金属材料的性能

时间:2019-05-13 08:49:33下载本文作者:会员上传
简介:写写帮文库小编为你整理了多篇相关的《金属材料的性能》,但愿对你工作学习有帮助,当然你在写写帮文库还可以找到更多《金属材料的性能》。

第一篇:金属材料的性能

金属材料的性能决定着材料的适用范围及应用的合理性。金属材料的性能主要分为四个方面,即:机械性能、化学性能、物理性能、工艺性能。一.机械性能

(一)应力的概念

物体内部单位截面积上承受的力称为应力。由外力作用引起的应力称为工作应力,在无外力作用条件下平衡于物体内部的应力称为内应力(例如组织应力、热应力、加工过程结束后留存下来的残余应力…等等)。

(二)机械性能

金属在一定温度条件下承受外力(载荷)作用时,抵抗变形和断裂的能力称为金属材料的机械性能(也称为力学性能)。金属材料承受的载荷有多种形式,它可以是静态载荷,也可以是动态载荷,包括单独或同时承受的拉伸应力、压应力、弯曲应力、剪切应力、扭转应力,以及摩擦、振动、冲击等等,因此衡量金属材料机械性能的指标主要有以下几项: 1.强度

这是表征材料在外力作用下抵抗变形和破坏的最大能力,可分为抗拉强度极限(σb)、抗弯强度极限(σbb)、抗压强度极限(σbc)等。由于金属材料在外力作用下从变形到破坏有一定的规律可循,因而通常采用拉伸试验进行测定,即把金属材料制成一定规格的试样,在拉伸试验机上进行拉伸,直至试样断裂,测定的强度指标主要有:

(1)强度极限:材料在外力作用下能抵抗断裂的最大应力,一般指拉力作用下的抗拉强度极限,以σb表示,如拉伸试验曲线图中最高点b对应的强度极限,常用单位为兆帕(MPa),换算关系有:1MPa=1N/m2=(9.8)-1Kgf/mm2或1Kgf/mm2=9.8MPa σb=Pb/Fo 式中:Pb–至材料断裂时的最大应力(或者说是试样能承受的最大载荷);Fo–拉伸试样原来的横截面积。

(2)屈服强度极限:金属材料试样承受的外力超过材料的弹性极限时,虽然应力不再增加,但是试样仍发生明显的塑性变形,这种现象称为屈服,即材料承受外力到一定程度时,其变形不再与外力成正比而产生明显的塑性变形。产生屈服时的应力称为屈服强度极限,用σs表示,相应于拉伸试验曲线图中的S点称为屈服点。

金属材料的拉伸试验曲线

σs=Ps/Fo 单位:兆帕(MPa)式中:Ps –达到屈服点S处的外力(或者说材料发生屈服时的载荷)。

对于塑性高的材料,在拉伸曲线上会出现明显的屈服点,而对于低塑性材料则没有明显的屈服点,从而难以根据屈服点的外力求出屈服极限。因此,在拉伸试验方法中,通常规定试样上的标距长度产生0.2%塑性变形时的应力作为条件屈服极限,用σ0.2表示。

屈服极限指标可用于要求零件在工作中不产生明显塑性变形的设计依据。但是对于一些重要零件还考虑要求屈强比(即σs /σb)要小,以提高其安全可靠性,不过此时材料的利用率也较低了。

(3)弹性极限:材料在外力作用下将产生变形,但是去除外力后仍能恢复原状的能力称为弹性。金属材料能保持弹性变形的最大应力即为弹性极限,相应于拉伸试验曲线图中的e点,以σe表示,单位为兆帕(MPa):σe=Pe/Fo 式中Pe为保持弹性时的最大外力(或者说材料最大弹性变形时的载荷)。

(4)弹性模数:这是材料在弹性极限范围内的应力σ与应变δ(与应力相对应的单位变形量)之比,用E表示,单位兆帕(MPa):E=σ/δ=tgα 式中α为拉伸试验曲线上o-e线与水平轴o-x的夹角。

弹性模数是反映金属材料刚性的指标(金属材料受力时抵抗弹性变形的能力称为刚性)。2.塑性

金属材料在外力作用下产生永久变形而不破坏的最大能力称为塑性,通常以拉伸试验时的试样标距长度延伸率δ(%)和试样断面收缩率ψ(%)表示:

延伸率δ=[(L1-L0)/L0]x100%,这是拉伸试验时试样拉断后将试样断口对合起来后的标距长度L1与试样原始标距长度L0之差(增长量)与L0之比。

在实际试验时,同一材料但是不同规格(直径、截面形状-例如方形、圆形、矩形以及标距长度)的拉伸试样测得的延伸率会有不同,因此一般需要特别加注,例如最常用的圆截面试样,其初始标距长度为试样直径5倍时测得的延伸率表示为δ5,而初始标距长度为试样直径10倍时测得的延伸率则表示为δ10。断面收缩率ψ=[(F0-F1)/F0]x100%,这是拉伸试验时试样拉断后原横截面积F0与断口细颈处最小截面积F1之差(断面缩减量)与F0之比。实用中对于最常用的圆截面试样通常可通过直径测量进行计算:ψ=[1-(D1/D0)2]x100%,式中:D0-试样原直径;D1-试样拉断后断口细颈处最小直径。δ与ψ值越大,表明材料的塑性越好。3.硬度

金属材料抵抗其他更硬物体压入表面的能力称为硬度,或者说是材料对局部塑性变形的抵抗能力。因此,硬度与强度有着一定的关系。根据硬度的测定方法,主要可以分为:

(1)布氏硬度(代号HB)

用一定直径D的淬硬钢球在规定负荷P的作用下压入试件表面,保持一段时间后卸去载荷,在试件表面将会留下表面积为F的压痕,以试件的单位表面积上能承受负荷的大小表示该试件的硬度:HB=P/F。在实际应用中,通常直接测量压坑的直径,并根据负荷P和钢球直径D从布氏硬度数值表上查出布氏硬度值(显然,压坑直径越大,硬度越低,表示的布氏硬度值越小)。

布氏硬度与材料的抗拉强度之间存在一定关系:σb≈KHB,K为系数,例如对于低碳钢有K≈0.36,对于高碳钢有K≈0.34,对于调质合金钢有K≈0.325,…等等。

(2)洛氏硬度(HR)

用有一定顶角(例如120°)的金刚石圆锥体压头或一定直径D的淬硬钢球,在一定负荷P作用下压入试件表面,保持一段时间后卸去载荷,在试件表面将会留下某个深度的压痕。由 洛氏硬度机自动测量压坑深度并以硬度值读数显示(显然,压坑越深,硬度越低,表示的洛氏硬度值越小)。根据压头与负荷的不同,洛氏硬度还分为HRA、HRB、HRC三种,其中以HRC为最常用。洛氏硬度HRC与布氏硬度HB之间有如下换算关系:HRC≈0.1HB。

除了最常用的洛氏硬度HRC与布氏硬度HB之外,还有维氏硬度(HV)、肖氏硬度(HS)、显微硬度以及里氏硬度(HL)。

这里特别要说明一下关于里氏硬度,这是目前最新颖的硬度表征方法,利用里氏硬度计进行测量,其检测原理是:

里氏硬度计的冲击装置将冲头从固定位置释放,冲头快速冲击在试件表面上,通过线圈的电磁感应测量冲头距离试件表面1毫米处的冲击速度与反弹速度(感应为冲击电压和反弹电压),里氏硬度值即以冲头反弹速度和冲击速度之比来表示:HL=(Vr/Vi)·1000

式中:HL-里氏硬度值;Vr-冲头反弹速度;Vi-冲头冲击速度(注:实际应用装置中是以冲击装置中的闭合线圈感应的冲击电压和反弹电压代表冲击速度和反弹速度)。

冲击装置的构造主要有内置弹簧(加载套管,不同型号的冲击装置有不同的冲击能量)、导管、释放按钮、内置线圈与骨架、支撑环以及冲头,冲头主要采用金刚石、碳化钨两种极高硬度的球形(不同型号的冲击装置其冲头直径有不同)。里氏硬度计的主机接收到冲击装置获得的信号进行处理、计算,然后在屏幕上直接显示出里氏硬度值,并且可以换算为常用的布氏、洛氏、维氏、肖氏硬度值,还可折算出材料的抗拉强度σb,还可以将测量结果储存、直接打印输出或传送给计算机作进一步的数据处理。

应用范围:里氏硬度计是一种便携袖珍装置,可应用于各种金属材料、工件的表面硬度测量,特别是大型锻铸件的测量,其最大的特点是可以任意方向检测,免去了普通硬度计对工件大小、测量位置等的限制。

4.韧性

金属材料在冲击载荷作用下抵抗破坏的能力称为韧性。通常采用冲击试验,即用一定尺寸和形状的金属试样在规定类型的冲击试验机上承受冲击载荷而折断时,断口上单位横截面积上所消耗的冲击功表征材料的韧性: αk=Ak/F 单位J/cm2或Kg•m/cm2,1 Kg•m/cm2=9.8 J/cm2

αk称作金属材料的冲击韧性,Ak为冲击功,F为断口的原始截面积。5.疲劳强度极限

金属材料在长期的反复应力作用或交变应力作用下(应力一般均小于屈服极限强度σs),未经显著变形就发生断裂的现象称为疲劳破坏或疲劳断裂,这是由于多种原因使得零件表面的局部造成大于σs甚至大于σb的应力(应力集中),使该局部发生塑性变形或微裂纹,随着反复交变应力作用次数的增加,使裂纹逐渐扩展加深(裂纹尖端处应力集中)导致该局部处承受应力的实际截面积减小,直至局部应力大于σb而产生断裂。

在实际应用中,一般把试样在重复或交变应力(拉应力、压应力、弯曲或扭转应力等)作用下,在规定的周期数内(一般对钢取106~107次,对有色金属取108次)不发生断裂所能承受的最大应力作为疲劳强度极限,用σ-1表示,单位MPa。除了上述五种最常用的力学性能指标外,对一些要求特别严格的材料,例如航空航天以及核工业、电厂等使用的金属材料,还会要求下述一些力学性能指标: 蠕变极限:在一定温度和恒定拉伸载荷下,材料随时间缓慢产生塑性变形的现象称为蠕变。通常采用高温拉伸蠕变试验,即在恒定温度和恒定拉伸载荷下,试样在规定时间内的蠕变伸长率(总伸长或残余伸长)或者在蠕变伸长速度相对恒定的阶段,蠕变速度不超过某规定值时的最大应力,作为蠕变极限,以 表示,单位MPa,式中τ为试验持续时间,t为温度,δ为伸长率,σ为应力;或者以 表示,V为蠕变速度。高温拉伸持久强度极限:试样在恒定温度和恒定拉伸载荷作用下,达到规定的持续时间而不断裂的最大应力,以 表示,单位MPa,式中τ为持续时间,t为温度,σ为应力。

金属缺口敏感性系数:以Kτ表示在持续时间相同(高温拉伸持久试验)时,有缺口的试样与无缺口的光滑试样的应力之比: 式中τ为试验持续时间,为缺口试样的应力,为光滑试样的应力。

或者用: 表示,即在相同的应力σ作用下,缺口试样持续时间 与光滑试样持续时间 之比。

抗热性:在高温下材料对机械载荷的抗力。……等等。二.化学性能

金属与其他物质引起化学反应的特性称为金属的化学性能。在实际应用中主要考虑金属的抗蚀性、抗氧化性(又称作氧化抗力,这是特别指金属在高温时对氧化作用的抵抗能力或者说稳定性),以及不同金属之间、金属与非金属之间形成的化合物对机械性能的影响等等。在金属的化学性能中,特别是抗蚀性对金属的腐蚀疲劳损伤有着重大的意义。三.物理性能

金属的物理性能主要考虑:

(1)密度(比重):ρ=P/V 单位克/立方厘米或吨/立方米,式中P为重量,V为体积。

在实际应用中,除了根据密度计算金属零件的重量外,很重要的一点是考虑金属的比强度(强度σb与密度ρ之比)来帮助选材,以及与无损检测相关的声学检测中的声阻抗(密度ρ与声速C的乘积)和射线检测中密度不同的物质对射线能量有不同的吸收能力等等。(2)熔点:

金属由固态转变成液态时的温度,对金属材料的熔炼、热加工有直接影响,并与材料的高温性能有很大关系。(3)热膨胀性

随着温度变化,材料的体积也发生变化(膨胀或收缩)的现象称为热膨胀,多用线膨胀系数衡量,亦即温度变化1℃时,材料长度的增减量与其0℃时的长度之比。

热膨胀性与材料的比热有关。在实际应用中还要考虑比容(材料受温度等外界影响时,单位重量的材料其容积的增减,即容积与质量之比),特别是对于在高温环境下工作,或者在冷、热交替环境中工作的金属零件,必须考虑其膨胀性能的影响。(4)磁性

能吸引铁磁性物体的性质即为磁性,它反映在导磁率、磁滞损耗、剩余磁感应强度、矫顽磁力等参数上,从而可以把金属材料分成顺磁与逆磁、软磁与硬磁材料。(5)电学性能

主要考虑其电导率,在电磁无损检测中对其电阻率和涡流损耗等都有影响。四.工艺性能

金属对各种加工工艺方法所表现出来的适应性称为工艺性能,主要有以下四个方面:

(1)切削加工性能:反映用切削工具(例如车削、铣削、刨削、磨削等)对金属材料进行切削加工的难易程度。

(2)可锻性:反映金属材料在压力加工过程中成型的难易程度,例如将材料加热到一定温度时其塑性的高低(表现为塑性变形抗力的大小),允许热压力加工的温度范围大小,热胀冷缩特性以及与显微组织、机械性能有关的临界变形的界限、热变形时金属的流动性、导热性能等。

(3)可铸性:反映金属材料熔化浇铸成为铸件的难易程度,表现为熔化状态时的流动性、吸气性、氧化性、熔点,铸件显微组织的均匀性、致密性,以及冷缩率等。(4)可焊性:反映金属材料在局部快速加热,使结合部位迅速熔化或半熔化(需加压),从而使结合部位牢固地结合在一起而成为整体的难易程度,表现为熔点、熔化时的吸气性、氧化性、导热性、热胀冷缩特性、塑性以及与接缝部位和附近用材显微组织的相关性、对机械性能的影响等。

第二篇:钽金属的结构与性能研究

钽金属的结构与性能研究

摘 要:钽是电子工业和空间技术发展不可缺少的战略原料,钽以其独特的结构和性质,在骨科医学、电子工业、化学工业和冶金工业有很大的应用。这篇论文主要介绍钽金属的资源、钽金属的制备和钽金属的结构和性质及其应用。

关键字:钽金属;战略原料;资源;制备;结构;应用

0 引言

钽是由瑞典化学家埃克贝里在1802年发现的,按希腊神话人物Tantalus(坦塔罗斯)的名字命名tantalum。1903年德国化学家博尔顿(W.von Bolton)首次制备了塑性金属钽,用作灯丝材料。1940年大容量的钽电容器出现,并在军用通信中广泛应用。第二次世界大战期间,钽的需要量剧增。50年代以后,由于钽在电容器、高温合金、化工和原子能工业中的应用不断扩大,需要量逐年上升,促进了钽的提取工艺的研究和生产的发展。中国于60年代初期建立了钽的冶金工业。美国是钽消费量最大的国家,1997年消费量达500吨,其中60%用于生产钽电容器。日本是钽消费的第二大国,消费量为334吨。21世纪初,随着电容器生产的发展迅速,市场供不应求。预计,世界钽电容器的生产量达2.50亿件,需消费钽1000吨。据美国地质调查局的统计,世界钽探明储量14000吨。其中,澳大利亚4500吨、尼日利亚3200吨、民主刚果1800吨、加拿大1800吨、巴西1400吨。中国资源量,主要分布在江西、福建、新疆、广西、湖南等省。从未来发展的需求看,电容器仍是钽的主要应用领域。如果按储量基础24000吨计算,也只能保证24年的需求。尽管如此,钽资源的前景仍然是看好的。首先,在世界十分丰富的铌矿床中,伴生有大量的钽资源。其中,格陵兰南部加达尔铌、钽矿的钽资源量就达100万吨。其次,西方已开始利用含Ta2O53%以下的大量锡炉渣。此外,代用品的研究和利用也有了很快的发展,如铝和陶瓷在电容器领域代替钽;硅、锗、铯可在电子仪器用途上,代替钽制造整流器等。

在郑州大学先进靶材料实验室的李庆奎老师的团队主要做的是高纯钽金属靶材,做出的金属靶材通过磁控溅射等工艺形成的薄膜广泛应用于电子信息产业。为了更深层次的探究谈金属,我对钽金属的资源、制备、结构、性能和应用进行了探究。钽金属的资源

资源钽和铌的物理化学性质相似,因此共生于自然界的矿物中。划分钽矿或铌矿主要是根据矿物中钽和铌的含量。钽铌矿物的赋存形式和化学成分复杂,其中除钽、铌外,往往还含有稀土金属、钛、锆、钨、铀、钍和锡等。钽的主要矿物有:钽铁矿[(Fe,Mn)(Ta,Nb)2O6]、重钽铁矿、细晶石和黑稀金矿等。炼锡的废渣中含有钽,也是钽的重要资源。已查明世界的钽储量(以钽计)约为134000短吨,扎伊尔占首位。1979年世界钽矿物的产量(以钽计)为 788短吨(1短吨=907.2公斤)。中国从含钽比较低的矿物中提取钽的工艺,并且取得了巨大的成就。钽金属的制备

冶炼方法:钽铌矿中常伴有多种金属,钽冶炼的主要步骤是分解精矿,净化和分离钽、铌,以制取钽、铌的纯化合物,最后制取金属。矿石分解可采用氢氟酸分解法、氢氧化钠熔融法和氯化法等。钽铌分离可采用溶剂萃取法〔常用的萃取剂为甲基异丁基铜(MIBK)、磷酸三丁酯(TBP)、仲辛醇和乙酰胺等〕、分步结晶法和离子交换法。分离:首先将钽铌铁矿的精矿用氢氟酸和硫酸分解钽和铌呈氟钽酸和氟铌酸溶于浸出液中,同时铁、锰、钛、钨、硅等伴生元素也溶于浸出液中,形成成分很复杂的强酸性溶液。钽铌浸出液用甲基异丁基酮萃取钽铌同时萃入有机相中,用硫酸溶液洗涤有机相中的微量杂质,得到纯的含钽铌的有机相洗液和萃余液合并,其中含有微量钽铌和杂质元素,是强酸性溶液,可综合回收。纯的含钽铌的有机相用稀硫酸溶液反萃取铌得到含钽的有机相。铌和少量的钽进入水溶液相中然后再用甲基异丁基酮萃取其中的钽,得到纯的含铌溶液。纯的含钽的有机相用水反萃取就得到纯的含钽溶液。反萃取钽后的有机相返回萃取循环使用。纯的氟钽酸溶液或纯的氟铌酸溶液同氟化钾或氯化钾反应分别生成氟钽酸钾(K2TaF7)和氟铌酸钾(K2NbF7)结晶,也可与氢氧化铵反应生成氢氧化钽或氢氧化铌沉淀。钽或铌的氢氧化物在900~1000℃下煅烧生成钽或铌的氧化物。

钽的制取:①金属钽粉可采用金属热还原(钠热还原)法制取。

在惰性气氛下用金属钠还原氟钽酸钾:K2TaF7+5Na─→Ta+5NaF+2KF。反应在不锈钢罐中进行,温度加热到900℃时,还原反应迅速完成。此法制取的钽粉,粒形不规则,粒度细,适用于制作钽电容器。金属钽粉亦可用熔盐电解法制取:用氟钽酸钾、氟化钾和氯化钾混合物的熔盐做电解质把五氧化二钽(Ta2O5)溶于其中,在750℃下电解,可得到纯度为99.8~99.9%的钽粉。②用碳热还原Ta2O5亦可得到金属钽。还原一般分两步进行:首先将一定配比的Ta2O5和碳的混合物在氢气氛中于1800~2000℃下制成碳化钽(TaC),然后再将TaC和Ta2O5按一定配比制成混合物真空还原成金属钽。金属钽还可采用热分解或氢还原钽的氯化物的方法制取。致密的金属钽可用真空电弧、电子束、等离子束熔炼或粉末冶金法制备。高纯度钽单晶用无坩埚电子束区域熔炼法制取。钽金属的结构与性质

晶体结构:晶胞为体心立方晶胞,每个晶胞含有2个金属原子。晶胞参数: a=330.13pm,b=330.13pm,c=330.13pm,α= 90°,β = 90°,γ = 90°,莫氏硬度:6.5,熔点:2996℃。钽的质地十分坚硬,硬度可以达到6-6.5。它的熔点高达2996℃,仅次于碳,钨,铼和锇,位居第五。钽富有延展性,可以拉成细丝式制薄箔。其热膨胀系数很小,每升高一摄氏度只膨胀百万分之六点六。除此之外,它的韧性很强,比铜还要优异。

物理性质:质地十分坚硬、富有延展性。化学性质:钽还有非常出色的化学性质,具有极高的抗腐蚀性,无论是在冷和热的条件下,对盐酸、浓硝酸及“王水”都不反应。但钽在热的浓硫酸中能被腐蚀,在150℃以下,钽不会被浓硫酸腐蚀,只有在高于此温度才会有反应,在175度的浓硫酸中1年,被腐蚀的厚度为0.0004毫米,将钽放入200℃的硫酸中浸泡一年,表层仅损伤0.006毫米。在250度时,腐蚀速度有所增加,为每年被腐蚀的厚度为SDS毫米,在300度时,被腐蚀的速度则更加快,浸泡1年,表面被腐蚀1.368毫米。在发烟硫酸(含15%的SO3)腐蚀速度比浓硫酸中更加严重,在130度的该溶液里浸泡1年,表面被腐蚀的厚度为15.6毫米。钽在高温下也会被磷酸腐蚀,但该反应一般在150度以上才发生,在250度的85%的磷酸中,浸泡1年SS,表面被腐蚀20毫米,另外,钽在

氢氟酸和硝酸的混酸中能迅速溶解,在氢氟酸中也能被溶解。但是钽更害怕强碱,在110度40%浓度的烧碱溶液里,钽会被迅速溶解,在同样浓度的氢氧化钾溶液中,只要100度就会被迅速溶解。除上面所述情况外,一般的无机盐在150度以下一般不能腐蚀钽。实验证明,钽在常温下,对碱溶液、氯气、溴水、稀硫酸以及其他许多药剂均不起作用,仅在氢氟酸和热浓硫酸作用下有所反应。这样的情况在金属中是比F较罕见的。元素用途

钽在酸性电解液中形成稳定的阳极氧化膜,用钽制成的电解电容器,具有容量大、体积小和可靠性好等优点,制电容器是钽的最重要用途,70年代末的用量占钽总用2/3以上。钽也是制作电子发射管、高功率电子管零件的材料。钽制的抗腐蚀设备用于生产强酸、溴、氨等化学工业。金属钽可作飞机发动机的燃烧室的结构材料。钽钨、钽钨铪、钽铪合金用作火箭、导弹和喷气发动机的耐热高强材料以及控制和调节装备的零件等。钽易加工成形,在高温真空炉中作支撑附件、热屏蔽、加热器和散热片等。钽可作骨科和外科手术材料。碳化钽用在250℃于制造硬质合金。钽的硼化物、硅化物和氮化物及其合金用作原子能工业中的释热元件和液态金属包套材料。氧化钽用于制造高级光学玻璃和催化剂。1981年钽在美国各部门的消费比例约为:电子元件73%,机械工业19%,交通运输6%,其他2%。性质用途

钽的线胀系数在0~100℃之间为6.5×10-6K-1,超导转变临界温度为4.38K,原子的热中子吸收截面为21.3靶恩。

在低于150℃的条件下钽是化学性质最稳定的金属之一。与钽能起反应的只有氟、氢氟酸、含氟离子的酸性溶液和三氧化硫。在室温下与浓碱溶液反应,并且溶于熔融碱中。致密的钽在200℃开始轻微氧化,在280℃时明显氧化。钽有多种氧化物,最稳定的是五氧化二钽(Ta2O5)。

钽和氢以上生成脆性固溶体和金属氢化物如:Ta2H,TaH,TaH2,TaH3。在800~1200℃的真空下,氢从钽中析出钽又恢复塑性。钽和氮在300℃左右开始反应生成固溶体和氮化合物;在高于2000℃和高真空下,被吸收的氮又从钽中析出。钽与碳在高于2800℃下以三种物相存在:碳钽固溶体、低价碳化物和高价碳化物。钽在室温下能与氟反应,在高于250℃时能与其他卤素反应,生成卤化物。

[2]杨铸生,段惠敏,王秀京.四川攀西地区铌钽矿床的地质特征及找矿方向[J].四川地质学报.2007(04)[3]鄢明才,迟清华等.中国不同岩石类型花岗岩类元素丰度及特征[J].物探化探计算技术.Liang Peng(Henan Industrial Technology Research Institute of Resources and Materies Zhengzhou University, Zhengzhou

450001 China)Abstract: Tantalum is indispensable strategic raw materials to electronic industry and space technology development.with its unique structure and properties ,tantalum in the orthopedic medical, electronic industry, chemical industry and metallurgical industry has a great application.This paper mainly introduces the preparation of tantalum metal resources, tantalum metal and the structure and properties of tantalum metal and its application.Keywords: tantalum metal;Strategic raw materials;Resources;Preparation;Structure;application 参考文献

[1]陈宝泉.福建南平西坑铌钽矿区玉帝庵矿段含矿伟晶岩特征[J].福建地质.2008(03)

The Structure And Performance Study Of Tantalum Metal

第三篇:金属基复合材料的种类与性能

金属基复合材料的种类与性能

摘要:金属基复合材料科学是一门相对较新的材料科学,仅有40余年的发展历史。金属基复合材料的发展与现代科学技术和高技术产业的发展密切相关,特备是航天、航空、电子、汽车以及先进武器系统的迅速发展对材料提出了日益增高的性能要求,除了要求材料具有一些特殊的性能外,还要具有优良的综合性能,有力地促进了先进复合材料的迅速发展。单一的金属、陶瓷、高分子等工程材料均难以满足这些迅速增长的性能要求。金属基复合材料正是为了满足上述要求而诞生的。

关键词:金属;金属基复合材料;种类;性能特征;用途 1.金属基复合材料的分类 1.1按 增强体类型分

1.1.1颗粒增强复合材料

颗粒增强复合材料是指弥散的增强相以颗粒的形式存在,其颗粒直径和颗粒间距较大,一般大于1μm。

1.1.2层状复合材料

这种复合材料是指在韧性和成型性较好的金属基 材料中含有重复排列的高强度、高模量片层状 增强物的复合材料。片曾的间距是微观的,所以在正常比例下,材料按其结构组元看,可以认为是各向异性的和均匀的。

层状复合材料的强度和大尺寸增强物的性能比较接近,而与晶须或纤维类小尺寸增强物的性能差别较大。因为增强物薄片在二维 方向上的尺寸相当于结构件的大小,因此增强物中的缺陷可以成为长度和构件相同的裂纹的核心。

由于薄片增强的强度不如纤维增强相高,因此层状结构复合材料的强度受到了限制。然而,在增强平面的各个方向上,薄片增强物对强度和模量都有增强,这与纤维单向增强的复合材料相比具有明显的优越性。1.1.3纤维增强复合材料

金属基复合材料中的一维增强体根据其长度的不同可分为长纤维、短纤维和晶须。长纤维又叫 连续纤维,它对金属基体的增强方式可以以单项纤维、二维织物和三维织物存在,前者增强的复合材料表现出明显的各向异性特征,第二种材料在织物平面方向的力学性能与垂直该平面的方向不同,而后者的性能基本是个向同性的。连续纤维增强金属基复合材料是指以高性能的纤维为增强体,金属或他们的合金为基体制成的复合材料。纤维是承受载荷的,纤维的加入不但大大改变了材料的力学性能,而且也提高了耐温性能。

短纤维和晶须是比较随机均匀地分散在金属基体中,因而其性能在宏观上是各向同性的;在特殊条件下,短纤维也可以定向排列,如对材料进行二次加工(挤压)就可达到。

当韧性金属基体用高强度脆性纤维增强时,基体的屈服和塑性流动是复合材料性能的主要特征,但纤维对复合材料弹性模量的增强具有相当大的作用。1.2按基体类型分

主要有铝基、镁基、锌基、铜基、钛基、镍基、耐热金属基、金属间化合物基等复合材料。目前以铝基、镁基、钛基、镍基复合材料发展较为成熟,已在航天、航空、电子、汽车等工业中应用。在这里主要介绍这几种材料 1.2.1铝基复合材料

这是在金属基复合材料中应用最广的一种。由于铝合金基体为面心立方结构,因此具有良好的塑性和韧性,再加之它所具有的易加工性、工程可靠性及价格低廉等优点,为其在工程上应用创造了有利条件。再制造铝基复合材料时通常并不是使用纯铝而是铝合金。这主要是由于铝合金具有更好的综合性能。1.2.2镍基复合材料

这种复合材料是以镍及镍合金为基体制造的。由于镍的高温性能优良,因此这种复合材料主要是用于制作高温下工作的零部件。人们研制镍基复合材料的一个重要目的是希望用它来制造燃气轮机的叶片,从而进一步提高燃气轮机的工作温度。但目前由于制造工艺及可靠性等问题尚未解决,所以还未能取得满意的结果。1.2.3钛基复合材料

钛比任何其他的结构材料具有更高的比强度。此外,钛在中温时比铝合金能更好地保持其强度。因此,对飞机结构来说,当速度从亚音速提高到超音速时,钛 比铝合金显示出了更大的优越性。随着速度进一步的加快,还需要改变飞机的结构设计,采用更细长的机翼和其他翼型,为此需要高刚度的材料。而纤维增强钛恰好可以满足这种对材料刚度的要求。钛 基 复合材料中最常用的增强体是硼纤维,这是由于钛与硼的热膨胀系数比较接近。1.2.4镁 基 复合材料

以陶瓷颗粒、纤维或晶须作为增强体,可制成 镁基 复合材料,集超轻、高比刚度、高比强度于一身,该类材料比铝基复合材料更轻,具有更高的比强度和比刚度,将使航空航天方面的优选材料。1.3按用途分

1.3.1结构复合材料

主要用作承力结构,它基本上有增强体和基体组成,它具有高比强度、高比模量、尺寸稳定、耐热等特点。用于制造各种航天、航空、电子、汽车、先进武器系统等高性能构建。1.3.2功能复合材料

是指除力学性能外还有其他物理性能的复合材料,这些性能包括电、磁、热、声、力学(指阻尼、摩擦)等。该材料用于电子、仪器、汽车、航天、航空、武器等。

2.金属基复合材料的性能特征

金属基复合材料的增强体主要有纤维、晶须和颗粒,这些增强体主要是无机物(陶瓷)和金属。无机纤维主要有碳纤维、硼纤维、碳化硅纤维、氧化铝纤维、氮化硅纤维等。金属纤维主要有铍、钢、不锈钢和钨纤维等。用于增强金属复合材料的颗粒主要是无机非金属颗粒,主要包括石墨、碳化硅、氧化铝、碳化硅、碳化钛、碳化硼等。

金属基复合材料的性能取决于所选用金属或合金基体和增强物的特性、含量、分布等。通过优化组合可以既具有金属特性,又具有高比强度、高比模量、耐热、耐磨等综合性能。

其主要性能有以下几点: 1.高比强度、比模量 2.导热、导电性能好

3.热膨胀系数小、尺寸稳定性好 4.良好的高温性能 5.良好的耐磨性

6.良好的断裂韧性和抗疲劳性能 7.不吸潮、不老化、气密性好 3.结束语

总之,金属基复合材料具有高比强度、比模量,良好的导热、导电性、耐磨性、高温性能,较低的热膨胀系数,高的尺寸稳定性等优点,它在航天、航空、电子、汽车、轮船、先进武器等方面均具有广泛的应用前景。

第四篇:材料性能学教学大纲

《材料性能学》课程教学大纲

一、课程基本信息 课程编码: 课程类别:必修课 适用专业:材料化学

总 学 时:48 学 分:3 课程简介:本课程是材料化学专业主干课程之一,属专业基础课。本课程主要内容为材料物理性能,以材料通用性物理性能及共同性的内容为主。通过本课程的教学,使学生获得关于材料物理性能包括材料力学性能(受力形变、断裂与强度)、热学、光学、导电、磁学等性能及其发展和应用,重点掌握各种重要性能的原理及微观机制,性能的测定方法以及控制和改善性能的措施,各种材料结构与性能的关系,各性能之间的相互制约与变化规律。

授课教材:《材料物理性能》,吴其胜、蔡安兰、杨亚群,华东理工大学出版社,2006,10。

2、参考书目: 1.《材料性能学》,北京工业大学出版社,王从曾,2007.1 2.《材料的物理性能》,哈尔滨工业大学出版社,邱成军等,2009.1

二、课程教育目标

通过学习材料的各种物理性能,使学生掌握以下内容:各种材料性能的各类本征参数的物理意义和单位以及这些参数在解决实际问题中所处的地位;弄清各材料性能和材料的组成、结构和构造之间的关系;掌握这些性能参数的物质规律,从而为判断材料优劣、正确选择和使用材料、改变材料性能、探索新材料、新性能、新工艺打下理论基础;为全面掌握材料的结构,对材料的原料和工艺也应有所认识,以取得分析性能的正确依据。

三、教学内容与要求 第一章:材料的力学性能 重点与难点:

重点:应力、应变、弹性变形行为、Griffith微裂纹理论,应力场强度因子和平面应变断裂韧性,提高无机材料强度改进材料韧性的途径。难点:位错运动理论、应力场强度因子和平面应变断裂韧性。教学时数:10学时 教学内容:

1.1 应力及应变:应力、应变;

1.2 弹性形变:Hooke定律;弹性模量的影响因素、无机材料的弹性模量、复相的弹性模量、弹性形变的机理;

1.3 材料的塑性形变:晶体滑移、塑性形变的位错运动理论;

1.4 滞弹性和内耗:粘弹性和滞弹性、应变松弛和应力松弛、松弛时间、无弛豫模量与弛豫模量、模量亏损、材料的内耗;

1.5 材料的高温蠕变:蠕变曲线、蠕变机理、影响蠕变的因素;

1.6 材料的断裂强度:理论断裂强度、Inglis 理论、Griffith微裂纹理论、、Orowan理论;

1.7 材料的断裂韧性:裂纹扩展方式、裂纹尖端应力场分析、几何形状因子、断裂韧性、裂纹扩展的动力与阻力;

1.8 裂纹的起源与扩展:裂纹的起源、裂纹的快速扩展、影响裂纹扩展的因素、材料的疲劳、应力腐蚀理论、高温下裂纹尖端的应力空腔作用、亚临界裂纹生长速率与应力场强度因子的关系、根据亚临界裂纹扩展预测材料寿命、蠕变断裂; 1.10 显微结构对材料脆性断裂的影响:晶粒尺寸、气孔的影响;

1.11 提高材料强度及改善脆性的途径:金属材料的强化、陶瓷材料的强化; 1.12 复合材料:复合材料的分类、连续纤维单向强化复合材料的强度、短纤维单向强化复合材料;

1.13 材料的硬度:硬度的表示方法、硬度的测量。教学方式:课堂讲授与多媒体教学相结合。

教学要求:掌握材料的弹性变形、塑性变形、高温蠕变及其它力学性能的理论描述、产生的原因、影响因素。掌握断裂的现象和产生、断裂力学的原理出发,通过理论结合强度、应力场的分析,断裂的判据,应力场强度因子、平面应变断裂韧性、延性断裂、脆性断裂、沿晶断裂、静态疲劳的概念,并根据此判据来分析提高材料强度及改进材料韧性的途径。了解断裂的现象,弄清产生断裂的原理(断裂理论),通过应力场的分析。要求掌握断裂的判据,并根据此判据来分析提高材料强度及改进材料韧性的途径。

第二章:材料的热学性能 重点与难点: 重点:材料的热膨胀,材料的热稳定性。难点:材料的热传导,材料的热稳定性。教学时数:6学时 教学内容:

2.1 热学性能的物理基础;

2.2 材料的热容:晶体固体热容的经验定律和经典理论,晶体固体热容的量子理论回顾,无机材料的热容;

2.3 材料的热膨胀:热膨胀系数、热膨胀机理、热膨胀和其他性能的关系、多晶体和复合材料的热膨胀;

2.4 材料的热传导:固体材料热传导的宏观规律,固体材料热传导的微观机理、影响热传导的因素、某些无机材料的热传导;

2.5 材料的热稳定性:热稳定性的表示方法、热应力、抗热冲击断裂性能,抗热冲击损伤性、提高抗热冲击断裂性能的措施。教学方式:课堂讲授与多媒体教学相结合。

教学要求:掌握材料热容的各种理论及其比较,热膨胀的定义及其基本机理,热传导的宏观规律和微观机理,热稳定性的表示和抗热冲击断裂性能。要求掌握各种热应力断裂抵抗因子。总结出提高抗热冲击断裂性能的措施。第三章 材料的光学性能 重点与难点:

重点:光的反射和折射、材料对光的吸收和色散、光的散射 难点:光的散射、电-光效应、光折变效应、非线性光学效应 教学时数:8学时 教学内容:

3.1 光传播的基本性质:光的波粒二象性、光的干涉和衍射、光通过固体现象;

3.2 光的反射和折射:反射定律和折射定律、折射率的影响因素、晶体的双折射、材料的反射系数及其影响因素;

3.3 材料对光的吸收和色散:吸收系数与吸收率、光的吸收与波长的关系、光的色散;

3.4 光的散射:散射的一般规律、弹性散射、非弹性散射;

3.5 材料的不透明性与半透明性:材料的不透明性、材料的乳浊、半透明性、透明材料的颜色、材料的着色; 3.6 电-光效应、光折变效应、非线性光学效应:电光效应及电光晶体、光折变效应、非线性光学效应;

3.7光的传输与光纤材料:光纤发展概况和基本特征、光纤材料的制备、光纤的应用;

3.8 特种光学材料及其应用:固体激光器材料及其应用、光存储材料。教学方式:课堂讲授与多媒体教学相结合。

教学要求:掌握金属、半导体、绝缘体的电子能带结构,光传播电磁理论、反射、光的吸收和色散、晶体的双折射、介质的光散射等各种光现象的物理本质。了解影响材料光学性能的各种因素。简要了解光纤材料、激光晶体材料及光存储材料等光学材料。

第四章:材料的电导性能 重点与难点:

重点:离子电导,电子电导。

难点:无机材料的电导,半导体陶瓷的物理效应。教学时数:8学时 教学内容:

4.1 电导的物理现象:电导率与电阻率、电导的物理特性;

4.2 离子电导:载流子浓度、离子迁移率、离子电导率、离子电导率的影响因素、固体电解质ZrO2;

4.3 电子电导:电子迁移率、载流子浓度、电子电导率、电子电导率的影响因素 4.4 金属材料的电导:金属电导率、电阻率与温度的关系、电阻率与压力的关系、冷加工和缺陷对电阻率的影响、电阻率的各向异性、固溶体的电阻率; 4.5 固体材料的电导:玻璃态电导、多晶多相固体材料的电导、次级现象、固体材料电导混合法则;

4.6 半导体陶瓷的物理效应:晶界效应、表面效应、西贝克效应、p-n结; 4.7 超导体:超导体的概念、约瑟夫逊效应、超导体的应用。教学方式:课堂讲授与多媒体教学相结合。

教学要求:掌握各种电导的宏观参数和物理量及电导的主要基本公式;围绕此公式来讨论各种电导的电导率(离子电导率、电子电导率)及其影响因素,材料的电导混合法则和半导体陶瓷的物理效应。第五章 材料的磁学性能 重点与难点:

重点:抗磁性和顺磁性、铁磁性与反铁磁性 难点:铁磁性与反铁磁性 教学时数:8学时 教学内容:

5.1 基本磁学性能:磁学基本量、物质的磁性分类;

5.2 抗磁性和顺磁性:原子本征磁矩、抗磁性、物质的顺磁性、金属的抗磁性与顺磁性、影响金属抗、顺磁性的因素;

5.3 铁磁性与反铁磁性:铁磁质的自发磁化、反铁磁性和亚铁磁性、磁畴、磁化曲线和磁滞回线;

5.4 磁性材料的动态特性:交流磁化过程与交流回线、磁滞损耗和趋肤效应、磁后效应和复数磁导率、磁导率减落及磁共振损耗;

5.5 磁性材料及其应用:软磁材料、硬磁材料、磁信息存储材料、纳米磁性材料。教学方式:课堂讲授与多媒体教学相结合。

教学要求:掌握固体物质的各种磁性(抗磁性、顺磁性、铁磁性、反铁磁性、亚铁磁性)的形成机理及宏观表现;重点掌握磁性表征参量、各类磁性物质的内部相互作用;磁性材料在交变磁场中的磁化过程及宏观磁性;了解磁性材料及其应用。

第六章 材料的功能转换性能 重点与难点:

重点:介质的极化与损耗、介电强度、压电性能、铁电性 难点:压电性能、铁电性 教学时数:8学时 教学内容:

6.1 介质的极化与损耗:介质极化相关物理量、极化类型、宏观极化强度与微观极化率的关系、介质损耗分析、材料的介质损耗、降低材料介质损耗的方法; 6.2 介电强度:介电强度、固体电介质的击穿、影响材料击穿强度的因素; 6.3 压电性能:压电效应及其逆效应、压电材料的研究进程、压电材料主要表征参数、压电陶瓷的预极化、压电陶瓷的稳定性、压电材料及其应用;

6.4 铁电性:铁电性的概念、铁电体的分类、铁电体的起源、铁电体的性能及其应用、反铁电体; 6.5 热电性能:热电效应、热电材料、热电材料的应用; 6.6 光电性能:光电效应、光电材料及其应用;

6.7 热释电性能:热释电效应及其逆效应、热释电材料、热释电材料的应用; 6.8 智能材料:智能材料的特征与构成、智能材料的分类、智能金属材料、智能无机非金属材料、智能高分子材料。教学方式:课堂讲授与多媒体教学相结合。

教学要求:掌握电介质的介电性能,包括介电常数、介电损耗、介电强度及其随环境(温度、湿度、辐射等)的变化规律。了解极化的微观机制、电介质的压电性、铁电性、热电性能、光电性能和热释电性的性能、常用材料及其应用、智能材料的特征、分类及应用。

四、作业:

每章根据学生学习情况,选择布置教材中部分习题促进学生课后复习、巩固课堂教学内容,并进行讲评。

五、考核与评定

以期末考试(闭卷)成绩为主,参考课堂提问、讨论课发言情况以及平时作业和考勤等,综合评定后,给出结业成绩。

期末考试占70%,平时成绩占30%。

第五篇:材料性能学复习题

1金属的弹性模量主要取决于什么因素?为什么说它是一个对组织不敏感的力学性能指标?

金属的弹性模量主要取决于原子间距和原子间作用力,也即金属原子本性,晶格类型。而材料的成分和组织对它影响不大,所以说它是一个对组织不敏感性能指标。改变材料的成分和组织会对材料的强度(如屈服强度,抗拉强度)有显著影响,但对材料的刚度影响不大。2决定金属屈服强度的因素有哪些?

①金属本性和晶格类型,晶格阻力—派纳力,位错运动交互作用力越强,屈服强度越高;②晶粒大小和亚结构,晶粒减小,屈服强度增加;③溶质元素,加入溶质元素将产生晶格畸变,与位错应力场交互运动,提高屈服强度;④第二相,不可逆变形第二相将增加流变应力,提高屈服强度,可你变形第二相将产生界面能,提高屈服强度;⑤温度,派纳力属于短程力,对温度十分敏感,温度升高,屈服强度降低⑥应变速率,应变速率大,强度增加;⑦应力状态,切应力分量越大,越有利塑性变形,屈服强度降低。

3韧性断裂和脆性断裂的区别。为什么脆性断裂更加危险。韧性断裂:断裂前产生明显宏观塑性变形,断裂面一般平行于最大切应力与主应力成45度角,断口成纤维状,灰暗色。断口三要素:纤维区,放射区,剪切唇,这三个区域的比例关系与材料韧度有关,塑性越好,放射线越粗大,塑性越差,放射线变细甚至消失。

脆性断裂:断裂前基本上不发生塑性变形的突然断裂。断裂面与正应力垂直,断口平齐而光滑,呈放射状或结晶状。(脆性断裂也产生微量塑性变形,断面收缩率一般小于5%)

4对金属材料韧脆转变的影响因素。

①材料成分,凡加入合金元素引起滑移系减少,孪生,位错钉扎的都增加脆性,若合金中形成粗大第二相也增加脆性;②杂质,聚集在晶界上的杂质会降低材料的塑性,发生脆断;③bcc金属具有低温脆断现象,同时在低温下,塑性变形一孪生为主,易于产生裂纹,低温脆性大;④晶粒大小,晶粒小,晶界多,不易产生裂纹,也不易扩展,细化晶粒将提高抗脆性能;⑤应力状态,减少切应力和正应力的比值都将增加金属的脆性;⑥加载速度,加载速度大,金属会发生韧脆转变。

5缺口拉伸是应力分布有何特点

缺口截面上的应力分布是不均匀的,轴向应力在缺口根部最大,离开根部的距离增大,应力不断减小,即在根部产生应力集中。

6今有如下零件和材料等需要测定硬度,试说明选用何种硬度试验方法为宜。渗碳层的硬度分布 HK或显微HV 淬火钢HRC 灰铸铁HB 鉴别钢种的隐晶马氏体和残余奥氏体显微HV或HK 仪表小黄铜齿轮HV 龙门刨床导轨HS HL 渗氮层HV 高速钢刀具HRC 退火态低碳钢HB 硬质合金HRA 火车弹簧HRA 退火状态下软钢HRB 7试说明低温脆性的物理本质及其影响因素

低温脆性的本质是材料屈服强度随温度降低急剧增加,其影响因素包括晶体结构,化学成分,显微组织(晶粒大小,晶相组织),温度,加载速率,试样的形状和尺寸。

8韧脆转变的确定方法有哪些?

①当低于某一温度材料吸收的冲击能量基本上不随温度变化,形成一个平台,该能量为低阶能,以低阶能开始上升的温度定义,记作NDP②高于某一温度材料吸收的能量也基本不变,形成一平台,成为高阶能,以高阶能对应的温度定义,记作FTP ③以低阶能和高阶能的平均值对应的温度定义,记作 FTE④通常取结晶区占整个断口面积50%的温度为韧脆转变温度,记作FATT50 9试说明低应力脆断的原因及方法 原因:与材料内部一定尺寸的裂纹相关,当裂纹在给定的作用力下扩展临界尺寸时就会突然破坏。

防止方法:添加细化晶粒的合金元素,细化晶粒,形成板条马氏体及残留奥氏体薄膜增强韧性,温度越低,脆性一般就越大,增加应变速率也会降低塑性,因此要降低温度和应变速率。

10应力场强度因子以及断裂韧度

应力场强度因子是力学参量,表示裂纹体中裂纹尖端的应力应变场强度的大小,它取决于外加应力,试样尺寸和裂纹类型,而和材料无关;断裂韧度是材料的力学性能指标,表示材料在平面应变的状态下抵抗裂纹失稳扩展的能力,它决定于材料的成分,结构等内在因素,而以外加应力及试样尺寸等外在因素无关。11疲劳断口有什么特点

有源疲劳。在形成疲劳裂纹之后,裂纹慢速扩展,形成贝壳状或海滩状条纹。这种条纹开始时比较密集,以后间距逐渐增大。由于载荷的间断或在和大小的改变,裂纹经过多次张开闭合并由于裂纹表面的相互摩擦,形成一条条光亮的弧线,叫做疲劳裂纹前沿线,这个区域通常称为疲劳裂纹扩展区,而最后断裂区和静载下带尖锐缺口试样的断口相似。对于塑性材料,断口为纤维状,对于脆性材料,则为结晶状断口。总之,一个典型的疲劳断口总是由疲劳源,疲劳裂纹扩展区和最终断裂区三部分构成。

12什么是裂纹断裂门槛值,那些因素影响其值大小?

把裂纹扩展的每一微小过程看成是裂纹体小区域的断裂过程,则 设想应力强度因子幅度△K=Kmax-Kmin 是疲劳裂纹扩展的控制因子,当△K 小于某临界值△Kth 时,疲劳裂纹不扩展,所以△Kth 叫疲劳裂纹扩展的门槛 值。应力比、显微组织、环境及试样的尺寸等因素对△Kth 的影响很大。13提高零件的疲劳寿命有

①只要能降低第二相或夹杂物的脆性,提高相界面强度,控制第二相或夹杂物的数量,形态,大小,分布,均可抑制或延缓疲劳裂纹的萌生。②晶界强化,净化和晶粒细化,可以提高材料疲劳寿命,细化晶粒既能阻止疲劳裂纹在晶界处萌生,又能阻止疲劳裂纹的扩展,提高疲劳强度。③表面强化处理可在机件表面产生有利的残余压应力,阻止疲劳裂纹的扩展,同时还能提高机件表面强度和硬度。14如何判断某一零件的破坏是由应力腐蚀引起的

①应力腐蚀显微裂纹常有分叉的现象,呈枯树枝状,即:有一主裂纹扩展较快,其他分支裂纹扩展较慢根据这一特征可以区分;②采用极化实验方法:当外加小的阳极电流而缩短产生裂纹时间的是应力腐蚀,当外加小的阴极电流而缩短产生裂纹时间的是氢致延滞性断裂。

15何为氢致延滞性断裂?为什么高强度的钢的氢致延滞性断裂是在一定的应变速率和一定的温度范围内出现? 高强度钢种固溶一定量的氢,在对于屈服强度的应力持续作用下,经过一段时间的孕育,金属内部形成裂纹,发生断裂的现象叫做氢致延滞性断裂。

氢固溶在金属晶格中,产生晶格膨胀畸变,与刃位错交互作用,氢易迁移到位错应力处,形成氢气团。当应变速率较低而温度较高时,氢气团能够跟上位错运动,但滞后位错一定距离,对位错起钉扎作用,产生局部硬化。当位错塞积聚集,产生应力作用,导致微裂纹。当应变速率过高及温度较低的情况下,氢气团不能跟上位错运动,便不能产生钉扎作用,也不可能在位错塞积聚集,产生微裂纹。16粘着磨损产生的条件、机理及其防止措施-----又称为咬合磨损,在滑动摩擦条件下,摩擦副相对滑动速度较小,因缺乏润滑油,摩擦副表面无氧化膜,且单位法向载荷很大,以致接触应力 超过实际接触点处屈服强度而产生的一种磨损。磨损机理: 实际接触点局部应力引起塑性变形,使两接触面的原子产生粘着。粘着点从软的一方被剪断转移到硬的一方金属表面,随后脱落形成磨屑 旧的粘着点剪断后,新的粘着点产生,随后也被剪断、转移。如此重复,形 成磨损过程。

改善粘着磨损耐磨性的措施 1.选择合适的摩擦副配对材料 选择原则:配对材料的粘着倾向小 互溶性小 表面易形成化合物的材料 金属与非金属配对 2.采用表面化学热处理改变材料表面状态 进行渗硫、磷化、碳氮共渗等在表面形成一层化合物或非金属层,即避免摩 擦副直接接触又减小摩擦因素。3.控制摩擦滑动速度和接触压力 减小滑动速度和接触压力能有效降低粘着磨损。4.其他途径 改善润滑条件,降低表面粗糙度,提高氧化膜与机体结合力都能降低粘着磨 损。

17影响接触疲劳寿命的因素?

内因 1.非金属夹杂物 脆性非金属夹杂物对疲劳强度有害 适量的塑性非金属夹杂物(硫化物)能提高接触疲劳强度 塑性硫化物随基体一起塑性变形,当硫化物把脆性夹杂物包住形成共生夹杂 物时,可以降低脆性夹杂物的不良影响。生产上尽可能减少钢中非金属夹杂物。2.热处理组织状态 接触疲劳强度主要取决于材料的抗剪切强度,并有一定的韧性相配合。当马氏体含碳量在 0.4~0.5w%时,接触疲劳寿命最高。马氏体和残余奥氏体的级别 残余奥氏体越多,马氏体针越粗大,越容易产生微裂纹,疲劳强度低。未溶碳化物和带状碳化物越多,接触疲劳寿命越低。3.表面硬度和心部硬度 在一定硬度范围内,接触疲劳强度随硬度的升高而增加,但并不保持正比线 性关系。表面形成一层极薄的残余奥氏体层,因表面产生微量塑性变形和磨损,增加 了接触面积,减小了应力集中,反而增加了接触疲劳寿命。渗碳件心部硬度太低,表层硬度梯度过大,易在过渡区内形成裂纹而产生深 层剥落。表面硬化层深度和残余内应力 硬化深度要适中,残余压应力有利于提高疲劳寿命。外因 1.表面粗糙度 减少加工缺陷,降低表面粗糙度,提高接触精度,可以有效增加接触疲劳寿 命。接触应力低,表面粗糙度对疲劳寿命影响较大 接触应力高,表面粗糙度对疲劳寿命影响较小 2.硬度匹配 两个接触滚动体的硬度和装配质量等都应匹配适当。18金属材料在高温下的变形机制与断裂机制,和常温比较有什么不同 机制:高温下的蠕变主要是通过位错攀移,原子扩散等机理进行的。常温下,若滑移面的位错运动受阻产生塞积,滑移便不能继续进行,只有在更大的切应力作用下,才能是位错重新运动和增值。但在高温作用下,位错可借助外界提供的热激活能和空位扩散来克服某些短程障碍。扩散蠕变,是由于在高温条件下大量原子和空位定向移动。此外,高温下,由于晶界上的原子容易扩散,受力后易产生滑移,促进蠕变变形,这就是晶界滑动蠕变。断裂机制:金属材料在长时高温的断裂,大多为沿晶断裂,这是由于晶界滑动在晶界上形成裂纹并逐渐扩展引起的。高温下,裂纹出现在境界上的突起部位和细小的第二相质点附近,由于晶界滑动而产生空洞,最终导致沿晶断裂。19提高材料的蠕变抗力有哪些途径 合金化学成分:在基体金属中加入合金元素形成单相固溶体。加入能够形成弥散相的合金元素能够增加晶界扩散激活能的元素。冶炼工艺:珠光体耐热钢一般采用正火加高温回火工艺。奥氏体耐热钢或合金一般进行固溶处理和时效。采用形变热处理改变晶界形状并在晶内形成多边化的亚晶界。

晶粒度:使用温度低于等强温度时,晶粒细化。奥氏体耐热钢及镍基合金一般以2到4级晶粒度较好。

下载金属材料的性能word格式文档
下载金属材料的性能.doc
将本文档下载到自己电脑,方便修改和收藏,请勿使用迅雷等下载。
点此处下载文档

文档为doc格式


声明:本文内容由互联网用户自发贡献自行上传,本网站不拥有所有权,未作人工编辑处理,也不承担相关法律责任。如果您发现有涉嫌版权的内容,欢迎发送邮件至:645879355@qq.com 进行举报,并提供相关证据,工作人员会在5个工作日内联系你,一经查实,本站将立刻删除涉嫌侵权内容。

相关范文推荐

    材料性能知识大全

    材料性能知识大全 1、关于拉伸力-伸长曲线和应力-应变曲线的问题 低碳钢的应力-应变曲线 a、拉伸过程的变形: 弹性变形,屈服变形,加工硬化(均匀塑性变形),不均匀集中塑性变形。 b......

    材料的性能

    第一章 材料的性能 1 材料的力学性能主要有哪些? 强度,塑性,硬度,韧性及疲劳强度。 2 简述低碳钢的应力-应变曲线(分为几个阶段,各特征点表示什么含义)。 弹性变形阶段,屈服阶段,塑性......

    材料性能(PA66

    性能编辑PA66塑胶原料为半透明或不透明乳白色结晶形聚合物,具有可塑性。密度1.15g/cm3。熔点252℃。脆化温度-30℃。热分解温度大于350℃。 连续耐热80-120℃,平衡吸水率2.5%。......

    材料性能学复习题

    材料性能学复习题适用于材料成型与控制工程专业一、填空1、σe表示材料的弹性极限;σp表示材料的比例极限;σs表示材料的屈服强度;σb表示材料的抗拉强度。2、断口的三要素是纤......

    材料物理、性能

    一、金属基复合材料为什么具有可设计性 (1)复合材料在弹性模量、线膨胀系数和材料强度等方面具有明显的各向异性性质。(2).复合材料具有不同层次上的宏观、细观和微观结构(3)复合......

    性能测试报告

    待测服务器地址: prestashop.ichina.cn 服务器软件:nginx/1.02.12 端口:80一共测试了两次: 并发级别:10 完成请求:1000 完成时间:67.009 seconds 吞吐率:14.92/s 每秒相应14.92个请......

    金属教案

    第1节课 (绪论) 一、教学目的和要求 1.掌握金属工艺学的概念; 2.了解主要的工艺方法; 3.知道本课程的重要性和学习方法。 二、教学内容纲要 1.课程的性质与任务; 2.主要内容及研......

    金属有机化学(本站推荐)

    金属有机化学浅析 金属有机化学和配位化学分别是从有机化学和无机化学两个领域中发展起来而又密切联系的学科, 目前已汇成一股洪流, 成为近代化学前沿领域之一。它的发展打......