根据各自的因素来确定如下: *中包大小 *连浇炉数 *钢水清洁度 *费用 *是否容易脱壳

*周转周期的重要性和中包利用率 *现有设备和包衬制度

*钢水质量的要求,低H,低C *使用人工或自动方式 1.5.2中包及水口预热

1.5.2.1塞棒浇注的中包预热 *中包必须干燥清洁 *将中包包盖置平

*预热时间预计为60~90min.*加热前安装好水口==如是单体水口,必须先安装水口.*将载有中包的中包车开至结晶器上方对中(必须关上塞棒)*返回加热位调节预热烧嘴 *将塞棒打开约40mm *计划开浇前,启动加热(从上端)加热时间不超过90min,不少于60min(参见耐火材料供应商提供的加热曲线)*加热温度为1000℃~1300℃之间.*水口预热30~60min,时间长短取决于烧咀质量

*大包到站后检查大包滑动水口油缸及液压系统工作是否正常 1.6拉浇前设备的前提准备 1.6.1结晶器的准备

开浇前必须检查下面的前提准备,必须完成下面各项准备工作 *铜管无损伤,如划痕或不均匀磨损 *足辊如有不均匀磨损必须更换 *结晶器冷却水准备完毕

*结晶器足辊段喷淋水准备完毕,检查喷淋方式

*结晶器可见部位无水,不得有水渗入结晶器内,结晶器铜管必须干燥 *结晶器罩固定于结晶器上 *结晶器液位检测系统准备完毕

如为新上的结晶器,必须增加以下检查项目 *结晶器液位控制系统装入准备就绪 *结晶器冷却套内充满水,无空气 *只能使用检查过调整过的结晶器

*固定结晶器于振动台上的螺栓必须拧紧 *润滑软管联接完毕

*冷却介质的连接处紧固(在振动台架与结晶器间无泄露)*结晶器足辊至扇形段的第一辊的过度段检查,调整.1.6.2引锭杆准备 正确安装引锭杆

引锭杆,特别是引锭头插入结晶器前必须检查是否清洁

必须认真检查引锭头部与热坯接触的部位,如表面有损伤(划痕裂纹等)应送检查(点焊或点磨)应按维护手册进行接头处加油动作检查.1.6.3送引锭 下面的前提准备,自动系统无法检测只能目测: *引锭杆准备是否完毕

*拉矫机上辊是否在”UP”位

*有无检修任务或检修在拉矫机区和导向区 *检查调整引锭杆压力为正常

目视及电气检测前提条件全部满足后,可以开始送引锭 1.6.4封引锭

封引锭操作步骤如下: 铜板与引锭头一圈的缝隙用密封绳封闭,并用小钢棒手动压紧.注意:必须将引锭杆头部与结晶器中心尽可能对正.另外,密封绳和引锭杆头上撒一层金属屑.所有封引锭材料必须是干燥无锈的(铁锈中含氧!),封完引锭头,振动台,拉浇机和喷淋水直到开浇时候才启动(通常电气联锁).在等大包时候,结晶器上需要盖一钢板保护其不被破坏,否则所封好的引锭头破坏后,必须重新封.1.6.4.1推荐使用的封引锭杆方式(180*180)举例 第一步==引锭杆于结晶器的位置 引锭杆插入深度不超过100mm(!)原因: *必须为钢水流出足够的空间,这样结晶器添液时,会给水口额外的预热作用.*更多的空间可以延长结晶器的添液时间,使其连接更好.*使开浇时在紧急情况下更加安全,例如:发生结流.第二步==用棉绳密封引顶头

小心地将棉绳捣入引顶头与结晶器缝内,以防止损坏结晶器镀层,确保结晶器的使用寿命.第三步==撒铁屑

*铁屑必须干燥无油的金属制品.*将铁屑均匀地撒在引顶头上,以防止钢液损坏引顶头.*所用的铁屑确保能将引顶头与热坯快速简单的分开.第四步==放置钩子

所用的钩子确保引顶头与热坯的连接安全可靠.另外兼备冷钢的作用,其传热效果极好.第五步==放入冷钢(弹簧)冷钢有以下优点: *这种紧密的排布确保了在需要冷钢的位置有冷钢,并且保证侵入式水口足够多的插入深度,例如:4孔水口.*这种形式和设计是高效的(冷钢直径小,接触面积大)这种冷钢在经过结晶器下口时不会掉落(有时会发生在螺纹钢形式上)而导致阻塞.*钢水良好的渗透性保证与引顶杆连接牢固.1.6.5开浇前大包中包的操作步骤

钢水应该准时到站,并且化学成分正确,恰当均匀的温度.大包由其上的行车吊至大包回转台.大包一到回转台,立即将悬挂在旁边的大包滑动油缸连于大包上,其具体的位置在吊架上调节.接上滑动水口后,准备将大包转到浇注位.在将大包转到浇注位之前应该关掉中包及水口预热,并开走中包车.中包车到位浇注位后应该按供应商提供的手册所述方法操作结晶器液位自动控制系统.中包对中后,将必备工具(如挑渣棒等)置于结晶器盖板旁.中包车至浇注位后,称重装置置0位,只显示中包包内的钢水重量.中包在浇注位对中时应该将长水口垂直接到滑动水口上.1.7开浇

2.1.7.1开浇的前提条件

如前面章节所述,开浇前必须进行各种准备工作.除以前提到的,还必须考虑以下的工作: *是否选定钢种? *结晶器冷却水是否工作,流量是否正确? *是否选定振幅? *中心润滑泵是否启动? *排蒸汽风机是否启动? *检查水,油,气的压力流量和温度 *二次冷却水冷却曲线是否选定? *大包回转台是否准备就绪? *中包车是否准备就绪? *振动台是否准备就绪? *拉矫机是否准备就绪? *事故水是否准备就绪? *结晶器液位控制是否为自动方式? *是否选定起步拉速? 1.7.1.1火切机控制板 *是否检查所有显示灯? *进行空试车

*火切机移至起始位.*所有的拉矫机,辊道驱动方式是否为自动? *横移机和冷床是否为自动方式? *所以设备准备就绪才可以开浇.此信号由电气系统通报,详细操作参见电气手册.通常,只用几流生产,其拉浇时间延长.这可能导致钢水结流和连浇节奏跟不上的问题.必须确认当结晶器冷却水打开后结晶器铜板上无水垢.1.7.2 大包开浇

大包开浇前,每一流必须在操作状态且应满足”ready to cast”条件.不管是手动开浇还是自动开浇,下面的设备有其独立的自动/手动操作方式: *振动台(前面提过)*喷淋水 *拉矫机

当浇注状态为初始状态或操作工将拉矫方式由手动改为自动时,以上功能缺省状态为自动方式.如没有钢水流下,操作工应该关闭滑动水口然后再次打开,如仍无钢水流出,那么必须打开滑动水口烧氧.烧氧前,将长水口移开.中包钢液位一超过长水口下口就应加保护剂.如必须烧氧,在大包注入初期就将长水口置于钢流外.二次装长水口之前中包钢水必须加满一半.如果大包滑动水口为人工操作,不能将滑动水口全部关死,以防止结流.必须提前清理掉大包滑动水口的积聚物.安装长水口时,将大包水口关掉,为减少结流的危险,关闭水口的时间应尽量短.中间包内的钢水的液面至少为200mm,以防止”涡流的效应”.中包的钢水必须覆盖为黑色.1.7.2.1大包长水口的操作 1.7.2.1.1长水口的固定

当大包转到中包上方的浇注位时候,将长水口连到滑动水口的收集水口上.1.7.2.1.拆长水口

从大包滑动水口上拆长水口前必须关闭滑动水口.降低大包长水口的操纵机构,如果长水口安装在收集水口上,那么前后左右地摇动操纵臂,直到将水口拆下.注意:活动操作臂时候要小心,不要损坏长水口和收集水口的陶瓷咀.1.7.3塞棒浇注的手动开浇 *中包烘烤到位 *预选:Manual方式

*将预备好的保护渣和推杆置于结晶器面板上 *设定结晶器自动液位控制的设定值(约75%)*将拉速设定到最大拉速的70% *同时将大包吊入大包回转台 *插入大包滑动水口油缸

*打开结晶器液位自动控制的放射源 *同时,水口必须已经预热了约30分钟 *关闭预热装置 *将中包移至浇注位

*在OS-1上将开关打为”casting”位

*在OS-1上每一流”Ready-to-cast”灯亮.如果一流的灯闪烁.用OS-2,确定故障原因,如果是次要的可以忽视的问题,可以继续开浇,如果问题严重,必须先解决掉.*连接大包长水口

*在结晶器上方对中中间包

*打开大包,如不自开,那么打开大包后直到中包钢水超过一半时再连长水口.*中包填满一半后,开浇(手动).中包降至水口低于正常液位50mm.*在约30_40秒内,注流2-3次将结晶器注满

*当液面达到检测范围,加入足量的保护渣(先加开浇保护渣,然后按钢种加特殊的保护渣),到达检测范围后关塞棒.*发出”strand start”指令.铸坯以最大拉速的70%的速度起步.拉浇工采用塞棒杠杆控制液位.*如果拉浇工将各流控制得好,即设定值和实际值相符,可尝试转至自动方式.拉浇工简便地拉下事故开关打开拉浇杠,脱开塞棒油缸上的旁路连接,检查OS-1,是否发生转换(可通过检查automatic on和实际值与设定值)!*不要忘记连续地加足够量的保护渣

*如果结晶器自动液位控制不正常(波动太大),那么立即转至手动拉浇.因为拉浇工在结晶器中的视野有限,应通过观察实际液位和设定液位来操作.1.7.4自动开浇 *中包预热好 *在OS-1预选:automatic(结晶器液位设定值应该为75%)*将拉速设定为最大拉速的70% *同时大包吊入大包回转台 *插入大包滑动水口油缸

*打开结晶器液位自动控制的放射源 *中包开至浇注位

*在OS-1上将开关打为”casting”位

*在OS-1上每一流”Ready-to-cast”灯亮.如果一流的灯闪烁.用OS-2,确定故障原因,如果是次要的可以忽视的问题,可以继续开浇,如果问题严重,必须先解决掉.*连接大包长水口

*在结晶器上方对中中间包

*自动”on”(白灯)闪,且结晶器液位控制的”actual value”指示为零

*大包浇注启动,如不行,移开长水口,打开大包烧氧,不加长水口继续浇注,直到结晶器浇注成功

*中包填满一半,立即启动”start casting”---即按下自动开浇按钮 注意: *开浇时应从中包外侧开始,既从离冲击区最远的一流开始,以避免开浇结死.*塞棒自动地打开2.3次,直到结晶器液位控制的actual value indicator显示第一个波动 *液面到达弯月面检测范围后,立即加入足量的保护渣(先加开浇保护渣,然后根据钢种不同加特殊保护渣),到达检测范围后,关塞棒

*等待约20秒后,以最大拉速的70%速度自动起步,自动方式采用控制塞棒机构的油缸来控制流量

*如果自动方式控制的很好,即实际值与设定值相符,拉浇工不要忘了不断地加足量的保护渣!*如结晶器液位控制工作不正常(波动太大),那么立即转至手动拉浇.因拉浇工结晶器中的视野很有限,应该通过观察实际液位和设定液位来操作 *如果每流自动控制.则”automatic”灯亮

*同时中包测温.如果温度控制得好,即高出液相线温度35度,应达到最高拉速(分断面和钢种)*这时候,铸坯到达脱引锭区,即操作工必须加倍小心,如果脱引锭失败,这一流必须停下来 *通常铸坯会自动停下来

*直到用事故切割将铸坯和引锭杆脱开,再重新开浇,为了安全起见,建议手动开浇,成功后再转自动,详细内容见”手动开浇” 1.8连铸工艺

1.8.1更换大包(连浇)在大包即将结束时,根据当前浇注情况确定二级机系统,计算出大包倒空时间计划下一包起吊时间。

当上一包还在浇注时,下一包钢水应放到回转台上。下一包在上一包倒空前6-10min到站。在连铸平台上所有的工作必须在很短的时间—5min内完成(例如:连滑动水口,观察从长水口中流出的渣,操作滑动水口,操作长水口操纵机构等)。

另外,实际停浇时间可能要比估算的提前(例如,估算的钢水重量和渣子重量的误差)。超过10min,大包等待时间就太长了,导致温度损失过多及有可能使大包内的钢水温度分层。另外,烧氧次数增加也延长大包等待时间。更换大包操作步骤如下:

停浇前5分钟,观察中包冲击区(长水口附近)的钢水。如大包下渣,立即关闭滑动水口。因为长时间的连浇中渣量是增长的,非金属夹渣物也要积聚,所以必须将中包渣控制为最少。不主张除渣到溢流箱中,因为这样会减少事故溢流的空间。在停浇第一炉时,中包液位准许升到溢流位附近,这样: *在更换大包时,中包包内的钢水可起一个缓冲作用 *在没有新钢水下来的期间,中包钢水温度损失为最少

关闭大包滑动水口后,将长水口移开---将滑动水口油缸拆下。旋转大包回转台,将新包旋入浇注位。

用氧枪清洁大包长水口,特别是收集水口相连的密封面。如长水口被损坏,必须更换一只新的。

清理/更换后,将长水口连接在新包的滑动水口上,压紧。连接大包滑动水口油缸。大包开浇过程与前面所述《大包开浇》过程相同。重要的是要尽可能缩短无钢流注入中包的时间。更换大包时间过程长导致:

*中包钢水减少,这样使拉速降低,继而导致拉浇时间的问题或质量的问题。*降低钢水温度,这意味着水口有结死的危险,特别同时降低拉速(减少通流量)

更换大包的时间通常控制在2-3min内,但如果大包自开有问题的话(如:烧氧)可能要延长一些。

由于中包浇完第一炉钢的时间问题比较高(有利于减少温降),连接下一包钢水的大包温度可以比第一包低10度。

打开下一大包后,10~15min中包测一次温度。以确保新旧混合的钢生产完,测的只是新包钢水的温度。

检查确信滑动水口关闭,滑动水口油缸拆下,旧包由行车从回转台上吊走。在同一浇次中只换大包而未换中包,只生产同一钢种。连浇中换钢种会在铸坯形成混合区域,既不属于上一钢种也不属于后一钢种,如果钢种区别很大混合区差别很大。1.8.2快换中包

长时间的连浇需要换中包,同时也伴随着大包的更换.更换中包之所以叫”快换”,是指换包后可继续拉浇,新来的钢水直接浇入现有的钢水上.因此,每一流都必须停下来,开走旧中包,新中包和大包开过来重新开浇.由于耐材(工作层座砖长水口)的使用寿命有限,所以快换是必要的.拉浇时快速换中包,节约了重新启动时间限制了切头切尾坯子的数量.增加有效拉浇时间,提高收得率.连浇同一钢种通常无混钢种现场.如果连浇不同的钢种,必须使用钢种分离片(分离蓝)每次快换中包都存在一定的危险,这也可通过操作工的经验和良好的钢水来弥补.在进行首次快换中包之前,连铸人员必须在一块配合过做几回试验.重要的是尽可能减少快换时间,使热坯停留时间减为最短.原因: *在停留时铸坯收缩脱离结晶器铜板

*如果铸坯与结晶器的缝隙增大,钢水有可能从缝隙中流过结晶器,导致漏钢.因此,热坯停留时间不超过4min.如超过的话,拉浇必须停止.进行快换中包,必须满足下面的条件: *下一中包在中包预热站预热好后并全部准备完毕

*混合浇注时连接器(分钢种的分离蓝)必须准备在结晶器的旁边.*下一中包吊到大包回转台上准备开浇 *快换中包同时也换大包,为了更好地控制温度,作为第一包新包的温度必须高一些快换中包的步骤如下: *在下令停浇前,立即加入保护渣.*保护渣使下面的铸坯热量不散发掉 *尽可能同时将各流关掉,停拉矫机 *停掉二冷水或设为最小值 *旋转大包回转台 *旧中包开走

*将分离钢种的连结器放入结晶器钢液中(如图).检查连接器放置在结晶器内的位置是否正确 *将新中包开至浇注位 *新中包于浇注位 *开浇,步骤同前所述 1.9停浇

正常的计划停浇应提前做好准备。步骤如下:

检测到渣时,应该按前面所述,立即将大包水口关闭。操作工在铸坯操作控制板上选择停浇状态。

关闭大包钢水液面到达前所述液位(约200min),立即停浇。通常中间包外侧的铸坯先拉,因其在中包内温度较低。此时,先拉哪一流也受其他一些因素的影响。如下: *结死 *结流 *优化切割

为得到最大的收得率,中包尽快浇注完。另一方面,应避免将渣子浇入结晶器中。停浇时,钢水液位不低于200mm。通常是在尾坯停止拉浇后停浇。

其间,操作方式转为清空设备(参见后面的功能描述)

尾坯不必喷水冷却。等待一段时间,按电气手册中描述的那样按下需要的按钮,重新启动连铸。

结束拉浇但不停连铸也是有可能的。过程如下:

将铸坯拉出后,按电气手册所描述的那样,初始化所需的操作方式。按此程序,应将拉速减至约名义值的70%,以便在铸坯上部凝固。当拉矫机停止后,喷淋水设为最小值。

对尾坯全部设备都对其跟踪,包括拉矫机,火切机。各设备按尾坯撤离其工作区的顺序停车(结晶器、振动台、二冷水、排蒸汽系统等)。注意:尾坯必须被切除,直到中心无缩孔。1.10 质量控制/质量保证

根据钢种各自的特性和要求,相关钢种的质量标准列于表中。

根据拉浇观察到的及发货条件、检验条件、成品货半成品,应进行下述的检验。1.10.1间接检验方法 间接检验方法 间接检验包括拉浇时进行观察和对连铸相关方面的测定.连铸相关问题 对质量的影响 *长水口注流

*(大包----中间包)C *中包液位 CCDLTO *塞棒 C *中包内钢水温度 SLMSC *保护渣 CEO *结晶器内的钢流 CDL *拉速 CDSM *铸坯表面温度 TE 其中: *C-----高倍和低倍的纯净度 *CD-----分布的非金属夹杂 *S------偏析 *L------纵裂 *T------横裂 *E------角裂纹 *M------中心裂纹 *SC-----皮下气泡 *O------振痕

正确调节以下方面: 可避免: *铸坯导向辊缝 STMSC *铸坯导向调节 TESC *挤压辊压力 STMSC *结晶器倒锥度 LTE *铸坯与结晶器间的摩擦 LT漏钢 1.10.2直接检验 1.10.2.1检验表面

没有一种检验方法可将所有的表面缺陷同时检验出来的,所以需要进行几种不同的检验.要把严重缺陷的产品(S)----在铸坯表面、肉眼可见的与轻微缺陷的产品(L)----除非表面处理后才看清楚的区分开来。VOEST-ALPINE设计出一种特殊的设备,用来酸洗半成品并测出振痕的侧面图。通常使用涡流、激光、红外线等检测方法检测。1.10.2.2内部缺陷的检测

检验铸坯内部缺陷,非特殊情况一般采用硫印,深度酸蚀,组织酸蚀,用切面评估法检验内部质量.检验

角裂 边裂 星裂 低倍夹渣 针孔 气泡 振痕 其它缺陷,如:溢钢,渣坑,双浇 检验方法 横向 纵向 横向 纵向 目检

铸坯表面: S S S S S * S yes 酸洗表面 L+S L+S L+S L+S L+S * * * L+S yes 剥皮检验 S S L+S L+S L+S yes yes yes yes

塔形: S* S* L+S L+S S yes yes yes 涡流检测 L*+S L*+S L*+S L*+S L*+S 激光红外线检测等:

L*+S

L*+S

L*+S

L*+S

L*+S 振痕简图: L+S *在一定条件下评估

检验

偏析 皮下气泡 低倍组织 箸状夹渣 低倍夹渣 检验方法 S C-Mn 裂纹偏析带2)无偏析3)硫印(断面)R R * R* * 4)*

组织酸蚀(纵向和圆面)R R* yes R R * yes 切面评估(剪切火切)

* yes yes

振痕 气泡 yes 角样

蓝幛弯月检验(小断面)

* * * * 特殊成分分析 yes yes

2)例如:弯曲挤压或皮下裂纹 3)如:中心线裂纹 4)如:脱铝低碳钢

R 根据内部标准图评估 * 在一定条件下评估 1.10.3取样及检验 1.10.3.1入中包前取样

包括所有至大包到连铸平台,为确定温度合乎和钢水化学成分的样.基于上面的化学成分可计算出相应炉号的液相线温度.在大包处理站的EMF测温取样(CELO+样)装置使镇静钢脱S成为可能.1.10.3.2中包测温

在拉浇过程中要测几次温度.温度应为液相线上20~30度;当C含量<0.06%,高出液相线30~40度,但如果钢水C含量>0.5,则只高出液相线15~20度.1.10.3.3中包取样

取化学成分样及后面的EMF测温样.开浇后(即过热度消散掉)5-10min取样.1.10.3.4铸坯取样

无检验表面质量的样相反,所有的铸坯在准备热送前或喷沙前都应检验,无论是否打磨或清理,只有经过酸洗才使表面得到大面积处理.除了对切面的评估外应切下300mm长的铸坯.从这一断面上经过酸蚀硫印可取下(碟形样,角样,纵向样)各种样,角样只在高应力铸坯上取.对于高品质的钢种,例如:100Cr6推荐采用以下步骤:每炉取两个样: &第一炉

从外侧一流的第二根坯子取一个样 从里侧一流的第二根坯子上取一个样 &第二炉至倒数的第二炉

从外侧一流的中间一根坯上取一个样 从里侧一流的中间一根坯上取一个样 &最后一炉

从外侧一流倒数第2根坯子上取一个样 从里侧一流倒数第2根坯子上取一个样 注意:如果铸坯送缓冷其取样规则是一样的

对普遍和低等级钢种的建议:每一浇次至少取一样 &第一炉:从2或5流,第二根坯上取一个样.1.10.3.5冶炼缺陷----铸坯缺陷----原因/纠正方法

许多生产条件都会影响产品质量.同时,也要考虑生产工艺和各种质量要求引起如下所列缺陷.根据目前我们的知识和经验,提出一些补救措施.特别是以下参数会引起冶金缺陷: *连铸机大小 *拉浇温度 *拉速 *保护拉浇 *结晶器参数 *振动频率 *振幅

*保护渣/润滑油 *冷却 *铸坯导向

缺陷主要分为两类: *表面缺陷 *内部缺陷

1.10.4.1表面缺陷

生产过程中出现的表面缺陷必须尽早检查到,即: 当铸坯在输出辊道上和后部精整能量回收区.在所有的表面缺陷中,裂纹发生的最多,其被空气氧化后构成很严重的质量问题.在后续热扎中也不能焊合,所以直到扎成材也不能消除.表面裂纹造成材质疏松,可能成为废品,次品及需要大量的表面清理作业.如发生表面裂纹,必须检查相应一流的铸坯导向和结晶器.下面的表面缺陷祥述于后面的章节中: *纵向角裂 *横向角裂 *横向裂纹 *纵向裂纹 *星裂 *振痕 *皮下气泡 *低倍夹渣 *重接 *横向凹陷 *菱形变形 *鼓肚,凹陷

1.10.4.1.1纵向角裂 缺陷/起源的描述: 一般易发生在结晶器下方,由于在角部或靠近角部坯壳成长不充分并形成黑痕.原因 纠正措施 由于结晶器倒锥度不够在角部形成缝隙 改变结晶器倒锥度 结晶器底部极度磨损 更换结晶器 结晶器角部有间隙 更换结晶器 中包温度过高 降低拉速 拉速过高 降低拉速

C含量在包晶区间其S,P高 如可能的话,改变化学成分 1.10.4.1.2横向角裂 缺陷/起源的描述: 极易发生在小断面铸坯结晶器底部,二冷水区,拉伸矫直区,由拉应力引起的.原因 纠正措施

由于倒锥度过大,引起结晶器角部摩擦力过大 改变结晶器倒锥度 角部冷却强度过大 减少角部水量 二冷区温度梯度过大 减少二冷水量

结晶器保护渣/润滑油不足 改变保护渣/增加润滑油加入量 不规则振动 改变振动的运动

短时间溢钢 停浇此流----清理溢钢 结晶器扇形段不准 校弧 矫直温度过低 至少900度

合金元素增加裂纹敏感 如可能的话,改变化学成分 1.10.4.1.3横向裂纹 缺陷/起源的描述: 特别容易发生于小断面裂纹敏感的钢种,由于结晶器底部,二冷水区,拉矫区的拉伸应力而造成的,横向裂纹经常在热坯上就可以发现.原因 纠正措施

由于倒锥度不当,引起摩擦力过大 改变结晶器倒锥度 结晶器表面缺陷 更换结晶器

保护渣/润滑油量不足 改变保护渣/增加润滑油加入量 不规则振动 改变振动台振动

短时间溢钢 停浇此流----清理溢钢 二冷区温度梯度过大 减少二冷水量 纵向拉应力 检查校正弧度 矫直温度过低 至少900度

合金元素增加裂纹敏感 如可能的话,改变化学成分 1.10.4.1.4纵向裂纹 缺陷/起源的描述: 随着张力强度的波动,这些短裂纹常伴有轻微的表面凹陷,常发生于二冷区的上部,在热坯上就可以检测出.原因 纠正措施 拉速过快 降低拉速 拉浇温度过高 降低拉速

保护渣/润滑油量不足 改变保护渣/增加润滑油加入量 结晶器倒锥度不够,结晶器表面缺陷 更换结晶器 变化的振动/拉速 保持稳定值

二冷水温度梯度太大 减少冷却水量 纵向拉应力 检查校正弧度

合金元素增加裂纹敏感性 如有可能改变化学成分 1.10.4.1.4星裂 缺陷/起源的描述: 发生在结晶器底部的坯壳上,只能通过火焰轻度清理,打磨或酸洗后才能检测出,小断面尺寸很少发生.原因 纠正措施

结晶器底部极度磨损 更换结晶器 结晶器镀Cr层磨掉 更换结晶器

保护渣/润滑油量不足 改变保护渣/增加润滑油加入量 由于温度的变化而产生热应力 保持稳定的拉速和水量 二冷水太强 减少二冷水量

由于弧度不当而产生的机械应力 检查校正弧度

1.10.4.1.5异常的振痕 缺陷/起源的描述: 主要的表面裂纹起源于结晶器顶部,深度的振痕会导致横裂,浅的振痕发生翻皮,轻轻地角磨后就可检查测出.原因 纠正措施 振幅太大 提高频率

保护渣/润滑油量不足 改变保护渣/增加润滑油加入量 结晶器角部有裂纹 更换结晶器

悬壳 改变保护渣/增加润滑油加入量,防止短时间溢钢;避免液面急剧升降.1.10.4.1.6皮下气泡 缺陷/起源的描述: 一种主要的表面缺陷,发生在结晶器内.多数为体积小,气体活性高的,只通过表面清理就可以检测出,间距0.5~3mm不规则分布,圆形的,球形的或椭圆形的,最大为皮下5mm.也包括细孔,针孔.原因 纠正措施

脱氧或脱气不足 干燥合金元素

潮湿的保护渣/润滑油 使用干燥的保护渣/无水润滑油

弯月面的扰动 提高脱氧效率,降低通氩量,增加水口侵入深度 水口插入深度太深,通氩距离太远 抬高中包 耐材潮湿 更好地干燥中间包 拉浇温度太高 降低拉速或停浇

1.10.4.1.7低倍夹渣 缺陷/起源的描述: 主要的表面缺陷,主要的发生在结晶器内,拉浇之初,更换中包之后和拉浇结束时,尺寸为5-10mm,深度为10mm,轻微的表面清理后即可检测到。原因 纠正措施

保护渣不合适(粘度,流动性及熔点不对)更换保护渣 保护渣/润滑受潮 干燥保护渣,使用无水润滑油 耐材过度磨损 更换中包包衬

弯月面的扰动 增强脱氧效果,降低氩气量,增加水口侵入深度 拉浇温度过低 增加拉速,更换大包

Mn硅酸盐的凝结物 检查Mn/Si比,使用EMS

1.10.4.1.8重接 缺陷/起源的描述: 与振痕类似,多数发生在弯月面区域内夹渣聚集处,深度可达5mm裂纹形状。严重的重接在热坯上可见。原因 纠正措施 振幅太大 增快频率 液位波动 保持液位稳定

水口侵入深度不足或不正确 调节中包高度 拉速变化极快 保持拉速恒定 1.10.4.1.9横向凹陷 缺陷/起源的描述: 与重接类似,发生在结晶器内,大多数情况下都各有不同,在热坯上就克检测出来,凹痕长度达到50mm,深度达到10mm,在同一水平上。原因 纠正措施

拉速变化大 保持拉速稳定

浇注液位变化太大 保持弯月面液位恒定

1.10.4.1.10菱形 缺陷/起源的描述: 易发于小断面铸坯的包晶或高碳钢,起源于结晶器内或二冷区内。原因 纠正措施

两相邻结晶器壁的冷却强度不同 更换结晶器

由于变形在二冷区产生拉伸应力 仔细调节结晶器足辊以限制拉应力 结晶器过冷 增加Δ-T,增加拉速 偏心浇注 对中注流中心

1.10.4.1.11鼓肚 缺陷/起源的描述: 发生在铸坯支撑区域,特别是大断面铸坯,严重的鼓肚(凹陷)会导致内部缺陷(角裂)原因 纠正措施

铸坯支撑段太短 增长铸坯支撑的长度

相对于坯壳的厚度,支撑辊间距太大 缩短辊间距,或增加支撑辊 拉速太快 降低拉速 拉浇温度太高 降低拉速 偏心浇注 对中注流中心 拉矫机压力过大 降低压力

1.10.4.1.12凹陷

纵向凹陷宽5-20mm,深度达到4mm长度为几米,由于保护渣粘度太大,发生在弯月面区,由于保护渣产生分离的效果,形成二层薄的球子晶会在二冷区引起凹陷,张力和内部裂纹。火焰清理会使内部裂纹开裂。原因 纠正措施

保护渣不当 更换保护渣

弯月面内扰动 提高脱氧效果,减少通氩量,增加水口深度 偏心浇注 对中注流中心

1.10.4.2.1内部缺陷

如果是严重的内部缺陷,通常在火切机就应检验出来,如较重的分层,夹渣,偏析。通常是在取样后检测出来的。

发生较频繁的内部缺陷是内裂,中心偏析,氧化物夹杂和中心疏松。这些缺陷的原因为材料,拉浇工艺和设备。特别是凝固条件会产生很多缺陷。

凝固组织的描述:

球状边缘区细结晶体是由结晶器的热吸收而形成的。

柱状树枝晶区是由局部冷却到凝固点以下而形成的,晶体沿着温降的方向成长。晶体的宽度受二冷水量和中包过热度的影响。球状心部区域在过冷区形成,由于铸坯中心低温降而产生的。如果无此区可能是过热度太高而且是对柱状晶敏感的钢种。

钢中的杂质和离析物被推向树枝晶的前沿并形成结晶体的晶核。我们对下列部分内部缺陷进行说明: *中间裂纹 *角裂

*三角点裂纹 *中心裂纹 *对角线裂纹 *挤压裂纹 *弯曲矫直裂纹 *冷裂

*近表面偏析线 *缩孔和中心疏松 *中心偏析 *非金属夹渣

1.10.4.2.2中间裂纹 缺陷/起源描述:

位于表面和铸坯中心的中间,起源于二冷区后的区域。出现率受钢种的化学成分的影响。如果二冷区过冷和铸坯回热,拉浇温度高产生裂纹。原因 纠正措施

二冷水过强 减少二冷水量 拉速太低 拉高拉速

结晶器过冷 提高Δ-T,提高拉速

坯壳回热 检查二冷水的分配,检查可能堵塞的喷嘴

结晶器倒锥度不足 检查结晶器倒锥度,检查结晶器的磨损情况 钢种对裂纹敏感 如有可能,改变化学成分

1.10.4.2.3角裂

缺陷/起源描述:如果在结晶器内有较大的菱形或二冷区有鼓肚,在二相区脆弱的树枝状凝固组织在靠近角部形成裂纹,多发于大断面铸坯上。原因 纠正措施

相对于坯壳厚度支撑辊间距太大 缩短间距,降低拉速 支撑辊太短 增长支撑辊长度,降低拉速

结晶器倒锥度不足 改变倒锥度,检查结晶器磨损情况 相邻两边冷却强度不同 检查结晶器几何形状 偏心注流 对中注流中心

1.10.4.2.4三角点裂纹 缺陷/起源描述:

发生与凝固前沿相遇区,由于鼓肚产生拉伸应力而引起的,同时也产生窄边偏析。原因 纠正措施

铸坯支撑太短 增加铸坯支撑长度,降低拉速

相对于坯壳厚度支撑辊间距太大 缩短辊间距,增加辊子,降低拉速

Mn含量太高(Mn最大为0.9%,Mn/S比最小为30/1)如有可能改变化学成分

1.10.4.2.5中心裂纹 缺陷/起源描述:

中心裂纹在凝固前沿由分层,(H)裂及许多铸坯中心树枝不规则二冷缩孔所构成.原因 纠正措施

由凝固末期温度梯度过高,在相邻之间形成收缩和张力 减少二冷水量或增快拉速

缩孔由于成分分离后,从树枝晶间或松散的晶体聚集处的偏析成分而形成的 拉浇温度太高 液芯末端的辊子偏斜 检查辊子对正

1.10.4.2.5对角线裂纹 缺陷/起源描述:

特别多见于小断面铸坯,经常发生于菱形的小方坯,在钝形边上,起源结晶器,或二冷区,裂纹的长度取决于应力的强度和间距.原因 纠正措施

相邻两边冷却强度不同 检查结晶器冷却

倒锥度不足 更换结晶器,检查结晶器磨损情况 拉速太低 提高拉速

结晶器内过冷 提高ΔT,提高拉速

坯壳回热 检查二冷水的分布,检查可能堵塞的喷嘴

1.10.4.2.5挤压裂纹 缺陷/起源描述:

如液芯在变形区较粗时,挤压裂纹为垂直铸坯轴心线的方向.如液芯在变形区较细时,其为平行压辊轴线方向,大多数裂纹被残余钢水填充(=压力裂纹)原因 纠正措施

输送辊不对正 检查辊子对中情况 挤压辊处的变形太大 降低液压缸压力

1.10.4.2.6弯曲矫直裂纹 缺陷/起源描述:

频发于铸坯有张力的两侧,顺着铸坯中心的方向,经常发生于铸坯底侧(连铸外侧),当在弯曲的应力和内弧的矫直应力超过坯壳的塑变后面产生弯曲矫直裂纹.原因 纠正措施

辊子移位 检查设备对中

矫直温度太低(应大于850度)提高拉速,在快换中包时停掉二冷水

1.10.4.2.7冷裂 缺陷/起源描述:

发生在结晶器内靠近铸坯的表面,或是在二冷区,铸坯中心,大多数情况与铸坯同向.原因 纠正措施

倒锥度不足 更换结晶器,检查结晶器磨损情况 拉速太低 提高拉速

结晶器内过冷 提高ΔT,提高拉速 二冷水过强 减少冷却水量

1.10.4.2.7靠近表面的偏析线 缺陷/起源描述:

三角点裂纹和冷却裂纹由于被偏析残余钢水填充而形成偏析线,由于漂浮的作用夹渣也能在内部上方形成偏析线.原因 纠正措施

拉浇温度过低 提高拉速/更换大包 拉浇温度过高 降低拉速/使用EMS 弯月面扰动严重 提高钢水脱氧能力,减少通氩量,增加水口侵入深度

中包工作层耐材不好 更换材料,中包不满一半不开浇,保持中包液位不低于200mm.

第四篇:0005 连铸检测和控制八大技术

连铸检测和控制八大技术

连铸检测和控制八大技术

连铸的特点之一是易于实现自动化。实行自动化的目的在于改善操作人员的工作环境,减轻劳动强度,减少人为因素对生产过程的干扰,保证连铸生产和铸坯质量的稳定,优化生产过程和生产计划,从而降低成本。自上世纪80年代以来,冶金自动化装备技术的可靠性、实用性、可操作性和可维护性都得到极大的改善,不断提高的性能价格比使冶金自动化装备技术得到快速推广应用。目前,连铸自动化系统基本上包括信息级、生产管理级、过程控制级和设备控制级。信息级的主要功能是搜集、统计生产数据供管理人员研究和作出决策;生产管理级主要是对生产计划进行管理和实施,指挥过程计算机执行生产任务;过程控制级接收设备控制级提供的各类数据和设备状态,指导和优化设备控制过程;设备控制级指挥现场的各种设备(如塞棒、滑动水口、拉矫机、切割设备等)按照工艺要求完成相应的生产操作。其中,设备控制级和过程控制级自动化最为关键,直接关系到连铸机生产是否顺畅和连铸坯的质量。目前,在国内外连铸机上已成功应用的检测和控制的自动化技术主要包括以下几种:

1.钢流夹渣检测技术当大包到中间包的长水口或中间包到结晶器的浸入式水口中央带渣子时,表明大包或中间包中的钢水即将浇完,需尽快关闭水口,否则钢渣会进入中间包或结晶器中。目前,常用的夹渣检测装置有光导纤维式和电磁感应式。检测装置可与塞棒或滑动水口的控制装置形成闭环控制,当检测到下渣信号自动关闭水口,防止渣子进入中间包或结晶器。

2.中间包连续测温测定中间包内钢水温度的传统方法是操作人员将快速测温热电偶插人中间包钢液中,由二次仪表显示温度。热电偶为一次性使用,一般每炉测温3至5次。如果采用中间包加热技术,加热过程中需随时监测中间包内钢液温度,则连续测温装置更是必不可少。目前,比较常用的中间包连续测温装置是使用带有保护套管的热电偶,保护套管的作用是避免热电偶与钢液接触。热电偶式连续测温的原理较为简单,关键的问题是如何提高保护套管的使用寿命和缩短响应时间。国外较为成熟的中间包连续测温装置的保护套管的使用寿命可达几百小时。国内有少量连铸机采用国产的中间包连续测温装置,使用性能基本满足中间包测温要求。

3.结晶器液面检测与自动控制结晶器液面波动会使保护渣卷入钢液中,引起铸坯的质量问题,严重时导致漏钢或溢钢。结晶器液面检测主要有同位素式、电磁式、电涡流式、激光式、热电偶式、超声波式、工业电视法等。其中,同位素式液面检测技术最为成熟、可靠,在生产中采用较多。液面自动控制的方式大致可分为三种类型:一是通过控制塞棒升降高度来调节流入结晶器内钢液流量;二是通过控制拉坯速度使结晶器内钢水量保持恒定;三是前两种构成的复合型。

4.结晶器热流监测与漏钢预报技术在连铸生产中,漏钢是一种灾难性的事故,不仅使连铸生产中断,增加维修工作量,而且常常损坏机械设备。粘结漏钢是连铸中出现最为频繁的一种漏钢事故。为了预报由粘结引起的漏钢,国内外根据粘结漏钢形成机理开发了漏钢预报装置。当出现粘结性漏钢时,粘结处铜板的温度升高。根据这一特点,在结晶器铜板上安装几排热电偶,将热电偶测得的温度值输入计算机中,计算机根据有关的工艺参数按一定的逻辑进行处理,对漏钢进行预报。根据漏钢的危险程度不同,可采取降低拉速或暂时停浇的措施,待漏钢危险消除后恢复正常拉速。采用热流监测与漏钢预报系统可大大降低漏钢频率。比利时的Sidmar钢厂板坯连铸机自1991年安装了结晶器热流监测与漏钢预报系统后,粘结漏钢由每年的14次降低为1次。此外,热流监测系统还能够根据结晶器内热流状况预报纵裂发生的可能性以及发生的位置。同时,因为保护渣的性能影响结晶器的热流,故热流监测系统所收集的热流数据可用来比较保护渣的性能,为选择合适的保护渣提供依据。

5.二冷水自动控制同一台连铸机在开浇、浇铸不同钢种以及拉速变化时需要及时对二冷水量进行适当调整。早期连铸采用手动调节阀门来改变二冷水量,人为因素影响很大,在改变拉速时往往来不及调整,造成铸坯冷却不均匀。二冷水的自动控制方法主要可分为静态控制法和动态控制法两类。静态控制法一般是利用数学模型,根据所浇铸的断面、钢种、拉速、过热度等连铸工艺条件计算冷却水量,将计算的二冷水数据表存入计算机中,在生产工艺条件变化时计算机按存入的数据找出合适的二冷水控制量,调整二冷强度。静态控制法是目前广泛采用的二冷水控制方法,在稳定生产时基本能够满足要求。根据二冷区铸坯的实际情况及时改变二冷水的控制方法为动态控制。目前能够测得的铸坯温度仅为表面温度,如果能够准确测得铸坯的表面温度,则可根据表面温度对二冷水及时调整。但是,铸坯表面覆盖的一层氧化铁皮、水膜以及二冷区存在的大量水蒸气严重影响测量结果的准确性。因此,在实际生产中根据实测的铸坯表面温度进行动态控制的方法很少被采用。比较可行的方法是进行温度推算控制法。温度推算控制法的思路是将铸坯整个长度分成许多小段,根据铸坯凝固传热数学模型每隔一定时间(例如20秒)计算出每一小段的温度,然后与预先设定的铸坯所要求的最佳温度相比较,根据比较结果给出最合适的冷却水量。在二十世纪80年代中后期,欧洲、日本以及美国的一些先进的连铸机已逐步采用二冷动态控制系统。我国现有的大部分铸机采用静态控制法控制二冷水量,引进的现代化板坯连铸机、薄板坯连铸机等一般采用温度推算动态控制法进行二冷水的调节。

6.铸坯表面缺陷自动检测连铸坯的表面缺陷直接影响轧制成品的表面质量,热装热送或直接轧制工艺要求铸坯进加热炉或均热炉必须无缺陷。因此,必须进行表面质量在线检测,将有缺陷的铸坯筛选出来进一步清理,缺陷严重的要判废。目前,比较成熟的检测方法有光学检测法和涡流检测法。光学检测法是用摄像机获取铸坯表面的图像,图像经过处理后,去掉振痕及凹凸不平等信号,只留下裂纹信号在显示器上显示,经缩小比例后在打印机上打印出图形,打印纸的速度与铸坯同步。操作人员观察打印结果对铸坯表面质量做出判断,决定切割尺寸并决定是否可直接热送。当裂纹大于预定值时,应调整切割长度,将该部分切除,尽可能增加收得率。涡流检测法利用铸坯有缺陷部位的电导率和磁导率产生变化的原理来检测铸坯的表面缺陷。

7.铸坯质量跟踪与判定铸坯质量跟踪与判定系统是对所有可能影响铸坯质量的大量工艺参数进行收集与整理,得到不同钢种、不同质量要求的各种产品的工艺数据的合理控制范围,将这些参数编制成数学模型存入计算机中。生产时计算机对浇铸过程的有关参数进行跟踪,根据一定的规则(即从生产实践中总结归纳出来的工艺参数与质量的关系)给出铸坯的质量指标,与生产要求的合理范围进行对比,给出产品质量等级。在铸坯被切割时,可以在铸机上打出标记,操作人员可以根据这些信息对铸坯进一步处理。

8.动态轻压下控制轻压下是在线改变铸坯厚度、提高内部质量的有效手段,主要用于现代化的薄板坯连铸中。带轻压下功能的扇形段的压下过程由液压缸来完成,对液压缸的控制非常复杂,需要计算机根据钢种、拉速、浇铸温度、二冷强度等工艺参数计算出最佳的压下位置以及每个液压缸开始压下的时间、压下的速度。目前,国内薄板坯连铸机动态轻压下的设备及控制系统均全套引进。总体上讲,我国的连铸自动化水平与欧、美、日等发达国家相比还相当落后。发达国家的连铸机正朝着全自动、智能化、无人浇铸的方向发展。连铸机的操作人员越来越少。例如,奥钢联林茨厂1997年投产的年产量为120万吨的单流板坯连铸机只有5名操作人员(同类铸机为9人)和两个操作站(一般为5个)。开浇、钢包和保护渣等操作、温度测量、机械手取样、缺陷分析、结晶器液面控制、中间包浸入式水口的更换、漏钢预报、火焰切割、打印标记机的操作等所有运行区域的操作都自动运行。国内除了少数引进和近年来新建的连铸机自动化水平较高以外,其它连铸机基本靠常规仪表和一般电气设备进行控制,计算机控制的项目较少,很多靠手动控制。从普及的程度来看,二冷自动配水已为国内大多数铸机所采用,其次为结晶器液面检测与自动控制。近年来,已有少数连铸机采用中间包连续测温技术,但其它如钢流夹渣检测、结晶器热流监测与漏钢预报、铸坯表面缺陷自动检测、铸坯质量跟踪与判定系统等则很少被采用。从总体趋势看,连铸机的产量越来越高,铸坯质量也越来越好,但连铸机的操作人员却越来越少,这是实现自动化控制的必然结果。因此,如何提高连铸机的自动化水平是摆在国内钢铁企业面前的一个不容忽视的问题。

第五篇:连铸检测和控制八大技术(定稿)

连铸检测和控制八大技术

连铸的特点之一是易于实现自动化。实行自动化的目的在于改善操作人员的工作环境,减轻劳动强度,减少人为因素对生产过程的干扰,保证连铸生产和铸坯质量的稳定,优化生产过程和生产计划,从而降低成本。自上世纪80年代以来,冶金自动化装备技术的可*性、实用性、可操作性和可维护性都得到极大的改善,不断提高的性能价格比使冶金自动化装备技术得到快速推广应用。目前,连铸自动化系统基本上包括信息级、生产管理级、过程控制级和设备控制级。信息级的主要功能是搜集、统计生产数据供管理人员研究和作出决策;生产管理级主要是对生产计划进行管理和实施,指挥过程计算机执行生产任务;过程控制级接收设备控制级提供的各类数据和设备状态,指导和优化设备控制过程;设备控制级指挥现场的各种设备(如塞棒、滑动水口、拉矫机、切割设备等)按照工艺要求完成相应的生产操作。其中,设备控制级和过程控制级自动化最为关键,直接关系到连铸机生产是否顺畅和连铸坯的质量。目前,在国内外连铸机上已成功应用的检测和控制的自动化技术主要包括以下几种: 1.钢流夹渣检测技术

当大包到中间包的长水口或中间 包到结晶器的浸入式水口中央带渣子时,表明大包或中间包中的钢水即将浇完,需尽快关闭水口,否则钢渣会进入中间包或结晶器中。目前,常用的夹渣检测装置有光导纤维式和电磁感应式。检测装置可与塞棒或滑动水口的控制装置形成闭环控制,当检测到下渣信号自动关闭水口,防止渣子进入中间包或结晶器。2.中间包连续测温

测定中间包内钢水温度的传统方法是操作人员将快速测温热电偶插人中间包钢液中,由二次仪表显示温度。热电偶为一次性使用,一般每炉测温3至5次。如果采用中间包加热技术,加热过程中需随时监测中间包内钢液温度,则连续测温装置更是必不可少。目前,比较常用的中间包连续测温装置是使用带有保护套管的热电偶,保护套管的作用是避免热电偶与钢液接触。热电偶式连续测温的原理较为简单,关键的问题是如何提高保护套管的使用寿命和缩短响应时间。国外较为成熟的中间包连续测温装置的保护套管的使用寿命可达几百小时。国内有少量连铸机采用国产的中间包连续测温装置,使用性能基本满足中间包测温要求。3.结晶器液面检测与自动控制

结晶器液面波动会使保护渣卷入钢液中,引起铸坯的质量问题,严重时导致漏钢或溢钢。结晶器液面检测主要有同位素式、电磁式、电涡流式、激光式、热电偶式、超声波式、工业电视法等。其中,同位素式液面检测技术最为成熟、可*,在生产中采用较多。液面自动控制的方式大致可分为三种类型:一是通过控制塞棒升降高度来调节流入结晶器内钢液流量;二是通过控制拉坯速度使结晶器内钢水量保持恒定;三是前两种构成的复合型。4.结晶器热流监测与漏钢预报技术

在连铸生产中,漏钢是一种灾难性的事故,不仅使连铸生产中断,增加维修工作量,而且常常损坏机械设备。粘结漏钢是连铸中出现最为频繁的一种漏钢事故。为了预报由粘结引起的漏钢,国内外根据粘结漏钢形成机理开发了漏钢预报装置。当出现粘结性漏钢时,粘结处铜板的温度升高。根据这一特点,在结晶器铜板上安装几排热电偶,将热电偶测得的温度值输入计算机中,计算机根据有关的工艺参数按一定的逻辑进行处理,对漏钢进行预报。根据漏钢的危险程度不同,可采取降低拉速或暂时停浇的措施,待漏钢危险消除后恢复正常拉速。采用热流监测与漏钢预报系统可大大降低漏钢频率。比利时的Sidmar钢厂板坯连铸机自1991年安装了结晶器热流监测与漏钢预报系统后,粘结漏钢由每年的14次降低为1次。此外,热流监测系统还能够根据结晶器内热流状况预报纵裂发生的可能性以及发生的位置。同时,因为保护渣的性能影响结晶器的热流,故热流监测系统所收集的热流数据可用来比较保护渣的性能,为选择合适的保护渣提供依据。

5.二冷水自动控制

同一台连铸机在开浇、浇铸不同钢种以及拉速变化时需要及时对二冷水量进行适当调整。早期连铸采用手动调节阀门来改变二冷水量,人为因素影响很大,在改变拉速时往往来不及调整,造成铸坯冷却不均匀。二冷水的自动控制方法主要可分为静态控制法和动态控制法两类。静态控制法一般是利用数学模型,根据所浇铸的断面、钢种、拉速、过热度等连铸工艺条件计算冷却水量,将计算的二冷水数据表存入计算机中,在生产工艺条件变化时计算机按存入的数据找出合适的二冷水控制量,调整二冷强度。静态控制法是目前广泛采用的二冷水控制方法,在稳定生产时基本能够满足要求。根据二冷区铸坯的实际情况及时改变二冷水的控制方法为动态控制。目前能够测得的铸坯温度仅为表面温度,如果能够准确测得铸坯的表面温度,则可根据表面温度对二冷水及时调整。但是,铸坯表面覆盖的一层氧化铁皮、水膜以及二冷区存在的大量水蒸气严重影响测量结果的准确性。因此,在实际生产中根据实测的铸坯表面温度进行动态控制的方法很少被采用。比较可行的方法是进行温度推算控制法。温度推算控制法的思路是将铸坯整个长度分成许多小段,根据铸坯凝固传热数学模型每隔一定时间(例如20秒)计算出每一小段的温度,然后与预先设定的铸坯所要求的最佳温度相比较,根据比较结果给出最合适的冷却水量。在二十世纪80年代中后期,欧洲、日本以及美国的一些先进的连铸机已逐步采用二冷动态控制系统。我国现有的大部分铸机采用静态控制法控制二冷水量,引进的现代化板坯连铸机、薄板坯连铸机等一般采用温度推算动态控制法进行二冷水的调节。

6.铸坯表面缺陷自动检测

连铸坯的表面缺陷直接影响轧制成品的表面质量,热装热送或直接轧制工艺要求铸坯进加热炉或均热炉必须无缺陷。因此,必须进行表面质量在线检测,将有缺陷的铸坯筛选出来进一步清理,缺陷严重的要判废。目前,比较成熟的检测方法有光学检测法和涡流检测法。光学检测法是用摄像机获取铸坯表面的图像,图像经过处理后,去掉振痕及凹凸不平等信号,只留下裂纹信号在显示器上显示,经缩小比例后在打印机上打印出图形,打印纸的速度与铸坯同步。操作人员观察打印结果对铸坯表面质量做出判断,决定切割尺寸并决定是否可直接热送。当裂纹大于预定值时,应调整切割长度,将该部分切除,尽可能增加收得率。涡流检测法利用铸坯有缺陷部位的电导率和磁导率产生变化的原理来检测铸坯的表面缺陷。

下载不锈钢连铸技术与质量控制word格式文档
下载不锈钢连铸技术与质量控制.doc
将本文档下载到自己电脑,方便修改和收藏,请勿使用迅雷等下载。
点此处下载文档

文档为doc格式


声明:本文内容由互联网用户自发贡献自行上传,本网站不拥有所有权,未作人工编辑处理,也不承担相关法律责任。如果您发现有涉嫌版权的内容,欢迎发送邮件至:645879355@qq.com 进行举报,并提供相关证据,工作人员会在5个工作日内联系你,一经查实,本站将立刻删除涉嫌侵权内容。

相关范文推荐

    连铸技术的发展

    内蒙古科技大学 本科生课程论文 题 目:连铸技术的发展 学生姓名: 学 号: 专 业:09成型 班 级: 指导教师:邢淑清 连铸技术的发展 摘要:介绍了连铸的历史、发展、及其优点,主要阐述了......

    高品质连铸坯生产工艺与装备技术

    高品质连铸坯生产工艺与装备技术 【摘要】 对生产这些高性能品种钢的铸坯母材质量及尺寸的要求也日益提高,集中体现为铸坯表面的微缺陷化、铸坯内部的高致密度与均质化以及断......

    连铸坯质量考核制度(精选五篇)

    连铸钢坯质量考核制度 为了加强连铸坯质量管理,确保下道工序正常生产,结合实际生产需要,现制定连铸坯质量考核制度: 1、 钢坯五大元素的控制,应严格按照公司内控标准执行,五大元......

    异形坯连铸技术的最新进展

    异形坯连铸技术的最新进展 由于异形坯连铸技术将炼钢、精炼、异形坯连铸机和轧机紧凑式布置,形成钢梁生产新工艺(CBP)而迅速发展。该工艺将异形坯直接热装入加热炉,与传统方坯......

    不锈钢质量保证书

    质 量 承 诺 书 致江苏省江建集团有限公司: 我公司对不锈钢产品质量保证承诺: 1、 保证原材料是全新的、未使用过的,并完全符合合同规定的质量、规格和性能的要求。 2、 服从现......

    连铸工艺质量考核规定(5篇可选)

    连铸工艺质量考核规定 为加强连铸工艺质量控制,减少生产环节中,因人为操作失误带来的质量废品,连铸车间今后要严格执行相关工艺要求: (1)、镁质涂抹料中包烘烤时,机长要安排专人负......

    关于炼钢厂连铸扇形段技术协议

    修 复技术协议 甲方:本钢炼钢厂机动科 乙方 甲、乙双方就甲方连铸一车间扇形段内外弧框架修复事宜,达成如下修复技术协议: 一:修复范围 8段外弧框架(修复) 27.40.20-1200 1台......

    连铸岗位安全技术操作规程(全文5篇)

    浇钢工安全技术操作规程 一、 准备 1、 摆槽砌筑一侧靠严、塞好,所有接缝处抹泥。 2、 摆槽角度要求头板距滑件距离不小于100mm,尾部不影响开车。 3、 中间包对中前必须清扫干......