第一篇:HD加油泵主要技术数据及产品适用范围
HD加油泵主要技术数据及产品适用范围
一、HD型手摇计量加油泵产品概述:
本单位生产的手摇计量加油泵是适用于各地中小型油库、加油站、农机站、企业厂矿、车队、车辆船舶等单位使用。
本油桶泵结构紧凑,具有体积小、重量轻、移动方便、操作简单。耐腐蚀化工泵只需一人用手往复摇动手柄即可连续出油,本泵装有LXYL-25型旋翼式油表(计量表),(指针可回零)可用1寸加油枪安装在皮管出口处起开关作用,避免停止工作时皮管内积油料浪费。
二、HD型手摇计量加油泵产品适用范围:
本单位生产的手摇计量加油泵是适用于各地中小型油库、加油站、农机站、企业厂矿、车队、车辆船舶等单位使用。
三、HD型手摇计量加油泵主要技术数据: 本泵进出液口径25mm(即胶管内径25mm)计量表误差±2% 最大压力:2kg/cm 活塞行程:90mm 活塞直径:100mm 允许扬程20-25m 允许吸程4-5m 往复次数35-45次/分 流量30-45升/分
三、
第二篇:HD型手摇计量加油泵产品概述及价格
HD型手摇计量加油泵产品概述及价格
一、HD型手摇计量加油泵产品概述:
手摇计量加油泵是适用于各地中小型油库、加油站、农机站、企业厂矿、车队、车辆船舶等单位使用。
本油桶泵结构紧凑,具有体积小、重量轻、移动方便、操作简单。耐腐蚀化工泵只需一人用手往复摇动手柄即可连续出油,本泵装有LXYL-25型旋翼式油表(计量表),(指针可回零)可用1寸加油枪安装在皮管出口处起开关作用,避免停止工作时皮管内积油料浪费。
二、HD型手摇计量加油泵产品适用范围:
本单位生产的手摇计量加油泵是适用于各地中小型油库、加油站、农机站、企业厂矿、车队、车辆船舶等单位使用。
三、HD型手摇计量加油泵主要技术数据:
本泵进出液口径25mm(即胶管内径25mm)
计量表误差±2%
最大压力:2kg/cm
活塞行程:90mm
活塞直径:100mm
允许扬程20-25m
允许吸程4-5m
往复次数35-45次/分
流量30-45升/分
四、HD型手摇计量加油泵适用范围
手摇计量加油泵是适用于各地中小型油库、加油站、农机站、企业厂矿、车队、车辆船舶等单位使用。
第三篇:数据加密技术(定稿)
我们经常需要一种措施来保护我们的数据,防止被一些怀有不良用心的人所看到或者破坏。在信息时代,信息可以帮助团体或个人,使他们受益,同样,信息也可以用来对他们构成威胁,造成破坏。在竞争激烈的大公司中,工业间谍经常会获取对方的情报。因此,在客观上就需要一种强有力的安全措施来保护机密数据不被窃取或篡改。数据加密与解密从宏观上讲是
非常简单的,很容易理解。加密与解密的一些方法是非常直接的,很容易掌握,可以很方便的对机密数据进行加密和解密。
一:数据加密方法好范文版权所有
在传统上,我们有几种方法来加密数据流。所有这些方法都可以用软件很容易的实现,但是当我们只知道密文的时候,是不容易破译这些加密算法的(当同时有原文和密文时,破译加密算法虽然也不是很容易,但已经是可能的了)。最好的加密算法对系统性能几乎没有影响,并且还可以带来其他内在的优点。例如,大家都知道的,它既压缩数据又加密数据。又如,的一些软件包总是包含一些加密方法以使复制文件这一功能对一些敏感数据是无效的,或者需要用户的密码。所有这些加密算法都要有高效的加密和解密能力。
幸运的是,在所有的加密算法中最简单的一种就是“置换表”算法,这种算法也能很好达到加密的需要。每一个数据段(总是一个字节)对应着“置换表”中的一个偏移量,偏移量所对应的值就输出成为加密后的文件。加密程序和解密程序都需要一个这样的“置换表”。事实上,系列就有一个指令‘’在硬件级来完成这样的工作。这种加密算法比较简单,加密解密速度都很快,但是一旦这个“置换表”被对方获得,那这个加密方案就完全被识破了。更进一步讲,这种加密算法对于黑客破译来讲是相当直接的,只要找到一个“置换表”就可以了。这种方法在计算机出现之前就已经被广泛的使用。
对这种“置换表”方式的一个改进就是使用个或者更多的“置换表”,这些表都是基于数据流中字节的位置的,或者基于数据流本身。这时,破译变的更加困难,因为黑客必须正确的做几次变换。通过使用更多的“置换表”,并且按伪随机的方式使用每个表,这种改进的加密方法已经变的很难破译。比如,我们可以对所有的偶数位置的数据使用表,对所有的奇数位置使用表,即使黑客获得了明文和密文,他想破译这个加密方案也是非常困难的,除非黑客确切的知道用了两张表。
与使用“置换表”相类似,“变换数据位置”也在计算机加密中使用。但是,这需要更多的执行时间。从输入中读入明文放到一个中,再在中对他们重排序,然后按这个顺序再输出。解密程序按相反的顺序还原数据。这种方法总是和一些别的加密算法混合使用,这就使得破译变的特别的困难,几乎有些不可能了。例如,有这样一个词,变换起字母的顺序,可以变为,但所有的字母都没有变化,没有增加也没有减少,但是字母之间的顺序已经变化了。
但是,还有一种更好的加密算法,只有计算机可以做,就是字字节循环移位和操作。如果我们把一个字或字节在一个数据流内做循环移位,使用多个或变化的方向(左移或右移),就可以迅速的产生一个加密的数据流。这种方法是很好的,破译它就更加困难!而且,更进一步的是,如果再使用操作,按位做异或操作,就就使破译密码更加困难了。如果再使用伪随机的方法,这涉及到要产生一系列的数字,我们可以使用数列。对数列所产生的数做模运算(例如模),得到一个结果,然后循环移位这个结果的次数,将使破译次密码变的几乎不可能!但是,使用数列这种伪随机的方式所产生的密码对我们的解密程序来讲是非常容易的。
在一些情况下,我们想能够知道数据是否已经被篡改了或被破坏了,这时就需要产生一些校验码,并且把这些校验码插入到数据流中。这样做对数据的防伪与程序本身都是有好处的。但是感染计算机程序的病毒才不会在意这些数据或程序是否加过密,是否有数字签名。所以,加密程序在每次到内存要开始执行时,都要检查一下本身是否被病毒感染,对与需要加、解密的文件都要做这种检查!很自然,这样一种方法体制应该保密的,因为病毒程序的编写者将会利用这些来破坏别人的程序或数据。因此,在一些反病毒或杀病毒软件中一定要使用加密技术。
循环冗余校验是一种典型的校验数据的方法。对于每一个数据块,它使用位循环移位和操作来产生一个位或位的校验和,这使得丢失一位或两个位的错误一定会导致校验和出错。这种方式很久以来就应用于文件的传输,例如。这是方法已经成为标准,而且有详细的文档。但是,基于标准算法的一种修改算法对于发现加密数据块中的错误和文件是否被病毒感染是很有效的。
二.基于公钥的加密算法
一个好的加密算法的重要特点之一是具有这种能力:可以指定一个密码或密钥,并用它来加密明文,不同的密码或密钥产生不同的密文。这又分为两种方式:对称密钥算法和非对称密钥算法。所谓对称密钥算法就是加密解密都使用相同的密钥,非对称密钥算法就是加密解密使用不同的密钥。非常著名的公钥加密以及加密方法都是非对称加密算法。加密密钥,即公钥,与解密密钥,即私钥,是非常的不同的。从数学理论上讲,几乎没有真正不可逆的算法存在。例如,对于一个输入‘’执行一个操作得到
结果‘’那么我们可以基于‘’,做一个相对应的操作,导出输入‘’。在一些情况下,对于每一种操作,我们可以得到一个确定的值,或者该操作没有定义(比如,除数为)。对于一个没有定义的操作来讲,基于加密算法,可以成功地防止把一个公钥变换成为私钥。因此,要想破译非对称加密算法,找到那个唯一的密钥,唯一的方法只能是反复的试验,而这需要大量的处理时间。
加密算法使用了两个非常大的素数来产生公钥和私钥。即使从一个公钥中通过因数分解可以得到私钥,但这个运算所包含的计算量是非常巨大的,以至于在现实上是不可行的。加密算法本身也是很慢的,这使得使用算法加密大量的数据变的有些不可行。这就使得一些现实中加密算法都基于加密算法。算法以及大多数基于算法的加密方法使用公钥来加密一个对称加密算法的密钥,然后再利用一个快速的对称加密算法来加密数据。这个对称算法的密钥是随机产生的,是保密的,因此,得到这个密钥的唯一方法就是使用私钥来解密。
我们举一个例子:假定现在要加密一些数据使用密钥‘’。利用公钥,使用算法加密这个密钥‘’,并把它放在要加密的数据的前面(可能后面跟着一个分割符或文件长度,以区分数据和密钥),然后,使用对称加密算法加密正文,使用的密钥就是‘’。当对方收到时,解密程序找到加密过的密钥,并利用私钥解密出来,然后再确定出数据的开始位置,利用密钥‘’来解密数据。这样就使得一个可靠的经过高效加密的数据安全地传输和解密。
一些简单的基于算法的加密算法可在下面的站点找到:
三.一个崭新的多步加密算法
现在又出现了一种新的加密算法,据说是几乎不可能被破译的。这个算法在年月日才正式公布的。下面详细的介绍这个算法
使用一系列的数字(比如说位密钥),来产生一个可重复的但高度随机化的伪随机的数字的序列。一次使用个表项,使用随机数序列来产生密码转表,如下所示:
把个随机数放在一个距阵中,然后对他们进行排序,使用这样一种方式(我们要记住最初的位置)使用最初的位置来产生一个表,随意排序的表,表中的数字在到之间。如果不是很明白如何来做,就可以不管它。但是,下面也提供了一些原码(在下面)是我们明白是如何来做的。现在,产生了一个具体的字节的表。让这个随机数产生器接着来产生这个表中的其余的数,好范文版权所有以至于每个表是不同的。下一步,使用技术来产生解码表。基本上说,如果映射到,那么一定可以映射到,所以(是一个在到之间的数)。在一个循环中赋值,使用一个字节的解码表它对应于我们刚才在上一步产生的字节的加密表。
使用这个方法,已经可以产生这样的一个表,表的顺序是随机,所以产生这个字节的随机数使用的是二次伪随机使用了两个额外的位的密码现在,已经有了两张转换表,基本的加密解密是如下这样工作的。前一个字节密文是这个字节的表的索引。或者,为了提高加密效果,可以使用多余位的值,甚至使用校验和或者算法来产生索引字节。假定这个表是的数组将会是下面的样子
变量是加密后的数据,是前一个加密数据(或着是前面几个加密数据的一个函数值)。很自然的,第一个数据需要一个“种子”,这个“种子”是我们必须记住的。如果使用的表,这样做将会增加密文的长度。或者,可以使用你产生出随机数序列所用的密码,也可能是它的校验和。顺便提及的是曾作过这样一个测试使用个字节来产生表的索引以位的密钥作为这个字节的初始的种子。然后,在产生出这些随机数的表之后,就可以用来加密数据,速度达到每秒钟个字节。一定要保证在加密与解密时都使用加密的值作为表的索引,而且这两次一定要匹配
加密时所产生的伪随机序列是很随意的,可以设计成想要的任何序列。没有关于这个随机序列的详细的信息,解密密文是不现实的。例如:一些码的序列,如“可能被转化成一些随机的没有任何意义的乱码,每一个字节都依赖于其前一个字节的密文,而不是实际的值。对于任一个单个的字符的这种变换来说,隐藏了加密数据的有效的真正的长度。
如果确实不理解如何来产生一个随机数序列,就考虑数列,使用个双字(位)的数作为产生随机数的种子,再加上第三个双字来做操作。这个算法产生了一系列的随机数。算法如下:
如果想产生一系列的随机数字,比如说,在和列表中所有的随机数之间的一些数,就可以使用下面的方法:
××××
××××
××××
××
一
变量中的值应该是一个排过序的唯一的一系列的整数的数组,整数的值的范围均在到之间。这样一个数组是非常有用的,例如:对一个字节对字节的转换表,就可以很容易并且非常可靠的来产生一个短的密钥(经常作为一些随机数的种子)。这样一个表还有其他的用处,比如说:来产生一个随机的字符,计算机游戏中一个物体的随机的位置等等。上面的例子就其本身而言并没有构成一个加密算法,只是加密算法一个组成部分。
作为一个测试,开发了一个应用程序来测试上面所描述的加密算法。程序本身都经过了几次的优化和修改,来提高随机数的真正的随机性和防止会产生一些短的可重复的用于加密的随机数。用这个程序来加密一个文件,破解这个文件可能会需要非常巨大的时间以至于在现实上是不可能的。
四.结论:
由于在现实生活中,我们要确保一些敏感的数据只能被有相应权限的人看到,要确保信息在传输的过程中不会被篡改,截取,这就需要很多的安全系统大量的应用于政府、大公司以及个人系统。数据加密是肯定可以被破解的,但我们所想要的是一个特定时期的安全,也就是说,密文的破解应该是足够的困难,在现实上是不可能的,尤其是短时间内。
《数据加密技术》
第四篇:大数据:不是技术难题
90%以上的企业可以用他们90%的现有需求和技术、工具来解决现在的大数据问题。企业并不是缺乏解决这些大数据难题的工具、技术甚至人才.他们真正面临的问题是,如何在公司建立一个和大数据相匹配的文化与流程。
虽然眼下十分火热,然而“大数据”概念并没有明确的范畴,时大数据的定义只是相衬于当前可用的技术和资源而言的,因此,某一个企业或行业所认为的大数据,可能衬于另一个企业或行业就不再是大数据,时于大的电子商务企业,它们眼中的大数据要比小厂商眼里的大数据“大”得多;同时,大数据也会特续地演进,现在被我们认为庞大和恐饰的数据在10年之后只是小事一桩,但那时候将会有那个时代的新数据源。然而,面衬这些源源不断出现的“大数据”,哪些事情是希望从中发掘机会的企业需要注意的?
新数据源是核心
欧博思分析师认为大数据的三个“V”特征,即Volume(规模),Variety(种类),和Velocity(高速度),这些只是大数据的第二位要素。大数据真正重要的“V”是Value(价值)。那么是什么带来了大数据的价值?
答案是新的数据源。
过去,获取网络浏览数据的技术门槛和成本都很高,而现在获取这些数据已经很容易,企业可以通过了解消费者浏览数据中展示的偏好以及未来购买倾向,来给他们推出最合适的折扣优惠。这都是新数据源的力量,这才是大数据的价值核心。
但在客户的沟通实践中,常常发现:大多数时候,人们都将精力投注在如何在“大数据”时代优化处理模型,或者升级技术装备以希求能提升分析的效果。
但是真正能提升分析效果的方式,是搜集并加入完全崭新的信息源。一旦新的、和从前不同的数据源出现并且能够被收集,你最好将自己的注意力转到这些新的数据上去一一比起你将精力放在模型优化上,新的数据源将能带来更大的收获。因此,在大数据时代,建议 就是,将你的精力放到不断寻求祈的数据源上吧。如今很多企业都会有很多新的数据源,如果正确使用的话,它们会带给企业非常有竞争力的优势。
小步快跑式
对大数据的另一个误解是,“大数据其实就是一个技术问题”。
事实上90%以上的企业可以用他们90%的现有需求和技术、工具来解决现在的大数据问题。企业并不是缺乏解决这些大数据难题的工具、技术甚至人才,他们真正面临的问题是,如何在公司建立一个和大数据相匹配的文化与流程,是缺乏对技术做投资的公司文化,他们的挑战是做出一个商业案例来证明技术升级是有价值的。
为了促进公司文化的转变,更建议一种“小步快跑”的运作方式,即在处理新数据源的过程中,企业内部的分析专家们应该积极寻找代价小、见效快的方法,不断向企业展示一些有价值的东西,来让人们保持对新数据源处理过程的兴趣。一个跨部门的大数据团队一定不能在组建一年之后,还对外宣称他们“正在试图搞明白”,要不时地迸发出想法,不管这一想法多么微小,然后迅速采取行动。
另外一个建议是,建立类似“创新中心”这样的地方,就是公司内部拿出少量的预算、人力资源、技术资源来做一些有一定未知风险的小实验,以小预算做试点,便于企业快速出击。
总的来说,大数据将为企业提供更多视角和洞察,通过和其他企业数据的结合,消费者洞察无论从数量还是质量上都会有指数级增长,因此最重要的一点,是大数据策略必须和其他数据结合形成整体数据战略,而不是独立的战略。
第五篇:数据产品经理面试
1.要极其熟悉公司业务及动向。所以要了解公司的商业模式、战略、以及业务流程、要考核的各种指标,以及指标背后的业务含义等。这一点,再了解都不够。
2.要了解数据分析。好的数据PD,即使不做数据PD,也应该是个数据分析师。数据PD的一大要务就是将数据分析做成可复制,可自动运转的系统。虽然有数据分析师们围绕在自己周围,但是自己也要清楚业务的问题,分别要看什么数据,或者当数据出现后,意味着业务出现了什么问题或者会出现什么问题。这一点,要向最好的数据分析师们看齐。3.要了解数据仓库及商务智能。这两个关键词背后都是庞大的体系,恐怕我短短半年的转岗时间太短,虽然能够对别人讲解一通商务智能产品的架构。嘴里虽然会抛出若干个类似于汇总,钻取,度量,指标,维度,缓慢变化维,层次,属性,仪表盘等等术语,但是也不支持多几层的知识钻取,遇到异常问题,也不知道该从什么地方分析原因。幸而身边有数据仓库的同事,可以多多学习。这一点,没有天花板。而商务智能,做为一门学科,起源于20世纪90年代,它的出发点是帮助用户更好地获取决策信息,最初商务智能的动机是为用户提供自助式的信息获取方式,这样,用户就可以不用依赖于IT部门去获取定制的报表。(引自《信息仪表盘》一书P41)。而如今,商务智能除了提供信息,更主要的是降低用户获取数据的门槛,提升数据的实时性等方面。从降低用户获取数据的门槛一个方向,我们就可以做很多事情,比如如何设计信息仪表盘(designing of information dashboard)?如何让数据以更亲和的更直观的方式展示(数据可视化)?如何能够让用户离线访问?如何能够实现警戒数据的主动发送?这一点上,花多少功夫都不多。
4.要精通数据产品开发流程。数据开发+产品开发。数据PD的最终目的是要做数据产品。这里要拆开看,其一,数据产品本身也是在线可供用户实现的产品,既然是产品,产品的整套研发思路和普通的产品没有太大区别,用户是谁,他们需求是什么,满足需求需要什么feature list,每个feature list的资源评估以及优先级如何,产品的生命周期如何?这是产品开发。然后他是个数据产品,意味着这比普通的产品,多了更多的要求。在数据这个内核之外,它需要各种feature list,如订阅,搜索,自定义,短信接口,邮件接口等。但是数据这个内核,也需要一套数据开发流程。比如:
数据源——是否足够,是否稳定——数据PD需要足够了解目前的业务处理系统建设情况,以及数据源的积累程度,用以判断数据产品的建设时间是否合适。不合适的时机会导致项目组的重复劳动和残缺的数据产品诞生。数据产品是用以支持监控,分析,决策的,而业务处理系统的定位在于提升工作效率,解放工作人员手脚。业务系统采集的数据未必满足所有分析需要。比如或许领导要分析大量攀升的退换货的详细原因,而业务系统目前并没有要求用户在申请退换货的时候选择原因或只有输入而非标准化选项,负责退换货出力的员工也只有在excel里登记原因,而不是录入到系统里。所以可能会导致需求方要看的数据提供不出来,那么数据pd就有必要反向驱动数据源得以采集。
分析模型的设计—— 分析模型的好与不好,其实决定了数据产品的成败。
在项目中,可以由BI的数据分析师们担纲此职责,也可以由数据PD担纲,更多则由双方一起确认,内容以数据分析师们为主,功能评估及优先级、项目计划和协调、统筹以数据PD为主。所以数据PD要更加清楚数据分析师们所需要的需求是否能够实现,背后的商业价值如何,并与数据开发、产品开发保持比数据分析师们更加通畅的合作关系,能够借力进行可行性和资源的评估。有的时候,我们不是没有数据,而是有了太多的数据,不知道怎么去看。如果只是抛给用户一堆数据,很难想象用户会如何去解读它。以前做交互设计的时候,我们流行一句话:把用户当成傻瓜。
而数据平台,因为可能本身就要求有一定的使用门槛,所以想成不会互联网的傻瓜不太现实,那么我们就要想成“用户是不懂数据的傻瓜”。他们或许也能通过一串串数据体悟到什么,但是如果是一条上升的退款率趋势线,或许他们会体悟到更多——毕竟,上和下本身就是直观的。然后再想一下,如果将这条线上加上一条警戒点的线,他们会知道从什么时候开始数据是异常的。再然后,就要设想,当他发现从7月12日数据上升后,想干什么?他会不会想了解是哪个行业上升了?他会不会想了解是那个渠道上升了?那么,就要提供行业和渠道的选项或者对比给他。
再然后,当他过问了这个行业的负责人后,负责人想不想再了解是哪个供应商或者哪类商品上升了?那么要如何将这些维度、层次都融合在一起,同时又能将用户非常方便地去用呢?分析模型的建设至关重要,也可以说,分析模型是前期需求分析的最有价值的产物。分析模型应该会包含几点:
主题的划分:整块分析会划分成什么主题,比如销售可能会分成销售走势及构成分析,行业排名,商品排名等
度量及指标:分析主题会涉及到的度量及指标的算法、定义等(这通常会产生一份指标以及维度的定义及描述文档)
维度:要分别从什么维度去看这些指标和度量,如时间,渠道,这些维度是要筛选还是要对比
钻取:这些维度本身有没有层次,需要不需要进行钻取,如渠道可钻取到渠道类型,行业可钻取到子行业,商品类目可钻取到商品叶子类目等 输出:分析需要用何种图表进行展现
数据的ETL开发——数据的清洗,转换,装载流程占用了数据产品开发的大半资源,不规范的数据源会导致这一块的资源更大程度的占用。比如同样是供应商编码,系统之一称为供应商编码,系统二命名为供货商编码,系统三命名为供应商ID,这三个系统同时是公司的系统,这种情况虽然想起来匪夷所思,但是现实情况却也存在。虽然ETL开发是DW开发工程师在做,但是作为数据PD,焉能对这些工作缺乏了解,对ETL工程师反馈的问题,缺乏认知,不理解对于项目的潜在风险是什么?而且更多时侯,当遇到数据不规范,不统一的问题,数据PD需要反向驱动业务系统进行数据规范性建设,无论是功能上,还是驱动直接的使用方——如负责录入数据的行业小二,建立一套录入规范。这些工作看似和数据PD无关,我们大可以推脱说:那没办法,这是数据源的问题,不是我们功能的问题。但是,用户是有权利选择使用不使用你的数据产品的,当数据产品提供的数据不值得信赖的话,无疑是自取灭亡。一旦用户对数据不信任,再想挽留他们,是很难的。即使有很多“无能为力”的借口,我们也不能坐观其变。
前端交互与体验的优化——虽然内容定义好了,但是那么多度量、指标、维度、钻取,如何划分信息层级,如何划分栏目,如何设计用户的行为路径?这些就不是数据分析师们的重要工作范畴。而是交互设计师?鉴于很多数据产品项目可能会没有交互设计师,所以数据PD应该对内容进行封装,进行信息架构、页面布局以及图表各种功能设计。设计,然后撰写详细的功能需求文档,交付给产品开发,前端开发以及数据开发,以及前端展现开发四种类型的开发人员。
数据产品的功能描述文档,除了产品开发部分,其他的就是在描述“内容”,即分析模型,除了主题、度量、维度、钻取、筛选、输出图表类型,有些内容还需要详细定义到 “排序方式” 等等细节,这就case by case来看了。
环境,技术,工具——或许做一个普通的产品,你把需求描述清楚,与产品开发工程师确认好可行性,接受资源评估就OK了。但是数据产品,受制于所部署的环境,所选型的工具,如Oracle,IBM的Cogos,以及SQL Server。其他的产品我不知道怎么样,我们用的是Oracle BIEE。那么作为数据PD,是否需要了解BIEE能够提供的功能是哪些呢?看文档,请教别人,不能知其不可而为之。另外,也需要逐渐摸透BIEE的坏脾气,实现不了的功能,无法克服的难点等。这一点,也需要继续了解,继续学习。数据产品项目流程